SlideShare a Scribd company logo
1 of 61
AC Networks
Chapter 2
Wave Description
 Amplitude (Vpeak) - maximum displacement
from the zero line
 Period (T) - the time required for one cycle
 Frequency (f) - the number of cycles that
appear in a time span
 1 cycle per second = 1 Hertz
 T=1/f
 Angular Velocity (w) - rotation rate of a
vector (or generator shaft)
 w is measure in radians per second.
 New Waveform Equation: v=Vpsinwt
f
2
T
2




w
Sinusoidal Voltage Relationships
 v = Vpeaksin q
 v = Vpeaksin wt
 v = Vpeaksin 2t/T
 v = Vpeaksin 2ft
 Which form you use depends on what you know
Phase Relationship
 f = phase angle
 For initial intersections before 0
v=Vpsin(wt+f)
 For initial intersections after 0
v=Vpsin(wt-f)
Resistive Circuit
 Only for a resistive circuit can current and
voltage be in phase.
 If the current and voltage go through zero
at different times, they are said to be out
of phase
Sinusoidal Plot
Example Problems
 Example 4.7:
o Determine the phase relationship between the
following two waveforms:
v=8.6 sin(300t+80°)
i=0.12 sin(300t+10°)
4.4 Effective (RMS) Value
 These mean the same thing for AC circuits:
o “equivalent DC voltage”
o “effective voltage”
o “rms voltage”
 RMS = root mean square
 Draw the “relating effective values” plots.
p
eff V
2
1
V  p
eff I
2
1
I 
4.5 Average Value
 For a sine wave, the average value is zero.
 For other waves….
)
(
)
(
)
(
period
T
waveform
under
area
value
average
G 
Example Problems
 Example 4.9:
o Write the sinusoidal expression for a voltage having
an rms value of 40 mV, a frequency of 500 Hz and and
initial phase shift of +40.
o Vp = 1.414(Vrms) = 1.414(40 mV) = 56.56 mV
 w = 2f = (2)(0.5 kHz) = 3.142 X 103 rad/s
o v = 56.56 mV sin(3142t + 40°)
Example Problems
 Example 4.10:
Calculate the average value of the waveform
below over one full cycle.
-6
-4
-2
0
2
4
6
8
10
12
0 2 4 6 8 10 12
What are the following for a wall outlet?
 f
 Veff = Vrms
 Vpeak
 Vave
 Ieff = Irms
 Ipeak
 Iave
2
 f = 60 Hz
 Veff = Vrms = 120 V
 Vpeak = Vrms = 170 V
 Vave = 0 V
 Ieff = Irms = limited by breaker
 Ipeak = Irms
 Iave = 0 A
2
Effective Values
 Average values for I or V are zero
 If we use IV to measure power with a dc
meter, we will get zero
o Yet the resistor gets hot – power is dissipated
o I and V are not always zero – you can get
shocked from ac just like dc
 We need a new definition for power
Use Effective (rms) Values
 PR = VRIR = IR
2R = VR
2/R
 Look just like the dc forms of power
o But we use rms values instead
4.7 The R, L, and C Elements
 Ohm’s Law for Peak Values
Resistors: Vpeak=IpeakR
Capacitors: Vpeak=IpeakXC
Inductors: Vpeak=IpeakXL
Inductive Reactance
 Recall the form of inductance
 Since I for ac is constantly changing, there is a
constant opposition to the flow of current
o Inductive Reactance XL = wL = 2fL
o Measured in ohms
o Energy is stored in the coil, not dissipated like in the
resistor.
t
i
L
v




Example
 An inductor of 400 mH is connected
across a 120 V, 60 Hz ac source. Find XL
and the current through the coil
a. XL = 2fL = 2(60 Hz)(0.4 H)
XL = 151 W
b. I = V/XL = 120 v/151 W
I = 0.8 A
XL vs. f graph for ideal inductor
 XL = 2fL
o Should give a straight line graph of slope 2L
o Higher the L the greater the slope
XL
f
Current
V and I for an Inductor
 From we see that voltage is greatest
when the change of current is greatest.
t
i
L
v




