Quantum Computing and Quantum Supremacy
John Martinis, Google
The Quantum Space Race
Hardware Challenges:
Quantity
Quality
|0〉+|1〉
Quantum Data
Quantum Data
( |0〉+|1〉 )2=|00〉+|01〉+|10〉+|11〉
( |0〉+|1〉 )n
n=50: supercomputer
n=300: more states than
atoms in universe
Really Big Data
Classical bit:
Coin on table
Digital: self-correcting
Quantum bit:
Coin in space
Analog: sensitive to small errors
Bits and Qubits
1e0 iφ
θθψ sincos +=0 or 1
Classical circuit: Quantum circuit:
Any Logic Built from Universal Gates
1 bit NOT
2 bit AND
Wiring fan-out
1 qubit rotation
2 qubit CNOT
-No copy-
measurek
|ψ〉=|0〉
Time (sequence)Space (layout)
Classical system: Quantum system:
Full Digital (Clocked) Logic
D flip-flop aligns timing
to clock
Error correction aligns
amplitude and phase
each round, makes
“quantum flip-flop”
clock
logic error
correction
(parity)
logic
Classical
error
decoding
and logic
10-9 errors: 1000 qubits + 0.1% errors
Need Both Quality and Quantity
100 101 102 103 104 105 106 108
Number of Qubits
10-1
10-2
10-3
10-4
Limitingerrorrate
Classically
simulatable
✘
Error correction threshold
0.1110100
“errorcorrectiongain”
107
10-9 errors
Need Both Quality and Quantity
100 101 102 103 104 105 106 108
Number of Qubits
10-1
10-2
10-3
10-4
Limitingerrorrate
Near-term
applications
Classically
simulatable
✘ ?
Error correction threshold
0.1110100
“errorcorrectiongain”
107
✔
Useful error
corrected QC
quantity hype
1
2
3
Google strategy
1: Quantum Supremacy
2: Look for near-term apps
3: Error correction
4: Full QC
4
Quality in Quantum Chemistry Experiments
H2 Molecule LiH Molecule
2017 Brand 5% Brand 5%
1)  Need low errors for accurate predictions
2)  Need figure of merit for useful
2015 Google 0. 5%
chemical
accuracy
20x worse
No better than initial trial?
Quality:
Xmon Transmon Qubit
quantum circuit:
6 GHz microwave oscillator
100 𝜇m
Flux	Bias	
Self	capacitance	
Readout	
resonator	
Bus	AC	drive	
Frequency (Z)
µwaves (X,Y)
Variable L
(quantum: stabilize phase to 1 ps)
Quantum vs. Classical-Supercomputer Challenge
50 qubits - checked with classical supercomputer
Quantum Supremacy Algorithm: Qubit Speckle
Clifford Non-Clifford
X, Z, H, X1/2… Z1/4
CZ
(Random guess: any outcome k has probability pcl = 1/2n)
2) Run quantum computer, measure k (2n possible outcomes)
repeat sampling 100,000 times
4) Correlation: cross entropy S = 〈 ln p(k)/pcl 〉
5) Compare to theory Squ ≅ 0.42 quantum
S ≅ -0.58 classical
nqubits
d (time)
measurek
|ψ〉=|0〉
6) Try another instance
1 s
days
200 drives
1) Choose 1 instance, randomly from gateset
3) Calculate |ψ〉, p(k)= |〈k|ψ〉|2 store in lookup table
speckle = coherence
predict = fidelity
Compare	probabilities	of	experiment	and	theory	
speckle pattern
matches theory
Measuring	fidelity	
Computing 500
states in parallel
0.3% error
per gate & cycle
Quantum Materials (theory)
9 lattice sites 10000 T
Quantum Materials (theory + experiment)
“Bristlecone” Architecture
2D grid of nearest neighbor
coupled qubits, 72 total
Tile
Bristlecone
in test
Huge Progress in Algorithms (Quantum Chemistry)
N
N2.7
N6
N8
N11
N4
sec
day
year
universe
Exact: 100 logical qubits (error corrected)
Approximate: 100 physical qubits (?)
1985 Feynman (proposal)
Huge Progress in Algorithms (Quantum Chemistry)
N
N2.7
N6
N8
N11
N4
sec
day
year
universe
1985 Feynman (proposal)
Useful QC now possible?
Summary: Key Metrics
1) Quantity
2) Quality
limiting error
best and average
3) Speed
106 difference in technologies!
4) Connectivity
Error correction at least 2D
9
B: 0.55%
M: 0.75%
40 ns
1D
UCSB: Google:
72
2D
Two Qubit Gate Errors (most critical)
2-qubit gate error e2
integratedhistogram
IBM20
Google5
Google better
by ~ 2-10x
10x
2x
Google9gmon
system perf.
phase error
better

Quantum Computing and Quantum Supremacy at Google

  • 1.
