SlideShare a Scribd company logo
1 of 6
Download to read offline
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 973
ON BINARY QUADRATIC EQUATION 432 22
 yx
S. Vidhyalakshmi1, A. sathya2, A. Nandhinidevi3
1Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India.
2 Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002,
Tamil nadu, India.
3PG Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India.
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract- The binary quadratic Diophantine equation
represented by the positive Pellian 432 22
 yx is
analyzed for its non-zero distinct integer solutions. A few
interesting relations among the solutions are given.
Employing the solutions of the above hyperbola, we have
obtained solutions of other choices of hyperbolas and
parabolas and Pythagorean triangle.
Key Words: Binary quadratic, Hyperbola, Parabola, Pell
equation, Integer solutions
1. INTRODUCTION
The binary quadratic Diophantine equations of the
form  0,,,22
 NbaNbyax are rich in variety and have
been analyzed by many mathematicians for their respective
integer solutions for particular values of ba, and N . In this
context, one may refer [1-14].
This communication concerns withtheproblemofobtaining
non-zero distinct integer solutions to the binary quadratic
equation given by 432 22
 yx representinghyperbola.A
few interesting relations among its solutions are presented.
Knowing an integral solution of the given hyperbola, integer
solutions for other choices of hyperbolas and parabolas are
presented. Also, employing the solutions of the given
equation, special Pythagorean triangle is constructed.
2. METHOD OF ANALYSIS:
The Diophantine equation representingthebinary quadratic
equation to be solved for its non-zero distinct integral
solution is
432 22
 yx (1)
Consider the linear transformations
TXyTXx 2,3  (2)
From (1) and (2), we have
46 22
 TX (3)
whose smallest positive integer solution is
4,10 00
 TX
To obtain the other solutions of (3), consider the Pell
equation
16 22
 TX (4)
Whose smallest positive integer solution is )2,5()
~
,
~
( 00
TX
the general solution of (4) is given by
nnnn
fXgT
2
1~
,
62
1~

Where
11
)625()625( 
 nn
n
f
....1,10
,)625()625( 11

 
n
g nn
n
Applying Brahmagupta lemma between )~,~( 00
yx and
)~,~( nn
yx the other integer solutions of (3) are given by
nnn
gfx
6
12
51

(5)
nnn
gfy
6
5
21

(6)
From (2), (5) and (6) the values of x and y satisfying (1)
are given by
nnn
gfx
6
27
111

nnn
gfy
6
22
91

The recurrence relations satisfied by x and y are given
by
010 123
  nnn
xxx
010 123
  nnn
yyy
Some numerical examples of n
x and n
y satisfying (1) are
given in the Table: 1 below,
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 974
Table: 1 Numerical Examples
n n
x n
y
0 22 18
1 218 178
2 2158 1762
3 21362 17442
4 211462 172658
5 2093258 1709138
From the above table, we observe some interesting relations
among the solutions which are presented below:
 Both nx and ny values are even.
 Relations among the solutions aregivenbelow:
 010 123
  nnn
xxx
 065 121
  nnn
yxx
 065 121
  nnn
yxx
 06495 321
  nnn
yxx
 04960 133
  nnn
xxy
 06049 113
  nnn
yxx
 045 112
  nnn
xyy
 012 213
  nnn
yxx
 04495 123
  nnn
xyy
 012585715807 133
  nnn
xyx
 04049 131
  nnn
xyy
 04956 231
  nnn
xxy
 0211489213656 232
  nnn
xxy
 056 233
  nnn
xxy
 0539544 112
  nnn
yxx
 045 212
  nnn
xyy
 08 213
  nnn
xyy
 065 223
  nnn
yxx
 045 223
  nnn
xyy
 04549 312
  nnn
xyy
 04049 313
  nnn
xyy

045 323
  nnn
xyy
 045 121
  nnn
xyy
 010 123
  nnn
yyy
 05494 321
  nnn
yyx
 Each of the following expressions represents a
nasty number:
  2232
2672712 
 nn
xx
  2242
264327120
10
1

 nn
xx
  2222
13216212 
 nn
xy
  2232
130816260
5
1

 nn
xy
  2242
12948162588
49
1

 nn
xy
  3242
264326712 
 nn
xx
  3222
132160260
5
1

 nn
xy
  3232
1308160212 
 nn
xy
  3242
12948160260
5
1

 nn
xy
  4222
13215858588
49
1

 nn
xy
  4232 13081585860
5
1
  nn xy
  4242
129481585812 
 nn
xy
  3222
132130848
4
1

 nn
yy
  4222
13212948480
40
1

 nn
yy
  4232
13081294848
4
1

 nn
yy
 Each of the following expressions represents
a cubical integer:
 