Highest
positive v
Zero here
Most negative
here
Voltage and Current (Coil)
Current
Voltage
Voltage leads current by 90°
Example Problems
 Example 4.13:
o The current iL through a 10-mH inductor is
5 sin(200t +30). Find the voltage vL across
the inductor.
Capacitive Reactance
 The effect of a capacitor is to prevent
changes in voltage
o Keep the potential difference from building up
in the circuit
 Since the build up of potential is minimized,
the flow of current is reduced.
o Capacitors act like a resistance in an ac circuit.
Capacitive Reactance
 V is changing in ac circuits
o But Q = VC, so the charge changes also
o Since , current is greatest when change in
voltage is greatest.
t
Q
I



Voltage
Current
I leads V by
90°
CIVIL
 CIVIL is a memory aid.
 For a capacitor C, current I leads the voltage
V by 90 degrees.
 For an inductor L, voltage V leads the
current I by 90 degrees.
Capacitive Reactance
C
f
Xc
2
1

 Xc also measured in ohms
What is the capacitive reactance of a 50 mf capacitor
when an alternating current of 60 Hz is applied?
W


 
53
)
10
50
)(
60
(
2
1
2
1
6
c
c
X
f
X
Hz
fC
X


Form of Reactance (Fig. 4.28)
0
50
100
150
200
250
300
0 1000 2000 3000
f (Hz)
X
C
(
W
)
C=1mF
C=2mF
Example Problems
 Example 4.14:
o The voltage across a 2-mF capacitor is 4mV
(rms) at a phase angle of -60. If the applied
frequency is 100kHz, find the sinusoidal
expression for the current iC.
3.6 Phasors and Complex Numbers
 A vector is a quantity has both magnitude and
direction.
 A scalar quantity has only a magnitude.
 Examples:
o Scalar: 50mph
o Vector: 50mph North
 A phasor is a complex number used to
represent a sine wave’s amplitude and
phase.
 A complex number can be written as
C = A + Bj
where C is a complex number,
A and B are real numbers and
1
j 

Real
Imaginary
C=A+Bj
q
What is the magnitude of C?
What is the direction of C?
2
2
B
A
C 

A
B
tan 1


q
Phasor Diagrams
 We make the real axis the resistance
 The imaginary axis is reactance
o Inductive reactance is plotted on the +y axis
o Capacitive reactance is plotted on the –y axis
 The vector addition of R and X is Z
R
XL
XC
X = XL - XC
Phasors
 Form Reactance First X = XL – Xc
 Form Impedance
 Calculate phase angle
2
2
X
R
Z 

)
R
X
(
Tan 1


f
XL
XC R

R
X 
R
X Z
Example Series R-L Circuit
 A coil has a resistance of 2.4 W and a
inductance of 5.8 mH. If it is connected to
a 120-V, 60 Hz ac source, find the reactance
and the current
Solution
XL = 2fL = 2(60 Hz)(5.8 X 10-3 H)
XL = 2.19 W
W
W
W
25
.
3
Z
)
19
.
2
(
)
4
.
2
(
X
R
Z 2
2
2
2








 

4
.
42
)
4
.
2
19
.
2
(
Tan
)
R
X
(
Tan 1
1
f
W
W
f
XL
R
X
R
Z
f
Solution (cont’d)
 I = V/Z
 I = 120 V/3.25 W = 36.9 A
================================
 Notice that if f = 120 Hz, then
 XL = 2(120 Hz)(0.0058 H) = 4.37 W
 Z = 4.99 W f = 61.2°
 I = 24 A
Example Series R-C Circuit
 What is the current flow through a circuit
with 120 V, 60 Hz source, an 80 mf
capacitor, and a 24 W resistor?
Solution
W


33
X
)
f
10
X
80
)(
Hz
60
(
2
1
C
f
2
1
X
C
6
C


 
W
W
W
9
.
40
Z
)
33
(
)
24
(
X
R
Z 2
2
2
2





A
93
.
2
9
.
40
V
120
Z
V
I 


W
R
XC
R
X
Z
f




1
.
54
38
.
1
24
33
tan
f
W
f
Solution (cont’d)
 What happens is the frequency doubles?
 XC = 16.6 W Z = 29.2 W f = 34.6°
 I = 4.11 A
Example - Series RLC Circuit
XL
XC R

R
X 
R
X Z
X = XL - XC Z2 = R2 + X2
A 240 V, 60 Hz line is connected to a circuit containing a
resistor of 15 W, an inductor of 0.08 H, and a capacitor of 80
mf. Compute the circuit impedance and current.
Solution
W

