Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
1 | P a g e
RURAL INSTITUTE FOR COMMUNITY DUCATION
Mathakondapalli Model School
CHEMISTRY
Project
On
PREPARATION OF
RAYON ...
2 | P a g e
MATHAKONDAPALLI MODEL SCHOOL
CHEMISTRY PROJECT
2014 – 2015
BONAFIDE CERTIFICATE
Certified to be the bonafide P...
3 | P a g e
ACKNOWLEDGEMENT
In the accomplishment of this project successfully, many
people have best owned upon me their ...
4 | P a g e
INDEX
1. CERTIFICATE OF EXCELLENCE……………………………………2
2. ACKNOWLEDGEMENT……………………………………………....3
3. INTRODUCTION…………...
5 | P a g e
Introduction
Cellulose is nature’s own giant molecule. It is the fibrous material that every plant from
seawee...
6 | P a g e
Aim of the Project
The main objective of the project is to illustrate the preparation
of rayon by the cuprammo...
7 | P a g e
Apparatus And Chemicals
@:- Beakers(250 ml.)
@:- Conical flask(250ml.)
@:- Filter flask
@:- Funnel
@:-glass ro...
8 | P a g e
THEORY
Of all the fibers, rayon is probably the most perplexing to consumers. It can be found in
cotton-like e...
9 | P a g e
was often tried by scientists in the ensuing years who sought an "artificial silk", yet no one
was to succeed ...
10 | P a g e
Rayon withstands ironing temperatures slightly less than those of cotton. It may be attacked
by silverfish an...
11 | P a g e
sweaters (referred to as "torch sweaters") and children's cowboy chaps which could
easily catch fire and flas...
12 | P a g e
Applications
 Yarns:
embroidery thread, chenille, cord, novelty yarns
 Fabrics:
crepe, gabardine, suiting, ...
13 | P a g e
 Domestic Textiles:
bedspreads, blankets, curtains, draperies, sheets, slip covers, tablecloths, upholstery....
14 | P a g e
Revised Siro spun
viscose yarn Ne 30/1,
low pilling
Types of Rayon
There are four major types or modification...
15 | P a g e
properties for disposable diapers, hygiene and incontinence pads, as well as medical
supplies.
Microfibers ar...
16 | P a g e
producing sheets of alkali cellulose. Any excess alkali is pressed out. The substance is
broken up into flake...
17 | P a g e
Background
For centuries humankind has relied upon various plants and animals to provide the raw
materials fo...
18 | P a g e
For the next forty years this material was called artificial or imitation silk. By 1925 it had
developed into...
19 | P a g e
c) Stirred it with a glass rod till a clear solution was obtained. Added 11ml of liquor
ammonia drop by drop ...
20 | P a g e
B. Preparation of Cellulose material
a) 2g of filter paper was weighed and divide it into very fine pieces an...
21 | P a g e
C. Formation of Rayon Thread
a) Taken 50ml of distilled water in a glass container. To that added 20ml of con...
22 | P a g e
e) Left the fibers in solution till they decolorize and become strong enough.
f) Filtered and washed with dis...
23 | P a g e
24 | P a g e
CONCLUSION
By doing this experiment I have learnt a lot about the rayon. Now I can do this
experiment when I ...
25 | P a g e
BIBLIOGRAPHY
HELP FROM
INTERNET
INFORMATION
FROM LIBRARY
HELP FROM
TEACHERS
1) NCERT textbook class 12
2) NCE...
