Inequalities & Graphs
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i Oblique asymptote:
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
2
4
2
2
2


 x
x
x
x
Oblique asymptote:
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
2
4
2
2
2


 x
x
x
x
Oblique asymptote:
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
2
4
2
2
2


 x
x
x
x
Oblique asymptote:
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
  
1or2
012
02
2
1
2
2
2
2






xx
xx
xx
xx
x
x
Inequalities & Graphs
  1
2
Solvee.g.
2

x
x
i
  
1or2
012
02
2
1
2
2
2
2






xx
xx
xx
xx
x
x
21or2
1
2
2



xx
x
x
(ii) (1990)
xy graphheConsider t
(ii) (1990)
xy graphheConsider t
0allforincreasingisgraphthat theShowa) x
(ii) (1990)
xy graphheConsider t
0allforincreasingisgraphthat theShowa) x
0whenincreasingisCurve 
dx
dy
(ii) (1990)
xy graphheConsider t
0allforincreasingisgraphthat theShowa) x
0whenincreasingisCurve 
dx
dy
xdx
dy
xy
2
1


(ii) (1990)
xy graphheConsider t
0allforincreasingisgraphthat theShowa) x
0whenincreasingisCurve 
dx
dy
xdx
dy
xy
2
1


0for0  x
dx
dy
(ii) (1990)
xy graphheConsider t
0allforincreasingisgraphthat theShowa) x
0whenincreasingisCurve 
dx
dy
xdx
dy
xy
2
1


0for0  x
dx
dy
0,0at  yx
(ii) (1990)
xy graphheConsider t
0allforincreasingisgraphthat theShowa) x
0whenincreasingisCurve 
dx
dy
xdx
dy
xy
2
1


0for0  x
dx
dy
0,0at  yx
0,0when  yx
(ii) (1990)
xy graphheConsider t
0allforincreasingisgraphthat theShowa) x
0whenincreasingisCurve 
dx
dy
xdx
dy
xy
2
1


0for0  x
dx
dy
0,0at  yx
0,0when  yx
0forincreasingiscurve  x
 
n
nndxxn
0
3
2
21
that;showHenceb)

 
n
nndxxn
0
3
2
21
that;showHenceb)

 
n
nndxxn
0
3
2
21
that;showHenceb)

curveunderArearectanglesouterArea
;increasingisAs

x
 
n
nndxxn
0
3
2
21
that;showHenceb)

curveunderArearectanglesouterArea
;increasingisAs

x

n
dxxn
0
21 
 
n
nndxxn
0
3
2
21
that;showHenceb)

curveunderArearectanglesouterArea
;increasingisAs

x

n
dxxn
0
21 
nn
xx
n
3
2
3
2
0





 
n
nndxxn
0
3
2
21
that;showHenceb)

curveunderArearectanglesouterArea
;increasingisAs

x

n
dxxn
0
21 
nn
xx
n
3
2
3
2
0





 
n
nndxxn
0
3
2
21 
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1
1..

SHL
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1
1..

SHL
 
6
7
1
6
314
..


SHR
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1
1..

SHL
 
6
7
1
6
314
..


SHR
SHRSHL .... 
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1
1..

SHL
 
6
7
1
6
314
..


SHR
SHRSHL .... 
Hence the result is true for n = 1
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1
1..

SHL
 
6
7
1
6
314
..


SHR
SHRSHL .... 
Hence the result is true for n = 1
integerpositiveaiswherefortrueisresulttheAssume kkn 
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1
1..

SHL
 
6
7
1
6
314
..


SHR
SHRSHL .... 
Hence the result is true for n = 1
integerpositiveaiswherefortrueisresulttheAssume kkn 
k
k
k
6
34
21i.e.

 
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1
1..

SHL
 
6
7
1
6
314
..


SHR
SHRSHL .... 
Hence the result is true for n = 1
integerpositiveaiswherefortrueisresulttheAssume kkn 
k
k
k
6
34
21i.e.

 
1fortrueisresulttheProve  kn
1integersallfor
6
34
21
that;showtoinductionalmathematicUsec)


 nn
n
n
Test: n = 1
1
1..

SHL
 
6
7
1
6
314
..


SHR
SHRSHL .... 
Hence the result is true for n = 1
integerpositiveaiswherefortrueisresulttheAssume kkn 
k
k
k
6
34
21i.e.

