SlideShare a Scribd company logo
1 of 45
Download to read offline
LỜI CAM ĐOAN
Tôi xin cam đoan đây là công trình của tôi. Tất cả các ấn phẩm được
công bố chung với các cán bộ hướng dẫn khoa học và các đồng nghiệp đã
được sự đồng ý của các tác giả trước khi đưa vào luận án. Cáckết quả trong
luận án là trung thực, chưa từng được công bố và sử dụng để bảo vệ trong bất
cứ một luận án nào khác.
Tác giả luận án
Trần Duy Trinh
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
--------
HOÀNG THÀNH NAM
NGHIÊN CỨU PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO
CHO CÁC BỘ NGHỊCH LƯU ĐA MỨC
RESEARCH ON MODEL PREDICTIVE CONTROL FOR
MULTILEVEL CONVERTERS
LUẬN VĂN THẠC SĨ KHOA HỌC
ĐIỂU KHIỂN VÀ TỰ ĐỘNG HÓA
HÀ NỘI-2018
LỜI CAM ĐOAN
Tôi xin cam đoan đây là công trình của tôi. Tất cả các ấn phẩm được
công bố chung với các cán bộ hướng dẫn khoa học và các đồng nghiệp đã
được sự đồng ý của các tác giả trước khi đưa vào luận án. Cáckết quả trong
luận án là trung thực, chưa từng được công bố và sử dụng để bảo vệ trong bất
cứ một luận án nào khác.
Tác giả luận án
Trần Duy Trinh
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
--------
HOÀNG THÀNH NAM
NGHIÊN CỨU PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO
CHO CÁC BỘ NGHỊCH LƯU ĐA MỨC
RESEARCH ON MODEL PREDICTIVE CONTROL FOR
MULTILEVEL CONVERTERS
LUẬN VĂN THẠC SĨ KHOA HỌC
ĐIỂU KHIỂN VÀ TỰ ĐỘNG HÓA
NGƯỜI HƯỚNG DẪN KHOA HỌC
PGS. TS. TRẦN TRỌNG MINH
HÀ NỘI-2018
LỜI CAM ĐOAN
Tôi xin cam đoan bản luận này là công trình của riêng tôi, do tôi tự thiết kế dưới
sự hướng dẫn của thầy giáo PGS. TS. Trần Trọng Minh. Các số liệu và kết quả là
hoàn toàn trung thực.
Để hoàn thành luận văn này tôi chỉ sử dụng những tài liệu được ghi trong
danh mục tài liệu tham khảo và không sao chép hay sử dụng bất kỳ tài liệu nào
khác. Nếu phát hiện có sự sao chép tôi xin chịu hoàn toàn trách nhiệm.
Hà Nội, ngày 10 tháng 10 năm 2018
Tác giả luận văn
TỔNG QUAN VỀ ĐỀ TÀI
1 Lý do chọn đề tài
Điều khiển các bộ biến đổi đa mức như cầu H nối tầng đặt ra nhiều vấn đề do số
lượng các module tăng nên nhiều theo số mức. Bằng các cấu trúc điều khiển thông
thường thì các mạch vòng điều khiển sẽ rất phức tạp. Phương pháp điều khiển dự
báo FCS-MPC dựa trên tính toán tối ưu hàm mục tiêu (cost funcion) trong không
gian hữu hạn các trạng thái làm việc có thể cho phép xây dựng nên một hệ thống
điều khiển có cấu trúc đơn giản hơn, lược bỏ khâu điều chế PWM, có thể đưa đến
những ứng dụng thực tế.
2 Đối tượng nghiên cứu
Nghiên cứu phương pháp điều khiển dự báo dựa trên không gian hữu hạn các trạng
thái làm việc của sơ đồ nghịch lưu đa mức cấu trúc cầu H nối tầng. Sau đó áp dụng
thuật toán điều khiển này cho ứng dụng nghịch lưu nối lưới và điều khiển động cơ
không đồng bộ. Trong khuân khổ cuốn luận văn này, tính đúng đắn của thuật toán
điều khiển dự báo FCS-MPC sẽ được kiểm chứng thông qua mô hình mô phỏng
trên phần mềm Matlab-Simulink.
3 Đóng góp khoa học trong luận văn
Đưa ra thuật toán điều khiển dự báo FCS-MPC cho bộ biến đổi 7 mức cấu trúc cầu
H nối tầng với số bước tính là hai bước, giúp bù thời gian trễ trong quá trình tính
toán, đo lường, deadtime, v.v… khi triển khai thực nghiệm. Thuật toán lựa chọn
tập hợp các vector liền kề giúp giảm đáng kể khối lượng tính toán khi tối ưu hóa
hàm mục tiêu.
THESIS OVERVIEW
1 Problem statement
Control multilevel converters such as cascaded H-Bridge multilevel converters
pose many problems as the number of module increases. By the conventional
control strategies, the control loops will be very complex. The finite control set
model predictive control (FCS-MPC) control strategies is based on cost function
optimization in the finite number of switch states. This could allow the control
system to be simpler structure, the system does not need a modulator, can be led
to practical applications.
2 Object of the study
The FCS-MPC control strategy for three-phase CHB multilevel converter is
studied in this thesis. It is applied in grid-connected CHB as DC-AC converter for
isolated DC sources such as PV panels generating power to gird and an IM driver
application. Within the framework of the thesis, the correctness of the MPC
algorithm will be verified through Matlab-Simulink software.
3 My contributions
Proposal FCS-MPC control strategy for three-phase CHB seven level, predictive
horizon at two-steps compensate delay time. The subset of adjacent vector state
(SAVS) method is proposed to reduce computational when optimizing cost
function.
Acknowledgments
1
Acknowledgments
First of all, I would like to express sincere thanks to my supervisor: Assos. Prof.
Tran Trong Minh for his constant encouragement and guidance. He has walked me
through all the stages of the work of my Master of Science project. The work in
this thesis is based on research carried out at the Institute for Control Engineering
and Automation (ICEA), Hanoi University of Science and Technology (HUST).
I would like gratitude ICEA as well as the financial support provided by the
National project number: KC.05.03/16-20, “Nghiên cứu, thiết kế và chế tạo hệ
thống khắc phục nhanh sự cố tăng/giảm điện áp ngắn hạn cho phụ tải” and:
ĐTĐLCN.44/16, “Nghiên cứu thiết kế và chế tạo hệ truyền động servo xoay chiều
ba pha”.
Contents
2
Contents
Acknowledgments ................................................................................................ 1
Contents................................................................................................................. 2
List of figures........................................................................................................ 4
List of tables.......................................................................................................... 5
List of abbreviations ............................................................................................ 6
1 Overview FCS-MPC for CHB multilevel converter .................................... 7
1.1 Three-phase CHB multilevel converter.................................................... 7
1.1.1 Structure of a three-phase CHB multilevel converter ....................... 7
1.1.2 Modulation techniques....................................................................... 9
1.2 Modeling of three-phase CHB multilevel converter .............................. 11
1.3 FCS-MPC control strategy ..................................................................... 14
2 FCS-MPC for gird-connected three-phase CHB ....................................... 17
2.1 FCS-MPC for grid-connected formulation............................................. 17
2.1.1 Discrete-time model predictive current control............................... 18
2.1.2 Cost funcion optimization and vector state selection ...................... 19
2.1.3 Subset of adjacent vector state......................................................... 20
2.2 Current reference generation .................................................................. 21
2.3 Simulation results ................................................................................... 22
2.4 Conclusion.............................................................................................. 24
3 FCS-MPC based current control of an IM................................................. 25
3.1 Mathematical model of an IM ................................................................ 25
3.2 FCS-MPC for IM formulation................................................................ 25
3.2.1 The required signal estimation......................................................... 27
3.2.2 Discrete-time model predictive current ........................................... 27
3.2.3 Cost funcion optimization and vector state selection ...................... 28
3.3 Simulation results ................................................................................... 28
3.4 Conclusion.............................................................................................. 31
Contents
3
4 Summary and future works ......................................................................... 32
References ........................................................................................................... 33
Appendix A Simulation FCS-MPC for a gird-connected details................. 35
A.1 Simulation model ................................................................................ 35
A.2 MPC algorithm function ..................................................................... 36
Appendix B Simulation FCS-MPC for an IM details................................... 37
B.1 Simulation model.................................................................................... 37
B.2 MPC algorithm function......................................................................... 38
Appendix C List of publications ..................................................................... 40
List of figures
4
List of figures
Figure 1.1 H-Bridge switch state ..................................................................... 7
Figure 1.2 Three-phase CHB seven level converter........................................ 8
Figure 1.3 SPWM multicarrier strategy........................................................... 9
Figure 1.4 Space vector for three-phase CHB three level ............................. 10
Figure 1.5 H-Bridge converter....................................................................... 11
Figure 1.6 Vector state in CHB seven level converter .................................. 13
Figure 1.7 Classification of MPC strategies applied to power converter...... 14
Figure 1.8 FCS-MPC block diagram ............................................................. 15
Figure 2.1 Block diagram of FCS-MPC gird-connected............................... 17
Figure 2.2 Vector state for CHB seven level three-phase ............................. 20
Figure 2.3 Simulation results of the proposed FCS-MPC ............................. 23
Figure 2.4 FFT analysis output current (phase A)......................................... 24
Figure 3.1 Block diagram of FCS-MPC for IM ............................................ 26
Figure 3.2 Simulation results of output current and voltage ......................... 29
Figure 3.3 Simulation results of the proposed FCS-MPC ............................. 30
Figure 3.4 FFT analysis output current (phase A)......................................... 31
Figure A.1 Simulation overview of FCS-MPC for a grid-connected............. 35
Figure A.2 FCS-MPC controller in subsystem............................................... 36
Figure B.1 Simulation overview of FCS-MPC for an IM.............................. 37
Figure B.2 FCS-MPC in subsystem ............................................................... 38
List of tables
5
List of tables
Table 1.1 Switch state H-Bridge converter...................................................... 11
Table 1.2 Level state CHB seven level converter............................................ 12
Table 2.1 Simulation FCS-MPC for grid connected parameters..................... 22
Table 3.1 Simulation FCS-MPC for IM parameters........................................ 28
List of abbreviations
6
List of abbreviations
NPC Neutral diode clamped multilevel converters
FC Flying capacitor multilevel converters
MMC Modular multilevel converters
CHB Cascaded H-Bridge multilevel conveters
IGBT Insulated Gate Bipolar Transistors
DC Direct Current
PS Phase-shift
PD Phase disposition
APOD Alternative phase opposite disposition
POD Phase opposite disposition
SVM Space vector modulation
MPC Model predictive control
FCS-MPC Finite control set model predictive control
CCS-MPC Continuous control set model predictive control
OSV-MPC Optimal switching vector model predictive control
OSS-MPC Optimal switching sequence model predictive control
IM Induction motor
SAVS Subset of adjacent vector state
RMS Root mean square
FFT Fast Fourier transform
THD Total harmonic distortion
FOC Field oriented control
Chapter 1. Overview FCS-MPC for CHB multilevel converter
7
Chapter 1
Overview FCS-MPC for CHB multilevel converter
Multilevel converters include: Neutral diode clamped (NPC), flying capacitor
(FC), modular multilevel converters (MMC) and cascaded H-Bridge (CHB).
However, technology of CHB is one of the well known, most advantageous and
basic method.
Control CHB multilevel converters will be complex when number of cells
increase. The FCS-MPC control strategy can be considered as a solution simply
handles this problem.
1.1 Three-phase CHB multilevel converter
1.1.1 Structure of a three-phase CHB multilevel converter
The Figure 1.1 shows three switch state of H-Bridge (as named is cell), each cell
make three level voltage: -1; 0 and 1.
STATE = 1
STATE = 0
STATE = -1
vac
vdc vdc vac
vdc vac
Figure 1.1 H-Bridge switch state
Chapter 1. Overview FCS-MPC for CHB multilevel converter
8
In CHB multilevel converter, number of cells are connected in series. Each
cell has separate DC source which is obtained from fuel cells, batteries, capacitors,
transformers,…
Activity of m cells in each phase will make 2m+1 voltage level. Figure 1.2
is example of CHB three-phase seven level. Three-phase CHB multilevel
converter is simply like three single-phase converter connected in wye
configuration.
Vdc1
S1
Vdc2
C1
vac2
vac1
C2
S2
S3
S4
ZA ZCZB
Z
A B C
Vdc3 vac3C3
N
Figure 1.2 Three-phase CHB seven level converter
Advantages:
 It doesn’t need capacitors or diodes for clamping.
 Entire IGBT switching in basic fundamental frequency (or near this
frequency), so that reduce power lose switch.
 The harmonics reduce because IGBT switching small frequency.
Chapter 1. Overview FCS-MPC for CHB multilevel converter
9
 The wave is quite sinusoidal in nature.
Disadvantages:
 CHB needs separate DC sources for each leg.
 Controller will be complex if number of cells increase.
Additional detail can be found in Appendix C [2], [3] and [4].
1.1.2 Modulation techniques
a. Sin-PWM (SPWM) multicarrier strategy
In the SPWM, each phase uses single sinusoidal reference. For m cells need 2m
triangular carriers. The carriers have the same frequency, the same peak to peak
amplitude. Sinusoidal reference is compared with each carrier to determine the
switching output voltages for the power converter.
-1
0
1
-Uc1 -Uc2Uc1 Uc2
a. PS carrier
-1
0
1
-Uc1
-Uc2
Uc1
Uc2
b. PD carrier
-1
0
1
-Uc1
-Uc2
Uc1
Uc2
c. APOD carrier
-1
0
1
-Uc1
-Uc2
Uc1
Uc2
d. POD carrier
Figure 1.3 SPWM multicarrier strategy
There are four strategies of multicarrier PWM. Figure 1.3 is showed
multicarrier PWM strategy for single-phase CHB five level. It requests four
triangle carriers and only one sinusoidal reference.
Chapter 1. Overview FCS-MPC for CHB multilevel converter
10
 Phase-shift (PS) carrier PWM strategy. Each carrier is phase-shift by
360°/4=90° from it’s adjacent carrier.
 Phase disposition (PD), all carriers are in phase 0°.
 Alternative phase opposite disposition (APOD), all carriers are alternatively
in phase opposition.
 Phase opposite disposition (POD), all the carriers above the zero reference
are in phase among them.
For single-phase converter, SPWM is still a good choice, but for three-phase
converter different techniques have been developed to take the advantage of three-
phase systems in reducing harmonics. The most popular technique is space vector
modulation (SVM).
b. Space vector modulation (SVM)
SVM technique reduces the influence of common-mode voltages and this avoids
the use of any triangular carriers. SVM conveniently provides more flexibility such
as redundant switching sequences, adjustable duty cycles; and it is more suited to
digital implementations.
(1,-1,-1)
V7
(1,1,-1)
V9
(-1,1,-1)
V11
(-1,1,1)
V13
(-1,-1,1)
V15
(1,-1,1)
V17
(0,-1,-1)
(1,0,0)
V1
(1,1,0)
(0,0,-1)
V2
(-1,0,-1)
(0,1,0)
V3
(0,1,1)
(-1,0,0)
V4
(-1,-1,0)
(0,0,1)
V5
(1,0,1)
(0,-1,0)
V6
(1,0,-1)
V8
(0,1,-1)
V10
(-1,1,0)
V12
(-1,0,1)
V14
(0,-1,1)
V16
(1,-1,0)
V18
(0,0,0)
(1,1,1)
(-1,-1,-1)
V0
21
1
3
4
2
Figure 1.4 Space vector for three-phase CHB three level
These advantages of SVM can lead to a significantly improved performance
of multilevel converters, especially when the level number of the converter is large.
Chapter 1. Overview FCS-MPC for CHB multilevel converter
11
The space vector of a three-phase CHB three level shows in Figure 1.4.
However, SVM for higher level converter is difficult. There generally are 6(n-1)2
triangles in the space vector diagram of a three-phase n level converter, reference
vector can be located within any triangle. SVM selects suitable switch states of the
located triangle and apply them for corresponding need duty cycles in an switching
sequence.
1.2 Modeling of three-phase CHB multilevel converter
Each cell of converter is described in Figure 1.5.
vdc
S1
S2
S3
S4
C vac
Figure 1.5 H-Bridge converter
Sign IGBT switch state: “0” corresponding IGBT is off and “1”
corresponding IGBT is on. Table 1.1 shows switch state each cell. Output voltage
obtained are 0; Vdc and –Vdc corresponding switch state is 0; 1 and -1.
Table 1.1 Switch state H-Bridge converter
Gate state
vac Switch state
S1 S2 S3 S4
1 0 1 0 0 0
1 0 0 1 Vdc 1
0 1 1 0 -Vdc -1
0 1 0 1 0 0
Three-phase CHB seven level converter is showed in Figure 1.2, level state
shows in Table 1.2. Output voltage ANv , BNv , CNv ; load voltage: AZv , BZv , CZv and
Chapter 1. Overview FCS-MPC for CHB multilevel converter
12
common-mode voltage ZNv .
Table 1.2 Level state CHB seven level converter
Switch state acv Level state
(1,1,1) 3Vdc 3
(1,1,0) (1,0,1) (0,1,1) 2Vdc 2
(1,0,0) (0,1,0) (0,0,1) Vdc 1
(0,0,0) 0 0
(-1,0,0) (0,-1,0) (0,0,-1) -Vdc -1
(-1,-1,0) (-1,0,-1) (0,-1,-1) -2Vdc -2
(-1,-1,-1) -3Vdc -3
Assume, Vdc each cell is balance, Vdc,k = Vdc (k = 1,...n). Output voltage vAN,
vBN, vCN obtains {-3Vdc, -2Vdc, -1Vdc, 0, +1Vdc, +2Vdc, +3Vdc}, corresponding {3, 2,
1, 0, -1, -2, -3}*Vdc, this is called level state {3, 2, 1, 0, -1, -2, -3}.
Level state phase A, B and C are grand total 127 reasonable different vector
state v.
Output voltage each cell:
0 0
1
1
A
ac dc A
dc A
s
v V s
V s


