SlideShare a Scribd company logo
Infrared Spectroscopy Spectroscopy  is the measurement of the absorption or emission of energy by matter (atoms or molecules) when it is subjected to electromagnetic radiation. A spectrophotometer measures the energy changes that take place within a molecule when it is irradiated and records these changes as  spectra . In  absorption spectroscopy , molecules absorb energy and undergo transitions from the ground state to  an excited state of the molecule. The type of spectroscopy involved will depend on the region of the electromagnetic spectrum that is  used as a radiation source. In  Infrared Spectroscopy , molecules absorb infrared radiation which brings about changes in stretching  and bending motions of the molecule. The radiation absorbed is in the energy range with wavelengths  (λ) between 2.5 and 17 μm (4000 cm -1  to 600 cm -1 ). In  Electronic  (UV-visible) Spectroscopy,  molecules absorb radiation in the UV-visible region (200 - 800 nm).  This brings about electronic transitions within the molecule. Since absorption of radiation is quantized ( i.e.  it is subject to certain quantum mechanical restrictions),  only the allowed frequencies of radiation appear as absorption bands in the spectrum.
Vibrational Spectroscopy All chemical bonds have a natural frequency of vibration (C-H, O-H, C=O, C-C, C=C) but the exact frequency will depend on their environment,  i.e.  on the actual structure of the molecule involved. Identification of the vibrational frequencies indicates the different bonds present in a molecule and provides structural information about that molecule. An  infrared spectrum  is a plot of  % transmittance  (y-axis) versus  energy (cm -1 )   (x-axis) in the range 4000 cm -1  to 600 cm -1 .
Infrared 10,000 cm -1  to 100 cm -1 Converted in Vibrational energy in molecules Vibrational Spectra appears as bands instead of sharp lines => as it is accompanied by a number of rotational changes Wave Number  =>    (cm -1 ) => proportional to energy ,[object Object],[object Object],[object Object],[object Object],Older system uses the wavelenght   (  m => 10 -6  m) cm -1  = 10 4  /   m 
The Units: The frequency    (s -1 ) => # vibrations per second For molecular vibrations, this number is very large (10 13  s -1 ) => inconvenient e.g.    = 3 * 10 13  s -1 = 1000 cm -1 Wave Length :   1  = More convenient :  Wavenumber   =   c ( Frequency  /  Velocity )   =    s  3 * 10 10  cm s -1 
Intensity in IR Intensity: Transmittance ( T ) or  %T Absorbance ( A )  IR  : Plot of  %IR  that passes through a sample ( transmittance )  vs  Wavelenght T  = I I 0 A  = log I I 0
Infrared ,[object Object],[object Object],Sampling  => plates, polished windows, Films … Must be transparent in IR NaCl, KCl : Cheap, easy to polish NaCl  transparent to  4000 - 650 cm -1 KCl   transparent to  4000 - 500 cm -1 KBr  transparent to  400 cm -1
Infrared: Low frequency spectra of window materials
Bond length and strength  vs  Stretching frequency
Introduction IR is one of the first technique inorganic chemists used (since 1940) Molecular Vibration Newton’s law of motion is used classically to calculate force constant r r e F F The basic picture : atoms (mass) are connected with bonding electrons. R e  is the equilibrium distance and  F : force to restore equilibrium F(x) = - k x where X is displacement from equilibrium Where  K i  is the force constant and   i   is reduce mass of a particular motion Because the energy is quantized: E =  h   i     =  1 2  √ k i  i
Introduction Displacement of atoms during vibration lead to distortion of electrival charge distribution of the molecule which can be resolve in dipole, quadrupole, octopole …. In various directions => Molecular vibration lead to oscillation of electric charge governed by vibration frequencies of the system Oscillating molecular dipole can interact directly with oscillating electric vector of electromagnetic radiation of the same frequency h    =  h  Vibrations are in the range  10 11  to 10 13  Hz  =>  30 - 3,000 cm -1
Introduction: Symmetry selection rule ,[object Object],[object Object],[object Object],There is no place here to treat fundamentals of symmetry In principle, the symmetry of a vibration need to be determined
Calculating stretching frequencies Hooke’s law : : Frequency in cm -1 c  : Velocity of light => 3 * 10 10  cm/s K  : Force constant => dynes /cm  masses of atoms in grams C —C  K = 5* 10 5  dynes/cm C =C  K = 10* 10 5  dynes/cm C  C  K = 15* 10 5  dynes/cm  = 1 2  c  K    m 1  m 2 m 1  + m 2  M 1  M 2 M 1  + M 2  (6.02 * 10 23 )  = 4.12  K 
Calculating stretching frequencies C =C  K = 10* 10 5  dynes/cm C —H  K = 5* 10 5  dynes/cm C —D  K = 5* 10 5  dynes/cm  = 4.12  K    M 1  M 2 M 1  + M 2  (12)(12) 12 + 12    = 4.12  10* 10 5  = 1682 cm -1  Experimental    1650 cm -1  = 4.12  5* 10 5  = 3032 cm -1   M 1  M 2 M 1  + M 2  (12)(1) 12 + 1    Experimental    3000 cm -1  = 4.12  5* 10 5  = 2228 cm -1   M 1  M 2 M 1  + M 2  (12)(2) 12 + 2    Experimental    2206 cm -1
Vibrations www.cem.msu.edu/~reusch/Virtual/Text/Spectrpy/InfraRed/infrared.htm Modes of vibration C —H Stretching Bending Symmetrical  2853 cm -1 Asymmetrical  2926 cm -1 Scissoring 1450 cm -1 Rocking 720 cm -1 Wagging 1350 cm -1 Twisting 1250 cm -1 Stretching frequency Bending frequency C O H
Vibrations www.cem.msu.edu/~reusch/Virtual/Text/Spectrpy/InfraRed/infrared.htm General trends: ,[object Object],[object Object],[object Object]
Structural Information from Vibration Spectra ,[object Object],[object Object],[object Object],The symmetry of a molecule determines the number of bands expected Number of bands can be used to decide on symmetry of a molecule Tha task of assignment is complicated  by presence of low intensity bands and presence of forbidden overtone and combination bands. There are different levels at which information from IR can be analyzed to allow identification of samples:
Methods of analyzing an IR spectrum The effect of  isotopic substitution  on the observed spectrum Can give valuable information about the atoms involved in a particular vibration ,[object Object],[object Object],[object Object]
Analyzing an IR spectrum In practice, there are similarities between frequencies of molecules containing similar groups. Group - frequency correlations  have been extensively developed for organic compounds and some have also been developed for inorganics
Some characteristic infrared absorption frequencies   BOND COMPOUND TYPE FREQUENCY RANGE, cm -1   C-H alkanes 2850-2960 and 1350-1470   alkenes 3020-3080 (m) and   RCH=CH2 910-920 and 990-1000   R2C=CH2 880-900   cis -RCH=CHR 675-730 (v)   trans -RCH=CHR 965-975   aromatic rings 3000-3100 (m) and   monosubst. 690-710 and 730-770   ortho -disubst. 735-770   meta -disubst.  690-710 and 750-810 (m)   para -disubst. 810-840 (m)   alkynes 3300     O-H alcohols or phenols 3200-3640 (b)     C=C alkenes 1640-1680 (v)   aromatic rings 1500 and 1600 (v)     C≡C alkynes 2100-2260 (v)     C-O primary alcohols 1050 (b)   secondary alcohols 1100 (b)   tertiary alcohols 1150 (b)   phenols 1230 (b)   alkyl ethers 1060-1150   aryl ethers 1200-1275(b) and 1020-1075 (m)   all abs. strong unless marked: m, moderate; v, variable; b, broad
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
n -pentane CH 3 CH 2 CH 2 CH 2 CH 3 3000 cm -1 1470 &1375 cm -1 2850-2960 cm -1 sat’d C-H n -pentane CH 3 CH 2 CH 2 CH 2 CH 3 3000 cm -1 1470 &1375 cm -1 2850-2960 cm -1 sat’d C-H
CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 n -hexane
2-methylbutane  (isopentane)
2,3- dimethylbutane
IR of  ALKENES =C—H bond, “unsaturated”  vinyl (sp 2 ) 3020-3080 cm -1   +  675-1000 RCH=CH 2   + 910-920 & 990-1000 R 2 C=CH 2   + 880-900 cis -RCH=CHR  + 675-730 (v) trans -RCH=CHR  + 965-975 C=C bond  1640-1680 cm -1   (v)
1-decene 910-920 & 990-1000 RCH=CH 2 C=C  1640-1680 unsat’d C-H 3020-3080 cm -1
4-methyl-1-pentene 910-920 & 990-1000 RCH=CH 2
2-methyl-1-butene
IR spectra  BENZENE s =C—H bond, “unsaturated”  “aryl” (sp 2 )  3000-3100 cm -1   +  690-840 mono-substituted  + 690-710, 730-770 ortho -disubstituted +  735-770 meta -disubstituted  +  690-710, 750-810(m) para -disubstituted  +  810-840(m) C=C bond 1500, 1600 cm -1
ethylbenzene 690-710, 730-770  mono- 1500 & 1600 Benzene ring 3000-3100 cm -1 Unsat’d C-H
IR spectra  ALCOHOLS & ETHERS C—O bond 1050-1275 (b) cm -1 1 o  ROH 1050 2 o  ROH 1100 3 o  ROH 1150 ethers 1060-1150 O—H bond 3200-3640 (b)   
1-butanol CH 3 CH 2 CH 2 CH 2 -OH C-O 1 o 3200-3640 (b)   O-H
2-butanol C-O 2 o O-H
Hydrogen bond and C=O
Intensity of C=O vs C=C
Band Shape: OH vs NH2 vs CH
Free OH and Hydrogen bonded OH
Symmetrical and asymmetrical stretch  Methyl 2872 cm -1 Symmetrical Stretch Asymmetrical Stretch Anhydride 1760 cm -1 2962 cm -1 1800 cm -1 Amino Nitro 3300 cm -1 3400 cm -1 1350 cm -1 1550 cm -1 — C — H H H — C — H H H O O O O O O — N H H — N H H — N O O — N O O
General IR comments Precise treatment of vibrations in molecule is not feasible here Some information from IR is also contained in MS and NMR Certain bands occur in  narrow regions  :  OH ,  CH ,  C=O Detail of the structure is revealed by the  exact position  of the band  e.g.  Ketones 1715 cm -1 1680 cm -1 Region 4000 – 1300 : Functional group Absence of band in this region can be used to deduce absence of groups Caution: some bands can be very broad because of hydrogen bonding  e.g.  Enols v.broad OH, C=O absent!!   Weak bands in high frequency are extremely useful : S-H, C  C, C  N Lack of strong bands in 900-650 means no aromatic
Alkanes ,  Alkenes ,  Alkynes C-H :  <3000 cm -1 >3000 cm -1 3300 cm -1   sharp C-C Stretch Not useful C=C C  C 1660-1600 cm -1 conj. Moves to lower values   Symmetrical : no band 2150 cm -1   conj. Moves to lower values Weak but very useful Symmetrical no band   Bending CH 2  Rocking 720 cm -1  indicate Presence of 4-CH 2  1000-700 cm -1   Indicate substitution   pattern    C-H  ~630 cm -1   Strong and broad   Confirm triple bond
 