pg. 26
Upcoming SlideShare
Loading in …5
×

Chemistry project PREPARATION OF RAYON FROM FILTER PAPER

58,946 views

Published on

One of the best project in chemistry

Published in: Education
  • Be the first to comment

Chemistry project PREPARATION OF RAYON FROM FILTER PAPER

  1. 1. 1 | P a g e RURAL INSTITUTE FOR COMMUNITY DUCATION Mathakondapalli Model School CHEMISTRY Project On PREPARATION OF RAYON FROM FILTER PAPER MOHAMAD ISSAQ PASHA.I Class: 12.A Roll no: 2014 -15
  2. 2. 2 | P a g e MATHAKONDAPALLI MODEL SCHOOL CHEMISTRY PROJECT 2014 – 2015 BONAFIDE CERTIFICATE Certified to be the bonafide Project work done by Mohamad Issaq Pasha.I of class XII in Mathakondapalli Model School, Hosur during the year 2014 – 2015. Date: Teacher incharge Submitted for AISSCE practical examination held on __________________________ At Mathakondapalli Model School, Hosur. Project Title PREPARATION OF RAYON FROM FILTER PAPER Name of the candidate Mohamad Issaq Pasha.I Register No: Center Code : External Examiner School Seal Principal
  3. 3. 3 | P a g e ACKNOWLEDGEMENT In the accomplishment of this project successfully, many people have best owned upon me their blessings and the heart pledged support, this time I am utilizing to thank all the people who have been concerned with project. Primarily I would thank RICE-MATHAGONDAPALLI MODLE SCHOOL for being able to complete this project with success. Then I would like to thank my principal Dr NAVIS JAI CHITHRA and my CHEMISTRY teacher Ms.K.Puneetha, whose valuable guidance has been the ones that helped me patch this project and make it full proof success her suggestions and her instructions has served as the major contributor towards the completion of the project. Then I would like to thank my parents and friends who have helped me with their valuable suggestions and guidance has been helpful in various phases of the completion of the project. Last but not the least I would like to thank my classmates who have helped me a lot.
  4. 4. 4 | P a g e INDEX 1. CERTIFICATE OF EXCELLENCE……………………………………2 2. ACKNOWLEDGEMENT……………………………………………....3 3. INTRODUCTION…………………………………………………….....5 4. AIM OF PROJECT…………………………………………….……….6 5. APPARATUS REQUIRED………………………………………….…7 6. THEORY……………………………………………………………….8 7. PROCEDURE FOLLOWED……………………………………….…18 8. CONCLUSION………………………………………………………….23 9. BIBLIOGRAPHY……………………………………………………....24
  5. 5. 5 | P a g e Introduction Cellulose is nature’s own giant molecule. It is the fibrous material that every plant from seaweed to the sequoia makes by baking glucose molecules in long chains; the chains are bound together in the fibers that give plants their shape and strength. Wood has now become the main source of cellulose. Since it contains only 40% to 50% cellulose, the substance must be extracted by ‘pulping’. The logs are flaked and then simmered in chemicals that dissolve the tarry lignin, resins and minerals. The remaining pulp about 93% cellulose is dried and rolled into sheets-raw material for paper, rayon and other products. It can be obtained in 2 ways: 1. Viscose Process: Cellulose is soaked in 30% caustic soda solution for about 3 hrs. The alkali solution is removed and the product is treated with CS2. This gives cellulose xanthate, which is dissolved in NaOH solution to give viscous solution. This is filtered and forced through a spinneret into a dilute H2SO solution, both of which harden the gum-like thread into rayon fibers. The process of making viscose was discovered by C.F.Cross and E.J.Bevan in 1891. 2. Cuprammonium Rayon: Cuprammonium rayon is obtained by dissolving pieces of filter paper in a deep blue solution containing tetra-ammine cupric hydroxide. The latter is obtained from a solution of copper sulphate. To it, NH4OH solution is added to precipitate cupric hydroxide, which is then dissolved in excess of NH3. Reactions: CuSO4 + 2NH4OH → Cu(OH)2 + (NH4)2SO4 Pale blue ppt Cu(OH) 2 + 4NH4OH → [Cu(NH3) 4](OH) 2 + 4H2O [Cu(NH3) 4](OH) 2 + pieces of filter paper left for 10-15 days give a Viscous solution called VISCOSE.
  6. 6. 6 | P a g e Aim of the Project The main objective of the project is to illustrate the preparation of rayon by the cuprammonium process. Instead of wood pulp as the cellulose source, attempt is done to make use of raw cellulose products such as waste paper (un-printed), filter paper etc.