  
  
(1.1)
And, output voltage CHB multilevel converters express:
.
.
.
AN A dc
BN B dc
CN C dc
v k V
v k V
v k V



 
(1.2)
where  , , 3, 2, 1,0,1,2,3A B Ck k k    
Assuming, load is balance, output voltage each phase can be showed:
AZ AN ZN
BZ BN ZN
CZ CN ZN
v v v
v v v
v v v
 

 
  
(1.3)
Chapter 1. Overview FCS-MPC for CHB multilevel converter
13
V1
V2V3
V4
V5 V6
V7
V8
V9V10V11
V12
V13
V14
V15 V16
V18
V19
V20
V21
V22V23V24V25
V26
V27
V28
V29
V30
V31 V32 V33
V17
V34
V35
V36
V37
V38
V39
V40
V41V42V43V44V45
V46
V47
V48
V50
V49
V51
V52
V53 V54 V55 V56 V57
V58
V59
V60
V0 V61
V62
V63
V64
V65
V66V67V68V69V70V71
V72
V73
V74
V75
V78
V79
V76
V77
V80
V81 V82 V83 V84 V85 V86
V87
V88
V89
V90
V91
V92
V93
V94
V95
V96
V97V98V99V100V101V102V103
V104
V105
V106
V107
V108
V109
V110
V111
V114
V115
V112
V113
V116 V117 V118 V119 V120 V121
V122
V123
V124
V125
V126
0 α
β
Figure 1.6 Vector state in CHB seven level converter
Because of 0AZ BZ CZv v v   , so common-mode ZNv as express:
 
1
3
ZN AN BN CNv v v v   (1.4)
The level state can be expressed by the vector as following:
 22
3
v A B Cv a v a v     (1.5)
where
2 4
23 3
;
j j
a e a e
 
 
The vector state v can be expressed in terms of complex coordinate by
using the Clarke transformation:
v v jv   (1.6)
Chapter 1. Overview FCS-MPC for CHB multilevel converter
14
where:
 
1
3
A
B C
v v
v v v





 

1.3 FCS-MPC control strategy
Model predictive control (MPC) is understood as a wide class of controller, the
main characteristic is the use of the model of the system for the prediction of the
future behavior of the controlled variables over a predictive horizon, n-steps. The
information is used by the MPC control strategy to provide the control action
sequence for the system by optimizing a user-defined cost function. It should be
noted that the algorithm is executed again every sampling period and only the first
value of the optimal sequence is applied to the system at instant k.
Model predictive control
(MPC)
Finite control set MPC
(FCS-MPC)
Optimal switching vector MPC
(OSV-MPC)
Optimal switching sequence MPC
(OSS-MPC)
Continuous control set MPC
(CCS-MPC)
Generalized predictive control
(GPC)
Explicit MPC
(EMPC)
Figure 1.7 Classification of MPC strategies applied to power converter
Classification of MPC strategy applied to power converter is showed in
Figure 1.7, [2]. MPC strategy can be divided into two types: continuous control
set MPC (CCS-MPC) and discrete of the power converters finite control set MPC
(FCS-MPC).
The CCS-MPC computes a continuous control signal and then uses a
modulator to generate output voltage in the power converter. The main advantage
of CCS-MPC when applied to power converter is that it produces a fixed switching
frequency. The main disadvantage of CCS-MPC is present a complex formulation
Chapter 1. Overview FCS-MPC for CHB multilevel converter
15
of the MPC problem.
The FCS-MPC based on finite number of switching state to formulate the
MPC algorithm and does not need a modulator. FCS-MPC can be divided into two
types: optimal switching vector MPC (OSV-MPC) and optimal switching
sequence MPC (OSS-MPC). OSV-MPC is the most popular MPC control strategy
for power converter. It uses the output vector state of the power converter as the
control set. The main advantage of OSV-MPC: it only calculates prediction for this
control set, therefore it reduces the optimal problem to an enumerated search
algorithm. This makes the MPC strategy formulation very intuitive. The
disadvantage of OSV-MPC is that only one output optimal vector state is applied
during the complete sampling time period, lead to uncontrolled switching
frequency.
In FCS-MPC, the prediction model of the system needs to be discretized.
Therefore, the MPC algorithms are usually implemented in digital hardware like
as DSP or FPGA. The common of FCS-MPC regularly uses Euler approximation
to discretize a one-step or multiple-step.
Optimizaton
Predictive
model Conv.
Sopt
Load
Measurement
Estimation
FCS-MPC
xp
x
J
x*
Conv.
Figure 1.8 FCS-MPC block diagram
Figure 1.8 shows FCS-MPC block diagram. Assume, control variable x
follow the reference variable x*
, procedure design FCS-MPC following basic
steps:
 Measurement, estimation the control variable in the sampling time instant.
 For every switch states of the converters, predictive (using the mathematical
model) the behavior of variable x in the n-steps time.
 Evaluate the cost function for each prediction.
Chapter 1. Overview FCS-MPC for CHB multilevel converter
16
 Select the switch states that minimize the cost function, Sopt applied to the
converters.
In the experiment, driver, measurements and IGBT exist delay time. The
computational time is needed in the predictive control algorithm to predict the
variables, and processor delay deteriorates the performance of the predictive
control at the experimental investigation. To solve this problem, it can be
considered the predictive horizon at (k+n)th
sampling time to predict the variables
which are compared with the references, and determine the cost functions. The
optimum Sopt is selected corresponding to the minimum cost function, and applied
it in the power converter.
Chapter 2. FCS-MPC for gird-connected three-phase CHB
17
Chapter 2
FCS-MPC for gird-connected three-phase CHB
2.1 FCS-MPC for grid-connected formulation
The FCS-MPC control strategy predicts behavior of the load current for each
possible vector state v generated by the power converter. The prediction of the
current is based on discretized model of system.
HB 1 HB 2 HB 3 r L
N O
A, B, C
Filter
Current
reference
generation
Cost function
optimization
Prediction
(k+2)th
*
P
*
Q
Sopt
CHB
FCS-MPC
( )iabc k
, ( )vg abc k
*
( )iabc k
( )dcV k
( 2)iabc k 
Figure 2.1 Block diagram of FCS-MPC gird-connected
In abc coordinate, a block diagram of predictive current control is described
in Figure 2.1. The procedure designs FCS-MPC for grid-connected included
mainly three steps [5]:
Chapter 2. FCS-MPC for gird-connected three-phase CHB
18
 Computational current references ( )*
iabc k in the sampling time instant (k)
from references of active power P*
and reactive power Q*
.
 Prediction horizon at (k+2)th
sampling time to predictive current ( 2)iabc k 
the variables which are compared with the current references ( )*
iabc k .
 The optimum vector state is selected corresponding to the minimum cost
function and applied it to actuation.
2.1.1 Discrete-time model predictive current control
Grid-connected three-phase CHB converter, the following continuous time
dynamic equation for each phase current can be expressed:
,
( )
( ) . ( ) ( ) ( )
i
v i vabc
abc abc g abc NO
d t
t L r t t v t
dt
 
    
 
(2.1)
where r and L is the resistance and inductance of the output filter; vabc is phase
output voltage; ,vg abc is grid voltage. Therefore, from (2.1) can be inferred:
,
( ) 1
( ) ( ) ( ) ( )
i
i v vabc
abc abc NO g abc
d t r
t t v t t
dt L L

      (2.2)
For a three-phase n cell CHB converter, the phase output voltage in become:
,.v vabc dc l abcV (2.3)
where level state  , , 1,...,0,..., 1,vl abc n n n n     .
Additionally, common-mode voltage is given by:
 
1
( ) ( ) ( ) ( )
3
NO a b cv t v t v t v t   (2.4)
The first order forward Euler’s approximations:
( ) ( 1) ( )
s
dx t x k x k
dt T
 
 (2.5)
By applying (2.5) to (2.2) with sampling time sT , the discrete-time of current
as bellow:
,( 1) 1 ( ) ( ) ( ) ( )i i v vs s
abc abc abc NO g abc
rT T
k k k v k k
L L
 
         
 
(2.6)
Chapter 2. FCS-MPC for gird-connected three-phase CHB
19
The discrete-time dynamic model can be expressed [10]:
, ,( 1) ( ) ( ) ( )x Ax Bv Evl abc g abck k k k    (2.7)
where:
( )
( )
( )
x
a
b
i k
k
i k
 
  
 
,
, ,
,
( )
( ) ( )
( )
v
l a
l abc l b
l c
v k
k v k
v k
 
 
  
 
 
,
( )
( )
( )
v
ga
g abc
gb
v k
k
v k
 
  
  
1 0
0 1
A
s
s
rT
L
rT
L
 
 
  
 
  
2 1 1
1 2 13
B dc sV T
L
  
    
1 0
0 1
E sT
L
 
   
 
As applying the Forward Euler’s approximations, similarly (2.7), the
predictive horizon at two-steps sampling time k+2 as following [5][6]:
, ,( 2) ( 1) ( ) ( )x Ax Bv Evl abc g abck k k k     (2.8)
2.1.2 Cost function optimization and vector state selection
The last step is developing a cost function for the optimization. The cost function
is very flexible. It should be designed according to the specific control goals. The
cost function in the predictive control of grid-connected with delay compensation
can express [8][9]:
2 2
2 2
* *
2) 2) 1) 1)( ( ( (x x x xJ k k k k        (2.9)
where:    
2 2 2* * *
1 12
... p p
a a a a a a      and
*
*
*
( )
( )
( )
x a
b
i k
k
i k
 
  
 
is the reference current.
For sufficiently small sampling time, it can be assumed that
* * *
( 2) ( 1) ( )x x xk k k    . Therefore, cost function (2.9) can be rewritten as:
2 2
2 2
* *
) 2) ) 1)( ( ( (x x x xJ k k k k      (2.10)
The cost function (2.10) is evaluated for per possible three-phase level state,
and the one that minimizes it. And then, optimal level state is selected and applied
to the load. This mean that (2.7), (2.8) and (2.10) are calculated 73
=343 times for
Chapter 2. FCS-MPC for gird-connected three-phase CHB
20
a seven level in order to obtain the optimal solution. However, level state can be
defined from vector state. By that way, the calculation can be still reduced 127
times. The selection criterion is to select the voltage level states that minimize the
common voltage vector.
2.1.3 Subset of adjacent vector state
In the previous section, each sampling time cost function needs to be calculated
127 times. The vector state will fastly increase follow 12m2
+ 6m + 1 when the
number of cells m growth, it is very high. So that, subset of adjacent vector state
(SAVS) is proposed to reduce computational [7]. In this way, it is possible to
reduce the set of vector state to be evaluated to the vector state that are nearest to
the last applied vector, as shown in Figure 2.2.
Adjacent
vectors in time
[k]
β
α
1
2
3
4
5
6
7
Number of
redundancies for
each vector
Figure 2.2 Vector state for CHB seven level three-phase
For the calculation of the adjacent vectors to the last applied vector, the
distance between vectors can be calculated with the following function:
     
2 2
,x yv v x y x yd v v v v       (2.11)
If xv near yv , the distance should be equal or less than 2Vdc/3. The
calculation of distance is made offline, and it is stored in database. In this way, the
Chapter 2. FCS-MPC for gird-connected three-phase CHB
21
number of calculation is reduced to only seven predictions, irrespective of the
number of cells.
The predictive control algorithm present below:
Algorithm 1 The FCS-MPC predicts horizon at two-steps algorithm
1. Initialize the system and build a table: Subset of Adjacent vector state.
2. Measurements of ( )iabc k and , ( )vg abc k .
3. Determines of *
( )iabc k and vector state ( 1)v k  .
4. Predictions of ( 1)iabc k  and ( 2)iabc k  .
5. for i=1:7 do
2 2
2 2
) 2) ) 1)( ( ( (* *
s s s s
i i i iJ k k k k     
The minimum value of J and the corresponding vector state ( )v k are
kept.
end for.
6. ( )v k is injected into the converters.
2.2 Current reference generation
Cost function in (2.10) require references current *
is
. Based on references of three-
phase active power P*
, reactive power Q*
and grid voltage vsd,g, vsq,g and *
is
can be
calculated.
In the dq coordinate, three-phase active and reactive powers references can
be express:
 
 
* * *
, ,
* * *
, ,
3
. .
2
3
. .
2
sd g sd sq g sq
sq g sd sd g sq
P v i v i
Q v i v i

 

  

(2.12)
where , ,,sd g sq gv v and
* *
,sd sqi i are gird voltage and current references in dq coordinate.
Chapter 2. FCS-MPC for gird-connected three-phase CHB
22
Therefore,
* *
,sd sqi i can be express:
* *
, ,*
2 2
, ,
* *
, ,*
2 2
, ,
. .2
3
. .2
3
sd g sq g
sd
sd g sq g
sq g sd g
sq
sd g sq g
P v Q v
i
v v
P v Q v
i
v v
 