Alkane
Alkene :  1-Decene To give rise to absorption of IR  =>  Oscillating Electric Dipole Symmetry Molecules with Center of symmetry Symmetric vibration => inactive Antisymmetric vibration => active
Alkene In large molecule local symmetry produce  weak or absent vibration C=C R R trans  C=C isomer -> weak in IR  Observable in Raman
Alkene: Factors influencing vibration frequency 1- Strain move peak to right (decrease  ) angle 1650 1646 1611 1566 1656 : exception 2- Substitution increase 3- conjugation decrease C=C-Ph  1625 cm -1 1566 1641 1675 1611 1650 1679 1646 1675 1681 C C C   
Alkene: Out-of-Plane bending  This region can be used to deduce substitution pattern
Alkyne:  1-Hexyne
Alkyne: Symmetry
In IR, Most important transition involve : Ground State (  i  = 0)  to  First Excited State (  i = 1) Transition   (  i  = 0)  to  (  J  = 2)  => Overtone
IR : Aromatic =C-H > 3000 cm -1 C=C 1600  and 1475 cm -1 =C-H out of plane bending: great utility to assign ring substitution overtone 2000-1667: useful to assign ring substitution e.g. Naphthalene:  Substitution pattern Isolated H 862-835 835-805 760-735 2 adjacent H 4 adjacent H out of plane bending 
Aromatic substitution: Out of plane bending
Aromatic substitution: Out of plane bending
 
Aromatic and Alkene substitution
IR: Alcohols and Phenols O-H  Free : Sharp 3650-3600 O-H  H-Bond : Broad 3400-3300 Intermolecular Hydrogen bonding Increases with concentration =>  Less “Free” OH
IR: Alcohols and Phenols C-O : 1260-1000 cm -1  (coupled to C-C => C-C-O) C-O Vibration is sensitive to substitution: Phenol 1220 3` Alcohols 1150 2` Alcohols 1100 1` Alcohols 1050 More complicated than above: shift to lower Wavenumber  With unsaturation (Table 3.2)
Alcohol C-O : 1040 cm -1  indicate primary alcohol
Benzyl Alcohol OH sp 2 sp 3 Ph overtone C-O : 1080, 1022 cm -1  : primary OH Mono Subst. Ph 735 & 697 cm -1
Phenol OH sp 2 Ph overtone C=C stretch Ph-O : 1224 cm -1 Mono Subst. Ph out-of plane 810 & 752 cm -1
Phenol
IR: Ether C-O-C => 1300-1000 cm -1 Ph-O-C  => 1250 and 1040 cm -1 Aliphatic =>  1120 cm -1 C=C in vinyl Ether  =>  1660-1610 cm -1 appear as Doublet => rotational isomers ~1620 ~1640
Ether sp 2 sp 3 Ph overtone C=C stretch Ph-O-C : 1247 cm -1  Asymmetric stretch Ph-O-C : 1040 cm -1  Symmetric stretch Mono Subst. Ph out-of plane 784, 754 & 692 cm -1
IR: Carbonyl From 1850 – 1650 cm -1 Ketone 1715 cm -1  is used as reference point for comparisons 1715   1690 1725    1700 1710   1680 1810 Anhydr Band 1800 Acid Chloride 1760 Anhydr Band 2 1735 Ester 1725 Aldehyde 1715 Ketone 1710 Acid 1690 Amide Factor influencing  C=O 1) conjugation Conjugation increase single bond character of  C=O    Lower force constant      lower frequency number C=C C O C + — C C O -
Ketone and Conjugation Conjugation: Lower 
Ketone and Ring Strain Ring Strain: Higher Factors influencing  C=O 2) Ring size 1715 cm -1 Angle ~ 120 o 1751 cm -1 < 120 o 1775 cm -1 << 120 o 
 