 2
.
30
)
H
08
.
0
)(
Hz
60
(
2
L
f
2
XL 


W


2
.
33
)
f
10
X
80
)(
Hz
60
(
2
1
C
f
2
1
X 6
C 

 
W
W
W 0
.
3
2
.
33
2
.
30
X
X
X C
L 





W
W
W 3
.
15
)
3
(
)
15
(
X
R
Z 2
2
2
2






A
7
.
15
3
.
15
V
240
Z
V
I 


W
Power Factor
 In dc circuits we had P = IV and this still
holds in purely resistive circuits with ac
 In general, I and V are out of phase in ac
circuits.
o At times V and I are negative and power is
drawn from the circuit.
o Thus the true power must be less than IV
Power Factor
)
t
sin(
t
sin
V
I
iv
p
)
t
sin(
V
v
t
sin
I
i
p
p
p
p
f
w
w
f
w
w






)
factor
power
(
IV
P
IV
power(P)
true
Factor
Power


f is the phase between i and v
f
f cos
V
I
cos
2
V
I
P
T
cycle
one
over
p
of
Sum
P
rms
rms
p
p



Power Factor
 Power Factor = cos f
X
R
Z
f X
2
2
X
R
R
Z
R
cos



f
For purely inductive or
purely capacitive circuits,
f = 90° and cos f = 0 -
no power is dissipated
Example
 An industrial plant service line has an impressed
power of 100 KV-A on a 60 Hz line at 440 V.
An installed motor offers a total ohmic resistance
of 350 W and an inductance of 1 H. Find…
a) The inductive reactance
b) The impedance
c) The current
d) The power factor
e) The power used by the motor
f) The size capacitor required to change PF to 95%.
Solution
W
W
W 4
.
514
)
377
(
)
350
(
X
R
Z
)
b 2
2
2
L
2





W

 377
H)
Hz)(1
(60
2
fL
2
X
a) L 


A
855
.
0
4
.
514
V
440
Z
V
I
c) 


W
68
.
0
4
.
514
350
Z
R
PF
)
d 


W
W
KW
68
)
PF
)(
A
KV
100
(
P
)
e 


Solution (cont’d)
W
42
.
368
95
.
0
R
Z
Z
R
95
.
0
PF




W
W
W
W 262
)
350
(
)
42
.
368
(
377
X
R
Z
X
)
X
X
(
R
Z
)
X
X
(
R
Z
2
2
C
2
2
L
2
C
L
2
2
2
C
L
2
2













F
1
.
10
)
262
)(
Hz
60
(
2
1
X
f
2
1
C
C
f
2
1
X
C
C
m
W







Series Resonance
2
C
L
2
)
X
X
(
R
Z 


If XL = XC, then Z = R and the circuit is purely resistive.
This will occur at a certain frequency
LC
2
1
f
1
LC
f
4
C
f
2
1
L
f
2
res
2
2







By altering L or C, the circuit can
be made to resonate at any
frequency.
This condition makes X = 0
V and I will be in phase
minimum Z and maximum I
Parallel RC Circuit
 General Scheme
o Form impedance for each branch
o From Kirchhoff’s Current Law
 iT = i1 + i2
)
t
sin(
Z
V
i
)
t
sin(
Z
V
i
2
2
2
1
1
1
f
w
f
w




The possibility of different
phase angles means parallel
impedances do not add as
simply as for dc circuits
Total Current and Definitions









 )
t
sin(
Z
1
)
t
sin(
Z
1
V
i 2
2
1
1
T f
w
f
w
2
2
2
2
2
2
1
2
1
1 X
R
Z
X
R
Z 



Define 2
2
Z
X
B
and
Z
R
G 

G is called the conductance
B is called the susceptance
Rule for Adding Parallel Impedances
2
1
2
1
T
2
2
1
2
2
1
T
G
G
B
B
tan
)
B
B
(
)
G
G
(
Z
1







q
Note: by convention, XC always carries a negative sign in
computing the impedances.
Y = 1/ZT is called the admittance
Example
Resistive Elements
 If parallel impedance contains only resistors, we
have
o G = 1/R B = 0
R
1
R
1
B
G
Y
Z
1
2
2
2
T





And the equation of parallel resistances results.
Example
W
5
R
Z1 
 0
B
R
1
G
0
X 1
1
1 