 
(2.13)
2.3 Simulation results
Simulation of FCS-MPC horizons at (k+2)th
sampling time for three-phase CHB
seven level converter is verified in Matlab-simulink software. The parameters used
in the simulation are given in Table 2.1.
Table 2.1 Simulation FCS-MPC for grid connected parameters
Parameter Description Value
P* Three-phase active power 1 MVA
Q* Three-phase reactive power 1 MVar
Cdc DC capacitor per H-Bridge 2500 F
Vdc DC capacitor voltage per H-Bridge 2300 V
L Filter inductor 10 mH
r Filter resistor 6 Ω
Ts Sampling time 100 µs
f Grid frequency 50 Hz
Vg Grid voltage (line-to-line RMS) 6.6 kV
The simulink model and cost function are showed in Appendix A, main
results are presented in Figure 2.3.
From Figure 2.3.b, immediately, real current closely follow reference
current, respond fastly. The common-mode voltage to a small value centered
around zero (see Figure 2.3.d). A symmetric output voltage is achieved seven
level, as show in Figure 2.3.c. The real active power and reactive power are
showed in Figure 2.3.e,f, it is around references. Output current phase A, B and C
are presented in Figure 2.3.a.
Chapter 2. FCS-MPC for gird-connected three-phase CHB
23
0.05 0.06 0.07 0.08 0.09 0.1
-200
-100
0
100
200
iabc(A)
a. Output current phase A, B and C
ia(A)
0 0.02 0.04 0.06 0.08 0.1
-200
-100
0
100
200
Ref.
Real
b. Gird, reference current phase A
0 0.02 0.04 0.06 0.08 0.1
-8000
-4000
0
4000
8000
vAN(V)
c. Output voltage phase A
0.08 0.085 0.09 0.095 0.1
-800
-400
0
400
800
vZN(V)
d. Common-mode voltage
0.05 0.06 0.07 0.08 0.09 0.1
0
5
10
15 105
P(W)
Ref.
Real
e. Three-phase active power
0.05 0.06 0.07 0.08 0.09 0.1
0
5
10
15 105
Q(VAr)
Ref.
Real
f. Three-phase reactive power
Figure 2.3 Simulation results of the proposed FCS-MPC
Chapter 2. FCS-MPC for gird-connected three-phase CHB
24
Fundamental (50Hz) = 176.8 , THD= 1.91%
0 2 4 6 8 10 12 14 16 18 20
Harmonic order
0
0.2
0.4
0.6
0.8
1
Mag(%ofFundamental)
Figure 2.4 FFT analysis output current (phase A)
Fast Fourier transform (FFT) analysis output current phase A, starting time
from 0.01s to 0.09s (four cycles) with fundamental frequency 50Hz and maximum
frequency 1000Hz. Result is showed in Figure 2.4, total harmonic distortion
(THD) is very small, result THD=1.91%.
2.4 Conclusion
The FCS-MPC horizons at two-steps sampling time k+2 for CHB seven level has
been presented. This presents very good reference tracking and reduced common-
mode voltage, with cost function calculation is reduced by SAVS method. The
selection among the adjacent vectors reduces dv/dt at the load side. FCS-MPC
control strategy can be easily applied to CHB multilevel converter when the
number of cell increases, also it can be applied to other multilevel converter
topologies.
Chapter 3. FCS-MPC based current control of an IM
25
Chapter 3
FCS-MPC based current control of an IM
3.1 Mathematical model of an IM
An induction motor can be described by complex equations [4]:
.s s sv i Ψs
d
R
dt
  (3.1)
0 . . .r r ri Ψ Ψr
d
R j
dt
   (3.2)
. .s s rΨ i is mL L  (3.3)
. .r r sΨ i ir mL L  (3.4)
 *3
. .Im .
2
s sΨ iTe p (3.5)
Equation (3.1) is the voltage equation of the phase winding: it describes the
relationship of the stator voltage, the stator current and the stator flux linkage of
the winding. In equation (3.2) the rotor voltage vector is equal to zero because a
squirrel-cage motor is considered. Hence the rotor winding is short circuited. The
winding and rotor flux can be calculated by using the stator current and the rotor
current in equation (3.3) and (3.4). The electromagnetic torque is (3.5).
m is a mechanical rotor speed and it is related to the electric rotor speed
 by the number of pole p:
. mp  (3.6)
3.2 FCS-MPC for IM formulation
In the field oriented control (FOC) control strategy of IM, it uses two loop include
external PI speed loop and internal PI current loop in dq coordinate. FOC describes
Chapter 3. FCS-MPC based current control of an IM
26
the way in which the control of torque and speed are directly based on the
electromagnetic state of the motor, similar to a DC motor. So that, internal PI
current loop can be replaced by FCS-MPC predictive current. The block diagram
of FCS-MPC for IM is showed in Figure 3.1.
This chapter will focus to design internal current loop using FCS-MPC
control strategy.
IM
Rotor flux estimation
PI
IE
dq
abc
HB 1 HB 2 HB 3
N
CHB
Cost function
optimization
Prediction
(k+2)th
Sopt
FCS-MPC
External loop
A, B, C
( )i k
( )iabc k
( )k
( )i k
( 2)i k 
*
( )i k
*
( )qi k
*
( )di k
*
( )k
( )k
( )k
, ( )Ψr k
Figure 3.1 Block diagram of FCS-MPC for IM
Based on FOC control strategy, external PI speed loop generates current
reference of FCS-MPC in the sampling time instant k. The FCS-MPC will predict
output current at two-steps sampling time k+2 and cost function calculations is
reduced by SAVS method. In αβ coordinate, the procedure designs FCS-MPC
included mainly three steps [5]:
 Estimation rotor flux; known speed, current reference in the sampling time
instant k.
 The prediction horizon at two-steps sampling time k+2to predictive current
( 2)i k  , the variables are compared with the current reference ( )*
i k .
Chapter 3. FCS-MPC based current control of an IM
27
 The optimum vector state is selected corresponding to the minimum cost
function and applied it to power converter.
3.2.1 The required signal estimation
Based on a induction motor model is presented in sector 3.1, the rotor flux can be
expressed [5][6]:
r
r s
Ψ
Ψ ir m
d
T L
dt
  (3.7)
where /r r r
T L R .
By applying the backward Euler’s approximations, rotor flux as following:
( ) . ( 1) ( )
. 1
r r sΨ Ψ imr
rr s r
s
LL
k k k
L T R
T

  
 
(3.8)
where s
T is a sampling time.
3.2.2 Discrete-time model predictive current
From the induction motor model, the current stator can be expressed as:
1 1
.
i
i vr r
t r
d
L k j
R d

  

 

  
      
  
(3.9)
Using the forward Euler’s approximations, the discrete equation (3.9) can
be obtained as follows:
1 1
( 1) 1 ( ) ( ) . ( ) ( )ri i Ψ vs s
r
r
T T
k k k j k k k
R
  
  

  
    
         
    
(3.10)
where . /sL R   .
Predictive stator current horizon at two-steps sampling time k+2 as follows
[5][6]:
1
( 2) 1 . ( 1) . . ( ) . ( 1) ( )
.
ri i Ψ vs s
r
r
T T
k k k j k k k
R
  
  

  
    
           
    
(3.11)
Chapter 3. FCS-MPC based current control of an IM
28
3.2.3 Cost function optimization and vector state selection
As can be seen in the previous chapter, the cost function can be expressed:
2 2
2 2
* *
) 2) ) 1)( ( ( (i i i iJ k k k k         (3.12)
Apply SAVS method, the cost function optimization calculate seven time
to choose Sopt and apply to the converters.
3.3 Simulation results
The simulation uses IM 2.2kW and CHB seven level because of the FCS-MPC
control strategy will be experimented in laboratory (C9-203 HUST). Simulated
parameters are showed in Table 3.1.
Table 3.1 Simulation FCS-MPC for IM parameters
Parameters Description Value
P Nominal power 2.2 kW
V IM voltage (line-to-line RMS) 400 V
In Rated phase current (RMS) 4.7 A
f IM frequency 50 Hz
p Number of pole pairs 1
Rs Stator resistance 1.99 Ω
Ls Stator inductance 0.043 H
Rr Rotor resistance 1.99 Ω
Lr Rotor inductance 0.043 H
Lm Mutual inductance 0.3452 H
wn Rate speed 2880 rpm
φ Power factor 0.86
Cdc DC capacitor per HB 2500 F
Vdc DC capacitor voltage per HB 150 V
Simulink model, cost function is presented in Appendix B. The simulation
follows scenario:
 At t = 0s, the magnetization process.
 At t = 0.2s, acceleration to the nominal value 300 rad/s.
 At t = 0.2s, connection of nominal load 10Nm.
 At t = 0.6 s, reversing process down to -300 rad/s
Chapter 3. FCS-MPC based current control of an IM
29
In the speed loop, proportional and integral is 0.8 and 60, rotor flux current
reference value 2.5 A. Sampling time internal loop Ts = 50us and external loop
value 10.Ts.
The simulation results are presented in Figure 3.2 and Figure 3.3.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-20
0
20
iabc(A)
a. Output current iabc
vAN(V)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-500
0
500
b. Output voltage vAN
Figure 3.2 Simulation results of output current and voltage
Simulation results in Figure 3.3.a and Figure 3.3.b show that both the flux
forming and torque forming currents accurately follow the set point trajectories
(coming from the magnetic flux controller and the speed controller in the outer
loop) in all working mode. When the reference changed to negative direction, the
speed real is started to following the speed reference at exact time of 0.2s and 0.6s
at high and low speed, respectively, with the reverse high torque between 10 and -
10 Nm at 300 rad/s and -300 rad/s (see Figure 3.3.c and Figure 3.3.d). The three-
phase current is showed in Figure 3.2.a, waveforms sine. It proves that at the rated
condition, the controller IM with FCS-MPC method operates smooth. The output
voltage phase A is showed in Figure 3.2.b, when speed acceleration, state level
increase from three to five and seven level, value per level is 150V.
Chapter 3. FCS-MPC based current control of an IM
30
isd(A) Ref.
Real
0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
0.5
1
1.5
2
2.5
3
3.5
a. Output current isd
0 0.2 0.4 0.6 0.8 1 1.2 1.4
-15
-10
-5
0
5
10
15
isq(A)
Ref.
Real
b. Output current isq
w(rad/s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4
-400
-200
0
200
400
Ref.
Real
c. Speed response
0 0.2 0.4 0.6 0.8 1 1.2 1.4
-15
-10
-5
0
5
10
15
Torque(kg.m2
)
d. Torque response
Figure 3.3 Simulation results of the proposed FCS-MPC
The result of FFT analysis output current phase A is presented in Figure
3.4, starting analyze time from 0.5s to 0.58s (four cycles) with fundamental
frequency 50Hz and max frequency 1000Hz. The obtained result proves that the
distortion in the system is less. The current THD of the MPC is only 2.55%.
Chapter 3. FCS-MPC based current control of an IM
31
Fundamental (50Hz) = 8.465 , THD= 2.55%
0 2 4 6 8 10 12 14 16 18 20
Harmonic order
0
0.5
1
1.5
2
Mag(%ofFundamental)
Figure 3.4 FFT analysis output current (phase A)
3.4 Conclusion
The simulation results show that the FCS-MPC control strategy is a promising
control tool that is powerful to control the power converters and electrical drives.
Compensation delay time with the predictive horizon at two-steps sampling time
k+2. The delay time compensation has been taken in consideration in the
predictive control algorithm. Results in well tracking of the reference variables at
high speed, even at low speed regions of the IM. It is performance of IM will be
improved. However, the ripple of electromagnetic torque is significantly high.
Further implement needs to reduce the ripple.
Chapter 4. Summary and future works
32
Chapter 4
Summary and future works
The FCS-MPC control strategy is a very attractive solution for controlling power
electronic applications. In the thesis presented the FCS-MPC for gird-connected
and IM application with a three-phase CHB seven level converter. The control
strategy has a simple algorithm structure, it is easy to implement with increased
number of cell, also it can be applied to other multilevel converter topologies.
FCS-MPC control strategy does not need a modulator stage. However, this
usually leads to spread harmonic of the output waveforms. Such critical challenges
as the accuracy of the model, high sampling rates, and high computational cost
function, etc… are disadvantages of FCS-MPC control strategy. But nowadays,
the continuous evolution of the microprocessor technology and the efforts of the
researchers, those problems will be overcome.
A future work is experimental the FCS-MPC control strategy. It can be
effectively evaluated of algorithm and delay time compensation at two-steps
sampling time k+2. And probably longer prediction time steps as 4, 6, etc…
Applying a multi-variable into cost function with the weighting factor. The
example is FCS-MPC for controlling the torque and flux in an IM [2][6].
References
33
References
[1] Sergio Vazquez, Jose I. Leon, Leopoldo G. Franquelo, Jose Rodriguez, Hector
A. Young, Abraham Marquez, and Pericle Zanchetta, "Model Predictive
Control: A Review of Its Applications in Power Electronics", IEEE Industrial
Electronics Magazine, March 2014.
[2] Sergio Vazquez, Jose Rodriguez, Marco Rivera, Leopoldo G. Franquelo,
Margarita Norambuena, “Model Predictive Control for Power Converters and
Drives: Advances and Trends”, IEEE Transactions on Industrial Electronics,
November 2016.
[3] Samir Kouro, Patricio Cortés, René Vargas, Ulrich Ammann and José
Rodríguez, “Model Predictive Control-A Simple and Powerful Method to
Control Power Converters”, IEEE Transactions on Industrial Electronics,
November 2008.
[4] J. Holtz, “The dynamic representation of AC drive systems by complex signal
flow graphs”, Industrial Electronics, 1994. Symposium Proceedings.
[5] Fengxiang Wang, “Model predictive torque control for electrical drive
systems with and without an encoder”, PhD Thesis, Technischen Universitat
Munchen, July 2014.
[6] Muslem Uddin, Saad Mekhilef, Mutsuo Nakaoka, Marco Rivera, “Model
predictive control of induction motor with delay time compensation: An
experimental assessment”, 2015 IEEE Applied Power Electronics Conference
and Exposition (APEC), May 2015.
[7] Patricio Cortes, Alan Wilson, Samir Kouro, Jose Rodriguez, Haitham Abu-
Rub, “Model Predictive Control of Multilevel Cascaded H-Bridge Inverters”,
IEEE Transactions on Industrial Electronics, February 2010.
[8] Ricardo P. Aguilera, Yifan Yu, Pablo Acuna, Georgios Konstantinou,
Christopher D. Townsend, Bin Wu, Vassilios G. Agelidis, “Predictive Control
algorithm to achieve power balance of Cascaded H-Bridge converters”, 2015
References
34
IEEE International Symposium on Predictive Control of Electrical Drives and
Power Electronics, February 2016.
[9] Ricardo P. Aguilera, Daniel E. Quevedo, “Predictive Control of Power
Converters: Designs With Guaranteed Performance”, IEEE Transactions on
Industrial Informatics, October 2014.
[10]Ricardo P. Aguilera, Yifan Yu, Pablo Acuna, Georgios Konstantinou,
Christopher D. Townsend, Bin Wu, Vassilios G. Agelidis, “Predictive Control
Algorithm to Achieve Power Balance of Cascaded H-Bridge Converters”,
2015 IEEE International Symposium on Predictive Control of Electrical
Drives and Power Electronics.
[11]Ricardo P. Aguilera, Pablo Acuna, Yifan Yu, Bin Wu, "Predictive Control of
Cascaded H-Bridge Converters Under Unbalanced Power Generation", IEEE
Transactions on Industrial Electronics (Volume: 64, Issue: 1, Jan. 2017).
[12]Roky Baidya, Ricardo P. Aguilera, Pablo Acuña, Sergio Vazquez, Hendrik du
Toit Mouton, "Multistep Model Predictive Control for Cascaded H-Bridge
Inverters Formulation and Analysis", IEEE Transactions on Power
Electronics (Volume: 33, Issue: 1, Jan. 2018).
[13]Luca Tarisciotti, Pericle Zanchetta, Alan Watson, Stefano Bifaretti, Jon C.
Clare, "Modulated Model Predictive Control for a Seven-Level Cascaded H-
Bridge Back-to-Back Converter", IEEE Transactions on Industrial
Electronics (Volume: 61, Issue: 10, Oct. 2014).
[14]Sumit Dutta, Samir Hazra, Subhashish Bhattacharya, "A Digital Predictive
Current Mode Controller for Single Phase High Frequency Transformer
Isolated Dual Active Bridge DC to DC Converter", IEEE Transactions on
Industrial Electronics (Volume: 63, Issue: 9, Sept. 2016).
[15]Jose Rodriguez, Marian P. Kazmierkowski, Jose R. Espinoza, Pericle
Zanchetta, Haitham Abu-Rub, "State of the Art of Finite Control Set Model
Predictive Control in Power Electronics", IEEE Transactions on Industrial
Informatics (Volume: 9, Issue: 2, May 2013).
Appendix A. Simulation FCS-MPC for a gird-connected details
35
Appendix A
Simulation FCS-MPC for a gird-connected details
A.1 Simulation model
Continuous
powergui
Vdc
i_ref
v_grid
iabc
Vector
MPC Controller
Iabc
A
B
C
a
b
c
Load Measure
N
A
B
C
Three-Phase Grid
6,6kV - 50Hz
Vabc
A
B
C
a
b
c
Grid Measure
a
b
c
A
B
C
RL Filter
6ohm, 10mH
P*
Q*
v_grid
i_abc
i_ref
i_ref Calculator
P*
Q*
Vector
Vdc
A
B
C
Three-Phase
Cascaded H-Bridges
i_abc
i_ref
v_grid
Figure A.1 Simulation overview of FCS-MPC for a grid-connected
Appendix A. Simulation FCS-MPC for a gird-connected details
36
Figure A.2 FCS-MPC controller in subsystem
A.2 MPC algorithm function
% Simulation file
% Master of Science Thesis
% Author: Eng. Hoang Thanh Nam
% Advisor: Assoc. Prof. Tran Trong Minh
% Version: V2.0
% Date: Aug/2018
% PELAB-HUST
function k = fcn(i_k, i_ref_k, v_g_k, Vdc, Ts, k_last)
% Parameters
L = 10e-3; % Inductance load (H)
r = 6; % Resistance load (Ohm)
u_k = zeros(3,1);
A = [(1-r*Ts/L), 0; 0, (1-r*Ts/L)];
B = ((Vdc*Ts)/(3*L))*[2 -1 -1; -1 2 -1];
E = (-Ts/L)*[1 0; 0 1];
temp = inf;
k = inf;
% MPC function
for i = 1:7
ss_temp = top(k_last+1,i) + 1;
u_k(1) = va(ss_temp); u_k(2) = vb(ss_temp); u_k(3) = vc(ss_temp);
x_load_k1 = A*i_k + B*u_k + E*v_g_k;
x_load_k2 = A*x_load_k1 + B*u_k + E*v_g_k;
J = (x_load_k1(1) - i_ref_k(1))^2 + (x_load_k1(2) - i_ref_k(2))^2
+ (x_load_k2(1) - i_ref_k(1))^2 + (x_load_k2(2) - i_ref_k(2))^2;
temp = min(temp, J);
if temp == J
k = ss_temp - 1;
end
end
Appendix B. Simulation FCS-MPC for an IM details
37
Appendix B
Simulation FCS-MPC for an IM details
B.1 Simulation model
Continuous
powergui
Vdc
w
w*
is
Vector
MPC Controller
m
A
B
C
Tm
Asynchronous Machine
SI Units
p
Load torque
Vector
Vdc
A
B
C
Three-Phase
Cascaded H-Bridges
w*
Scope1
Ramp
Scope2
id
iq
Speed
Torque
isq
isd
Figure B.1 Simulation overview of FCS-MPC for an IM
Appendix B. Simulation FCS-MPC for an IM details
38
Figure B.2 FCS-MPC in subsystem
B.2 MPC algorithm function
% Simulation file
% Master of Science Thesis
% Author: Eng. Hoang Thanh Nam
% Advisor: Assoc. Prof. Tran Trong Minh
% Version: V2.0
% Date: Aug/2018
% PELAB-HUST
function k = fcn(i_s_k_ref, flux_r_k, i_s_k, Vdc_k, Ts, w_k, k_last)
% Input
flux_r_a_k = flux_r_k(1);
flux_r_b_k = flux_r_k(2);
i_s_a_k = i_s_k(1);
i_s_b_k = i_s_k(2);
i_s_a_k_ref = i_s_k_ref(1);
i_s_b_k_ref = i_s_k_ref(2);
% IM parameters
J = 0.0018; %Momen quan tinh (kg.m2)
Rs = 1.99; %Dien tro stato
Rr = 1.99; %Dien tro rotor
Ls_sigma = 0.043; %Dien cam ro stato (H)
Lr_sigma = 0.043; %Dien cam ro rotor (H)
Lm = 0.3642; %Dien cam tu hoa (H)
p = 1; %So doi cuc
Ls = Ls_sigma + Lm; %Dien cam stato
Lr = Lr_sigma + Lm; %Dien cam rotor
% Const
kr = Lm/Lr;
R_sigma = Rs + kr*kr*Rr;
sigma = 1 - (Lm*Lm)/(Ls*Lr);
Appendix B. Simulation FCS-MPC for an IM details
39
L_sigma = sigma*Ls;
to_sigma = sigma*Ls/R_sigma;
to_r = Lr/Rr;
gab_temp = inf;
k = inf;
va_k = (2/3)*Vdc_k*(2*vg+vh)/2;
vb_k = (2/3)*Vdc_k*(sqrt(3)/2)*vh;
for i = 1:7
j = top(k_last+1,i) + 1;
%----------Predictive current stator alapha, beta(k+1)----------
i_s_a_k1 = (1-Ts/to_sigma)*i_s_a_k +
(Ts/(to_sigma*R_sigma))*(kr*(1/to_r-0*w_k)*flux_r_a_k+va_k(j));
i_s_b_k1 = (1-Ts/to_sigma)*i_s_b_k +
(Ts/(to_sigma*R_sigma))*(kr*(1/to_r-w_k)*flux_r_b_k+vb_k(j));
%----------Predictive flux rotor alapha, beta(k+1)----------
flux_r_a_k1 = (Lr/(Lr+Ts*Rr))*flux_r_a_k +
(Lm/(to_r/Ts+1))*i_s_a_k1;
flux_r_b_k1 = (Lr/(Lr+Ts*Rr))*flux_r_b_k +
(Lm/(to_r/Ts+1))*i_s_b_k1;
%----------Predictive current stator alapha, beta(k+2)----------
i_s_a_k2 = (1-Ts/to_sigma)*i_s_a_k1 +
(Ts/(to_sigma*R_sigma))*(kr*(1/to_r-0*w_k)*flux_r_a_k1+va_k(j));
i_s_b_k2 = (1-Ts/to_sigma)*i_s_b_k1 +
(Ts/(to_sigma*R_sigma))*(kr*(1/to_r-w_k)*flux_r_b_k1+vb_k(j));
%----------MPC----------
% Cost function
% Quadratic cost function
% gab = (i_s_a_k_ref-i_s_a_k1)^2 + (i_s_b_k_ref-i_s_b_k1)^2;
gab = (i_s_a_k_ref-i_s_a_k1)^2 + (i_s_b_k_ref-i_s_b_k1)^2 +
(i_s_a_k_ref-i_s_a_k2)^2 + (i_s_b_k_ref-i_s_b_k2)^2;
gab_temp = min(gab,gab_temp);
if gab_temp == gab
k = j-1;
end
end
Appendix C. List of publications
40
Appendix C
List of publications
[1] Hoàng Thành Nam, Trần Hùng Cường, Trần Trọng Minh, Phạm Việt
Phương, “Điều khiển dự báo cho nghịch lưu bảy mức cấu trúc cầu H nối tầng”,
CASD 2017
[2] Hoàng Thành Nam, Trần Hùng Cường, Phạm Việt Phương, Trần Trọng
Minh, Vũ Hoàng Phương, “Giảm số lượt tính toán hàm mục tiêu của phương
pháp điều khiển dự báo cho bộ biến đổi đa mức cầu H nối tầng để giảm tần số
đóng cắt van”, VCCA-2017
[3] Trần Hùng Cường, Hoàng Thành Nam, Trần Trọng Minh, Phạm Việt
Phương, Vũ Hoàng Phương, “Điều khiển dự báo hữu hạn các trạng thái đóng
cắt các van cho bộ biến đổi đa mức có cấu trúc MMC”, VCCA-2017
[4] Hoàng Thành Nam, Nguyễn Đình Ngọc, Nguyễn Văn Tiệp, Vũ Hoàng
Phương, Trần Trọng Minh, “Mô phỏng bộ khôi phục điện áp động trong hệ
thống điều áp liên tục AVC”, VCCA-2017
[5] Vũ Hoàng Phương, Hoàng Thành Nam, Trần Trọng Minh, Nguyễn Huy
Phương, “Điều khiển bộ chỉnh lưu tích cực sử dụng mạch lọc LCL trong điều
kiện lưới điện không cân bằng”, Chuyên san Đo lường, Điều khiển và Tự động
hóa, số 20, 12/2017
[6] Ha Thanh Vo, Nam Thanh Hoang, Phuong Hoang Vu, Minh Trong Tran,
“FCS-Model Predictive Control of Induction Motors feed by MultilLevel
Casaded H-Bridge Inverter”, RCEEE 2018