1
23343
801
8126727
6
1
n
nnn
x
xxx
 









1
33353
7929
81264327
60
1
n
nnn
x
xxx
 









1
13333
66
812227
n
nnn
x
yxy
 









1
23343
654
8121827
5
1
n
nnn
x
yxy
 









1
33353
6474
81215827
49
1
n
nnn
x
yxy
 









2
34353
7929
8012643267
6
1
n
nnn
x
xxx
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 975
 









2
14333
66
80122267
5
1
n
nnn
x
yxy
 









2
24343
654
801218267
n
nnn
x
yxy
 









2
34353
6474
8012158267
5
1
n
nnn
x
yxy
 









3
15333
66
7929222643
49
1
n
nnn
x
yxy
 









3
25343
654
79292182643
5
1
n
nnn
x
yxy
 









3
35353
6474
792921582643
n
nnn
x
yxy
 









2
14333
66
65422218
4
1
n
nnn
y
yyy
 









3
15333
66
6474222158
40
1
n
nnn
y
yyy
 









3
25343
654
64742182158
4
1
n
nnn
y
yyy
 Each of the following expressions is a
biquadratic integer:
 









361068
10826727
6
1
22
324454
n
nnn
x
xxx
 









36010572
108264327
60
1
22
424464
n
nnn
x
xxx
 









688
1082227
22
224444
n
nnn
x
yxy
 









30872
10821827
5
1
22
324454
n
nnn
x
yxy
 









2948632
108215827
49
1
22
424464
n
nnn
x
yxy
 









3610572
10682643267
6
1
32
425464
n
nnn
x
xxx
 









3088
106822267
5
1
32
225444
n
nnn
x
yxy
 









6872
1068218267
32
325454
n
nnn
x
yxy
 









308632
10682158267
5
1
32
425464
n
nnn
x
yxy
 









29488
10572222643
49
1
42
226444
n
nnn
x
yxy
 









30872
105722182643
5
1
42
326454
n
nnn
x
yxy
 









68632
1057221582643
42
426464
n
nnn
x
yxy
 









2488
87222218
4
1
32
225444
n
nnn
y
yyy
 









24088
8632222158
40
1
42
226444
n
nnn
y
yyy
 









24872
86322182158
4
1
42
326454
n
nnn
y
yyy
 Each of the following expression is a quintic
integer:
 









1233
435565
26702701335
13526727
6
1
nnn
nnn
xxx
xxx

















1
333
535575
26520
27013215
135264327
60
1
n
nn
nnn
x
xx
xxx
 









1133
335555
220270110
1352227
nnn
nnn
xyx
yxy
 









1233
435565
21802701090
13521827
5
1
nnn
nnn
xyx
yxy

















1
333
535575
21580
27010790
135215827
49
1
n
nn
nnn
x
yx
yxy
 









2343
536575
26430267013215
13352643267
6
1
nnn
nnn
xxx
xxx
 









2143
336555
2202670110
133522267
5
1
nnn
nnn
xyx
yxy
 









2243
436565
218026701090
1335218267
nnn
nnn
xyx
yxy
 









2343
536575
21580267010790
13352158267
5
1
nnn
nnn
xyx
yxy
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 976
 









3153
337555
22026430110
13215222643
49
1
nnn
nnn
xyx
yxy
 









3253
437565
2180264301090
132152182643
5
1
nnn
nnn
xyx
yxy
 









3353
537575
215802643010790
1321521582643
nnn
nnn
xyx
yxy
 









2143
336555
2202180110
109022218
4
1
nnn
nnn
yyy
yyy
 









3153
337555
22021580110
10790222158
40
1
nnn
nnn
yyy
yyy
 









3253
437565
2180215801090
107902182158
4
1
nnn
nnn
yyy
yyy
3. REMARKABLE OBSERVATIONS
3.1 Employing linear combinations among the solutions of
(1), one may generate integer solutions for other choices of
hyperbolas which are presented in Table 2 below:
Table 2: Hyperbolas
S.No Hyperbola  YX ,
1 1446 22
 YX