Factors influencing carbonyl:  C=O   3)    substitution effect (Chlorine or other halogens)  Result in stronger bound    higher frequency 1750 cm -1 4) Hydrogen bonding  Decrease  C=O  strenght  lower frequency 1680 cm -1 — C — C — X O 
Enol
Factors influencing carbonyl:  C=O 5) Heteroatom Inductive effect Stronger bond higher frequency e.g. ester Resonance effect Weaker bond Lower frequence  e.g. amides Y C=O Cl Br OH (monomer) OR (Ester) 1815-1785 1812 1760 1705-1735 NH2 SR 1695-1650 1720-1690 inductive resonance
Ester Carbonyl Esters C=O  ~ 1750 – 1735  cm -1 O-C :  1300 – 1000 2 or more bands Conjugation => lower freq. Inductive effect with O   reinforce carbonyl =>  higher Conjugation with  CO   weaken carbonyl =>  Lower   
Ester carbonyl:  C=O
Ester carbonyl:  C=O C=O : 1765 cm -1 C-O  1215 cm -1   1193 cm -1 sp 2 C=O
Ester carbonyl:  C=O
Ester carbonyl : effect of conjugation
Lactone carbonyl:  C=O Lactones    Cyclic Ester  1735 1720 1760 1770 1750 1800
Carbonyl compounds : Acids Carboxylic acid Exist as dimer : Strong Hydrogen bond OH : Very broad    3400 – 2400 cm -1 C=O : broad    1730 – 1700 cm -1 C — O : 1320 – 1210 cm -1  Medium intensity
Carbonyl compounds : Acids C=O OH C=O :  1711 cm -1 OH : Very Broad 3300 to 2500 cm -1 C-O : 1285, 1207 cm -1
Anhydrides C=O always has 2 bands: 1830-1800  and  1775-1740 cm -1 C —O  multiple bands 1300 – 900 cm -1
Carbonyl compounds : Aldehydes Aldehydes C=O  ~ 1725 cm -1 O=C-H  :  2 weak bands 2750, 2850 cm -1 Conjugation => lower freq. C=O : 1724 cm -1 
Carbonyl compounds : Aldehydes
Aldehydes
Other carbonyl Amides Lactams Acid Chlorides C=O  ~1680-1630 cm -1  (band I) NH 2   ~ 3350 and 3180 cm -1  (stretch)  NH  ~ 3300 cm -1  (stretch)  NH  ~ 1640-1550 cm -1  (bending)  1810-1775  cm -1 C  —  Cl  730 – 550  cm -1 ~1660 ~1705 ~1745 Increase with strain R — C  —   Cl O 
Amides NH 2  : Symmetrical stretch =>3170 cm -1 asymmetrical stretch => 3352 cm -1 C=O : 1640 cm -1 NH Out of plane
Amides
Acid Chlorides
Amino acid Exist as zwitterions  C CO 2 - NH 3 + NH 3 +  :  very broad  3330-2380 (OH  +  NH 3 +   ) C O O 1600 – 1590 strong
Amino acid
Amine NH  3500 – 3300 cm -1 NH : 2 bands NH : 1 band NH  bending :  1650 – 1500 cm -1 C-N  :  1350 – 1000 cm -1 NH  out-of-plane :  ~ 800 cm -1 Amine salt NH +   3500 – 3030 cm -1   broad / strong Ammonium     primary     secomdary     right Left  
Amine Primary Amine Secondary Amine Tertiary Amine
Aromatic Amine
Other Nitrogen Compounds Nitriles Isocyanates Isothiocyanates Imines / Oximes R-C  N  :  Sharp  2250 cm -1 Conjugation moves to lower frequency R-N=C=O Broad  ~ 2270 cm -1 R-N=C=S 2 Broad peaks  ~ 2125 cm -1 R  2 C=N-R 1690 - 1640 cm -1
Nitrile
Nitrile
Nitrile and Isocyanate
Nitro Aliphatic : Asymmetric : 1600-1530 cm -1 Symmetric  : 1390-1300 cm -1 Aromatic : Asymmetric : 1550-1490 cm -1 Symmetric  : 1355-1315 cm -1 — N O O + -
Nitro
Nitro
Sulfur Mercaptans S – H  : weak  2600-2550 cm -1   Since only few absorption in that range it confirm its presence Sulfides,Disulfides : no useful information Sulfoxides: Strong ~ 1050 cm -1   Sulfones : Asymetrical ~ 1300 cm -1   Symetrical  ~ 1150 cm -1   2 bands :
Sulfur: Mercaptan R- S-H
Sulfur: Sulfonyl Chloride S=O :  Asymmetrical stretch: 1375 cm-1 Symmetrical Stretch : 1185 cm-1
Sulfur: Sulfonate S=O :  Asymmetrical stretch: 1350 cm-1 Symmetrical Stretch : 1175 cm-1 S-O :  several bands between 1000 – 750 cm -1
Sulfur: Sulfonamide S=O :  Asymmetrical stretch: 1325 cm-1 Symmetrical Stretch : 1140 cm-1 NH 2  stretch:  3350 and 3250 cm -1   NH Bend: 1550 cm -1
Halogens C —F  :  1400 – 1000 cm -1 C —Cl : strong 785 – 540 cm -1 C —Br : 650 – 510 cm -1  (out of range with NaCl plates) C —I  : 600 – 485 cm -1  (out of range)
Halogens
Phosphorus Phosphines: R-PH 2  R 2 PH P —H : Sharp 2320 – 2270 cm -1 P H 2  bending : 1090 – 1075  and 840 - 810 cm -1 P H bending  : 990 - 886 cm -1 Phosphine Oxide :  R 3  P=O P =O very strong : 1210 - 1140 cm -1 Phosphate Esters :  (OR) 3  P=O P =O very strong : 1300 - 1240 cm -1 P -O very strong : 1088 – 920 cm -1 P -O : 845 - 725 cm -1
Silicon IR-Organometallic Index Si-H : 2200 cm -1   (Stretch) 950 – 800 cm -1   (bend) Si-O-H : OH:  3700 – 3200 cm -1   (Stretch) Si-O : 830 – 1110 cm -1

More Related Content

What's hot

FT NMR
FT NMRFT NMR
FT NMR
Rahul B S
 
Woodward Fieser Rules for UV spectrometry
Woodward Fieser Rules for UV spectrometryWoodward Fieser Rules for UV spectrometry
Woodward Fieser Rules for UV spectrometry
azamushahiullah prottoy
 
NMR spectroscopy
NMR spectroscopyNMR spectroscopy
NMR spectroscopy
Dr. Krishna Swamy. G
 
Wilkinson's catalyst
Wilkinson's catalystWilkinson's catalyst
Wilkinson's catalyst
St.John's College
 
Factors affecting IR absorption frequency
Factors affecting IR absorption frequency Factors affecting IR absorption frequency
Factors affecting IR absorption frequency
Vrushali Tambe
 
Interpretation of IR
Interpretation of IRInterpretation of IR
Interpretation of IRLokesh Patil
 
PHASE TRANSFER CATALYSIS [PTC]
PHASE TRANSFER CATALYSIS [PTC] PHASE TRANSFER CATALYSIS [PTC]
PHASE TRANSFER CATALYSIS [PTC]
Shikha Popali
 
Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopy
DrBasavarajaiahSm
 
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
Sachin Kale
 
Coupling constant
Coupling constantCoupling constant
Coupling constant
harshiniyadav1
 
Quantum yeild
Quantum yeildQuantum yeild
Quantum yeild
Ishfaq Ahmad
 
Electron Spin Resonance Spectroscopy
Electron Spin Resonance Spectroscopy Electron Spin Resonance Spectroscopy
Electron Spin Resonance Spectroscopy
Saiva Bhanu Kshatriya College, Aruppukottai.
 