C
2
C
2 X
X
Z 

S
0377
.
0
B
C
f
2
X
1
Z
X
B
0
G
2
C
2
2
C
2
2







 
W
W
91
.
4
Z
S
204
.
0
)
0377
.
0
(
)
5
(
1
)
B
B
(
)
G
G
(
Y
T
2
2
2
2
1
2
2
1








Parallel Resonance
C
2
C
3 X
X
Z 
 C
f
2
X
1
Z
X
B
0
G
C
2
3
C
3
3 







L
2
L
2 X
X
Z 

Add L and C in parallel
L
f
2
1
X
1
B
0
G
L
2
2




Parallel Resonance
   
   
3
2
2
3
2
2
3
2
2
3
2
T
B
B
B
B
B
B
G
G
Z
1








C
f
2
L
f
2
1




LC
f
4
-
1
L
f
2
Z
L
f
2
LC
f
4
-
1
Z
1
2
2
T
2
2
T






Resonance occurs when the
denominator becomes zero
Parallel Resonance
 Same relationship as for series resonance
o In series resonance the impedance is a
minimum (Z=R)
o In parallel resonance the impedance is a
maximum (Y=0)
LC
2
1
fres


Resonance Comparisons
Series Parallel
Z Min Max
Y=1/Z Max Min
I Max Min
V=IZ Min Max
Quality (Q) Factor
 At resonance, wo, define
 The current in the circuit is…
R
L
Q 0
0
w

2
2
2
LC
1
1
R
L
1
1
R
V
Z
V
I
















w
w
At resonance (series) Z = R, so we can write the current at
resonance as IM = V/R
Q-Factor
 Using the definition and a little manipulation, we
can derive…
2
0
0
2
0
M
Q
1
1
I
I











w
w
w
w
Q-Factor

More Related Content

Similar to presentation_chapter_2_ac_networks_1516086872_20707.ppt

A presentation on inverter by manoj
A presentation on inverter by manojA presentation on inverter by manoj
A presentation on inverter by manojIACM SmartLearn Ltd.
 
AC electricity
AC electricityAC electricity
AC electricitynlahoud
 
ohm's law and circuits
ohm's law and  circuitsohm's law and  circuits
ohm's law and circuitsimran khan
 
chapter_33_alternating_current_circuits_0.pptx
chapter_33_alternating_current_circuits_0.pptxchapter_33_alternating_current_circuits_0.pptx
chapter_33_alternating_current_circuits_0.pptxGodspower Bruno, GMNSE
 
Solved problems to_chapter_09
Solved problems to_chapter_09Solved problems to_chapter_09
Solved problems to_chapter_09Shah Zaib
 
Basic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBasic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBhavesh jesadia
 
4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)tompoktompok
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptAbinaya Saraswathy T
 
Topic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysisTopic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysisGabriel O'Brien
 
factors affecting internal resistance/emf of the cell
factors affecting internal resistance/emf of the cellfactors affecting internal resistance/emf of the cell
factors affecting internal resistance/emf of the cellYogesh Baghel
 
Single phase AC circuit.ppt
Single phase AC circuit.pptSingle phase AC circuit.ppt
Single phase AC circuit.pptShalabhMishra10
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage2461998
 

Similar to presentation_chapter_2_ac_networks_1516086872_20707.ppt (20)

rangkaian am dan fm
rangkaian am dan fmrangkaian am dan fm
rangkaian am dan fm
 
EEE 3
EEE 3EEE 3
EEE 3
 
A presentation on inverter by manoj
A presentation on inverter by manojA presentation on inverter by manoj
A presentation on inverter by manoj
 
AC electricity
AC electricityAC electricity
AC electricity
 
ohm's law and circuits
ohm's law and  circuitsohm's law and  circuits
ohm's law and circuits
 
chapter_33_alternating_current_circuits_0.pptx
chapter_33_alternating_current_circuits_0.pptxchapter_33_alternating_current_circuits_0.pptx
chapter_33_alternating_current_circuits_0.pptx
 
Solved problems to_chapter_09
Solved problems to_chapter_09Solved problems to_chapter_09
Solved problems to_chapter_09
 
Basic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBasic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC Circuit
 
4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)
 
4-Electricity (1).pptx
4-Electricity (1).pptx4-Electricity (1).pptx
4-Electricity (1).pptx
 
Exp 4
Exp 4 Exp 4
Exp 4
 
The Class-D Amplifier
The Class-D AmplifierThe Class-D Amplifier
The Class-D Amplifier
 