More Related Content

What's hot

Mô phỏng động cơ điện 1 chiều
Mô phỏng động cơ điện 1 chiềuMô phỏng động cơ điện 1 chiều
Mô phỏng động cơ điện 1 chiềuThanh Hoa
 
Giáo trình điều khiển lập trình cỡ nhỏ - LOGO!
Giáo trình điều khiển lập trình cỡ nhỏ - LOGO!Giáo trình điều khiển lập trình cỡ nhỏ - LOGO!
Giáo trình điều khiển lập trình cỡ nhỏ - LOGO!Văn Phong Cao
 
điện tử công suất tập 2
điện tử công suất tập 2điện tử công suất tập 2
điện tử công suất tập 2le quangthuan
 
Bài giảng về máy điện
Bài giảng về máy điệnBài giảng về máy điện
Bài giảng về máy điệnactech trung tam
 
Chương trình điều khiển đèn giao thông cho ngã tư theo 3 chế độ dựa theo đồng...
Chương trình điều khiển đèn giao thông cho ngã tư theo 3 chế độ dựa theo đồng...Chương trình điều khiển đèn giao thông cho ngã tư theo 3 chế độ dựa theo đồng...
Chương trình điều khiển đèn giao thông cho ngã tư theo 3 chế độ dựa theo đồng...nataliej4
 
Năng lượng thủy triều
Năng lượng thủy triềuNăng lượng thủy triều
Năng lượng thủy triềuNinhHuong
 
Kĩ thuật đo lường
Kĩ thuật đo lường Kĩ thuật đo lường
Kĩ thuật đo lường Vũ Quang
 
Bai tap dien_tu_cong_suat
Bai tap dien_tu_cong_suatBai tap dien_tu_cong_suat
Bai tap dien_tu_cong_suatToai Nguyen
 
Bao cao dong co BLDC
Bao cao dong co BLDCBao cao dong co BLDC
Bao cao dong co BLDCBằng Vũ
 
Giáo trình Điều khiển số.pdf
Giáo trình Điều khiển số.pdfGiáo trình Điều khiển số.pdf
Giáo trình Điều khiển số.pdfMan_Ebook
 
Bai giang tu dong hoa trong he thong dien 21 11-2011
Bai giang tu dong hoa trong he thong dien 21 11-2011Bai giang tu dong hoa trong he thong dien 21 11-2011
Bai giang tu dong hoa trong he thong dien 21 11-2011Hiep Hoang
 

What's hot (20)

Mô phỏng động cơ điện 1 chiều
Mô phỏng động cơ điện 1 chiềuMô phỏng động cơ điện 1 chiều
Mô phỏng động cơ điện 1 chiều
 
Giáo trình điều khiển lập trình cỡ nhỏ - LOGO!
Giáo trình điều khiển lập trình cỡ nhỏ - LOGO!Giáo trình điều khiển lập trình cỡ nhỏ - LOGO!
Giáo trình điều khiển lập trình cỡ nhỏ - LOGO!
 
Qua trinh qua do
Qua trinh qua doQua trinh qua do
Qua trinh qua do
 
Đề tài: Mô phỏng hệ thống điều khiển máy phát điện đồng bộ
Đề tài: Mô phỏng hệ thống điều khiển máy phát điện đồng bộĐề tài: Mô phỏng hệ thống điều khiển máy phát điện đồng bộ
Đề tài: Mô phỏng hệ thống điều khiển máy phát điện đồng bộ
 
Đề tài: Hệ thống điều khiển tốc độ động cơ DC sử dụng bộ PID
Đề tài: Hệ thống điều khiển tốc độ động cơ DC sử dụng bộ PIDĐề tài: Hệ thống điều khiển tốc độ động cơ DC sử dụng bộ PID
Đề tài: Hệ thống điều khiển tốc độ động cơ DC sử dụng bộ PID
 
điện tử công suất tập 2
điện tử công suất tập 2điện tử công suất tập 2
điện tử công suất tập 2
 
Co ban ve msp430
Co ban ve msp430Co ban ve msp430
Co ban ve msp430
 
Hệ năng lượng mặt trời và phương pháp để thu công suất cực đại
Hệ năng lượng mặt trời và phương pháp để thu công suất cực đạiHệ năng lượng mặt trời và phương pháp để thu công suất cực đại
Hệ năng lượng mặt trời và phương pháp để thu công suất cực đại
 
Đề tài: Bộ điều khiển trượt cho tay máy Robot 2 bậc tự do, HAY
Đề tài: Bộ điều khiển trượt cho tay máy Robot 2 bậc tự do, HAYĐề tài: Bộ điều khiển trượt cho tay máy Robot 2 bậc tự do, HAY
Đề tài: Bộ điều khiển trượt cho tay máy Robot 2 bậc tự do, HAY
 
Đề tài: Đo và điều khiển tốc độ động cơ dùng 8051, HAY
Đề tài: Đo và điều khiển tốc độ động cơ dùng 8051, HAYĐề tài: Đo và điều khiển tốc độ động cơ dùng 8051, HAY
Đề tài: Đo và điều khiển tốc độ động cơ dùng 8051, HAY
 
Bài giảng về máy điện
Bài giảng về máy điệnBài giảng về máy điện
Bài giảng về máy điện
 
Chương trình điều khiển đèn giao thông cho ngã tư theo 3 chế độ dựa theo đồng...
Chương trình điều khiển đèn giao thông cho ngã tư theo 3 chế độ dựa theo đồng...Chương trình điều khiển đèn giao thông cho ngã tư theo 3 chế độ dựa theo đồng...
Chương trình điều khiển đèn giao thông cho ngã tư theo 3 chế độ dựa theo đồng...
 
Năng lượng thủy triều
Năng lượng thủy triềuNăng lượng thủy triều
Năng lượng thủy triều
 
Kĩ thuật đo lường
Kĩ thuật đo lường Kĩ thuật đo lường
Kĩ thuật đo lường
 
Bai tap dien_tu_cong_suat
Bai tap dien_tu_cong_suatBai tap dien_tu_cong_suat
Bai tap dien_tu_cong_suat
 
Tài liệu hướng dẫn cài đặt biến tần Siemens Sinamic G120
Tài liệu hướng dẫn cài đặt biến tần Siemens Sinamic G120Tài liệu hướng dẫn cài đặt biến tần Siemens Sinamic G120
Tài liệu hướng dẫn cài đặt biến tần Siemens Sinamic G120
 
Bao cao dong co BLDC
Bao cao dong co BLDCBao cao dong co BLDC
Bao cao dong co BLDC
 
Giáo trình Điều khiển số.pdf
Giáo trình Điều khiển số.pdfGiáo trình Điều khiển số.pdf
Giáo trình Điều khiển số.pdf
 
Bai giang tu dong hoa trong he thong dien 21 11-2011
Bai giang tu dong hoa trong he thong dien 21 11-2011Bai giang tu dong hoa trong he thong dien 21 11-2011
Bai giang tu dong hoa trong he thong dien 21 11-2011
 
Đề tài: Đo tốc độ động cơ dùng 8051, HAY, 9đ
Đề tài: Đo tốc độ động cơ dùng 8051, HAY, 9đĐề tài: Đo tốc độ động cơ dùng 8051, HAY, 9đ
Đề tài: Đo tốc độ động cơ dùng 8051, HAY, 9đ
 

Similar to My Master of Science Thesis

Computational Estimation of Flow through the C-D Supersonic Nozzle and Impuls...
Computational Estimation of Flow through the C-D Supersonic Nozzle and Impuls...Computational Estimation of Flow through the C-D Supersonic Nozzle and Impuls...
Computational Estimation of Flow through the C-D Supersonic Nozzle and Impuls...IJMTST Journal
 
CFD-CH01-Rao-2021-1.pdf
CFD-CH01-Rao-2021-1.pdfCFD-CH01-Rao-2021-1.pdf
CFD-CH01-Rao-2021-1.pdfSyfy2
 
Trajectory Control With MPC For A Robot Manipülatör Using ANN Model
Trajectory Control With MPC For A Robot Manipülatör Using  ANN ModelTrajectory Control With MPC For A Robot Manipülatör Using  ANN Model
Trajectory Control With MPC For A Robot Manipülatör Using ANN ModelIJMER
 