21
12
11109
,26727
nn
nn
xx
xx
2 144006 22
 YX










31
13
111079
,264327
nn
nn
xx
xx
3 46 22
 YX










11
11
119
,2227
nn
nn
yx
xy
4 1006 22
 YX










21
12
1189
,21827
nn
nn
yx
xy
5 96046 22
 YX










31
13
11881
,215827
nn
nn
yx
xy
6 1446 22
 YX










32
23
1091079
,2643267
nn
nn
xx
xx
7 1006 22
 YX










12
21
1099
,22267
nn
nn
yx
xy
8 46 22
 YX










22
22
10989
,218267
nn
nn
yx
xy
9 1006 22
 YX










32
23
109881
,2158267
nn
nn
yx
xy
10 96046 22
 YX










13
31
10799
,222643
nn
nn
yx
xy
11 1006 22
 YX










23
32
107989
,2182643
nn
nn
yx
xy
12 46 22
 YX










33
33
1079881
,21582643
nn
nn
yx
xy
13 646 22
 YX










12
21
899
,22218
nn
nn
yy
yy
14 64006 22
 YX










13
31
889
,222158
nn
nn
yy
yy
15 646 22
 YX










23
32
88189
,2182158
nn
nn
yy
yy
3.2 Employing linear combination among the solutions of
(1), one may generate integer solutions for other choices of
parabolas which are presented in Table: 3 below,
Table 3: Parabolas
S.No Parabola  YX ,
1 122
 XY










21
2232
11109
,26727
nn
nn
xx
xx
2 1200102
 XY










31
2242
111079
,264327
nn
nn
xx
xx
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 977
3 26 2
 XY










11
2222
119
,2227
nn
nn
yx
xy
4 5056 2
 XY










21
2232
1189
,21827
nn
nn
yx
xy
5 4802496 2
 XY










31
2242
11881
,215827
nn
nn
yx
xy
6 122
 XY










32
3242
1091079
,2643267
nn
nn
xx
xx
7 5056 2
 XY










12
3222
1099
,22267
nn
nn
yx
xy
8 26 2
 XY










22
3232
10989
,218267
nn
nn
yx
xy
9 5056 2
 XY










32
3242
109881
,2158267
nn
nn
yx
xy
10 4802496 2
 XY










13
4222
10799
,222643
nn
nn
yx
xy
11 5056 2
 XY










23
4232
107989
,2182643
nn
nn
yx
xy
12 26 2
 XY










33
4242
1079881
,21582643
nn
nn
yx
xy
13 3246 2
 XY










12
3222
899
,22218
nn
nn
yy
yy
14 3200406 2
 XY










13
4222
889
,222158
nn
nn
yy
yy
15 3246 2
 XY










23
4232
88189
,2182158
nn
nn
yy
yy
3.3 Let qp, be two non-zero distinct integers such
that 0 qp . Treat qp, as the generators of the
Pythagorean triangle   ,,T where
0,,,2 2222
 qpqpqppq  .
Taking 111
, 
 nnn
xqyxp , itisobservedthat   ,,T is
satisfied by the following relations:
 423  
  