  7. 7. 7 | P a g e Apparatus And Chemicals @:- Beakers(250 ml.) @:- Conical flask(250ml.) @:- Filter flask @:- Funnel @:-glass rod @:- Sodium hydroxide solution @:- Copper sulphate @:- 50% Ammonia solution @:- Filter paper strips @:- Syringe
  8. 8. 8 | P a g e THEORY Of all the fibers, rayon is probably the most perplexing to consumers. It can be found in cotton-like end uses, as well as sumptuous velvets and taffetas. It may function successfully in absorbent hygiene and incontinence pads and equally well providing strength in tire cords. What is this fiber that has so many faces? Rayon was the first manufactured fiber. The term rayon was officially adopted by the textile industry. Unlike most man-made fibers, rayon is not synthetic. It is made from wood pulp, a naturally-occurring, cellulose-based raw material. As a result, rayon's properties are more similar to those of natural cellulosic fibers, such as cotton or linen, than those of thermoplastic, petroleum-based synthetic fibers such as nylon or polyester. Although rayon is made from wood pulp, a relatively inexpensive and renewable resource, processing requires high water and energy use, and has contributed to air and water pollution. Modernization of manufacturing plants and processes combined with availability of raw materials has increased rayon's competitiveness in the market. History Rayon is the generic term for fiber (and the resulting yarn and fabric) manufactured of regenerated cellulose by any one of six processes. Its importance as a fiber lies in its versatility, and in the fact that it was the first viable manufactured fiber. As far back as 1664, English naturalist Robert Hooke theorized that artificial filaments might be spun from a substance similar to that which silkworms secrete to make silk. This
  9. 9. 9 | P a g e was often tried by scientists in the ensuing years who sought an "artificial silk", yet no one was to succeed until in 1855 the Frenchman did so, George Audemars. By dipping a needle into a viscous solution of mulberry bark pulp and gummy rubber, he was able to make a thread. While interesting from a scientific standpoint, this process was hardly viable economically - it was very slow, and required a great deal of skill and precision. The first commercial synthetic fiber was produced by Hilaire de Bernigaud, Count of Chardonnay (1839-1924) after 29 years of research, was patented in 1884, and manufactured by him in 1889. This cellulose-based fabric known as Chardonnay silk was pretty but very flammable, it was removed from the market. Soon after, the English chemist Charles Frederick Cross and his collaborators Edward John Bevan and Clayton Beadle discovered the viscose process in 1891 (1892?). Courtaulds Fibers produced the first commercial viscose rayon in 1905; the first in the United States was in 1910 by the American Viscose Company. Initially rayon was called "Artificial Silk", and many other names. In 1924 (1926?), a committee formed by the U.S. Department of Commerce and various commercial associations decided upon the name "rayon". It was called "rayon" for one of two reasons: either because of its brightness and similarities in structure with cotton (sun = ray, -on = cotton). Or because the naming committee couldn't find a name from the thousands entered in a contest they sponsored, and who hoped to shed a "ray of light" on the subject (from rayon, French for ray). Properties Viscose Rayon has a silk-like aesthetic with superb drape and feel and retains its rich brilliant colors. Its cellulosic base contributes many properties similar to those of cotton or other natural cellulosic fibers. Rayon is moisture absorbent (more so than cotton), breathable, comfortable to wear, and easily dyed in vivid colors. It does not build up static electricity, nor will it pill unless the fabric is made from short, low-twist yarns. Rayon is comfortable, soft to the skin, and has moderate dry strength and abrasion resistance. Like other cellulosic fibers, it is not resilient, which means that it will wrinkle.