Calculation of λ using woodward fieser rules
Calculation of λ using woodward fieser rulesCalculation of λ using woodward fieser rules
Calculation of λ using woodward fieser rules
sayyadali
 
TRANSITION METAL CATALYSIS
TRANSITION METAL CATALYSISTRANSITION METAL CATALYSIS
TRANSITION METAL CATALYSIS
Shikha Popali
 
Double resonance
Double resonanceDouble resonance
Double resonance
Priyanka Goswami
 
Molecular ion peak
Molecular ion peakMolecular ion peak
Molecular ion peak
Dongguk University
 
2D NMR Spectroscopy
2D NMR Spectroscopy2D NMR Spectroscopy
2D NMR Spectroscopy
Sai Datri Arige
 
Optical activity in catenanes and rotaxanes
Optical activity in catenanes and rotaxanesOptical activity in catenanes and rotaxanes
Optical activity in catenanes and rotaxanes
PRUTHVIRAJ K
 
Infrared Spectroscopy (IR) - Overview & Interpretation
Infrared Spectroscopy (IR) - Overview & InterpretationInfrared Spectroscopy (IR) - Overview & Interpretation
Infrared Spectroscopy (IR) - Overview & Interpretation
Manoj Prajapati
 
NMR- Inorgnic applications
NMR- Inorgnic applicationsNMR- Inorgnic applications
NMR- Inorgnic applications
SANTHANAM V
 

What's hot (20)

FT NMR
FT NMRFT NMR
FT NMR
 
Woodward Fieser Rules for UV spectrometry
Woodward Fieser Rules for UV spectrometryWoodward Fieser Rules for UV spectrometry
Woodward Fieser Rules for UV spectrometry
 
NMR spectroscopy
NMR spectroscopyNMR spectroscopy
NMR spectroscopy
 
Wilkinson's catalyst
Wilkinson's catalystWilkinson's catalyst
Wilkinson's catalyst
 
Factors affecting IR absorption frequency
Factors affecting IR absorption frequency Factors affecting IR absorption frequency
Factors affecting IR absorption frequency
 
Interpretation of IR
Interpretation of IRInterpretation of IR
Interpretation of IR
 
PHASE TRANSFER CATALYSIS [PTC]
PHASE TRANSFER CATALYSIS [PTC] PHASE TRANSFER CATALYSIS [PTC]
PHASE TRANSFER CATALYSIS [PTC]
 
Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopy
 
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
 
Coupling constant
Coupling constantCoupling constant
Coupling constant
 
Quantum yeild
Quantum yeildQuantum yeild
Quantum yeild
 
Electron Spin Resonance Spectroscopy
Electron Spin Resonance Spectroscopy Electron Spin Resonance Spectroscopy
Electron Spin Resonance Spectroscopy
 
Calculation of λ using woodward fieser rules
Calculation of λ using woodward fieser rulesCalculation of λ using woodward fieser rules
Calculation of λ using woodward fieser rules
 
TRANSITION METAL CATALYSIS
TRANSITION METAL CATALYSISTRANSITION METAL CATALYSIS
TRANSITION METAL CATALYSIS
 
Double resonance
Double resonanceDouble resonance
Double resonance
 
Molecular ion peak
Molecular ion peakMolecular ion peak
Molecular ion peak
 
2D NMR Spectroscopy
2D NMR Spectroscopy2D NMR Spectroscopy
2D NMR Spectroscopy
 
Optical activity in catenanes and rotaxanes
Optical activity in catenanes and rotaxanesOptical activity in catenanes and rotaxanes
Optical activity in catenanes and rotaxanes
 
Infrared Spectroscopy (IR) - Overview & Interpretation
Infrared Spectroscopy (IR) - Overview & InterpretationInfrared Spectroscopy (IR) - Overview & Interpretation
Infrared Spectroscopy (IR) - Overview & Interpretation
 
NMR- Inorgnic applications
NMR- Inorgnic applicationsNMR- Inorgnic applications
NMR- Inorgnic applications
 

Similar to Infrared presentation

Infrared.ppt mass NMR mass and it spectroscopy
Infrared.ppt mass NMR mass and it spectroscopyInfrared.ppt mass NMR mass and it spectroscopy
Infrared.ppt mass NMR mass and it spectroscopy
ShaikhSalman43
 
Fundamentals of spectroscopy
Fundamentals of spectroscopyFundamentals of spectroscopy
Fundamentals of spectroscopy
debasishsarmah2
 
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdfIR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
Dr. Sudheer Kumar Kamarapu
 
Electromagnetic Radiations (EMR)
Electromagnetic Radiations (EMR)Electromagnetic Radiations (EMR)
Electromagnetic Radiations (EMR)
Protik Biswas
 
06. UV Spectroscopy of Organic Compounds.pdf
06. UV Spectroscopy of Organic Compounds.pdf06. UV Spectroscopy of Organic Compounds.pdf
06. UV Spectroscopy of Organic Compounds.pdf
sdmitragotri
 
Espectrometría en el infrarrojo (IR) - Clase 2
Espectrometría en el infrarrojo (IR) - Clase 2Espectrometría en el infrarrojo (IR) - Clase 2
Espectrometría en el infrarrojo (IR) - Clase 2
José Luis Castro Soto
 
ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)
AJAYKUMAR4872
 
Elecromagnetic Radiations.pdf
Elecromagnetic Radiations.pdfElecromagnetic Radiations.pdf
Elecromagnetic Radiations.pdf
sktpharma
 
Vijay seminor ..analysis
Vijay seminor ..analysisVijay seminor ..analysis
Vijay seminor ..analysis
Vijaykumar Kv Vishwakarma
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
ShuvodipMondal1
 
IR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in detailsIR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in details
Bioline Education
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
ShuvodipMondal1
 
Basic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR SpectroscopyBasic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR Spectroscopy
DrBasavarajaiahSm
 
Spectroscopy Org12
Spectroscopy Org12Spectroscopy Org12
Spectroscopy Org12
Gita_Sathianathan
 
6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx
Williamkambi
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
Tahirah Sanderson
 
Spectrometry
SpectrometrySpectrometry
Spectrometry
Ahmed Ragab
 
IR Spectroscopy with detailed introduction
IR Spectroscopy  with detailed introductionIR Spectroscopy  with detailed introduction
IR Spectroscopy with detailed introduction
nivedithag131
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Monika Singh
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
BhavanaKhobragade
 

Similar to Infrared presentation (20)

Infrared.ppt mass NMR mass and it spectroscopy
Infrared.ppt mass NMR mass and it spectroscopyInfrared.ppt mass NMR mass and it spectroscopy
Infrared.ppt mass NMR mass and it spectroscopy
 
Fundamentals of spectroscopy
Fundamentals of spectroscopyFundamentals of spectroscopy
Fundamentals of spectroscopy
 
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdfIR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
 
Electromagnetic Radiations (EMR)
Electromagnetic Radiations (EMR)Electromagnetic Radiations (EMR)
Electromagnetic Radiations (EMR)
 
06. UV Spectroscopy of Organic Compounds.pdf
06. UV Spectroscopy of Organic Compounds.pdf06. UV Spectroscopy of Organic Compounds.pdf
06. UV Spectroscopy of Organic Compounds.pdf
 