P
A
4
 11
2 
 nn
yx
P
A
where A, P represent the area and perimeter of the
Pythagorean triangle.
4. CONCLUSION
In this paper, we have presented infinitely many integer
solutions for the positive Pell equation 432 22
 yx . As the
binary quadratic Diophantine equations are rich in variety, one
may search for the other choices of Pell equations and determine
their integer solutions along with suitable properties.
REFERENCES
[1] R.D. Carmichael,The Theory of Numbers and
Diophantine Analysis, Dover Publications, New York
(1950).
[2] L.E. Disckson, History of Theory of Numbers, vol II,
Chelsea publishing Co., New York (1952).
[3] L.J. Mordell, Diophantine Equations, Academic press,
London (1969).
[4] M.A. Gopalan and R. Anbuselvi, Integral solutions of
  1314 22
 axaay , Acta Ciencia Indica, XXXIV(1)
(2008) 291-295.
[5] M.A. Gopalan,et al., Integral points on the hyperbola
    0,,2142 222
kakkaayxa  ,IndianJournalof
Science, 1(2) (2012) 125-126.
[6] M.A. Gopalan, S. Devibala and R. Vidhylakshmi, Integral
points on the hyperbola 532 22
 yx ,AmearicanJornal
of Applied Mathematics and Mathematical Sciences,
1(2012) 1-4.
[7] S. Vidhyalakshmi,et al., Observations on the hyperbola
  131 22
 ayaax , Discovery, 4(10) (2013) 22-24.
[8] M.A. gopalan,et al., Integral points on the hyperbola
    0,,2142 222
kakkaayxa  , Indian Journal
of science, 1(2) (2012) 125-126.
[9] M.A. Gopalan and S. Vidhyalakshmi and A. Kavitha, on
the integer solutions of binary quadratic
equation,   0,,414 222
 tkykx t
, BOMSR, 2(2014)
42-46.
[10] T.R. Usha Rani and K. Ambika, Observation on the Non-
Homogeneous Binary Quadratic Diophantine
Equation 565 22
 yx , Journal of Mathematics and
Informatics, Vol-10,Dec (2017), 67-74.
[11] M.A. Gopalan and Sharadha Kumar, On the Hyperbola
2332 22
 yx , Journal of Mathematics and Informatics,
vol-10,Dec (2017),1-9.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 978
[12] M.A.Gopalan, S.Vidhyalakshmi and A. Kavitha,
Observationson the Hyperbola
,13310 22
 xy Archimedes J. Math., 3(1) (2013), 31-34.
[13] M.A.Gopalan, S.Vidhyalakshmi and A.Kavitha, On the
integral solutions of the binary quadratic equation
,1115 22 t
yx  Scholars Journal of Engineering and
Technology, 2(2A) (2014), 156-158.
[14] Shreemathi Adiga, N. Anusheela and M.A. Gopalan,
Observations on the Positive Pell Equation  120 22
 xy ,
International Journal of Pure and Applied Mathematics,
120(6) (2018), 11813-11825.

More Related Content

What's hot

Final exam g8 correction
Final exam g8 correctionFinal exam g8 correction
Final exam g8 correction
zeinabze
 
A1 Chapter 5 Study Guide
A1 Chapter 5 Study GuideA1 Chapter 5 Study Guide
A1 Chapter 5 Study Guide
vhiggins1
 

What's hot (13)

Logarithms level 2
Logarithms level 2Logarithms level 2
Logarithms level 2
 
Intermediate Algebra 7th Edition Tobey Solutions Manual
Intermediate Algebra 7th Edition Tobey Solutions ManualIntermediate Algebra 7th Edition Tobey Solutions Manual
Intermediate Algebra 7th Edition Tobey Solutions Manual
 
Calculo purcell 9 ed solucionario
Calculo  purcell  9 ed   solucionarioCalculo  purcell  9 ed   solucionario
Calculo purcell 9 ed solucionario
 
Ctet maths2011
Ctet maths2011Ctet maths2011
Ctet maths2011
 
Final exam g8 correction
Final exam g8 correctionFinal exam g8 correction
Final exam g8 correction
 
11.a family of implicit higher order methods for the numerical integration of...
11.a family of implicit higher order methods for the numerical integration of...11.a family of implicit higher order methods for the numerical integration of...
11.a family of implicit higher order methods for the numerical integration of...
 
Precalculus 6th edition blitzer test bank
Precalculus 6th edition blitzer test bankPrecalculus 6th edition blitzer test bank
Precalculus 6th edition blitzer test bank
 
Numeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdadesNumeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdades
 
Mte (1)
Mte (1)Mte (1)
Mte (1)
 
Fractal approximations to some famous constants
Fractal approximations to some famous constantsFractal approximations to some famous constants
Fractal approximations to some famous constants
 
Special Pythagorean Triangles And 9-Digit Dhuruva Numbers
Special Pythagorean Triangles And 9-Digit Dhuruva NumbersSpecial Pythagorean Triangles And 9-Digit Dhuruva Numbers
Special Pythagorean Triangles And 9-Digit Dhuruva Numbers
 
A1 Chapter 5 Study Guide
A1 Chapter 5 Study GuideA1 Chapter 5 Study Guide
A1 Chapter 5 Study Guide
 
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
 

Similar to IRJET- On Binary Quadratic Equation 2x2-3y2=-4

Similar to IRJET- On Binary Quadratic Equation 2x2-3y2=-4 (20)

IRJET- Observations on the Non-Homogeneous Binary Quadratic Equation 8x2-3y2=20
IRJET- Observations on the Non-Homogeneous Binary Quadratic Equation 8x2-3y2=20IRJET- Observations on the Non-Homogeneous Binary Quadratic Equation 8x2-3y2=20
IRJET- Observations on the Non-Homogeneous Binary Quadratic Equation 8x2-3y2=20
 