 
1fortrueisresulttheProve  kn
1
6
74
121Provei.e. 

 k
k
k
Proof:
Proof: 121121  kkk 
Proof: 121121  kkk 
1
6
34


 kk
k
Proof: 121121  kkk 
1
6
34


 kk
k
 
6
1634
2


kkk
Proof: 121121  kkk 
1
6
34


 kk
k
 
6
1634
2


kkk
6
1692416 23


kkkk
Proof: 121121  kkk 
1
6
34


 kk
k
 
6
1634
2


kkk
6
1692416 23


kkkk
  
6
16118161 2


kkkk
Proof: 121121  kkk 
1
6
34


 kk
k
 
6
1634
2


kkk
6
1692416 23


kkkk
  
6
16118161 2


kkkk
  
6
161141
2


kkk
Proof: 121121  kkk 
1
6
34


 kk
k
 
6
1634
2


kkk
6
1692416 23


kkkk
  
6
16118161 2


kkkk
  
6
161141
2


kkk
  
6
16141
2


kkk
Proof: 121121  kkk 
1
6
34


 kk
k
 
6
1634
2


kkk
6
1692416 23


kkkk
  
6
16118161 2


kkkk
  
6
161141
2


kkk
  
6
16141
2


kkk
   
   
6
174
6
16114




kk
kkk
Hence the result is true for n = k +1 if it is also true for n =k
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
hundrednearesttheto1000021
estimate;toc)andb)Used)
 
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
hundrednearesttheto1000021
estimate;toc)andb)Used)
 
n
n
nnn
6
34
21
3
2 
 
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
hundrednearesttheto1000021
estimate;toc)andb)Used)
 
n
n
nnn
6
34
21
3
2 
 
 
 
10000
6
3100004
10000211000010000
3
2 
 
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
hundrednearesttheto1000021
estimate;toc)andb)Used)
 
n
n
nnn
6
34
21
3
2 
 
 
 
10000
6
3100004
10000211000010000
3
2 
 
6667001000021666700  
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
hundrednearesttheto1000021
estimate;toc)andb)Used)
 
n
n
nnn
6
34
21
3
2 
 
 
 
10000
6
3100004
10000211000010000
3
2 
 
6667001000021666700  
hundrednearesttheto6667001000021  
(iii) Prove x > sinx , for x > 0
(iii) Prove x > sinx , for x > 0
1
y
x 2
y = x
y = sinx
(iii) Prove x > sinx , for x > 0
1
y
x 2
y = x
y = sinx
( )
'( ) 1
f x x
f x


(iii) Prove x > sinx , for x > 0
1
y
x 2
y = x
y = sinx
( )
'( ) 1
f x x
f x


( ) sin
'( ) cos
f x x
f x x


(iii) Prove x > sinx , for x > 0
1
y
x 2
y = x
y = sinx
( )
'( ) 1
f x x
f x


( ) sin
'( ) cos
f x x
f x x


for 0 , cos 1
2
x x

  
increases faster than siny x y x  
sin , for 0
2
x x x

  
(iii) Prove x > sinx , for x > 0
1
y
x 2
y = x
y = sinx
( )
'( ) 1
f x x
f x


( ) sin
'( ) cos
f x x
f x x


for 0 , cos 1
2
x x

  
increases faster than siny x y x  
sin , for 0
2
x x x

  
for , sin 1
2
x x

 
sin , for
2
x x x

  
(iii) Prove x > sinx , for x > 0
1
y
x 2
y = x
y = sinx
( )
'( ) 1
f x x
f x


( ) sin
'( ) cos
f x x
f x x


for 0 , cos 1
2
x x

  
increases faster than siny x y x  
sin , for 0
2
x x x

  
for , sin 1
2
x x

 
sin , for
2
x x x

  
sin , for 0x x x  
(iii) Prove x > sinx , for x > 0
1
y
x 2
y = x
y = sinx
( )
'( ) 1
f x x
f x


( ) sin
'( ) cos
f x x
f x x


for 0 , cos 1
2
x x

  
increases faster than siny x y x  
sin , for 0
2
x x x

  
for , sin 1
2
x x

 
sin , for
2
x x x

  
sin , for 0x x x   Exercise 10F

X2 t08 03 inequalities & graphs (2013)