  10. 10. 10 | P a g e Rayon withstands ironing temperatures slightly less than those of cotton. It may be attacked by silverfish and termites, but generally resists insect damage. It will mildew, but that generally is not a problem. One of rayon's strengths is its versatility and ability to blend easily with many fibers— sometimes to reduce cost, other times for luster, softness, or absorbency and resulting comfort. Rayon has moderate resistance to acids and alkalis and generally the fiber itself is not damaged by bleaches; however, dyes used in the fabric may experience color change. As a cellulosic fiber, rayon will burn, but flame retardant finishes can be applied. Fiber Properties overview  General Characteristics: Rayon as a cloth is soft and comfortable. It drapes well, which is one of the reasons it is so desirable as an apparel fabric. Most characteristics are variable depending on processing, additives and finishing treatments, not to mention fabric construction.  Absorbency: Rayon is the most absorbent of all cellulose fibers, even more so than cotton and linen. Because of this, rayon absorbs perspiration and allows it to evaporate away from the skin, making it an excellent summer fabric. Its high absorbency applies equally to dyes, allowing beautiful, deep, rich colours.  Strength: It loses a great deal of strength when wet. Because of this, it stretches and shrinks more than cotton.  Abrasion resistance: Poor due to inelasticity of the fibers. It is easily damaged by scraping and will pill on the surface of the cloth.  Flammability: Because of its excessive flammability, it inspired the Flammable Fabrics Act. The FFA was enacted by the U.S. Department of Commerce in 1953 in response to public concern over a number of serious burn accidents involving brushed rayon high pile
  11. 11. 11 | P a g e sweaters (referred to as "torch sweaters") and children's cowboy chaps which could easily catch fire and flash burn.  Static: No static build-up. Parameters Comparative Rating Cotton Viscose Polyester Comfort Moisture Regain Good Very good Poor Thermal protection Good Very good Poor Air permeability Very good Good Poor Softness Good Very good Poor Smoothness Poor Good Very good Static dissipation Good Very good Poor Aesthetic Drape Good Very good Poor Luster Poor Very good Very good Crease recovery Poor Poor Very good Uniformity Poor Very good Good Utility Performance Antipilling Good Very good Poor Wash & wear Good Poor Very good
  12. 12. 12 | P a g e Applications  Yarns: embroidery thread, chenille, cord, novelty yarns  Fabrics: crepe, gabardine, suiting, lace, outerwear fabrics and linings for fur coats & outerwear. Apparel: blouses, dresses, saris, jackets, lingerie, linings, millinery (hats), slacks, sport shirts, sportswear, suits, ties, work clothes.
  13. 13. 13 | P a g e  Domestic Textiles: bedspreads, blankets, curtains, draperies, sheets, slip covers, tablecloths, upholstery.  Industrial Textiles: high-tenacity rayon is used as reinforcement to mechanical rubber goods (tires, conveyor belts, hoses), applications within the aerospace, agricultural and textile industries, braided cord, tapes Various: sausage casing, cellophane Grades  flat yarn  high tenacity  fibers  tow  tops  spun yarns Jet spun viscose yarn Ne 30/1, low pilling
  14. 14. 14 | P a g e Revised Siro spun viscose yarn Ne 30/1, low pilling Types of Rayon There are four major types or modifications of rayon. Understanding each type should help clarify differences in product performance. 1. "Regular rayon" has the largest market share. It is typically found in apparel and home furnishings and identified on labels by the term "viscose." The distinguishing property of regular rayon is its low wet strength. As a result, it becomes unstable and may stretch or shrink when wet. Dry cleaning is usually recommended to preserve the appearance of fabrics made from this fiber. If machine washed, untreated regular rayon can shrink as much as 10 percent. 2. High Wet Modulus (HWM) rayon is a modified viscose that has virtually the same properties as regular rayon, plus high wet strength. HWM rayon can be machine washed and tumble dried and perform much like cotton in similar end uses. HWM rayon can also be mercerized, like cotton, for increased strength and luster. The terms frequently used to describe HWM rayon in apparel include "polynosic" rayon or the trade name MODALTM . 3. High Tenacity Rayon is a modification of "regular rayon" to provide exceptional strength (two times that of HWM rayon). High tenacity rayon is primarily found in tire cord and industrial end uses. It may be finished, chemically coated, or rubberized for protection from moisture and potential loss of dimensional stability and strength during use. 4. Cupramonium Rayon is another type with properties similar to those of viscose or regular rayon. The manufacturing process differs somewhat from that of regular rayon and is less environmentally friendly. As a result, cupramonium rayon is no longer produced in the United States. Other types of rayon have been developed for specialized end uses. These include disposable, non-woven markets, and high-absorption rayon fibers with moisture-holding