IRJET- On the Positive Pell Equation Y2=35x2+29
IRJET-  On the Positive Pell Equation Y2=35x2+29IRJET-  On the Positive Pell Equation Y2=35x2+29
IRJET- On the Positive Pell Equation Y2=35x2+29
 
IRJET- A Study on the Homogeneous Cone x2 + 7y2 = 23z2
IRJET- A Study on the Homogeneous Cone x2 + 7y2 = 23z2IRJET- A Study on the Homogeneous Cone x2 + 7y2 = 23z2
IRJET- A Study on the Homogeneous Cone x2 + 7y2 = 23z2
 
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
 
IRJET- Analysis of Heat Transfer from Rectangular Finned Surface using Shooti...
IRJET- Analysis of Heat Transfer from Rectangular Finned Surface using Shooti...IRJET- Analysis of Heat Transfer from Rectangular Finned Surface using Shooti...
IRJET- Analysis of Heat Transfer from Rectangular Finned Surface using Shooti...
 
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinear
 
Numerical simulation of marangoni driven boundary layer flow over a flat plat...
Numerical simulation of marangoni driven boundary layer flow over a flat plat...Numerical simulation of marangoni driven boundary layer flow over a flat plat...
Numerical simulation of marangoni driven boundary layer flow over a flat plat...
 
IRJET- New Proposed Method for Solving Assignment Problem and Comparative Stu...
IRJET- New Proposed Method for Solving Assignment Problem and Comparative Stu...IRJET- New Proposed Method for Solving Assignment Problem and Comparative Stu...
IRJET- New Proposed Method for Solving Assignment Problem and Comparative Stu...
 
Cauchy’s Inequality based study of the Differential Equations and the Simple ...
Cauchy’s Inequality based study of the Differential Equations and the Simple ...Cauchy’s Inequality based study of the Differential Equations and the Simple ...
Cauchy’s Inequality based study of the Differential Equations and the Simple ...
 
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
 
On the Ternary Quadratic Diophantine Equation 4x2 – 7xy2 + 4y2 + x+y+1=19z2
On the Ternary Quadratic Diophantine Equation 4x2 – 7xy2 + 4y2 + x+y+1=19z2 On the Ternary Quadratic Diophantine Equation 4x2 – 7xy2 + 4y2 + x+y+1=19z2
On the Ternary Quadratic Diophantine Equation 4x2 – 7xy2 + 4y2 + x+y+1=19z2
 
Fourth order improved finite difference approach to pure bending analysis o...
Fourth   order improved finite difference approach to pure bending analysis o...Fourth   order improved finite difference approach to pure bending analysis o...
Fourth order improved finite difference approach to pure bending analysis o...
 
Control Synthesis of Electro Hydraulic Drive Based on the Concept of Inverse ...
Control Synthesis of Electro Hydraulic Drive Based on the Concept of Inverse ...Control Synthesis of Electro Hydraulic Drive Based on the Concept of Inverse ...
Control Synthesis of Electro Hydraulic Drive Based on the Concept of Inverse ...
 
Observations On X2 + Y2 = 2Z2 - 62W2
Observations On  X2 + Y2 = 2Z2 - 62W2Observations On  X2 + Y2 = 2Z2 - 62W2
Observations On X2 + Y2 = 2Z2 - 62W2
 
Normalization cross correlation value of
Normalization cross correlation value ofNormalization cross correlation value of
Normalization cross correlation value of
 
Numerical study of natural convection in an enclosed square cavity using cons...
Numerical study of natural convection in an enclosed square cavity using cons...Numerical study of natural convection in an enclosed square cavity using cons...
Numerical study of natural convection in an enclosed square cavity using cons...
 
Numerical study of natural convection in an enclosed
Numerical study of natural convection in an enclosedNumerical study of natural convection in an enclosed
Numerical study of natural convection in an enclosed
 
Frictional contact performance test and analysis of circular arc bionic non-s...
Frictional contact performance test and analysis of circular arc bionic non-s...Frictional contact performance test and analysis of circular arc bionic non-s...
Frictional contact performance test and analysis of circular arc bionic non-s...
 

More from IRJET Journal

More from IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Recently uploaded

一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
A
 
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
AshwaniAnuragi1
 

Recently uploaded (20)

engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...
 