Espectrometría en el infrarrojo (IR) - Clase 2
Espectrometría en el infrarrojo (IR) - Clase 2Espectrometría en el infrarrojo (IR) - Clase 2
Espectrometría en el infrarrojo (IR) - Clase 2
 
ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)
 
Elecromagnetic Radiations.pdf
Elecromagnetic Radiations.pdfElecromagnetic Radiations.pdf
Elecromagnetic Radiations.pdf
 
Vijay seminor ..analysis
Vijay seminor ..analysisVijay seminor ..analysis
Vijay seminor ..analysis
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
 
IR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in detailsIR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in details
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
 
Basic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR SpectroscopyBasic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR Spectroscopy
 
Spectroscopy Org12
Spectroscopy Org12Spectroscopy Org12
Spectroscopy Org12
 
6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
Spectrometry
SpectrometrySpectrometry
Spectrometry
 
IR Spectroscopy with detailed introduction
IR Spectroscopy  with detailed introductionIR Spectroscopy  with detailed introduction
IR Spectroscopy with detailed introduction
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
 

Recently uploaded

Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Dr Jeenal Mistry
 
hypertensive-disorders-of-pregnancy.pptx
hypertensive-disorders-of-pregnancy.pptxhypertensive-disorders-of-pregnancy.pptx
hypertensive-disorders-of-pregnancy.pptx
Dr. Rahul Shah
 
Evaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animalsEvaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animals
Shweta
 
Prix Galien International 2024 Forum Program
Prix Galien International 2024 Forum ProgramPrix Galien International 2024 Forum Program
Prix Galien International 2024 Forum Program
Levi Shapiro
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
aljamhori teaching hospital
 
The hemodynamic and autonomic determinants of elevated blood pressure in obes...
The hemodynamic and autonomic determinants of elevated blood pressure in obes...The hemodynamic and autonomic determinants of elevated blood pressure in obes...
The hemodynamic and autonomic determinants of elevated blood pressure in obes...
Catherine Liao
 
The POPPY STUDY (Preconception to post-partum cardiovascular function in prim...
The POPPY STUDY (Preconception to post-partum cardiovascular function in prim...The POPPY STUDY (Preconception to post-partum cardiovascular function in prim...
The POPPY STUDY (Preconception to post-partum cardiovascular function in prim...
Catherine Liao
 
Couples presenting to the infertility clinic- Do they really have infertility...
Couples presenting to the infertility clinic- Do they really have infertility...Couples presenting to the infertility clinic- Do they really have infertility...
Couples presenting to the infertility clinic- Do they really have infertility...
Sujoy Dasgupta
 
Arterial health throughout cancer treatment and exercise rehabilitation in wo...
Arterial health throughout cancer treatment and exercise rehabilitation in wo...Arterial health throughout cancer treatment and exercise rehabilitation in wo...
Arterial health throughout cancer treatment and exercise rehabilitation in wo...
Catherine Liao
 
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Savita Shen $i11
 
Why invest into infodemic management in health emergencies
Why invest into infodemic management in health emergenciesWhy invest into infodemic management in health emergencies
Why invest into infodemic management in health emergencies
Tina Purnat
 
DECIPHERING COMMON ECG FINDINGS IN ED.pptx
DECIPHERING COMMON ECG FINDINGS IN ED.pptxDECIPHERING COMMON ECG FINDINGS IN ED.pptx
DECIPHERING COMMON ECG FINDINGS IN ED.pptx
drwaque
 
1. DELIVERY OF HEALTH CARE SERVICES IN RURAL.ppt
1. DELIVERY OF HEALTH CARE SERVICES IN RURAL.ppt1. DELIVERY OF HEALTH CARE SERVICES IN RURAL.ppt
1. DELIVERY OF HEALTH CARE SERVICES IN RURAL.ppt
pooja kajla
 
Fundamental of Radiobiology -SABBU.pptx
Fundamental of Radiobiology  -SABBU.pptxFundamental of Radiobiology  -SABBU.pptx
Fundamental of Radiobiology -SABBU.pptx
Sabbu Khatoon
 
Ocular injury ppt Upendra pal optometrist upums saifai etawah
Ocular injury  ppt  Upendra pal  optometrist upums saifai etawahOcular injury  ppt  Upendra pal  optometrist upums saifai etawah
Ocular injury ppt Upendra pal optometrist upums saifai etawah
pal078100
 
HOT NEW PRODUCT! BIG SALES FAST SHIPPING NOW FROM CHINA!! EU KU DB BK substit...
HOT NEW PRODUCT! BIG SALES FAST SHIPPING NOW FROM CHINA!! EU KU DB BK substit...HOT NEW PRODUCT! BIG SALES FAST SHIPPING NOW FROM CHINA!! EU KU DB BK substit...
HOT NEW PRODUCT! BIG SALES FAST SHIPPING NOW FROM CHINA!! EU KU DB BK substit...
GL Anaacs
 
Mastering Wealth: A Path to Financial Freedom
Mastering Wealth: A Path to Financial FreedomMastering Wealth: A Path to Financial Freedom
Mastering Wealth: A Path to Financial Freedom
FatimaMary4
 
Relationship between vascular system disfunction, neurofluid flow and Alzheim...
Relationship between vascular system disfunction, neurofluid flow and Alzheim...Relationship between vascular system disfunction, neurofluid flow and Alzheim...
Relationship between vascular system disfunction, neurofluid flow and Alzheim...
Catherine Liao
 
The History of Diagnostic Medical imaging
The History of Diagnostic Medical imagingThe History of Diagnostic Medical imaging
The History of Diagnostic Medical imaging
Yahye Mohamed
 
Non-Invasive assessment of arterial stiffness in advanced heart failure patie...
Non-Invasive assessment of arterial stiffness in advanced heart failure patie...Non-Invasive assessment of arterial stiffness in advanced heart failure patie...
Non-Invasive assessment of arterial stiffness in advanced heart failure patie...
Catherine Liao
 

Recently uploaded (20)

Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
 
hypertensive-disorders-of-pregnancy.pptx
hypertensive-disorders-of-pregnancy.pptxhypertensive-disorders-of-pregnancy.pptx
hypertensive-disorders-of-pregnancy.pptx
 
Evaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animalsEvaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animals
 
Prix Galien International 2024 Forum Program
Prix Galien International 2024 Forum ProgramPrix Galien International 2024 Forum Program
Prix Galien International 2024 Forum Program
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
 
The hemodynamic and autonomic determinants of elevated blood pressure in obes...
The hemodynamic and autonomic determinants of elevated blood pressure in obes...The hemodynamic and autonomic determinants of elevated blood pressure in obes...
The hemodynamic and autonomic determinants of elevated blood pressure in obes...
 
The POPPY STUDY (Preconception to post-partum cardiovascular function in prim...
The POPPY STUDY (Preconception to post-partum cardiovascular function in prim...The POPPY STUDY (Preconception to post-partum cardiovascular function in prim...
The POPPY STUDY (Preconception to post-partum cardiovascular function in prim...
 
Couples presenting to the infertility clinic- Do they really have infertility...
Couples presenting to the infertility clinic- Do they really have infertility...Couples presenting to the infertility clinic- Do they really have infertility...
Couples presenting to the infertility clinic- Do they really have infertility...
 
Arterial health throughout cancer treatment and exercise rehabilitation in wo...
Arterial health throughout cancer treatment and exercise rehabilitation in wo...Arterial health throughout cancer treatment and exercise rehabilitation in wo...
Arterial health throughout cancer treatment and exercise rehabilitation in wo...
 