  15. 15. 15 | P a g e properties for disposable diapers, hygiene and incontinence pads, as well as medical supplies. Microfibers are not a type of rayon, but rather a very fine fiber that can be manufactured from either regular or HWM rayon. Microfibers are generally less than one denier in diameter. Rayon microfibers have been successfully produced at 0.9 denier. Fabrics from microfibers are very drapable and silk-like in hand and appearance. Processability Fiber Production By using two different chemicals and manufacturing techniques, two basic types of rayon were developed - viscose rayon and cupramonium. Other processes for rayon include the polynosic (modal) process and the now obsolete nitrocellulose and saponified acetate processes. The nitrocellulose process is likely obsolete not only because the viscose and cupramonium processes are more effective, they are also safer; the nitrocellulose process results in a fiber with explosive properties. As recently as 1992 there has been an entirely new process developed for producing regenerated cellulose fibers: the Lyocell process, developed by Courtaulds. While it is sufficiently different from rayon to almost be in a class by itself, the U.S. Federal Trade commission has formally amended the textile rules to add Lyocell as a subclass of rayon. As viscose is the most common and recognized process for making rayon today, the process is outlined below. While the United States government considers fibers from all the above processes rayon, the International Organization for Standardization (ISO) prefers the name viscose for rayon (regenerated cellulose) obtained by the viscose process. The name viscose was derived from the word viscous, which describes the liquid state of the spinning solution. Dissolution The cellulosic raw materials for rayon are wood chips (usually from spruce or pine) or cotton linters. These are treated to produce sheets of purified cellulose containing 87-98% cellulose. They are then bleached with sodium hypochloride (NaOCl) to remove natural colour. These cellulose sheets are then soaked in 18% caustic soda for 1 to 2 hours
  16. 16. 16 | P a g e producing sheets of alkali cellulose. Any excess alkali is pressed out. The substance is broken up into flakes or grains called cellulose crumbs, which are aged for two or three days under controlled temperature and humidity. Liquid carbon disulfide is added to the crumbs to change the cellulose into cellulose xanthate, a light orange substance that is still in crumb form. These crumbs are dissolved in a weak solution of caustic soda and transformed into a viscous solution called "viscose", honey-like in colour and consistency. Extrusion To produce the rayon filament, the viscose solution is aged, filtered, then vacuum-treated to remove any air bubbles that could weaken the filament and cause it to break. It is then pumped through spinnerets into a bath of sulfuric acid, which coagulates the cellulose xanthate to form regenerated filaments of 100% cellulose. The many variations and different properties of viscose such as luster, strength, softness and affinity for dyes, are influenced here by varying the technique and by the addition of external materials. Purification Once extruded, the freshly formed viscose must be purified and strengthened. It is thoroughly washed, treated with a dilute solution of sodium sulfide to remove any sulfur impurities. It may be bleached to remove a slight yellowness and to secure even white colour, and then given a final washing.
  17. 17. 17 | P a g e Background For centuries humankind has relied upon various plants and animals to provide the raw materials for fabrics and clothing. Silkworms, sheep, beaver, buffalo deer, and even palm leaves are just some of the natural resources that have been used to meet these needs. However, in the last century scientists have turned to chemistry and technology to create and enhance many of the fabrics we now take for granted. There are two main categories of man-made fibers: those that are made from natural products (cellulosic fibers) and those that are synthesized solely from chemical compounds (noncellulosic polymer fibers). Rayon is a natural-based material that is made from the cellulose of wood pulp or cotton. This natural base gives it many of the characteristics—low cost, diversity, and comfort—that have led to its popularity and success. Today, rayon is considered to be one of the most versatile and economical man-made fibers available. It has been called "the laboratory's first gift to the loom." In the 1860s the French silk industry was being threatened by a disease affecting the silkworm. Louis Pasteur and Count Hilaire de Chardonnet were studying this problem with the hope of saving this vital industry. During this crisis, Chardonnet became interested in finding a way to produce artificial silk. In 1885 he patented the first successful process to make a useable fiber from cellulose. Even though other scientists have subsequently developed more cost-effective ways of making artificial silk, Chardonnet is still considered to be the father of rayon.