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Databricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfDatabricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdf
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 
Working Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfWorking Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdf
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailing
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
DBMS-Report on Student management system.pptx
DBMS-Report on Student management system.pptxDBMS-Report on Student management system.pptx
DBMS-Report on Student management system.pptx
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdf
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
 

IRJET- On Binary Quadratic Equation 2x2-3y2=-4

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 973 ON BINARY QUADRATIC EQUATION 432 22  yx S. Vidhyalakshmi1, A. sathya2, A. Nandhinidevi3 1Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India. 2 Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India. 3PG Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India. ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract- The binary quadratic Diophantine equation represented by the positive Pellian 432 22  yx is analyzed for its non-zero distinct integer solutions. A few interesting relations among the solutions are given. Employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas and parabolas and Pythagorean triangle. Key Words: Binary quadratic, Hyperbola, Parabola, Pell equation, Integer solutions 1. INTRODUCTION The binary quadratic Diophantine equations of the form  0,,,22  NbaNbyax are rich in variety and have been analyzed by many mathematicians for their respective integer solutions for particular values of ba, and N . In this context, one may refer [1-14]. This communication concerns withtheproblemofobtaining non-zero distinct integer solutions to the binary quadratic equation given by 432 22  yx representinghyperbola.A few interesting relations among its solutions are presented. Knowing an integral solution of the given hyperbola, integer solutions for other choices of hyperbolas and parabolas are presented. Also, employing the solutions of the given equation, special Pythagorean triangle is constructed. 2. METHOD OF ANALYSIS: The Diophantine equation representingthebinary quadratic equation to be solved for its non-zero distinct integral solution is 432 22  yx (1) Consider the linear transformations TXyTXx 2,3  (2) From (1) and (2), we have 46 22  TX (3) whose smallest positive integer solution is 4,10 00  TX To obtain the other solutions of (3), consider the Pell equation 16 22  TX (4) Whose smallest positive integer solution is )2,5() ~ , ~ ( 00 TX the general solution of (4) is given by nnnn fXgT 2 1~ , 62 1~  Where 11 )625()625(   nn n f ....1,10 ,)625()625( 11    n g nn n Applying Brahmagupta lemma between )~,~( 00 yx and )~,~( nn yx the other integer solutions of (3) are given by nnn gfx 6 12 51  (5) nnn gfy 6 5 21  (6) From (2), (5) and (6) the values of x and y satisfying (1) are given by nnn gfx 6 27 111  nnn gfy 6 22 91  The recurrence relations satisfied by x and y are given by 010 123   nnn xxx 010 123   nnn yyy Some numerical examples of n x and n y satisfying (1) are given in the Table: 1 below,
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 974 Table: 1 Numerical Examples n n x n y 0 22 18 1 218 178 2 2158 1762 3 21362 17442 4 211462 172658 5 2093258 1709138 From the above table, we observe some interesting relations among the solutions which are presented below:  Both nx and ny values are even.  