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
 
Why invest into infodemic management in health emergencies
Why invest into infodemic management in health emergenciesWhy invest into infodemic management in health emergencies
Why invest into infodemic management in health emergencies
 
DECIPHERING COMMON ECG FINDINGS IN ED.pptx
DECIPHERING COMMON ECG FINDINGS IN ED.pptxDECIPHERING COMMON ECG FINDINGS IN ED.pptx
DECIPHERING COMMON ECG FINDINGS IN ED.pptx
 
1. DELIVERY OF HEALTH CARE SERVICES IN RURAL.ppt
1. DELIVERY OF HEALTH CARE SERVICES IN RURAL.ppt1. DELIVERY OF HEALTH CARE SERVICES IN RURAL.ppt
1. DELIVERY OF HEALTH CARE SERVICES IN RURAL.ppt
 
Fundamental of Radiobiology -SABBU.pptx
Fundamental of Radiobiology  -SABBU.pptxFundamental of Radiobiology  -SABBU.pptx
Fundamental of Radiobiology -SABBU.pptx
 
Ocular injury ppt Upendra pal optometrist upums saifai etawah
Ocular injury  ppt  Upendra pal  optometrist upums saifai etawahOcular injury  ppt  Upendra pal  optometrist upums saifai etawah
Ocular injury ppt Upendra pal optometrist upums saifai etawah
 
HOT NEW PRODUCT! BIG SALES FAST SHIPPING NOW FROM CHINA!! EU KU DB BK substit...
HOT NEW PRODUCT! BIG SALES FAST SHIPPING NOW FROM CHINA!! EU KU DB BK substit...HOT NEW PRODUCT! BIG SALES FAST SHIPPING NOW FROM CHINA!! EU KU DB BK substit...
HOT NEW PRODUCT! BIG SALES FAST SHIPPING NOW FROM CHINA!! EU KU DB BK substit...
 
Mastering Wealth: A Path to Financial Freedom
Mastering Wealth: A Path to Financial FreedomMastering Wealth: A Path to Financial Freedom
Mastering Wealth: A Path to Financial Freedom
 
Relationship between vascular system disfunction, neurofluid flow and Alzheim...
Relationship between vascular system disfunction, neurofluid flow and Alzheim...Relationship between vascular system disfunction, neurofluid flow and Alzheim...
Relationship between vascular system disfunction, neurofluid flow and Alzheim...
 
The History of Diagnostic Medical imaging
The History of Diagnostic Medical imagingThe History of Diagnostic Medical imaging
The History of Diagnostic Medical imaging
 
Non-Invasive assessment of arterial stiffness in advanced heart failure patie...
Non-Invasive assessment of arterial stiffness in advanced heart failure patie...Non-Invasive assessment of arterial stiffness in advanced heart failure patie...
Non-Invasive assessment of arterial stiffness in advanced heart failure patie...
 