Lecture 29 ac circuits. phasors.
Lecture 29   ac circuits. phasors.Lecture 29   ac circuits. phasors.
Lecture 29 ac circuits. phasors.
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
 
Topic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysisTopic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysis
 
factors affecting internal resistance/emf of the cell
factors affecting internal resistance/emf of the cellfactors affecting internal resistance/emf of the cell
factors affecting internal resistance/emf of the cell
 
Single phase AC circuit.ppt
Single phase AC circuit.pptSingle phase AC circuit.ppt
Single phase AC circuit.ppt
 
Ppt 2
Ppt 2Ppt 2
Ppt 2
 
12 transformer
12 transformer12 transformer
12 transformer
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage
 

More from raghuRAGHU56

Electrical Safety Precautions power point Presentation of the Electrical tool...
Electrical Safety Precautions power point Presentation of the Electrical tool...Electrical Safety Precautions power point Presentation of the Electrical tool...
Electrical Safety Precautions power point Presentation of the Electrical tool...raghuRAGHU56
 
SESSION 20 MODULE 7 (2).pptx
SESSION 20 MODULE 7 (2).pptxSESSION 20 MODULE 7 (2).pptx
SESSION 20 MODULE 7 (2).pptxraghuRAGHU56
 
SESSION 16 MODULE 7.pptx
SESSION 16 MODULE 7.pptxSESSION 16 MODULE 7.pptx
SESSION 16 MODULE 7.pptxraghuRAGHU56
 
Wiring Practices (2) (2).pptx
Wiring Practices (2) (2).pptxWiring Practices (2) (2).pptx
Wiring Practices (2) (2).pptxraghuRAGHU56
 
0_Infogic PPT for startup-converted.pdf
0_Infogic PPT for startup-converted.pdf0_Infogic PPT for startup-converted.pdf
0_Infogic PPT for startup-converted.pdfraghuRAGHU56
 
MCB and Fuse (11).pptx
MCB and Fuse (11).pptxMCB and Fuse (11).pptx
MCB and Fuse (11).pptxraghuRAGHU56
 
MCB and Fuse (2) (3).pptx
MCB and Fuse (2) (3).pptxMCB and Fuse (2) (3).pptx
MCB and Fuse (2) (3).pptxraghuRAGHU56
 
SESSION_1_-_MODULE_1.pptx
SESSION_1_-_MODULE_1.pptxSESSION_1_-_MODULE_1.pptx
SESSION_1_-_MODULE_1.pptxraghuRAGHU56
 
JOINTS IN ELECTRICAL CONDUCTORS.pptx
JOINTS IN ELECTRICAL CONDUCTORS.pptxJOINTS IN ELECTRICAL CONDUCTORS.pptx
JOINTS IN ELECTRICAL CONDUCTORS.pptxraghuRAGHU56
 
unit4domesticwiringandinstruments-220608154915-ac268fee.pdf
unit4domesticwiringandinstruments-220608154915-ac268fee.pdfunit4domesticwiringandinstruments-220608154915-ac268fee.pdf
unit4domesticwiringandinstruments-220608154915-ac268fee.pdfraghuRAGHU56
 
SESSION 21 MODULE 7.pptx
SESSION 21 MODULE 7.pptxSESSION 21 MODULE 7.pptx
SESSION 21 MODULE 7.pptxraghuRAGHU56
 
SESSION 9 MODULE 4.pptx
SESSION 9 MODULE 4.pptxSESSION 9 MODULE 4.pptx
SESSION 9 MODULE 4.pptxraghuRAGHU56
 

More from raghuRAGHU56 (13)

Electrical Safety Precautions power point Presentation of the Electrical tool...
Electrical Safety Precautions power point Presentation of the Electrical tool...Electrical Safety Precautions power point Presentation of the Electrical tool...
Electrical Safety Precautions power point Presentation of the Electrical tool...
 
