Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Ranjak Vaidic Ganit Preview (Marathi Research Book)

737 views

Published on

Useful for student appearing all types of competitive exam.
Best for developing number sense.
For more detail refer http://tinyurl.com/knmrx7n

Published in: Career
  • Be the first to comment

Ranjak Vaidic Ganit Preview (Marathi Research Book)

  1. 1. 109 | वभायता-ओळखा भाग जातो का ? 2) 12 435 1 003 12 * 003 − 1 * 435 = 36 − 435 = −399 −399 स 1003 ने पूणD भाग जात नाह7 :हणून 4321528 सदेखील 1003 ने पूणD भाग जात नाह7. iv) 159999200001 स 399999 ने पूणD भाग जातो का ? = भाजक = 399999 = 4 00001 मसाव (4, 00001 ) = मसाव (4, −1 ) 400001 चे गटवभाजन = 4 00001 भायाचे गटवभाजन = 1599992 00001 = 1600008 00001 1) 1600008 00001 4 00001 1600008 − 4 * 00001 = 1600004 2) 16 00004 4 00001 16 * 1 − 4 * 00004 = 16 − 16 = 0 0 स 399999 ने पूणD भाग जातो :हणून 159999200001 सदेखील 399999 ने पूणD भाग जातो . 109
  2. 2. SQUARING OF NUMBER UPTO 100 (ࢀࢁ)૛ = ൫(ࢀࢁ + ࢁ) ∗ ࢀ൯ ∗ ૚૙ + ࢁ૛ Examples ૚૚૛ = (૚૚ + ૚) ∗ ૚ / ૚૛ = ૚૛ /૚ = ૚૛૚ ૚૛૛ = (૚૛ + ૛) ∗ ૚ / ૛૛ = ૚૝ / ૝ = ૚૝૝ ૚ૠ૛ = (૚ૠ + ૠ) ∗ ૚ / ૠ૛ = ૛૝ / ૝ૢ = ૛ૡૢ ૚ૡ૛ = (૚ૡ + ૡ) ∗ ૚ / ૡ૛ = ૛૟ / ૟૝ = ૜૛૝ ૛૛૛ = (૛૛ + ૛) ∗ ૛ / ૛૛ = ૝ૡ/ ૙૝ = ૝ૡ૝ ૞૚૛ = (૞૚ + ૚) ∗ ૞ / ૚૛ = ૛૟૙ / ૙૚ = ૛૟૙૚ ૞ૡ૛ = (૞ૡ + ૡ) ∗ ૞ / ૡ૛ = ૜૜૙ / ૟૝ = ૜૜૟૝ ૞૟૛ = (૞૟ + ૟) ∗ ૞ / ૟૛ = ૜૚૙ / ૜૟ = ૜૚૜૟ ૢ૚૛ = (૚૙ૢഥ +ૢഥ ૛ = ૚ത૚തതૡത૙/ ૚ ૡ = ૡ૛ૡ૚ ) ∗ ૚૙ / ૢഥ ૢૠ૛ = (૚૙૜ഥ +૜ഥ ૛ = (ૢૠ − ૜) ∗ ૚૙/ ૢ ૙ = ૢ૝૙ૢ ) ∗ ૚૙ / ૜ഥ ૢ૜૛ = (૚૙ૠഥ + ૠ) ∗ ૚૙ / ૠഥ ૛ = (ૢ૜ − ૠ) ∗ ૚૙/ ૢ ૝ = ૡ૟૝ૢ Squaring of Number Near 25 , 50 , 75, 250 , 500 , 750 etc (૛૞ + ࢇ)૛ = ૟૛૞ + ૞૙ࢇ+ ࢇ૛ = ૟૙૙ + ૚૙૙ࢇ ૛ + (૛૞ + ࢇ૛) = ቀ૟ + ࢇ ૛ ቁ ∗ ૚૙૙ + (૛૞ + ࢇ૛) ∴ (૛૞ + ࢇ)૛ = ቀ૟+ ࢇ ૛ ቁ ࢘૛ ൫૛૞ + ࢇ૛൯ (૞૙ + ࢇ)૛ = ૛૞૙૙ + ૚૙૙ࢇ + ࢇ૛ = (૛૞ + ࢇ ) ∗ ૚૙૙ + ( ࢇ૛) ∴ (૞૙ + ࢇ)૛ = (૛૞ + ࢇ ) ࢘૛ ൫ ࢇ૛൯ Similarly, (ૠ૞ + ࢇ)૛ = ቀ૞૟ + ૜ࢇ ૛ ቁ ࢘૛ ቀ ૛૞ + ࢇ૛ቁ
  3. 3. Shortly, (૛૞ + ࢇ)૛ = ૟ ૛૞ ૛૞૛ + ࢇ ૛ ࢇ૛ = ቀ૟ + ࢇ ૛ ቁ ࢘૛ (૛૞ + ࢇ૛) (૞૙ + ࢇ)૛ = ૛૞ ૙૙ ૞૙૛ + ࢇ ࢇ૛ = (૛૞ + ࢇ )࢘૛ (૙૙ + ࢇ૛) (ૠ૞ + ࢇ)૛ = ૞૟ ૛૞ ૠ૞૛ + ૜ࢇ ૛ ࢇ૛ = ቀ૞૟ + ૜ࢇ ૛ ቁ ࢘૛ (૛૞ + ࢇ૛) (૚૙૙ + ࢇ)૛ = ૚૙૙ ૙૙ ૚૙૙૛ + ૛ࢇ ࢇ૛ = (૚૙૙ + ૛ࢇ) ࢘૛ (૙૙ + ࢇ૛) Similarly, (૛૞૙ + ࢇ)૛ = ૟૛ ૞૙૙ ૛૞૙૛ + ࢇ ૛ ࢇ૛ = ቀ૟૛ + ࢇ ૛ ቁ ࢘૜ (૞૙૙ + ࢇ૛) (૞૙૙ + ࢇ)૛ = ૛૞૙ ૙૙૙ ૞૙૙૛ + ࢇ ࢇ૛ = (૛૞૙ + ࢇ ) ࢘૜ ( ࢇ૛) (ૠ૞૙ + ࢇ)૛ = ૞૟૛ ૞૙૙ ૠ૞૙૛ + ૜ࢇ ૛ ࢇ૛ = ቀ૞૟૛ + ૜ࢇ ૛ ቁ ࢘૜ (૛૞ + ࢇ૛) (૚૙૙૙ + ࢇ)૛ = ૚૙૙૙ ૙૙૙ ૚૙૙૙૛ + ૛ࢇ ࢇ૛ = (૚૙૙૙ + ૛ࢇ) ࢘૜ (૙૙૙ + ࢇ૛)