Infrared presentation

  • 1. Infrared Spectroscopy Spectroscopy is the measurement of the absorption or emission of energy by matter (atoms or molecules) when it is subjected to electromagnetic radiation. A spectrophotometer measures the energy changes that take place within a molecule when it is irradiated and records these changes as spectra . In absorption spectroscopy , molecules absorb energy and undergo transitions from the ground state to an excited state of the molecule. The type of spectroscopy involved will depend on the region of the electromagnetic spectrum that is used as a radiation source. In Infrared Spectroscopy , molecules absorb infrared radiation which brings about changes in stretching and bending motions of the molecule. The radiation absorbed is in the energy range with wavelengths (λ) between 2.5 and 17 μm (4000 cm -1 to 600 cm -1 ). In Electronic (UV-visible) Spectroscopy, molecules absorb radiation in the UV-visible region (200 - 800 nm). This brings about electronic transitions within the molecule. Since absorption of radiation is quantized ( i.e. it is subject to certain quantum mechanical restrictions), only the allowed frequencies of radiation appear as absorption bands in the spectrum.
  • 2. Vibrational Spectroscopy All chemical bonds have a natural frequency of vibration (C-H, O-H, C=O, C-C, C=C) but the exact frequency will depend on their environment, i.e. on the actual structure of the molecule involved. Identification of the vibrational frequencies indicates the different bonds present in a molecule and provides structural information about that molecule. An infrared spectrum is a plot of % transmittance (y-axis) versus energy (cm -1 ) (x-axis) in the range 4000 cm -1 to 600 cm -1 .
  • 3.
  • 4. The Units: The frequency  (s -1 ) => # vibrations per second For molecular vibrations, this number is very large (10 13 s -1 ) => inconvenient e.g.  = 3 * 10 13 s -1 = 1000 cm -1 Wave Length :  1  = More convenient : Wavenumber   =  c ( Frequency / Velocity )   =   s  3 * 10 10 cm s -1 
  • 5. Intensity in IR Intensity: Transmittance ( T ) or %T Absorbance ( A ) IR : Plot of %IR that passes through a sample ( transmittance ) vs Wavelenght T = I I 0 A = log I I 0
  • 6.
  • 7. Infrared: Low frequency spectra of window materials
  • 8. Bond length and strength vs Stretching frequency
  • 9. Introduction IR is one of the first technique inorganic chemists used (since 1940) Molecular Vibration Newton’s law of motion is used classically to calculate force constant r r e F F The basic picture : atoms (mass) are connected with bonding electrons. R e is the equilibrium distance and F : force to restore equilibrium F(x) = - k x where X is displacement from equilibrium Where K i is the force constant and  i is reduce mass of a particular motion Because the energy is quantized: E = h  i   = 1 2  √ k i  i
  • 10. Introduction Displacement of atoms during vibration lead to distortion of electrival charge distribution of the molecule which can be resolve in dipole, quadrupole, octopole …. In various directions => Molecular vibration lead to oscillation of electric charge governed by vibration frequencies of the system Oscillating molecular dipole can interact directly with oscillating electric vector of electromagnetic radiation of the same frequency h  = h  Vibrations are in the range 10 11 to 10 13 Hz => 30 - 3,000 cm -1
  • 11.
  • 12. Calculating stretching frequencies Hooke’s law : : Frequency in cm -1 c : Velocity of light => 3 * 10 10 cm/s K : Force constant => dynes /cm  masses of atoms in grams C —C K = 5* 10 5 dynes/cm C =C K = 10* 10 5 dynes/cm C  C K = 15* 10 5 dynes/cm  = 1 2  c  K    m 1 m 2 m 1 + m 2  M 1 M 2 M 1 + M 2 (6.02 * 10 23 )  = 4.12  K 
  • 13. Calculating stretching frequencies C =C K = 10* 10 5 dynes/cm C —H K = 5* 10 5 dynes/cm C —D K = 5* 10 5 dynes/cm  = 4.12  K    M 1 M 2 M 1 + M 2  (12)(12) 12 + 12    = 4.12  10* 10 5  = 1682 cm -1  Experimental  1650 cm -1  = 4.12  5* 10 5  = 3032 cm -1   M 1 M 2 M 1 + M 2  (12)(1) 12 + 1    Experimental  3000 cm -1  = 4.12  5* 10 5  = 2228 cm -1   M 1 M 2 M 1 + M 2  (12)(2) 12 + 2    Experimental  2206 cm -1
  • 14. Vibrations www.cem.msu.edu/~reusch/Virtual/Text/Spectrpy/InfraRed/infrared.htm Modes of vibration C —H Stretching Bending Symmetrical 2853 cm -1 Asymmetrical 2926 cm -1 Scissoring 1450 cm -1 Rocking 720 cm -1 Wagging 1350 cm -1 Twisting 1250 cm -1 Stretching frequency Bending frequency C O H
  • 15.
  • 16.
  • 17.
  • 18. Analyzing an IR spectrum In practice, there are similarities between frequencies of molecules containing similar groups. Group - frequency correlations have been extensively developed for organic compounds and some have also been developed for inorganics
  • 19. Some characteristic infrared absorption frequencies   BOND COMPOUND TYPE FREQUENCY RANGE, cm -1   C-H alkanes 2850-2960 and 1350-1470   alkenes 3020-3080 (m) and   RCH=CH2 910-920 and 990-1000   R2C=CH2 880-900   cis -RCH=CHR 675-730 (v)   trans -RCH=CHR 965-975   aromatic rings 3000-3100 (m) and   monosubst. 690-710 and 730-770   ortho -disubst. 735-770   meta -disubst. 690-710 and 750-810 (m)   para -disubst. 810-840 (m)   alkynes 3300     O-H alcohols or phenols 3200-3640 (b)     C=C alkenes 1640-1680 (v)   aromatic rings 1500 and 1600 (v)     C≡C alkynes 2100-2260 (v)     C-O primary alcohols 1050 (b)   secondary alcohols 1100 (b)   tertiary alcohols 1150 (b)   phenols 1230 (b)   alkyl ethers 1060-1150   aryl ethers 1200-1275(b) and 1020-1075 (m)   all abs. strong unless marked: m, moderate; v, variable; b, broad
  • 20.
  • 21. n -pentane CH 3 CH 2 CH 2 CH 2 CH 3 3000 cm -1 1470 &1375 cm -1 2850-2960 cm -1 sat’d C-H n -pentane CH 3 CH 2 CH 2 CH 2 CH 3 3000 cm -1 1470 &1375 cm -1 2850-2960 cm -1 sat’d C-H
  • 22. CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 n -hexane
  • 25. IR of ALKENES =C—H bond, “unsaturated” vinyl (sp 2 ) 3020-3080 cm -1 + 675-1000 RCH=CH 2 + 910-920 & 990-1000 R 2 C=CH 2 + 880-900 cis -RCH=CHR + 675-730 (v) trans -RCH=CHR + 965-975 C=C bond 1640-1680 cm -1 (v)
  • 26. 1-decene 910-920 & 990-1000 RCH=CH 2 C=C 1640-1680 unsat’d C-H 3020-3080 cm -1
  • 27. 4-methyl-1-pentene 910-920 & 990-1000 RCH=CH 2
  • 29. IR spectra BENZENE s =C—H bond, “unsaturated” “aryl” (sp 2 ) 3000-3100 cm -1 + 690-840 mono-substituted + 690-710, 730-770 ortho -disubstituted + 735-770 meta -disubstituted + 690-710, 750-810(m) para -disubstituted + 810-840(m) C=C bond 1500, 1600 cm -1
  • 30. ethylbenzene 690-710, 730-770 mono- 1500 & 1600 Benzene ring 3000-3100 cm -1 Unsat’d C-H
  • 31. IR spectra ALCOHOLS & ETHERS C—O bond 1050-1275 (b) cm -1 1 o ROH 1050 2 o ROH 1100 3 o ROH 1150 ethers 1060-1150 O—H bond 3200-3640 (b) 
  • 32. 1-butanol CH 3 CH 2 CH 2 CH 2 -OH C-O 1 o 3200-3640 (b) O-H
  • 36. Band Shape: OH vs NH2 vs CH
  • 37. Free OH and Hydrogen bonded OH
  • 38. Symmetrical and asymmetrical stretch Methyl 2872 cm -1 Symmetrical Stretch Asymmetrical Stretch Anhydride 1760 cm -1 2962 cm -1 1800 cm -1 Amino Nitro 3300 cm -1 3400 cm -1 1350 cm -1 1550 cm -1 — C — H H H — C — H H H O O O O O O — N H H — N H H — N O O — N O O
  • 39. General IR comments Precise treatment of vibrations in molecule is not feasible here Some information from IR is also contained in MS and NMR Certain bands occur in narrow regions : OH , CH , C=O Detail of the structure is revealed by the exact position of the band e.g. Ketones 1715 cm -1 1680 cm -1 Region 4000 – 1300 : Functional group Absence of band in this region can be used to deduce absence of groups Caution: some bands can be very broad because of hydrogen bonding e.g. Enols v.broad OH, C=O absent!! Weak bands in high frequency are extremely useful : S-H, C  C, C  N Lack of strong bands in 900-650 means no aromatic