2. System Simulation modeling unit i
2. System Simulation modeling unit i2. System Simulation modeling unit i
2. System Simulation modeling unit iAmita Gautam
 
Summer Training 2015 at Alternate Hydro Energy Center
Summer Training 2015 at Alternate Hydro Energy CenterSummer Training 2015 at Alternate Hydro Energy Center
Summer Training 2015 at Alternate Hydro Energy CenterKhusro Kamaluddin
 
Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...journalBEEI
 
Analysis and Modeling of PID and MRAC Controllers for a Quadruple Tank System...
Analysis and Modeling of PID and MRAC Controllers for a Quadruple Tank System...Analysis and Modeling of PID and MRAC Controllers for a Quadruple Tank System...
Analysis and Modeling of PID and MRAC Controllers for a Quadruple Tank System...dbpublications
 
Design of Mechatronics System
Design of Mechatronics SystemDesign of Mechatronics System
Design of Mechatronics SystemVeerakumar S
 
Service Management: Forecasting Hydrogen Demand
Service Management: Forecasting Hydrogen DemandService Management: Forecasting Hydrogen Demand
Service Management: Forecasting Hydrogen Demandirrosennen
 
Hierarchical decentralized network reconfiguration for smart distribution sys...
Hierarchical decentralized network reconfiguration for smart distribution sys...Hierarchical decentralized network reconfiguration for smart distribution sys...
Hierarchical decentralized network reconfiguration for smart distribution sys...Pvrtechnologies Nellore
 
Optimization of Power System Problems Methods Algorithms and MATLAB Codes 202...
Optimization of Power System Problems Methods Algorithms and MATLAB Codes 202...Optimization of Power System Problems Methods Algorithms and MATLAB Codes 202...
Optimization of Power System Problems Methods Algorithms and MATLAB Codes 202...HibaNadhimAmeen
 
Geldenhuys model 20418
Geldenhuys model 20418Geldenhuys model 20418
Geldenhuys model 20418hajarchokri1
 
Introduction to networks simulation
Introduction to networks simulationIntroduction to networks simulation
Introduction to networks simulationahmed L. Khalaf
 
IARE_ ACAD LAB MANUAL.pdf
IARE_ ACAD LAB MANUAL.pdfIARE_ ACAD LAB MANUAL.pdf
IARE_ ACAD LAB MANUAL.pdfRebyRoy2
 
Integration of queuing network and idef3 for business process analysis
Integration of queuing network and idef3 for business process analysisIntegration of queuing network and idef3 for business process analysis
Integration of queuing network and idef3 for business process analysisPatricia Tavares Boralli
 
A multidisciplinary teaching method in the aerospace engineering systems fiel...
A multidisciplinary teaching method in the aerospace engineering systems fiel...A multidisciplinary teaching method in the aerospace engineering systems fiel...
A multidisciplinary teaching method in the aerospace engineering systems fiel...Altair
 

Similar to My Master of Science Thesis (20)

Computational Estimation of Flow through the C-D Supersonic Nozzle and Impuls...
Computational Estimation of Flow through the C-D Supersonic Nozzle and Impuls...Computational Estimation of Flow through the C-D Supersonic Nozzle and Impuls...
Computational Estimation of Flow through the C-D Supersonic Nozzle and Impuls...
 
CFD-CH01-Rao-2021-1.pdf
CFD-CH01-Rao-2021-1.pdfCFD-CH01-Rao-2021-1.pdf
CFD-CH01-Rao-2021-1.pdf
 
s1756973715500080
s1756973715500080s1756973715500080
s1756973715500080
 
Trajectory Control With MPC For A Robot Manipülatör Using ANN Model
Trajectory Control With MPC For A Robot Manipülatör Using  ANN ModelTrajectory Control With MPC For A Robot Manipülatör Using  ANN Model
Trajectory Control With MPC For A Robot Manipülatör Using ANN Model
 
2. System Simulation modeling unit i
2. System Simulation modeling unit i2. System Simulation modeling unit i
2. System Simulation modeling unit i
 
Summer Training 2015 at Alternate Hydro Energy Center
Summer Training 2015 at Alternate Hydro Energy CenterSummer Training 2015 at Alternate Hydro Energy Center
Summer Training 2015 at Alternate Hydro Energy Center
 
Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...
 
Analysis and Modeling of PID and MRAC Controllers for a Quadruple Tank System...
Analysis and Modeling of PID and MRAC Controllers for a Quadruple Tank System...Analysis and Modeling of PID and MRAC Controllers for a Quadruple Tank System...
Analysis and Modeling of PID and MRAC Controllers for a Quadruple Tank System...
 
Design of Mechatronics System
Design of Mechatronics SystemDesign of Mechatronics System
Design of Mechatronics System
 
Service Management: Forecasting Hydrogen Demand
Service Management: Forecasting Hydrogen DemandService Management: Forecasting Hydrogen Demand
Service Management: Forecasting Hydrogen Demand
 
[1] artigo modelherarquicos
[1] artigo modelherarquicos[1] artigo modelherarquicos
[1] artigo modelherarquicos
 
Hierarchical decentralized network reconfiguration for smart distribution sys...
Hierarchical decentralized network reconfiguration for smart distribution sys...Hierarchical decentralized network reconfiguration for smart distribution sys...
Hierarchical decentralized network reconfiguration for smart distribution sys...
 
Thesis_Tan_Le
Thesis_Tan_LeThesis_Tan_Le
Thesis_Tan_Le
 
ACES_Journal_February_2012_Paper_07
ACES_Journal_February_2012_Paper_07ACES_Journal_February_2012_Paper_07
ACES_Journal_February_2012_Paper_07
 
Optimization of Power System Problems Methods Algorithms and MATLAB Codes 202...
Optimization of Power System Problems Methods Algorithms and MATLAB Codes 202...Optimization of Power System Problems Methods Algorithms and MATLAB Codes 202...
Optimization of Power System Problems Methods Algorithms and MATLAB Codes 202...
 
Geldenhuys model 20418
Geldenhuys model 20418Geldenhuys model 20418
Geldenhuys model 20418
 
Introduction to networks simulation
Introduction to networks simulationIntroduction to networks simulation
Introduction to networks simulation
 
IARE_ ACAD LAB MANUAL.pdf
IARE_ ACAD LAB MANUAL.pdfIARE_ ACAD LAB MANUAL.pdf
IARE_ ACAD LAB MANUAL.pdf
 
Integration of queuing network and idef3 for business process analysis
Integration of queuing network and idef3 for business process analysisIntegration of queuing network and idef3 for business process analysis
Integration of queuing network and idef3 for business process analysis
 
A multidisciplinary teaching method in the aerospace engineering systems fiel...
A multidisciplinary teaching method in the aerospace engineering systems fiel...A multidisciplinary teaching method in the aerospace engineering systems fiel...
A multidisciplinary teaching method in the aerospace engineering systems fiel...
 

More from Nam Thanh

[9_CV] FCS-Model Predictive Control of Induction Motors feed by MultilLevel C...
[9_CV] FCS-Model Predictive Control of Induction Motors feed by MultilLevel C...[9_CV] FCS-Model Predictive Control of Induction Motors feed by MultilLevel C...
[9_CV] FCS-Model Predictive Control of Induction Motors feed by MultilLevel C...Nam Thanh
 
[6_CV] The SImulated Series Converter in Active Voltage Conditioner
[6_CV] The SImulated Series Converter in Active Voltage Conditioner[6_CV] The SImulated Series Converter in Active Voltage Conditioner
[6_CV] The SImulated Series Converter in Active Voltage ConditionerNam Thanh
 
[4_CV] Reduce The Number Calculations for Cost Function of The Predictive Con...
[4_CV] Reduce The Number Calculations for Cost Function of The Predictive Con...[4_CV] Reduce The Number Calculations for Cost Function of The Predictive Con...
[4_CV] Reduce The Number Calculations for Cost Function of The Predictive Con...Nam Thanh
 
[3_CV] A research on Model Predictive Control for Frequency Converter Field-o...
[3_CV] A research on Model Predictive Control for Frequency Converter Field-o...[3_CV] A research on Model Predictive Control for Frequency Converter Field-o...
[3_CV] A research on Model Predictive Control for Frequency Converter Field-o...Nam Thanh
 
[2_CV] Model predictive Control of Seven Level Cascaded H-Bridge Inverter
[2_CV] Model predictive Control of Seven Level Cascaded H-Bridge Inverter[2_CV] Model predictive Control of Seven Level Cascaded H-Bridge Inverter
[2_CV] Model predictive Control of Seven Level Cascaded H-Bridge InverterNam Thanh
 
[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...
[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...
[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...Nam Thanh
 

More from Nam Thanh (6)

[9_CV] FCS-Model Predictive Control of Induction Motors feed by MultilLevel C...
[9_CV] FCS-Model Predictive Control of Induction Motors feed by MultilLevel C...[9_CV] FCS-Model Predictive Control of Induction Motors feed by MultilLevel C...
[9_CV] FCS-Model Predictive Control of Induction Motors feed by MultilLevel C...
 
[6_CV] The SImulated Series Converter in Active Voltage Conditioner
[6_CV] The SImulated Series Converter in Active Voltage Conditioner[6_CV] The SImulated Series Converter in Active Voltage Conditioner
[6_CV] The SImulated Series Converter in Active Voltage Conditioner
 
[4_CV] Reduce The Number Calculations for Cost Function of The Predictive Con...
[4_CV] Reduce The Number Calculations for Cost Function of The Predictive Con...[4_CV] Reduce The Number Calculations for Cost Function of The Predictive Con...
[4_CV] Reduce The Number Calculations for Cost Function of The Predictive Con...
 
[3_CV] A research on Model Predictive Control for Frequency Converter Field-o...
[3_CV] A research on Model Predictive Control for Frequency Converter Field-o...[3_CV] A research on Model Predictive Control for Frequency Converter Field-o...
[3_CV] A research on Model Predictive Control for Frequency Converter Field-o...
 
[2_CV] Model predictive Control of Seven Level Cascaded H-Bridge Inverter
[2_CV] Model predictive Control of Seven Level Cascaded H-Bridge Inverter[2_CV] Model predictive Control of Seven Level Cascaded H-Bridge Inverter
[2_CV] Model predictive Control of Seven Level Cascaded H-Bridge Inverter
 
[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...
[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...
[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...
 

Recently uploaded

Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...IJECEIAES
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Toolssoginsider
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书c3384a92eb32
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationEmaan Sharma
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfEr.Sonali Nasikkar
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...archanaece3
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalSwarnaSLcse
 
Introduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxIntroduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxProfASKolap
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024EMMANUELLEFRANCEHELI
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxMustafa Ahmed
 
Databricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfDatabricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfVinayVadlagattu
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashidFaiyazSheikh
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligencemahaffeycheryld
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxKarpagam Institute of Teechnology
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptjigup7320
 

Recently uploaded (20)

Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
Introduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxIntroduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptx
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
Databricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfDatabricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdf
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded Systems
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 