  4. 4. ૛ૠ૛ = ቀ૟ + ૛ ૛ቁ / ൫૛૞ + ૛૛൯ = ૠ /૛ૢ = ૠ૛ૢ ૛ૡ૛ = ቀ૟ + ૜ ૛ ቁ / (૛૞ + ૜૛) = ૠ. ૞ / ૜૝ = ૠ/ ૞૙ + ૜૝ = ૠૡ૝ ૛ૢ૛ = ൬૟ + ૝ ૛ ൰ / (૛૞ + ૝૛) = ૡ / ૝૚ = ૡ૝૚ ૞૛૛ = (૛૞ + ૛) / ൫૙૙ + ૛૛൯ = ૛ૠ /૙૝ = ૛ૠ૙૝ ૞૜૛ = (૛૞ + ૜) / ൫૙૙ + ૜૛൯ = ૛ૡ /૙ૢ = ૛ૡ૙ૢ ૞૟૛ = (૛૞ + ૟) / ൫૙૙ + ૟૛൯ = ૜૚ /૜૟ = ૜૚૜૟ ૟૚૛ = (૛૞ + ૚૚) / ൫૙૙ + ૚૚૛൯ = ૜૟ / ૚૛૚ = ૜ૠ૛૚ ૟૛૛ = (૛૞ + ૚૛) / ൫૙૙ + ૚૛૛൯ = ૜ૠ / ૚૝૝ = ૜ૡ૝૝ ૠ૟૛ = ቀ૞૟ + ૜ ૛ ቁ / (૛૞ + ૚૛) = ૞ૠ. ૞ / ૛૟ = ૞ૠ/ ૞૙ + ૛૝ = ૞ૠૠ૟ ૛૞૛૛ = ቀ૟૛ + ૛ ૛ ቁ / (૞૙૙ + ૛૛) = ૟૜ / ૞૙૝ = ૟૜૞૙૝ ૛૞ૡ૛ = ቀ૟૛ + ૡ ૛ ቁ / (૞૙૙ + ૡ૛) = ૟૟ / ૞૟૝ = ૟૟૞૟૝ ૝ૢૡ૛ = ૞૙૛ഥ૛ = (૛૞૙ − ૛)/ ቀ૙૙૙ + ૛ഥ૛ቁ = ૛૝ૡ / ૙૙૝ = ૛૝ૡ૙૙૝ ૞૙૝૛ = (૛૞૙ + ૝)/ (૙૙૙ + ૝૛) = ૛૞૝ / ૙૚૟ = ૛૞૝૙૚૟ ૝૜૛૛ = ૞૟തതതૡത૛ = (૛૞૙ − ૟ૡ)/ ቀ૙૙૙ + ૟തതതૡത૛ቁ = ૚ૡ૛ / ૝૟૛૝ = ૚ૡ૟૟૛૝ ૢૢૡ૛ = ૚૙૙૛ഥ૛ = (૚૙૙૙ − ૝)/ ቀ૙૙૙ + ૛ഥ૛ቁ = ૢૢ૟ / ૙૙૝ = ૢૢ૟૙૙૝ ૢૢૢૡૢ૛ = (ૢૢૢૡૢ − ૚૚)/ ቀ૙૙૙૙૙ + ૚തതത૚ത૛ቁ = ૢૢૢૠૡ / ૙૙૚૛૚ = ૢૢૢૠૡ૙૙૚૛૚ Examples 1) (ࢇ࢞૛ + ࢈࢞ + ࢉ)૜ = ? = ۺ܍ܜ ࢖ = (ࢇ࢞૛ + ࢈࢞ + ࢉ) , ࢚ࢎࢋ࢔ ࢖૜ = ࢖૛ × ࢖ By Duplex Squaring Method ࢖૛ = (ࢇ࢞૛)૛ + ૛ × (ࢇ࢞૛) × (࢈࢞) + [૛ × (ࢇ࢞૛)(ࢉ) + (࢈࢞)૛] + ૛ × (࢈࢞) × (ࢉ) + ࢉ ∴ ࢖૛ = (ࢇ૛)࢞૝ + (૛ࢇ࢈)࢞૜ + (૛ࢇࢉ + ࢈૛)࢞૛ + (૛࢈ࢉ)࢞ + ࢉ૛ ∴ ࢖૜ = (ࢇ૛)࢞૝ + (૛ࢇ࢈)࢞૜ + (૛ࢇࢉ + ࢈૛)࢞૛ + (૛࢈ࢉ)࢞ + ࢉ૛ × (ࢇ࢞૛ + ࢈࢞ + ࢉ) (ࢇ૜)࢞૟ + (૜ࢇ૛࢈)࢞૞ + (૜ࢇ࢈૛ + ૜ࢇ૛ࢉ)࢞૝ + (࢈૜ + ૟ࢇ࢈ࢉ)࢞૜ + (૜࢈૛ࢉ + ૜ࢇࢉ૛)࢞૛ + (૜࢈ࢉ૛)࢞ + ࢉ૜

×