    Quantum Computing andQuantum Supremacy John Martinis, Google
  • 2.
    The Quantum SpaceRace Hardware Challenges: Quantity Quality
  • 3.
  • 4.
    Quantum Data ( |0〉+|1〉)2=|00〉+|01〉+|10〉+|11〉
  • 5.
    ( |0〉+|1〉 )n n=50:supercomputer n=300: more states than atoms in universe Really Big Data
  • 6.
    Classical bit: Coin ontable Digital: self-correcting Quantum bit: Coin in space Analog: sensitive to small errors Bits and Qubits 1e0 iφ θθψ sincos +=0 or 1
  • 7.
    Classical circuit: Quantumcircuit: Any Logic Built from Universal Gates 1 bit NOT 2 bit AND Wiring fan-out 1 qubit rotation 2 qubit CNOT -No copy- measurek |ψ〉=|0〉 Time (sequence)Space (layout)
  • 8.
    Classical system: Quantumsystem: Full Digital (Clocked) Logic D flip-flop aligns timing to clock Error correction aligns amplitude and phase each round, makes “quantum flip-flop” clock logic error correction (parity) logic Classical error decoding and logic 10-9 errors: 1000 qubits + 0.1% errors
  • 9.
    Need Both Qualityand Quantity 100 101 102 103 104 105 106 108 Number of Qubits 10-1 10-2 10-3 10-4 Limitingerrorrate Classically simulatable ✘ Error correction threshold 0.1110100 “errorcorrectiongain” 107 10-9 errors
  • 10.
    Need Both Qualityand Quantity 100 101 102 103 104 105 106 108 Number of Qubits 10-1 10-2 10-3 10-4 Limitingerrorrate Near-term applications Classically simulatable ✘ ? Error correction threshold 0.1110100 “errorcorrectiongain” 107 ✔ Useful error corrected QC quantity hype 1 2 3 Google strategy 1: Quantum Supremacy 2: Look for near-term apps 3: Error correction 4: Full QC 4
  • 11.
    Quality in QuantumChemistry Experiments H2 Molecule LiH Molecule 2017 Brand 5% Brand 5% 1)  Need low errors for accurate predictions 2)  Need figure of merit for useful 2015 Google 0. 5% chemical accuracy 20x worse No better than initial trial? Quality:
  • 12.
    Xmon Transmon Qubit quantumcircuit: 6 GHz microwave oscillator 100 𝜇m Flux Bias Self capacitance Readout resonator Bus AC drive Frequency (Z) µwaves (X,Y) Variable L (quantum: stabilize phase to 1 ps)
  • 18.
    Quantum vs. Classical-SupercomputerChallenge 50 qubits - checked with classical supercomputer
  • 19.
    Quantum Supremacy Algorithm:Qubit Speckle Clifford Non-Clifford X, Z, H, X1/2… Z1/4 CZ (Random guess: any outcome k has probability pcl = 1/2n) 2) Run quantum computer, measure k (2n possible outcomes) repeat sampling 100,000 times 4) Correlation: cross entropy S = 〈 ln p(k)/pcl 〉 5) Compare to theory Squ ≅ 0.42 quantum S ≅ -0.58 classical nqubits d (time) measurek |ψ〉=|0〉 6) Try another instance 1 s days 200 drives 1) Choose 1 instance, randomly from gateset 3) Calculate |ψ〉, p(k)= |〈k|ψ〉|2 store in lookup table
  • 20.
  • 21.
  • 22.
    Measuring fidelity Computing 500 states inparallel 0.3% error per gate & cycle
  • 23.
    Quantum Materials (theory) 9lattice sites 10000 T
  • 24.
  • 25.
    “Bristlecone” Architecture 2D gridof nearest neighbor coupled qubits, 72 total Tile
  • 27.
  • 28.
    Huge Progress inAlgorithms (Quantum Chemistry) N N2.7 N6 N8 N11 N4 sec day year universe Exact: 100 logical qubits (error corrected) Approximate: 100 physical qubits (?) 1985 Feynman (proposal)
  • 29.
    Huge Progress inAlgorithms (Quantum Chemistry) N N2.7 N6 N8 N11 N4 sec day year universe 1985 Feynman (proposal) Useful QC now possible?
  • 30.
    Summary: Key Metrics 1)Quantity 2) Quality limiting error best and average 3) Speed 106 difference in technologies! 4) Connectivity Error correction at least 2D 9 B: 0.55% M: 0.75% 40 ns 1D UCSB: Google: 72 2D
  • 31.
    Two Qubit GateErrors (most critical) 2-qubit gate error e2 integratedhistogram IBM20 Google5 Google better by ~ 2-10x 10x 2x Google9gmon system perf. phase error better