My Master of Science Thesis

  • 1. LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình của tôi. Tất cả các ấn phẩm được công bố chung với các cán bộ hướng dẫn khoa học và các đồng nghiệp đã được sự đồng ý của các tác giả trước khi đưa vào luận án. Cáckết quả trong luận án là trung thực, chưa từng được công bố và sử dụng để bảo vệ trong bất cứ một luận án nào khác. Tác giả luận án Trần Duy Trinh BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI -------- HOÀNG THÀNH NAM NGHIÊN CỨU PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO CHO CÁC BỘ NGHỊCH LƯU ĐA MỨC RESEARCH ON MODEL PREDICTIVE CONTROL FOR MULTILEVEL CONVERTERS LUẬN VĂN THẠC SĨ KHOA HỌC ĐIỂU KHIỂN VÀ TỰ ĐỘNG HÓA HÀ NỘI-2018
  • 2. LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình của tôi. Tất cả các ấn phẩm được công bố chung với các cán bộ hướng dẫn khoa học và các đồng nghiệp đã được sự đồng ý của các tác giả trước khi đưa vào luận án. Cáckết quả trong luận án là trung thực, chưa từng được công bố và sử dụng để bảo vệ trong bất cứ một luận án nào khác. Tác giả luận án Trần Duy Trinh BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI -------- HOÀNG THÀNH NAM NGHIÊN CỨU PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO CHO CÁC BỘ NGHỊCH LƯU ĐA MỨC RESEARCH ON MODEL PREDICTIVE CONTROL FOR MULTILEVEL CONVERTERS LUẬN VĂN THẠC SĨ KHOA HỌC ĐIỂU KHIỂN VÀ TỰ ĐỘNG HÓA NGƯỜI HƯỚNG DẪN KHOA HỌC PGS. TS. TRẦN TRỌNG MINH HÀ NỘI-2018
  • 3. LỜI CAM ĐOAN Tôi xin cam đoan bản luận này là công trình của riêng tôi, do tôi tự thiết kế dưới sự hướng dẫn của thầy giáo PGS. TS. Trần Trọng Minh. Các số liệu và kết quả là hoàn toàn trung thực. Để hoàn thành luận văn này tôi chỉ sử dụng những tài liệu được ghi trong danh mục tài liệu tham khảo và không sao chép hay sử dụng bất kỳ tài liệu nào khác. Nếu phát hiện có sự sao chép tôi xin chịu hoàn toàn trách nhiệm. Hà Nội, ngày 10 tháng 10 năm 2018 Tác giả luận văn
  • 4. TỔNG QUAN VỀ ĐỀ TÀI 1 Lý do chọn đề tài Điều khiển các bộ biến đổi đa mức như cầu H nối tầng đặt ra nhiều vấn đề do số lượng các module tăng nên nhiều theo số mức. Bằng các cấu trúc điều khiển thông thường thì các mạch vòng điều khiển sẽ rất phức tạp. Phương pháp điều khiển dự báo FCS-MPC dựa trên tính toán tối ưu hàm mục tiêu (cost funcion) trong không gian hữu hạn các trạng thái làm việc có thể cho phép xây dựng nên một hệ thống điều khiển có cấu trúc đơn giản hơn, lược bỏ khâu điều chế PWM, có thể đưa đến những ứng dụng thực tế. 2 Đối tượng nghiên cứu Nghiên cứu phương pháp điều khiển dự báo dựa trên không gian hữu hạn các trạng thái làm việc của sơ đồ nghịch lưu đa mức cấu trúc cầu H nối tầng. Sau đó áp dụng thuật toán điều khiển này cho ứng dụng nghịch lưu nối lưới và điều khiển động cơ không đồng bộ. Trong khuân khổ cuốn luận văn này, tính đúng đắn của thuật toán điều khiển dự báo FCS-MPC sẽ được kiểm chứng thông qua mô hình mô phỏng trên phần mềm Matlab-Simulink. 3 Đóng góp khoa học trong luận văn Đưa ra thuật toán điều khiển dự báo FCS-MPC cho bộ biến đổi 7 mức cấu trúc cầu H nối tầng với số bước tính là hai bước, giúp bù thời gian trễ trong quá trình tính toán, đo lường, deadtime, v.v… khi triển khai thực nghiệm. Thuật toán lựa chọn tập hợp các vector liền kề giúp giảm đáng kể khối lượng tính toán khi tối ưu hóa hàm mục tiêu.
  • 5. THESIS OVERVIEW 1 Problem statement Control multilevel converters such as cascaded H-Bridge multilevel converters pose many problems as the number of module increases. By the conventional control strategies, the control loops will be very complex. The finite control set model predictive control (FCS-MPC) control strategies is based on cost function optimization in the finite number of switch states. This could allow the control system to be simpler structure, the system does not need a modulator, can be led to practical applications. 2 Object of the study The FCS-MPC control strategy for three-phase CHB multilevel converter is studied in this thesis. It is applied in grid-connected CHB as DC-AC converter for isolated DC sources such as PV panels generating power to gird and an IM driver application. Within the framework of the thesis, the correctness of the MPC algorithm will be verified through Matlab-Simulink software. 3 My contributions Proposal FCS-MPC control strategy for three-phase CHB seven level, predictive horizon at two-steps compensate delay time. The subset of adjacent vector state (SAVS) method is proposed to reduce computational when optimizing cost function.
  • 6. Acknowledgments 1 Acknowledgments First of all, I would like to express sincere thanks to my supervisor: Assos. Prof. Tran Trong Minh for his constant encouragement and guidance. He has walked me through all the stages of the work of my Master of Science project. The work in this thesis is based on research carried out at the Institute for Control Engineering and Automation (ICEA), Hanoi University of Science and Technology (HUST). I would like gratitude ICEA as well as the financial support provided by the National project number: KC.05.03/16-20, “Nghiên cứu, thiết kế và chế tạo hệ thống khắc phục nhanh sự cố tăng/giảm điện áp ngắn hạn cho phụ tải” and: ĐTĐLCN.44/16, “Nghiên cứu thiết kế và chế tạo hệ truyền động servo xoay chiều ba pha”.
  • 7. Contents 2 Contents Acknowledgments ................................................................................................ 1 Contents................................................................................................................. 2 List of figures........................................................................................................ 4 List of tables.......................................................................................................... 5 List of abbreviations ............................................................................................ 6 1 Overview FCS-MPC for CHB multilevel converter .................................... 7 1.1 Three-phase CHB multilevel converter.................................................... 7 1.1.1 Structure of a three-phase CHB multilevel converter ....................... 7 1.1.2 Modulation techniques....................................................................... 9 1.2 Modeling of three-phase CHB multilevel converter .............................. 11 1.3 FCS-MPC control strategy ..................................................................... 14 2 FCS-MPC for gird-connected three-phase CHB ....................................... 17 2.1 FCS-MPC for grid-connected formulation............................................. 17 2.1.1 Discrete-time model predictive current control............................... 18 2.1.2 Cost funcion optimization and vector state selection ...................... 19 2.1.3 Subset of adjacent vector state......................................................... 20 2.2 Current reference generation .................................................................. 21 2.3 Simulation results ................................................................................... 22 2.4 Conclusion.............................................................................................. 24 3 FCS-MPC based current control of an IM................................................. 25 3.1 Mathematical model of an IM ................................................................ 25 3.2 FCS-MPC for IM formulation................................................................ 25 3.2.1 The required signal estimation......................................................... 27 3.2.2 Discrete-time model predictive current ........................................... 27 3.2.3 Cost funcion optimization and vector state selection ...................... 28 3.3 Simulation results ................................................................................... 28 3.4 Conclusion.............................................................................................. 31
  • 8. Contents 3 4 Summary and future works ......................................................................... 32 References ........................................................................................................... 33 Appendix A Simulation FCS-MPC for a gird-connected details................. 35 A.1 Simulation model ................................................................................ 35 A.2 MPC algorithm function ..................................................................... 36 Appendix B Simulation FCS-MPC for an IM details................................... 37 B.1 Simulation model.................................................................................... 37 B.2 MPC algorithm function......................................................................... 38 Appendix C List of publications ..................................................................... 40
  • 9. List of figures 4 List of figures Figure 1.1 H-Bridge switch state ..................................................................... 7 Figure 1.2 Three-phase CHB seven level converter........................................ 8 Figure 1.3 SPWM multicarrier strategy........................................................... 9 Figure 1.4 Space vector for three-phase CHB three level ............................. 10 Figure 1.5 H-Bridge converter....................................................................... 11 Figure 1.6 Vector state in CHB seven level converter .................................. 13 Figure 1.7 Classification of MPC strategies applied to power converter...... 14 Figure 1.8 FCS-MPC block diagram ............................................................. 15 Figure 2.1 Block diagram of FCS-MPC gird-connected............................... 17 Figure 2.2 Vector state for CHB seven level three-phase ............................. 20 Figure 2.3 Simulation results of the proposed FCS-MPC ............................. 23 Figure 2.4 FFT analysis output current (phase A)......................................... 24 Figure 3.1 Block diagram of FCS-MPC for IM ............................................ 26 Figure 3.2 Simulation results of output current and voltage ......................... 29 Figure 3.3 Simulation results of the proposed FCS-MPC ............................. 30 Figure 3.4 FFT analysis output current (phase A)......................................... 31 Figure A.1 Simulation overview of FCS-MPC for a grid-connected............. 35 Figure A.2 FCS-MPC controller in subsystem............................................... 36 Figure B.1 Simulation overview of FCS-MPC for an IM.............................. 37 Figure B.2 FCS-MPC in subsystem ............................................................... 38
  • 10. List of tables 5 List of tables Table 1.1 Switch state H-Bridge converter...................................................... 11 Table 1.2 Level state CHB seven level converter............................................ 12 Table 2.1 Simulation FCS-MPC for grid connected parameters..................... 22 Table 3.1 Simulation FCS-MPC for IM parameters........................................ 28
  • 11. List of abbreviations 6 List of abbreviations NPC Neutral diode clamped multilevel converters FC Flying capacitor multilevel converters MMC Modular multilevel converters CHB Cascaded H-Bridge multilevel conveters IGBT Insulated Gate Bipolar Transistors DC Direct Current PS Phase-shift PD Phase disposition APOD Alternative phase opposite disposition POD Phase opposite disposition SVM Space vector modulation MPC Model predictive control FCS-MPC Finite control set model predictive control CCS-MPC Continuous control set model predictive control OSV-MPC Optimal switching vector model predictive control OSS-MPC Optimal switching sequence model predictive control IM Induction motor SAVS Subset of adjacent vector state RMS Root mean square FFT Fast Fourier transform THD Total harmonic distortion FOC Field oriented control
  • 12. Chapter 1. Overview FCS-MPC for CHB multilevel converter 7 Chapter 1 Overview FCS-MPC for CHB multilevel converter Multilevel converters include: Neutral diode clamped (NPC), flying capacitor (FC), modular multilevel converters (MMC) and cascaded H-Bridge (CHB). However, technology of CHB is one of the well known, most advantageous and basic method. Control CHB multilevel converters will be complex when number of cells increase. The FCS-MPC control strategy can be considered as a solution simply handles this problem. 1.1 Three-phase CHB multilevel converter 1.1.1 Structure of a three-phase CHB multilevel converter The Figure 1.1 shows three switch state of H-Bridge (as named is cell), each cell make three level voltage: -1; 0 and 1. STATE = 1 STATE = 0 STATE = -1 vac vdc vdc vac vdc vac Figure 1.1 H-Bridge switch state
  • 13. Chapter 1. Overview FCS-MPC for CHB multilevel converter 8 In CHB multilevel converter, number of cells are connected in series. Each cell has separate DC source which is obtained from fuel cells, batteries, capacitors, transformers,… Activity of m cells in each phase will make 2m+1 voltage level. Figure 1.2 is example of CHB three-phase seven level. Three-phase CHB multilevel converter is simply like three single-phase converter connected in wye configuration. Vdc1 S1 Vdc2 C1 vac2 vac1 C2 S2 S3 S4 ZA ZCZB Z A B C Vdc3 vac3C3 N Figure 1.2 Three-phase CHB seven level converter Advantages:  It doesn’t need capacitors or diodes for clamping.  Entire IGBT switching in basic fundamental frequency (or near this frequency), so that reduce power lose switch.  The harmonics reduce because IGBT switching small frequency.
  • 14. Chapter 1. Overview FCS-MPC for CHB multilevel converter 9  The wave is quite sinusoidal in nature. Disadvantages:  CHB needs separate DC sources for each leg.  Controller will be complex if number of cells increase. Additional detail can be found in Appendix C [2], [3] and [4]. 1.1.2 Modulation techniques a. Sin-PWM (SPWM) multicarrier strategy In the SPWM, each phase uses single sinusoidal reference. For m cells need 2m triangular carriers. The carriers have the same frequency, the same peak to peak amplitude. Sinusoidal reference is compared with each carrier to determine the switching output voltages for the power converter. -1 0 1 -Uc1 -Uc2Uc1 Uc2 a. PS carrier -1 0 1 -Uc1 -Uc2 Uc1 Uc2 b. PD carrier -1 0 1 -Uc1 -Uc2 Uc1 Uc2 c. APOD carrier -1 0 1 -Uc1 -Uc2 Uc1 Uc2 d. POD carrier Figure 1.3 SPWM multicarrier strategy There are four strategies of multicarrier PWM. Figure 1.3 is showed multicarrier PWM strategy for single-phase CHB five level. It requests four triangle carriers and only one sinusoidal reference.
  • 15. Chapter 1. Overview FCS-MPC for CHB multilevel converter 10  Phase-shift (PS) carrier PWM strategy. Each carrier is phase-shift by 360°/4=90° from it’s adjacent carrier.  Phase disposition (PD), all carriers are in phase 0°.  Alternative phase opposite disposition (APOD), all carriers are alternatively in phase opposition.  Phase opposite disposition (POD), all the carriers above the zero reference are in phase among them. For single-phase converter, SPWM is still a good choice, but for three-phase converter different techniques have been developed to take the advantage of three- phase systems in reducing harmonics. The most popular technique is space vector modulation (SVM). b. Space vector modulation (SVM) SVM technique reduces the influence of common-mode voltages and this avoids the use of any triangular carriers. SVM conveniently provides more flexibility such as redundant switching sequences, adjustable duty cycles; and it is more suited to digital implementations. (1,-1,-1) V7 (1,1,-1) V9 (-1,1,-1) V11 (-1,1,1) V13 (-1,-1,1) V15 (1,-1,1) V17 (0,-1,-1) (1,0,0) V1 (1,1,0) (0,0,-1) V2 (-1,0,-1) (0,1,0) V3 (0,1,1) (-1,0,0) V4 (-1,-1,0) (0,0,1) V5 (1,0,1) (0,-1,0) V6 (1,0,-1) V8 (0,1,-1) V10 (-1,1,0) V12 (-1,0,1) V14 (0,-1,1) V16 (1,-1,0) V18 (0,0,0) (1,1,1) (-1,-1,-1) V0 21 1 3 4 2 Figure 1.4 Space vector for three-phase CHB three level These advantages of SVM can lead to a significantly improved performance of multilevel converters, especially when the level number of the converter is large.
  • 16. Chapter 1. Overview FCS-MPC for CHB multilevel converter 11 The space vector of a three-phase CHB three level shows in Figure 1.4. However, SVM for higher level converter is difficult. There generally are 6(n-1)2 triangles in the space vector diagram of a three-phase n level converter, reference vector can be located within any triangle. SVM selects suitable switch states of the located triangle and apply them for corresponding need duty cycles in an switching sequence. 1.2 Modeling of three-phase CHB multilevel converter Each cell of converter is described in Figure 1.5. vdc S1 S2 S3 S4 C vac Figure 1.5 H-Bridge converter Sign IGBT switch state: “0” corresponding IGBT is off and “1” corresponding IGBT is on. Table 1.1 shows switch state each cell. Output voltage obtained are 0; Vdc and –Vdc corresponding switch state is 0; 1 and -1. Table 1.1 Switch state H-Bridge converter Gate state vac Switch state S1 S2 S3 S4 1 0 1 0 0 0 1 0 0 1 Vdc 1 0 1 1 0 -Vdc -1 0 1 0 1 0 0 Three-phase CHB seven level converter is showed in Figure 1.2, level state shows in Table 1.2. Output voltage ANv , BNv , CNv ; load voltage: AZv , BZv , CZv and