  • 40. Alkanes , Alkenes , Alkynes C-H : <3000 cm -1 >3000 cm -1 3300 cm -1 sharp C-C Stretch Not useful C=C C  C 1660-1600 cm -1 conj. Moves to lower values Symmetrical : no band 2150 cm -1 conj. Moves to lower values Weak but very useful Symmetrical no band Bending CH 2 Rocking 720 cm -1 indicate Presence of 4-CH 2 1000-700 cm -1 Indicate substitution pattern  C-H ~630 cm -1 Strong and broad Confirm triple bond
  • 41.  
  • 43. Alkene : 1-Decene To give rise to absorption of IR => Oscillating Electric Dipole Symmetry Molecules with Center of symmetry Symmetric vibration => inactive Antisymmetric vibration => active
  • 44. Alkene In large molecule local symmetry produce weak or absent vibration C=C R R trans C=C isomer -> weak in IR Observable in Raman
  • 45. Alkene: Factors influencing vibration frequency 1- Strain move peak to right (decrease ) angle 1650 1646 1611 1566 1656 : exception 2- Substitution increase 3- conjugation decrease C=C-Ph 1625 cm -1 1566 1641 1675 1611 1650 1679 1646 1675 1681 C C C   
  • 46. Alkene: Out-of-Plane bending This region can be used to deduce substitution pattern
  • 49. In IR, Most important transition involve : Ground State (  i = 0) to First Excited State (  i = 1) Transition (  i = 0) to (  J = 2) => Overtone
  • 50. IR : Aromatic =C-H > 3000 cm -1 C=C 1600 and 1475 cm -1 =C-H out of plane bending: great utility to assign ring substitution overtone 2000-1667: useful to assign ring substitution e.g. Naphthalene: Substitution pattern Isolated H 862-835 835-805 760-735 2 adjacent H 4 adjacent H out of plane bending 
  • 51. Aromatic substitution: Out of plane bending
  • 52. Aromatic substitution: Out of plane bending
  • 53.  
  • 54. Aromatic and Alkene substitution
  • 55. IR: Alcohols and Phenols O-H Free : Sharp 3650-3600 O-H H-Bond : Broad 3400-3300 Intermolecular Hydrogen bonding Increases with concentration => Less “Free” OH
  • 56. IR: Alcohols and Phenols C-O : 1260-1000 cm -1 (coupled to C-C => C-C-O) C-O Vibration is sensitive to substitution: Phenol 1220 3` Alcohols 1150 2` Alcohols 1100 1` Alcohols 1050 More complicated than above: shift to lower Wavenumber With unsaturation (Table 3.2)
  • 57. Alcohol C-O : 1040 cm -1 indicate primary alcohol
  • 58. Benzyl Alcohol OH sp 2 sp 3 Ph overtone C-O : 1080, 1022 cm -1 : primary OH Mono Subst. Ph 735 & 697 cm -1
  • 59. Phenol OH sp 2 Ph overtone C=C stretch Ph-O : 1224 cm -1 Mono Subst. Ph out-of plane 810 & 752 cm -1
  • 61. IR: Ether C-O-C => 1300-1000 cm -1 Ph-O-C => 1250 and 1040 cm -1 Aliphatic => 1120 cm -1 C=C in vinyl Ether => 1660-1610 cm -1 appear as Doublet => rotational isomers ~1620 ~1640
  • 62. Ether sp 2 sp 3 Ph overtone C=C stretch Ph-O-C : 1247 cm -1 Asymmetric stretch Ph-O-C : 1040 cm -1 Symmetric stretch Mono Subst. Ph out-of plane 784, 754 & 692 cm -1
  • 63. IR: Carbonyl From 1850 – 1650 cm -1 Ketone 1715 cm -1 is used as reference point for comparisons 1715  1690 1725  1700 1710  1680 1810 Anhydr Band 1800 Acid Chloride 1760 Anhydr Band 2 1735 Ester 1725 Aldehyde 1715 Ketone 1710 Acid 1690 Amide Factor influencing C=O 1) conjugation Conjugation increase single bond character of C=O  Lower force constant  lower frequency number C=C C O C + — C C O -
  • 64. Ketone and Conjugation Conjugation: Lower 
  • 65. Ketone and Ring Strain Ring Strain: Higher Factors influencing C=O 2) Ring size 1715 cm -1 Angle ~ 120 o 1751 cm -1 < 120 o 1775 cm -1 << 120 o 
  • 66.  
  • 67. Factors influencing carbonyl: C=O 3)  substitution effect (Chlorine or other halogens) Result in stronger bound  higher frequency 1750 cm -1 4) Hydrogen bonding Decrease C=O strenght  lower frequency 1680 cm -1 — C — C — X O 
  • 68. Enol
  • 69. Factors influencing carbonyl: C=O 5) Heteroatom Inductive effect Stronger bond higher frequency e.g. ester Resonance effect Weaker bond Lower frequence e.g. amides Y C=O Cl Br OH (monomer) OR (Ester) 1815-1785 1812 1760 1705-1735 NH2 SR 1695-1650 1720-1690 inductive resonance
  • 70. Ester Carbonyl Esters C=O ~ 1750 – 1735 cm -1 O-C : 1300 – 1000 2 or more bands Conjugation => lower freq. Inductive effect with O reinforce carbonyl => higher Conjugation with CO weaken carbonyl => Lower   
  • 72. Ester carbonyl: C=O C=O : 1765 cm -1 C-O 1215 cm -1 1193 cm -1 sp 2 C=O
  • 74. Ester carbonyl : effect of conjugation
  • 75. Lactone carbonyl: C=O Lactones  Cyclic Ester 1735 1720 1760 1770 1750 1800
  • 76. Carbonyl compounds : Acids Carboxylic acid Exist as dimer : Strong Hydrogen bond OH : Very broad  3400 – 2400 cm -1 C=O : broad  1730 – 1700 cm -1 C — O : 1320 – 1210 cm -1 Medium intensity
  • 77. Carbonyl compounds : Acids C=O OH C=O : 1711 cm -1 OH : Very Broad 3300 to 2500 cm -1 C-O : 1285, 1207 cm -1
  • 78. Anhydrides C=O always has 2 bands: 1830-1800 and 1775-1740 cm -1 C —O multiple bands 1300 – 900 cm -1
  • 79. Carbonyl compounds : Aldehydes Aldehydes C=O ~ 1725 cm -1 O=C-H : 2 weak bands 2750, 2850 cm -1 Conjugation => lower freq. C=O : 1724 cm -1 
  • 80. Carbonyl compounds : Aldehydes
  • 82. Other carbonyl Amides Lactams Acid Chlorides C=O ~1680-1630 cm -1 (band I) NH 2 ~ 3350 and 3180 cm -1 (stretch) NH ~ 3300 cm -1 (stretch) NH ~ 1640-1550 cm -1 (bending) 1810-1775 cm -1 C — Cl 730 – 550 cm -1 ~1660 ~1705 ~1745 Increase with strain R — C — Cl O 
  • 83. Amides NH 2 : Symmetrical stretch =>3170 cm -1 asymmetrical stretch => 3352 cm -1 C=O : 1640 cm -1 NH Out of plane
  • 86. Amino acid Exist as zwitterions C CO 2 - NH 3 + NH 3 + : very broad 3330-2380 (OH + NH 3 + ) C O O 1600 – 1590 strong
  • 88. Amine NH 3500 – 3300 cm -1 NH : 2 bands NH : 1 band NH bending : 1650 – 1500 cm -1 C-N : 1350 – 1000 cm -1 NH out-of-plane : ~ 800 cm -1 Amine salt NH + 3500 – 3030 cm -1 broad / strong Ammonium  primary  secomdary  right Left  
  • 89. Amine Primary Amine Secondary Amine Tertiary Amine
  • 91. Other Nitrogen Compounds Nitriles Isocyanates Isothiocyanates Imines / Oximes R-C  N : Sharp 2250 cm -1 Conjugation moves to lower frequency R-N=C=O Broad ~ 2270 cm -1 R-N=C=S 2 Broad peaks ~ 2125 cm -1 R 2 C=N-R 1690 - 1640 cm -1
  • 95. Nitro Aliphatic : Asymmetric : 1600-1530 cm -1 Symmetric : 1390-1300 cm -1 Aromatic : Asymmetric : 1550-1490 cm -1 Symmetric : 1355-1315 cm -1 — N O O + -
  • 96. Nitro
  • 97. Nitro
  • 98. Sulfur Mercaptans S – H : weak 2600-2550 cm -1 Since only few absorption in that range it confirm its presence Sulfides,Disulfides : no useful information Sulfoxides: Strong ~ 1050 cm -1 Sulfones : Asymetrical ~ 1300 cm -1 Symetrical ~ 1150 cm -1 2 bands :
  • 100. Sulfur: Sulfonyl Chloride S=O : Asymmetrical stretch: 1375 cm-1 Symmetrical Stretch : 1185 cm-1
  • 101. Sulfur: Sulfonate S=O : Asymmetrical stretch: 1350 cm-1 Symmetrical Stretch : 1175 cm-1 S-O : several bands between 1000 – 750 cm -1
  • 102. Sulfur: Sulfonamide S=O : Asymmetrical stretch: 1325 cm-1 Symmetrical Stretch : 1140 cm-1 NH 2 stretch: 3350 and 3250 cm -1 NH Bend: 1550 cm -1
  • 103. Halogens C —F : 1400 – 1000 cm -1 C —Cl : strong 785 – 540 cm -1 C —Br : 650 – 510 cm -1 (out of range with NaCl plates) C —I : 600 – 485 cm -1 (out of range)
  • 105. Phosphorus Phosphines: R-PH 2 R 2 PH P —H : Sharp 2320 – 2270 cm -1 P H 2 bending : 1090 – 1075 and 840 - 810 cm -1 P H bending : 990 - 886 cm -1 Phosphine Oxide : R 3 P=O P =O very strong : 1210 - 1140 cm -1 Phosphate Esters : (OR) 3 P=O P =O very strong : 1300 - 1240 cm -1 P -O very strong : 1088 – 920 cm -1 P -O : 845 - 725 cm -1
  • 106. Silicon IR-Organometallic Index Si-H : 2200 cm -1 (Stretch) 950 – 800 cm -1 (bend) Si-O-H : OH: 3700 – 3200 cm -1 (Stretch) Si-O : 830 – 1110 cm -1