Relations among the solutions aregivenbelow:  010 123   nnn xxx  065 121   nnn yxx  065 121   nnn yxx  06495 321   nnn yxx  04960 133   nnn xxy  06049 113   nnn yxx  045 112   nnn xyy  012 213   nnn yxx  04495 123   nnn xyy  012585715807 133   nnn xyx  04049 131   nnn xyy  04956 231   nnn xxy  0211489213656 232   nnn xxy  056 233   nnn xxy  0539544 112   nnn yxx  045 212   nnn xyy  08 213   nnn xyy  065 223   nnn yxx  045 223   nnn xyy  04549 312   nnn xyy  04049 313   nnn xyy  045 323   nnn xyy  045 121   nnn xyy  010 123   nnn yyy  05494 321   nnn yyx  Each of the following expressions represents a nasty number:   2232 2672712   nn xx   2242 264327120 10 1   nn xx   2222 13216212   nn xy   2232 130816260 5 1   nn xy   2242 12948162588 49 1   nn xy   3242 264326712   nn xx   3222 132160260 5 1   nn xy   3232 1308160212   nn xy   3242 12948160260 5 1   nn xy   4222 13215858588 49 1   nn xy   4232 13081585860 5 1   nn xy   4242 129481585812   nn xy   3222 132130848 4 1   nn yy   4222 13212948480 40 1   nn yy   4232 13081294848 4 1   nn yy  Each of the following expressions represents a cubical integer:            1 23343 801 8126727 6 1 n nnn x xxx            1 33353 7929 81264327 60 1 n nnn x xxx            1 13333 66 812227 n nnn x yxy            1 23343 654 8121827 5 1 n nnn x yxy            1 33353 6474 81215827 49 1 n nnn x yxy            2 34353 7929 8012643267 6 1 n nnn x xxx
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 975            2 14333 66 80122267 5 1 n nnn x yxy            2 24343 654 801218267 n nnn x yxy            2 34353 6474 8012158267 5 1 n nnn x yxy            3 15333 66 7929222643 49 1 n nnn x yxy            3 25343 654 79292182643 5 1 n nnn x yxy            3 35353 6474 792921582643 n nnn x yxy            2 14333 66 65422218 4 1 n nnn y yyy            3 15333 66 6474222158 40 1 n nnn y yyy            3 25343 654 64742182158 4 1 n nnn y yyy  Each of the following expressions is a biquadratic integer:            361068 10826727 6 1 22 324454 n nnn x xxx            36010572 108264327 60 1 22 424464 n nnn x xxx            688 1082227 22 224444 n nnn x yxy            30872 10821827 5 1 22 324454 n nnn x yxy            2948632 108215827 49 1 22 424464 n nnn x yxy            3610572 10682643267 6 1 32 425464 n nnn x xxx            3088 106822267 5 1 32 225444 n nnn x yxy            6872 1068218267 32 325454 n nnn x yxy            308632 10682158267 5 1 32 425464 n nnn x yxy            29488 10572222643 49 1 42 226444 n nnn x yxy            30872 105722182643 5 1 42 326454 n nnn x yxy            68632 1057221582643 42 426464 n nnn x yxy            2488 87222218 4 1 32 225444 n nnn y yyy            24088 8632222158 40 1 42 226444 n nnn y yyy            24872 86322182158 4 1 42 326454 n nnn y yyy  Each of the following expression is a quintic integer:            1233 435565 26702701335 13526727 6 1 nnn nnn xxx xxx                  1 333 535575 26520 27013215 135264327 60 1 n nn nnn x xx xxx            1133 335555 220270110 1352227 nnn nnn xyx yxy            1233 435565 21802701090 13521827 5 1 nnn nnn xyx yxy                  1 333 535575 21580 27010790 135215827 49 1 n nn nnn x yx yxy            2343 536575 26430267013215 13352643267 6 1 nnn nnn xxx xxx            2143 336555 2202670110 133522267 5 1 nnn nnn xyx yxy            2243 436565 218026701090 1335218267 nnn nnn xyx yxy            2343 536575 21580267010790 13352158267 5 1 nnn nnn xyx yxy
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 976            3153 337555 22026430110 13215222643 49 1 nnn nnn xyx yxy            3253 437565 2180264301090 132152182643 5 1 nnn nnn xyx yxy            3353 537575 215802643010790 1321521582643 nnn nnn xyx yxy            2143 336555 2202180110 109022218 4 1 nnn nnn yyy yyy            3153 337555 22021580110 10790222158 40 1 nnn nnn yyy yyy            3253 437565 2180215801090 107902182158 4 1 nnn nnn yyy yyy 3. REMARKABLE OBSERVATIONS 3.1 Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbolas which are presented in Table 2 below: Table 2: Hyperbolas S.No Hyperbola  YX , 1 1446 22  YX           21 12 11109 ,26727 nn nn xx xx 2 144006 22  YX           31 13 111079 ,264327 nn nn xx xx 3 46 22  YX           11 11 119 ,2227 nn nn yx xy 4 1006 22  YX           21 12 1189 ,21827 nn nn yx xy 5 96046 22  YX           31 13 11881 ,215827 nn nn yx xy 6 1446 22  YX           32 23 1091079 ,2643267 nn nn xx xx 7 1006 22  YX           12 21 1099 ,22267 nn nn yx xy 8 46 22  YX           22 22 10989 ,218267 nn nn yx xy 9 1006 22  