  • 17. Chapter 1. Overview FCS-MPC for CHB multilevel converter 12 common-mode voltage ZNv . Table 1.2 Level state CHB seven level converter Switch state acv Level state (1,1,1) 3Vdc 3 (1,1,0) (1,0,1) (0,1,1) 2Vdc 2 (1,0,0) (0,1,0) (0,0,1) Vdc 1 (0,0,0) 0 0 (-1,0,0) (0,-1,0) (0,0,-1) -Vdc -1 (-1,-1,0) (-1,0,-1) (0,-1,-1) -2Vdc -2 (-1,-1,-1) -3Vdc -3 Assume, Vdc each cell is balance, Vdc,k = Vdc (k = 1,...n). Output voltage vAN, vBN, vCN obtains {-3Vdc, -2Vdc, -1Vdc, 0, +1Vdc, +2Vdc, +3Vdc}, corresponding {3, 2, 1, 0, -1, -2, -3}*Vdc, this is called level state {3, 2, 1, 0, -1, -2, -3}. Level state phase A, B and C are grand total 127 reasonable different vector state v. Output voltage each cell: 0 0 1 1 A ac dc A dc A s v V s V s         (1.1) And, output voltage CHB multilevel converters express: . . . AN A dc BN B dc CN C dc v k V v k V v k V      (1.2) where  , , 3, 2, 1,0,1,2,3A B Ck k k     Assuming, load is balance, output voltage each phase can be showed: AZ AN ZN BZ BN ZN CZ CN ZN v v v v v v v v v         (1.3)
  • 18. Chapter 1. Overview FCS-MPC for CHB multilevel converter 13 V1 V2V3 V4 V5 V6 V7 V8 V9V10V11 V12 V13 V14 V15 V16 V18 V19 V20 V21 V22V23V24V25 V26 V27 V28 V29 V30 V31 V32 V33 V17 V34 V35 V36 V37 V38 V39 V40 V41V42V43V44V45 V46 V47 V48 V50 V49 V51 V52 V53 V54 V55 V56 V57 V58 V59 V60 V0 V61 V62 V63 V64 V65 V66V67V68V69V70V71 V72 V73 V74 V75 V78 V79 V76 V77 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89 V90 V91 V92 V93 V94 V95 V96 V97V98V99V100V101V102V103 V104 V105 V106 V107 V108 V109 V110 V111 V114 V115 V112 V113 V116 V117 V118 V119 V120 V121 V122 V123 V124 V125 V126 0 α β Figure 1.6 Vector state in CHB seven level converter Because of 0AZ BZ CZv v v   , so common-mode ZNv as express:   1 3 ZN AN BN CNv v v v   (1.4) The level state can be expressed by the vector as following:  22 3 v A B Cv a v a v     (1.5) where 2 4 23 3 ; j j a e a e     The vector state v can be expressed in terms of complex coordinate by using the Clarke transformation: v v jv   (1.6)
  • 19. Chapter 1. Overview FCS-MPC for CHB multilevel converter 14 where:   1 3 A B C v v v v v         1.3 FCS-MPC control strategy Model predictive control (MPC) is understood as a wide class of controller, the main characteristic is the use of the model of the system for the prediction of the future behavior of the controlled variables over a predictive horizon, n-steps. The information is used by the MPC control strategy to provide the control action sequence for the system by optimizing a user-defined cost function. It should be noted that the algorithm is executed again every sampling period and only the first value of the optimal sequence is applied to the system at instant k. Model predictive control (MPC) Finite control set MPC (FCS-MPC) Optimal switching vector MPC (OSV-MPC) Optimal switching sequence MPC (OSS-MPC) Continuous control set MPC (CCS-MPC) Generalized predictive control (GPC) Explicit MPC (EMPC) Figure 1.7 Classification of MPC strategies applied to power converter Classification of MPC strategy applied to power converter is showed in Figure 1.7, [2]. MPC strategy can be divided into two types: continuous control set MPC (CCS-MPC) and discrete of the power converters finite control set MPC (FCS-MPC). The CCS-MPC computes a continuous control signal and then uses a modulator to generate output voltage in the power converter. The main advantage of CCS-MPC when applied to power converter is that it produces a fixed switching frequency. The main disadvantage of CCS-MPC is present a complex formulation
  • 20. Chapter 1. Overview FCS-MPC for CHB multilevel converter 15 of the MPC problem. The FCS-MPC based on finite number of switching state to formulate the MPC algorithm and does not need a modulator. FCS-MPC can be divided into two types: optimal switching vector MPC (OSV-MPC) and optimal switching sequence MPC (OSS-MPC). OSV-MPC is the most popular MPC control strategy for power converter. It uses the output vector state of the power converter as the control set. The main advantage of OSV-MPC: it only calculates prediction for this control set, therefore it reduces the optimal problem to an enumerated search algorithm. This makes the MPC strategy formulation very intuitive. The disadvantage of OSV-MPC is that only one output optimal vector state is applied during the complete sampling time period, lead to uncontrolled switching frequency. In FCS-MPC, the prediction model of the system needs to be discretized. Therefore, the MPC algorithms are usually implemented in digital hardware like as DSP or FPGA. The common of FCS-MPC regularly uses Euler approximation to discretize a one-step or multiple-step. Optimizaton Predictive model Conv. Sopt Load Measurement Estimation FCS-MPC xp x J x* Conv. Figure 1.8 FCS-MPC block diagram Figure 1.8 shows FCS-MPC block diagram. Assume, control variable x follow the reference variable x* , procedure design FCS-MPC following basic steps:  Measurement, estimation the control variable in the sampling time instant.  For every switch states of the converters, predictive (using the mathematical model) the behavior of variable x in the n-steps time.  Evaluate the cost function for each prediction.
  • 21. Chapter 1. Overview FCS-MPC for CHB multilevel converter 16  Select the switch states that minimize the cost function, Sopt applied to the converters. In the experiment, driver, measurements and IGBT exist delay time. The computational time is needed in the predictive control algorithm to predict the variables, and processor delay deteriorates the performance of the predictive control at the experimental investigation. To solve this problem, it can be considered the predictive horizon at (k+n)th sampling time to predict the variables which are compared with the references, and determine the cost functions. The optimum Sopt is selected corresponding to the minimum cost function, and applied it in the power converter.
  • 22. Chapter 2. FCS-MPC for gird-connected three-phase CHB 17 Chapter 2 FCS-MPC for gird-connected three-phase CHB 2.1 FCS-MPC for grid-connected formulation The FCS-MPC control strategy predicts behavior of the load current for each possible vector state v generated by the power converter. The prediction of the current is based on discretized model of system. HB 1 HB 2 HB 3 r L N O A, B, C Filter Current reference generation Cost function optimization Prediction (k+2)th * P * Q Sopt CHB FCS-MPC ( )iabc k , ( )vg abc k * ( )iabc k ( )dcV k ( 2)iabc k  Figure 2.1 Block diagram of FCS-MPC gird-connected In abc coordinate, a block diagram of predictive current control is described in Figure 2.1. The procedure designs FCS-MPC for grid-connected included mainly three steps [5]:
  • 23. Chapter 2. FCS-MPC for gird-connected three-phase CHB 18  Computational current references ( )* iabc k in the sampling time instant (k) from references of active power P* and reactive power Q* .  Prediction horizon at (k+2)th sampling time to predictive current ( 2)iabc k  the variables which are compared with the current references ( )* iabc k .  The optimum vector state is selected corresponding to the minimum cost function and applied it to actuation. 2.1.1 Discrete-time model predictive current control Grid-connected three-phase CHB converter, the following continuous time dynamic equation for each phase current can be expressed: , ( ) ( ) . ( ) ( ) ( ) i v i vabc abc abc g abc NO d t t L r t t v t dt          (2.1) where r and L is the resistance and inductance of the output filter; vabc is phase output voltage; ,vg abc is grid voltage. Therefore, from (2.1) can be inferred: , ( ) 1 ( ) ( ) ( ) ( ) i i v vabc abc abc NO g abc d t r t t v t t dt L L        (2.2) For a three-phase n cell CHB converter, the phase output voltage in become: ,.v vabc dc l abcV (2.3) where level state  , , 1,...,0,..., 1,vl abc n n n n     . Additionally, common-mode voltage is given by:   1 ( ) ( ) ( ) ( ) 3 NO a b cv t v t v t v t   (2.4) The first order forward Euler’s approximations: ( ) ( 1) ( ) s dx t x k x k dt T    (2.5) By applying (2.5) to (2.2) with sampling time sT , the discrete-time of current as bellow: ,( 1) 1 ( ) ( ) ( ) ( )i i v vs s abc abc abc NO g abc rT T k k k v k k L L               (2.6)
  • 24. Chapter 2. FCS-MPC for gird-connected three-phase CHB 19 The discrete-time dynamic model can be expressed [10]: , ,( 1) ( ) ( ) ( )x Ax Bv Evl abc g abck k k k    (2.7) where: ( ) ( ) ( ) x a b i k k i k        , , , , ( ) ( ) ( ) ( ) v l a l abc l b l c v k k v k v k            , ( ) ( ) ( ) v ga g abc gb v k k v k         1 0 0 1 A s s rT L rT L             2 1 1 1 2 13 B dc sV T L         1 0 0 1 E sT L         As applying the Forward Euler’s approximations, similarly (2.7), the predictive horizon at two-steps sampling time k+2 as following [5][6]: , ,( 2) ( 1) ( ) ( )x Ax Bv Evl abc g abck k k k     (2.8) 2.1.2 Cost function optimization and vector state selection The last step is developing a cost function for the optimization. The cost function is very flexible. It should be designed according to the specific control goals. The cost function in the predictive control of grid-connected with delay compensation can express [8][9]: 2 2 2 2 * * 2) 2) 1) 1)( ( ( (x x x xJ k k k k        (2.9) where:     2 2 2* * * 1 12 ... p p a a a a a a      and * * * ( ) ( ) ( ) x a b i k k i k        is the reference current. For sufficiently small sampling time, it can be assumed that * * * ( 2) ( 1) ( )x x xk k k    . Therefore, cost function (2.9) can be rewritten as: 2 2 2 2 * * ) 2) ) 1)( ( ( (x x x xJ k k k k      (2.10) The cost function (2.10) is evaluated for per possible three-phase level state, and the one that minimizes it. And then, optimal level state is selected and applied to the load. This mean that (2.7), (2.8) and (2.10) are calculated 73 =343 times for
  • 25. Chapter 2. FCS-MPC for gird-connected three-phase CHB 20 a seven level in order to obtain the optimal solution. However, level state can be defined from vector state. By that way, the calculation can be still reduced 127 times. The selection criterion is to select the voltage level states that minimize the common voltage vector. 2.1.3 Subset of adjacent vector state In the previous section, each sampling time cost function needs to be calculated 127 times. The vector state will fastly increase follow 12m2 + 6m + 1 when the number of cells m growth, it is very high. So that, subset of adjacent vector state (SAVS) is proposed to reduce computational [7]. In this way, it is possible to reduce the set of vector state to be evaluated to the vector state that are nearest to the last applied vector, as shown in Figure 2.2. Adjacent vectors in time [k] β α 1 2 3 4 5 6 7 Number of redundancies for each vector Figure 2.2 Vector state for CHB seven level three-phase For the calculation of the adjacent vectors to the last applied vector, the distance between vectors can be calculated with the following function:       2 2 ,x yv v x y x yd v v v v       (2.11) If xv near yv , the distance should be equal or less than 2Vdc/3. The calculation of distance is made offline, and it is stored in database. In this way, the
  • 26. Chapter 2. FCS-MPC for gird-connected three-phase CHB 21 number of calculation is reduced to only seven predictions, irrespective of the number of cells. The predictive control algorithm present below: Algorithm 1 The FCS-MPC predicts horizon at two-steps algorithm 1. Initialize the system and build a table: Subset of Adjacent vector state. 2. Measurements of ( )iabc k and , ( )vg abc k . 3. Determines of * ( )iabc k and vector state ( 1)v k  . 4. Predictions of ( 1)iabc k  and ( 2)iabc k  . 5. for i=1:7 do 2 2 2 2 ) 2) ) 1)( ( ( (* * s s s s i i i iJ k k k k      The minimum value of J and the corresponding vector state ( )v k are kept. end for. 6. ( )v k is injected into the converters. 2.2 Current reference generation Cost function in (2.10) require references current * is . Based on references of three- phase active power P* , reactive power Q* and grid voltage vsd,g, vsq,g and * is can be calculated. In the dq coordinate, three-phase active and reactive powers references can be express:     * * * , , * * * , , 3 . . 2 3 . . 2 sd g sd sq g sq sq g sd sd g sq P v i v i Q v i v i         (2.12) where , ,,sd g sq gv v and * * ,sd sqi i are gird voltage and current references in dq coordinate.
  • 27. Chapter 2. FCS-MPC for gird-connected three-phase CHB 22 Therefore, * * ,sd sqi i can be express: * * , ,* 2 2 , , * * , ,* 2 2 , , . .2 3 . .2 3 sd g sq g sd sd g sq g sq g sd g sq sd g sq g P v Q v i v v P v Q v i v v         (2.13) 2.3 Simulation results Simulation of FCS-MPC horizons at (k+2)th sampling time for three-phase CHB seven level converter is verified in Matlab-simulink software. The parameters used in the simulation are given in Table 2.1. Table 2.1 Simulation FCS-MPC for grid connected parameters Parameter Description Value P* Three-phase active power 1 MVA Q* Three-phase reactive power 1 MVar Cdc DC capacitor per H-Bridge 2500 F Vdc DC capacitor voltage per H-Bridge 2300 V L Filter inductor 10 mH r Filter resistor 6 Ω Ts Sampling time 100 µs f Grid frequency 50 Hz Vg Grid voltage (line-to-line RMS) 6.6 kV The simulink model and cost function are showed in Appendix A, main results are presented in Figure 2.3. From Figure 2.3.b, immediately, real current closely follow reference current, respond fastly. The common-mode voltage to a small value centered around zero (see Figure 2.3.d). A symmetric output voltage is achieved seven level, as show in Figure 2.3.c. The real active power and reactive power are showed in Figure 2.3.e,f, it is around references. Output current phase A, B and C are presented in Figure 2.3.a.
  • 28. Chapter 2. FCS-MPC for gird-connected three-phase CHB 23 0.05 0.06 0.07 0.08 0.09 0.1 -200 -100 0 100 200 iabc(A) a. Output current phase A, B and C ia(A) 0 0.02 0.04 0.06 0.08 0.1 -200 -100 0 100 200 Ref. Real b. Gird, reference current phase A 0 0.02 0.04 0.06 0.08 0.1 -8000 -4000 0 4000 8000 vAN(V) c. Output voltage phase A 0.08 0.085 0.09 0.095 0.1 -800 -400 0 400 800 vZN(V) d. Common-mode voltage 0.05 0.06 0.07 0.08 0.09 0.1 0 5 10 15 105 P(W) Ref. Real e. Three-phase active power 0.05 0.06 0.07 0.08 0.09 0.1 0 5 10 15 105 Q(VAr) Ref. Real f. Three-phase reactive power Figure 2.3 Simulation results of the proposed FCS-MPC
  • 29. Chapter 2. FCS-MPC for gird-connected three-phase CHB 24 Fundamental (50Hz) = 176.8 , THD= 1.91% 0 2 4 6 8 10 12 14 16 18 20 Harmonic order 0 0.2 0.4 0.6 0.8 1 Mag(%ofFundamental) Figure 2.4 FFT analysis output current (phase A) Fast Fourier transform (FFT) analysis output current phase A, starting time from 0.01s to 0.09s (four cycles) with fundamental frequency 50Hz and maximum frequency 1000Hz. Result is showed in Figure 2.4, total harmonic distortion (THD) is very small, result THD=1.91%. 2.4 Conclusion The FCS-MPC horizons at two-steps sampling time k+2 for CHB seven level has been presented. This presents very good reference tracking and reduced common- mode voltage, with cost function calculation is reduced by SAVS method. The selection among the adjacent vectors reduces dv/dt at the load side. FCS-MPC control strategy can be easily applied to CHB multilevel converter when the number of cell increases, also it can be applied to other multilevel converter topologies.
  • 30. Chapter 3. FCS-MPC based current control of an IM 25 Chapter 3 FCS-MPC based current control of an IM 3.1 Mathematical model of an IM An induction motor can be described by complex equations [4]: .s s sv i Ψs d R dt   (3.1) 0 . . .r r ri Ψ Ψr d R j dt    (3.2) . .s s rΨ i is mL L  (3.3) . .r r sΨ i ir mL L  (3.4)  *3 . .Im . 2 s sΨ iTe p (3.5) Equation (3.1) is the voltage equation of the phase winding: it describes the relationship of the stator voltage, the stator current and the stator flux linkage of the winding. In equation (3.2) the rotor voltage vector is equal to zero because a squirrel-cage motor is considered. Hence the rotor winding is short circuited. The winding and rotor flux can be calculated by using the stator current and the rotor current in equation (3.3) and (3.4). The electromagnetic torque is (3.5). m is a mechanical rotor speed and it is related to the electric rotor speed  by the number of pole p: . mp  (3.6) 3.2 FCS-MPC for IM formulation In the field oriented control (FOC) control strategy of IM, it uses two loop include external PI speed loop and internal PI current loop in dq coordinate. FOC describes