  18. 18. 18 | P a g e For the next forty years this material was called artificial or imitation silk. By 1925 it had developed into an industry unto itself and was given the name rayon by the Federal Trade Commission (FTC). The term rayon at this time included any man-made fiber made from cellulose. In 1952, however, the FTC divided rayons into two categories: those fibers consisting of pure cellulose (rayon) and those consisting of a cellulose compound (acetate). By the 1950s, most of the rayon produced was being used in industrial and home furnishing products rather than in apparel, because regular rayon (also called viscose rayon) fibers were too weak compared to other fibers to be used in apparel. Then, in 1955, manufacturers began to produce a new type of rayon—high-wet-modulus (HWM) rayon—which was somewhat stronger and which could be used successfully in sheets, towels, and apparel. The advent of HWM rayon (also called modified rayon) is considered the most important development in rayon production since its invention in the 1880s. Today rayon is one of the most widely used fabrics in our society. It is made in countries around the world. It can be blended with natural or man-made fabrics, treated with enhancements, and even engineered to perform a variety of functions. Raw Materials Regardless of the design or manufacturing process, the basic raw material for making rayon is cellulose. The major sources for natural cellulose are wood pulp—usually from pine, spruce, or hemlock trees—and PROCEDURE A. Preparation of Schweitzer’s Solution: a) Weighed 20g of CuSO4.5H20. b) Transfered that to a beaker having 100ml distilled water and added 15ml of dilute H2SO4 to prevent hydrolysis of CuSO4.
  19. 19. 19 | P a g e c) Stirred it with a glass rod till a clear solution was obtained. Added 11ml of liquor ammonia drop by drop with slow stirring. The precipitate of cupric hydroxide was separated out. d) Filtered the solution containing cupric hydroxide through a funnel with filter paper. e) Washed the precipitate of cupric hydroxide with water until the filtrate fails to give a positive test for sulphate ions with barium chloride solution. f) Transfered the precipitate to a beaker that contain 50ml of liquor ammonia and washed it down the funnel. The precipitate when dissolved in liquor ammonia gave a deep blue solution of tetra-ammine cupric hydroxide. That was known as SCHWEITZER’S SOLUTION.
  20. 20. 20 | P a g e B. Preparation of Cellulose material a) 2g of filter paper was weighed and divide it into very fine pieces and then transfered these pieces to the tetra-ammine cupric hydroxide solution in the beaker. b) Sealed the flask and kept for 10 to 15 days, during that period the filter paper was dissolved completely.
  21. 21. 21 | P a g e C. Formation of Rayon Thread a) Taken 50ml of distilled water in a glass container. To that added 20ml of conc H2SO4 drop by drop. Cooled the solution under tap water. In a big glass container poured some of the solution. b) Filled the syringe with cellulose solution prepared before. c) Placed the big glass container containing H2SO4 solution produced before in ice (the reaction being spontaneous results in excess release of energy in the form of heat which makes the fibers weak and breaks them). d) Immersed the tip of the syringe in the solution and pressed gently. Noticed the fibers getting formed in the acid bath. Continude to move and pressed the syringe to extrude more fibers into the bath.
  22. 22. 22 | P a g e e) Left the fibers in solution till they decolorize and become strong enough. f) Filtered and washed with distilled water. RESULT:- Rayon thread was prepared from filter paper.
  23. 23. 23 | P a g e
  24. 24. 24 | P a g e CONCLUSION By doing this experiment I have learnt a lot about the rayon. Now I can do this experiment when I am free and also I can make. I thank my school RURAL INSTITUTE FOR COMMUNITY EDUCATION MATHAKONDAPALLI MODEL SCHOOL for giving me this opportunity for doing this project successfully and I also thank my Chemistry teacher PUNEETHA for Her support which helped me in making this project a good success. I also thank my friends. Finally I thank all the helping hands which helped me doing this project THANK YOU
  25. 25. 25 | P a g e BIBLIOGRAPHY HELP FROM INTERNET INFORMATION FROM LIBRARY HELP FROM TEACHERS 1) NCERT textbook class 12 2) NCERT physics lab Manuel 3) INTERNET 4) www.yahoo.com 5) www.google.com
  26. 26. pg. 26

×