YX           32 23 109881 ,2158267 nn nn yx xy 10 96046 22  YX           13 31 10799 ,222643 nn nn yx xy 11 1006 22  YX           23 32 107989 ,2182643 nn nn yx xy 12 46 22  YX           33 33 1079881 ,21582643 nn nn yx xy 13 646 22  YX           12 21 899 ,22218 nn nn yy yy 14 64006 22  YX           13 31 889 ,222158 nn nn yy yy 15 646 22  YX           23 32 88189 ,2182158 nn nn yy yy 3.2 Employing linear combination among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in Table: 3 below, Table 3: Parabolas S.No Parabola  YX , 1 122  XY           21 2232 11109 ,26727 nn nn xx xx 2 1200102  XY           31 2242 111079 ,264327 nn nn xx xx
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 977 3 26 2  XY           11 2222 119 ,2227 nn nn yx xy 4 5056 2  XY           21 2232 1189 ,21827 nn nn yx xy 5 4802496 2  XY           31 2242 11881 ,215827 nn nn yx xy 6 122  XY           32 3242 1091079 ,2643267 nn nn xx xx 7 5056 2  XY           12 3222 1099 ,22267 nn nn yx xy 8 26 2  XY           22 3232 10989 ,218267 nn nn yx xy 9 5056 2  XY           32 3242 109881 ,2158267 nn nn yx xy 10 4802496 2  XY           13 4222 10799 ,222643 nn nn yx xy 11 5056 2  XY           23 4232 107989 ,2182643 nn nn yx xy 12 26 2  XY           33 4242 1079881 ,21582643 nn nn yx xy 13 3246 2  XY           12 3222 899 ,22218 nn nn yy yy 14 3200406 2  XY           13 4222 889 ,222158 nn nn yy yy 15 3246 2  XY           23 4232 88189 ,2182158 nn nn yy yy 3.3 Let qp, be two non-zero distinct integers such that 0 qp . Treat qp, as the generators of the Pythagorean triangle   ,,T where 0,,,2 2222  qpqpqppq  . Taking 111 ,   nnn xqyxp , itisobservedthat   ,,T is satisfied by the following relations:  423      P A 4  11 2   nn yx P A where A, P represent the area and perimeter of the Pythagorean triangle. 4. CONCLUSION In this paper, we have presented infinitely many integer solutions for the positive Pell equation 432 22  yx . As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of Pell equations and determine their integer solutions along with suitable properties. REFERENCES [1] R.D. Carmichael,The Theory of Numbers and Diophantine Analysis, Dover Publications, New York (1950). [2] L.E. Disckson, History of Theory of Numbers, vol II, Chelsea publishing Co., New York (1952). [3] L.J. Mordell, Diophantine Equations, Academic press, London (1969). [4] M.A. Gopalan and R. Anbuselvi, Integral solutions of   1314 22  axaay , Acta Ciencia Indica, XXXIV(1) (2008) 291-295. [5] M.A. Gopalan,et al., Integral points on the hyperbola     0,,2142 222 kakkaayxa  ,IndianJournalof Science, 1(2) (2012) 125-126. [6] M.A. Gopalan, S. Devibala and R. Vidhylakshmi, Integral points on the hyperbola 532 22  yx ,AmearicanJornal of Applied Mathematics and Mathematical Sciences, 1(2012) 1-4. [7] S. Vidhyalakshmi,et al., Observations on the hyperbola   131 22  ayaax , Discovery, 4(10) (2013) 22-24. [8] M.A. gopalan,et al., Integral points on the hyperbola     0,,2142 222 kakkaayxa  , Indian Journal of science, 1(2) (2012) 125-126. [9] M.A. Gopalan and S. Vidhyalakshmi and A. Kavitha, on the integer solutions of binary quadratic equation,   0,,414 222  tkykx t , BOMSR, 2(2014) 42-46. [10] T.R. Usha Rani and K. Ambika, Observation on the Non- Homogeneous Binary Quadratic Diophantine Equation 565 22  yx , Journal of Mathematics and Informatics, Vol-10,Dec (2017), 67-74. [11] M.A. Gopalan and Sharadha Kumar, On the Hyperbola 2332 22  yx , Journal of Mathematics and Informatics, vol-10,Dec (2017),1-9.
  • 6. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 978 [12] M.A.Gopalan, S.Vidhyalakshmi and A. Kavitha, Observationson the Hyperbola ,13310 22  xy Archimedes J. Math., 3(1) (2013), 31-34. [13] M.A.Gopalan, S.Vidhyalakshmi and A.Kavitha, On the integral solutions of the binary quadratic equation ,1115 22 t yx  Scholars Journal of Engineering and Technology, 2(2A) (2014), 156-158. [14] Shreemathi Adiga, N. Anusheela and M.A. Gopalan, Observations on the Positive Pell Equation  120 22  xy , International Journal of Pure and Applied Mathematics, 120(6) (2018), 11813-11825.