  • 31. Chapter 3. FCS-MPC based current control of an IM 26 the way in which the control of torque and speed are directly based on the electromagnetic state of the motor, similar to a DC motor. So that, internal PI current loop can be replaced by FCS-MPC predictive current. The block diagram of FCS-MPC for IM is showed in Figure 3.1. This chapter will focus to design internal current loop using FCS-MPC control strategy. IM Rotor flux estimation PI IE dq abc HB 1 HB 2 HB 3 N CHB Cost function optimization Prediction (k+2)th Sopt FCS-MPC External loop A, B, C ( )i k ( )iabc k ( )k ( )i k ( 2)i k  * ( )i k * ( )qi k * ( )di k * ( )k ( )k ( )k , ( )Ψr k Figure 3.1 Block diagram of FCS-MPC for IM Based on FOC control strategy, external PI speed loop generates current reference of FCS-MPC in the sampling time instant k. The FCS-MPC will predict output current at two-steps sampling time k+2 and cost function calculations is reduced by SAVS method. In αβ coordinate, the procedure designs FCS-MPC included mainly three steps [5]:  Estimation rotor flux; known speed, current reference in the sampling time instant k.  The prediction horizon at two-steps sampling time k+2to predictive current ( 2)i k  , the variables are compared with the current reference ( )* i k .
  • 32. Chapter 3. FCS-MPC based current control of an IM 27  The optimum vector state is selected corresponding to the minimum cost function and applied it to power converter. 3.2.1 The required signal estimation Based on a induction motor model is presented in sector 3.1, the rotor flux can be expressed [5][6]: r r s Ψ Ψ ir m d T L dt   (3.7) where /r r r T L R . By applying the backward Euler’s approximations, rotor flux as following: ( ) . ( 1) ( ) . 1 r r sΨ Ψ imr rr s r s LL k k k L T R T       (3.8) where s T is a sampling time. 3.2.2 Discrete-time model predictive current From the induction motor model, the current stator can be expressed as: 1 1 . i i vr r t r d L k j R d                      (3.9) Using the forward Euler’s approximations, the discrete equation (3.9) can be obtained as follows: 1 1 ( 1) 1 ( ) ( ) . ( ) ( )ri i Ψ vs s r r T T k k k j k k k R                               (3.10) where . /sL R   . Predictive stator current horizon at two-steps sampling time k+2 as follows [5][6]: 1 ( 2) 1 . ( 1) . . ( ) . ( 1) ( ) . ri i Ψ vs s r r T T k k k j k k k R                                 (3.11)
  • 33. Chapter 3. FCS-MPC based current control of an IM 28 3.2.3 Cost function optimization and vector state selection As can be seen in the previous chapter, the cost function can be expressed: 2 2 2 2 * * ) 2) ) 1)( ( ( (i i i iJ k k k k         (3.12) Apply SAVS method, the cost function optimization calculate seven time to choose Sopt and apply to the converters. 3.3 Simulation results The simulation uses IM 2.2kW and CHB seven level because of the FCS-MPC control strategy will be experimented in laboratory (C9-203 HUST). Simulated parameters are showed in Table 3.1. Table 3.1 Simulation FCS-MPC for IM parameters Parameters Description Value P Nominal power 2.2 kW V IM voltage (line-to-line RMS) 400 V In Rated phase current (RMS) 4.7 A f IM frequency 50 Hz p Number of pole pairs 1 Rs Stator resistance 1.99 Ω Ls Stator inductance 0.043 H Rr Rotor resistance 1.99 Ω Lr Rotor inductance 0.043 H Lm Mutual inductance 0.3452 H wn Rate speed 2880 rpm φ Power factor 0.86 Cdc DC capacitor per HB 2500 F Vdc DC capacitor voltage per HB 150 V Simulink model, cost function is presented in Appendix B. The simulation follows scenario:  At t = 0s, the magnetization process.  At t = 0.2s, acceleration to the nominal value 300 rad/s.  At t = 0.2s, connection of nominal load 10Nm.  At t = 0.6 s, reversing process down to -300 rad/s
  • 34. Chapter 3. FCS-MPC based current control of an IM 29 In the speed loop, proportional and integral is 0.8 and 60, rotor flux current reference value 2.5 A. Sampling time internal loop Ts = 50us and external loop value 10.Ts. The simulation results are presented in Figure 3.2 and Figure 3.3. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -20 0 20 iabc(A) a. Output current iabc vAN(V) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -500 0 500 b. Output voltage vAN Figure 3.2 Simulation results of output current and voltage Simulation results in Figure 3.3.a and Figure 3.3.b show that both the flux forming and torque forming currents accurately follow the set point trajectories (coming from the magnetic flux controller and the speed controller in the outer loop) in all working mode. When the reference changed to negative direction, the speed real is started to following the speed reference at exact time of 0.2s and 0.6s at high and low speed, respectively, with the reverse high torque between 10 and - 10 Nm at 300 rad/s and -300 rad/s (see Figure 3.3.c and Figure 3.3.d). The three- phase current is showed in Figure 3.2.a, waveforms sine. It proves that at the rated condition, the controller IM with FCS-MPC method operates smooth. The output voltage phase A is showed in Figure 3.2.b, when speed acceleration, state level increase from three to five and seven level, value per level is 150V.
  • 35. Chapter 3. FCS-MPC based current control of an IM 30 isd(A) Ref. Real 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1.5 2 2.5 3 3.5 a. Output current isd 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -15 -10 -5 0 5 10 15 isq(A) Ref. Real b. Output current isq w(rad/s) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -400 -200 0 200 400 Ref. Real c. Speed response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -15 -10 -5 0 5 10 15 Torque(kg.m2 ) d. Torque response Figure 3.3 Simulation results of the proposed FCS-MPC The result of FFT analysis output current phase A is presented in Figure 3.4, starting analyze time from 0.5s to 0.58s (four cycles) with fundamental frequency 50Hz and max frequency 1000Hz. The obtained result proves that the distortion in the system is less. The current THD of the MPC is only 2.55%.
  • 36. Chapter 3. FCS-MPC based current control of an IM 31 Fundamental (50Hz) = 8.465 , THD= 2.55% 0 2 4 6 8 10 12 14 16 18 20 Harmonic order 0 0.5 1 1.5 2 Mag(%ofFundamental) Figure 3.4 FFT analysis output current (phase A) 3.4 Conclusion The simulation results show that the FCS-MPC control strategy is a promising control tool that is powerful to control the power converters and electrical drives. Compensation delay time with the predictive horizon at two-steps sampling time k+2. The delay time compensation has been taken in consideration in the predictive control algorithm. Results in well tracking of the reference variables at high speed, even at low speed regions of the IM. It is performance of IM will be improved. However, the ripple of electromagnetic torque is significantly high. Further implement needs to reduce the ripple.
  • 37. Chapter 4. Summary and future works 32 Chapter 4 Summary and future works The FCS-MPC control strategy is a very attractive solution for controlling power electronic applications. In the thesis presented the FCS-MPC for gird-connected and IM application with a three-phase CHB seven level converter. The control strategy has a simple algorithm structure, it is easy to implement with increased number of cell, also it can be applied to other multilevel converter topologies. FCS-MPC control strategy does not need a modulator stage. However, this usually leads to spread harmonic of the output waveforms. Such critical challenges as the accuracy of the model, high sampling rates, and high computational cost function, etc… are disadvantages of FCS-MPC control strategy. But nowadays, the continuous evolution of the microprocessor technology and the efforts of the researchers, those problems will be overcome. A future work is experimental the FCS-MPC control strategy. It can be effectively evaluated of algorithm and delay time compensation at two-steps sampling time k+2. And probably longer prediction time steps as 4, 6, etc… Applying a multi-variable into cost function with the weighting factor. The example is FCS-MPC for controlling the torque and flux in an IM [2][6].
  • 38. References 33 References [1] Sergio Vazquez, Jose I. Leon, Leopoldo G. Franquelo, Jose Rodriguez, Hector A. Young, Abraham Marquez, and Pericle Zanchetta, "Model Predictive Control: A Review of Its Applications in Power Electronics", IEEE Industrial Electronics Magazine, March 2014. [2] Sergio Vazquez, Jose Rodriguez, Marco Rivera, Leopoldo G. Franquelo, Margarita Norambuena, “Model Predictive Control for Power Converters and Drives: Advances and Trends”, IEEE Transactions on Industrial Electronics, November 2016. [3] Samir Kouro, Patricio Cortés, René Vargas, Ulrich Ammann and José Rodríguez, “Model Predictive Control-A Simple and Powerful Method to Control Power Converters”, IEEE Transactions on Industrial Electronics, November 2008. [4] J. Holtz, “The dynamic representation of AC drive systems by complex signal flow graphs”, Industrial Electronics, 1994. Symposium Proceedings. [5] Fengxiang Wang, “Model predictive torque control for electrical drive systems with and without an encoder”, PhD Thesis, Technischen Universitat Munchen, July 2014. [6] Muslem Uddin, Saad Mekhilef, Mutsuo Nakaoka, Marco Rivera, “Model predictive control of induction motor with delay time compensation: An experimental assessment”, 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), May 2015. [7] Patricio Cortes, Alan Wilson, Samir Kouro, Jose Rodriguez, Haitham Abu- Rub, “Model Predictive Control of Multilevel Cascaded H-Bridge Inverters”, IEEE Transactions on Industrial Electronics, February 2010. [8] Ricardo P. Aguilera, Yifan Yu, Pablo Acuna, Georgios Konstantinou, Christopher D. Townsend, Bin Wu, Vassilios G. Agelidis, “Predictive Control algorithm to achieve power balance of Cascaded H-Bridge converters”, 2015
  • 39. References 34 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics, February 2016. [9] Ricardo P. Aguilera, Daniel E. Quevedo, “Predictive Control of Power Converters: Designs With Guaranteed Performance”, IEEE Transactions on Industrial Informatics, October 2014. [10]Ricardo P. Aguilera, Yifan Yu, Pablo Acuna, Georgios Konstantinou, Christopher D. Townsend, Bin Wu, Vassilios G. Agelidis, “Predictive Control Algorithm to Achieve Power Balance of Cascaded H-Bridge Converters”, 2015 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics. [11]Ricardo P. Aguilera, Pablo Acuna, Yifan Yu, Bin Wu, "Predictive Control of Cascaded H-Bridge Converters Under Unbalanced Power Generation", IEEE Transactions on Industrial Electronics (Volume: 64, Issue: 1, Jan. 2017). [12]Roky Baidya, Ricardo P. Aguilera, Pablo Acuña, Sergio Vazquez, Hendrik du Toit Mouton, "Multistep Model Predictive Control for Cascaded H-Bridge Inverters Formulation and Analysis", IEEE Transactions on Power Electronics (Volume: 33, Issue: 1, Jan. 2018). [13]Luca Tarisciotti, Pericle Zanchetta, Alan Watson, Stefano Bifaretti, Jon C. Clare, "Modulated Model Predictive Control for a Seven-Level Cascaded H- Bridge Back-to-Back Converter", IEEE Transactions on Industrial Electronics (Volume: 61, Issue: 10, Oct. 2014). [14]Sumit Dutta, Samir Hazra, Subhashish Bhattacharya, "A Digital Predictive Current Mode Controller for Single Phase High Frequency Transformer Isolated Dual Active Bridge DC to DC Converter", IEEE Transactions on Industrial Electronics (Volume: 63, Issue: 9, Sept. 2016). [15]Jose Rodriguez, Marian P. Kazmierkowski, Jose R. Espinoza, Pericle Zanchetta, Haitham Abu-Rub, "State of the Art of Finite Control Set Model Predictive Control in Power Electronics", IEEE Transactions on Industrial Informatics (Volume: 9, Issue: 2, May 2013).
  • 40. Appendix A. Simulation FCS-MPC for a gird-connected details 35 Appendix A Simulation FCS-MPC for a gird-connected details A.1 Simulation model Continuous powergui Vdc i_ref v_grid iabc Vector MPC Controller Iabc A B C a b c Load Measure N A B C Three-Phase Grid 6,6kV - 50Hz Vabc A B C a b c Grid Measure a b c A B C RL Filter 6ohm, 10mH P* Q* v_grid i_abc i_ref i_ref Calculator P* Q* Vector Vdc A B C Three-Phase Cascaded H-Bridges i_abc i_ref v_grid Figure A.1 Simulation overview of FCS-MPC for a grid-connected
  • 41. Appendix A. Simulation FCS-MPC for a gird-connected details 36 Figure A.2 FCS-MPC controller in subsystem A.2 MPC algorithm function % Simulation file % Master of Science Thesis % Author: Eng. Hoang Thanh Nam % Advisor: Assoc. Prof. Tran Trong Minh % Version: V2.0 % Date: Aug/2018 % PELAB-HUST function k = fcn(i_k, i_ref_k, v_g_k, Vdc, Ts, k_last) % Parameters L = 10e-3; % Inductance load (H) r = 6; % Resistance load (Ohm) u_k = zeros(3,1); A = [(1-r*Ts/L), 0; 0, (1-r*Ts/L)]; B = ((Vdc*Ts)/(3*L))*[2 -1 -1; -1 2 -1]; E = (-Ts/L)*[1 0; 0 1]; temp = inf; k = inf; % MPC function for i = 1:7 ss_temp = top(k_last+1,i) + 1; u_k(1) = va(ss_temp); u_k(2) = vb(ss_temp); u_k(3) = vc(ss_temp); x_load_k1 = A*i_k + B*u_k + E*v_g_k; x_load_k2 = A*x_load_k1 + B*u_k + E*v_g_k; J = (x_load_k1(1) - i_ref_k(1))^2 + (x_load_k1(2) - i_ref_k(2))^2 + (x_load_k2(1) - i_ref_k(1))^2 + (x_load_k2(2) - i_ref_k(2))^2; temp = min(temp, J); if temp == J k = ss_temp - 1; end end
  • 42. Appendix B. Simulation FCS-MPC for an IM details 37 Appendix B Simulation FCS-MPC for an IM details B.1 Simulation model Continuous powergui Vdc w w* is Vector MPC Controller m A B C Tm Asynchronous Machine SI Units p Load torque Vector Vdc A B C Three-Phase Cascaded H-Bridges w* Scope1 Ramp Scope2 id iq Speed Torque isq isd Figure B.1 Simulation overview of FCS-MPC for an IM
  • 43. Appendix B. Simulation FCS-MPC for an IM details 38 Figure B.2 FCS-MPC in subsystem B.2 MPC algorithm function % Simulation file % Master of Science Thesis % Author: Eng. Hoang Thanh Nam % Advisor: Assoc. Prof. Tran Trong Minh % Version: V2.0 % Date: Aug/2018 % PELAB-HUST function k = fcn(i_s_k_ref, flux_r_k, i_s_k, Vdc_k, Ts, w_k, k_last) % Input flux_r_a_k = flux_r_k(1); flux_r_b_k = flux_r_k(2); i_s_a_k = i_s_k(1); i_s_b_k = i_s_k(2); i_s_a_k_ref = i_s_k_ref(1); i_s_b_k_ref = i_s_k_ref(2); % IM parameters J = 0.0018; %Momen quan tinh (kg.m2) Rs = 1.99; %Dien tro stato Rr = 1.99; %Dien tro rotor Ls_sigma = 0.043; %Dien cam ro stato (H) Lr_sigma = 0.043; %Dien cam ro rotor (H) Lm = 0.3642; %Dien cam tu hoa (H) p = 1; %So doi cuc Ls = Ls_sigma + Lm; %Dien cam stato Lr = Lr_sigma + Lm; %Dien cam rotor % Const kr = Lm/Lr; R_sigma = Rs + kr*kr*Rr; sigma = 1 - (Lm*Lm)/(Ls*Lr);
  • 44. Appendix B. Simulation FCS-MPC for an IM details 39 L_sigma = sigma*Ls; to_sigma = sigma*Ls/R_sigma; to_r = Lr/Rr; gab_temp = inf; k = inf; va_k = (2/3)*Vdc_k*(2*vg+vh)/2; vb_k = (2/3)*Vdc_k*(sqrt(3)/2)*vh; for i = 1:7 j = top(k_last+1,i) + 1; %----------Predictive current stator alapha, beta(k+1)---------- i_s_a_k1 = (1-Ts/to_sigma)*i_s_a_k + (Ts/(to_sigma*R_sigma))*(kr*(1/to_r-0*w_k)*flux_r_a_k+va_k(j)); i_s_b_k1 = (1-Ts/to_sigma)*i_s_b_k + (Ts/(to_sigma*R_sigma))*(kr*(1/to_r-w_k)*flux_r_b_k+vb_k(j)); %----------Predictive flux rotor alapha, beta(k+1)---------- flux_r_a_k1 = (Lr/(Lr+Ts*Rr))*flux_r_a_k + (Lm/(to_r/Ts+1))*i_s_a_k1; flux_r_b_k1 = (Lr/(Lr+Ts*Rr))*flux_r_b_k + (Lm/(to_r/Ts+1))*i_s_b_k1; %----------Predictive current stator alapha, beta(k+2)---------- i_s_a_k2 = (1-Ts/to_sigma)*i_s_a_k1 + (Ts/(to_sigma*R_sigma))*(kr*(1/to_r-0*w_k)*flux_r_a_k1+va_k(j)); i_s_b_k2 = (1-Ts/to_sigma)*i_s_b_k1 + (Ts/(to_sigma*R_sigma))*(kr*(1/to_r-w_k)*flux_r_b_k1+vb_k(j)); %----------MPC---------- % Cost function % Quadratic cost function % gab = (i_s_a_k_ref-i_s_a_k1)^2 + (i_s_b_k_ref-i_s_b_k1)^2; gab = (i_s_a_k_ref-i_s_a_k1)^2 + (i_s_b_k_ref-i_s_b_k1)^2 + (i_s_a_k_ref-i_s_a_k2)^2 + (i_s_b_k_ref-i_s_b_k2)^2; gab_temp = min(gab,gab_temp); if gab_temp == gab k = j-1; end end
  • 45. Appendix C. List of publications 40 Appendix C List of publications [1] Hoàng Thành Nam, Trần Hùng Cường, Trần Trọng Minh, Phạm Việt Phương, “Điều khiển dự báo cho nghịch lưu bảy mức cấu trúc cầu H nối tầng”, CASD 2017 [2] Hoàng Thành Nam, Trần Hùng Cường, Phạm Việt Phương, Trần Trọng Minh, Vũ Hoàng Phương, “Giảm số lượt tính toán hàm mục tiêu của phương pháp điều khiển dự báo cho bộ biến đổi đa mức cầu H nối tầng để giảm tần số đóng cắt van”, VCCA-2017 [3] Trần Hùng Cường, Hoàng Thành Nam, Trần Trọng Minh, Phạm Việt Phương, Vũ Hoàng Phương, “Điều khiển dự báo hữu hạn các trạng thái đóng cắt các van cho bộ biến đổi đa mức có cấu trúc MMC”, VCCA-2017 [4] Hoàng Thành Nam, Nguyễn Đình Ngọc, Nguyễn Văn Tiệp, Vũ Hoàng Phương, Trần Trọng Minh, “Mô phỏng bộ khôi phục điện áp động trong hệ thống điều áp liên tục AVC”, VCCA-2017 [5] Vũ Hoàng Phương, Hoàng Thành Nam, Trần Trọng Minh, Nguyễn Huy Phương, “Điều khiển bộ chỉnh lưu tích cực sử dụng mạch lọc LCL trong điều kiện lưới điện không cân bằng”, Chuyên san Đo lường, Điều khiển và Tự động hóa, số 20, 12/2017 [6] Ha Thanh Vo, Nam Thanh Hoang, Phuong Hoang Vu, Minh Trong Tran, “FCS-Model Predictive Control of Induction Motors feed by MultilLevel Casaded H-Bridge Inverter”, RCEEE 2018