SESSION 20 MODULE 7 (2).pptx
SESSION 20 MODULE 7 (2).pptxSESSION 20 MODULE 7 (2).pptx
SESSION 20 MODULE 7 (2).pptx
 
SESSION 16 MODULE 7.pptx
SESSION 16 MODULE 7.pptxSESSION 16 MODULE 7.pptx
SESSION 16 MODULE 7.pptx
 
Wiring Practices (2) (2).pptx
Wiring Practices (2) (2).pptxWiring Practices (2) (2).pptx
Wiring Practices (2) (2).pptx
 
0_Infogic PPT for startup-converted.pdf
0_Infogic PPT for startup-converted.pdf0_Infogic PPT for startup-converted.pdf
0_Infogic PPT for startup-converted.pdf
 
MCB and Fuse (11).pptx
MCB and Fuse (11).pptxMCB and Fuse (11).pptx
MCB and Fuse (11).pptx
 
MCB and Fuse (2) (3).pptx
MCB and Fuse (2) (3).pptxMCB and Fuse (2) (3).pptx
MCB and Fuse (2) (3).pptx
 
SESSION_1_-_MODULE_1.pptx
SESSION_1_-_MODULE_1.pptxSESSION_1_-_MODULE_1.pptx
SESSION_1_-_MODULE_1.pptx
 
JOINTS IN ELECTRICAL CONDUCTORS.pptx
JOINTS IN ELECTRICAL CONDUCTORS.pptxJOINTS IN ELECTRICAL CONDUCTORS.pptx
JOINTS IN ELECTRICAL CONDUCTORS.pptx
 
unit4domesticwiringandinstruments-220608154915-ac268fee.pdf
unit4domesticwiringandinstruments-220608154915-ac268fee.pdfunit4domesticwiringandinstruments-220608154915-ac268fee.pdf
unit4domesticwiringandinstruments-220608154915-ac268fee.pdf
 
SESSION 21 MODULE 7.pptx
SESSION 21 MODULE 7.pptxSESSION 21 MODULE 7.pptx
SESSION 21 MODULE 7.pptx
 
SESSION 9 MODULE 4.pptx
SESSION 9 MODULE 4.pptxSESSION 9 MODULE 4.pptx
SESSION 9 MODULE 4.pptx
 
Lesson 15.pptx
Lesson 15.pptxLesson 15.pptx
Lesson 15.pptx
 

Recently uploaded

Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionfulawalesam
 
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...Suhani Kapoor
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxolyaivanovalion
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxfirstjob4
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAroojKhan71
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSAishani27
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxolyaivanovalion
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxEmmanuel Dauda
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxolyaivanovalion
 
Unveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystUnveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystSamantha Rae Coolbeth
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz1
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...Suhani Kapoor
 
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfSocial Samosa
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxolyaivanovalion
 

Recently uploaded (20)

Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interaction
 
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
 
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptx
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptx
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICS
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptx
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptx
 
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
 
Unveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystUnveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data Analyst
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signals
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
 
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 

presentation_chapter_2_ac_networks_1516086872_20707.ppt

  • 2. Wave Description  Amplitude (Vpeak) - maximum displacement from the zero line  Period (T) - the time required for one cycle  Frequency (f) - the number of cycles that appear in a time span  1 cycle per second = 1 Hertz  T=1/f
  • 3.  Angular Velocity (w) - rotation rate of a vector (or generator shaft)  w is measure in radians per second.  New Waveform Equation: v=Vpsinwt f 2 T 2     w
  • 4. Sinusoidal Voltage Relationships  v = Vpeaksin q  v = Vpeaksin wt  v = Vpeaksin 2t/T  v = Vpeaksin 2ft  Which form you use depends on what you know
  • 5. Phase Relationship  f = phase angle  For initial intersections before 0 v=Vpsin(wt+f)  For initial intersections after 0 v=Vpsin(wt-f)
  • 6. Resistive Circuit  Only for a resistive circuit can current and voltage be in phase.  If the current and voltage go through zero at different times, they are said to be out of phase
  • 8. Example Problems  Example 4.7: o Determine the phase relationship between the following two waveforms: v=8.6 sin(300t+80°) i=0.12 sin(300t+10°)
  • 9. 4.4 Effective (RMS) Value  These mean the same thing for AC circuits: o “equivalent DC voltage” o “effective voltage” o “rms voltage”  RMS = root mean square  Draw the “relating effective values” plots. p eff V 2 1 V  p eff I 2 1 I 
  • 10. 4.5 Average Value  For a sine wave, the average value is zero.  For other waves…. ) ( ) ( ) ( period T waveform under area value average G 
  • 11. Example Problems  Example 4.9: o Write the sinusoidal expression for a voltage having an rms value of 40 mV, a frequency of 500 Hz and and initial phase shift of +40. o Vp = 1.414(Vrms) = 1.414(40 mV) = 56.56 mV  w = 2f = (2)(0.5 kHz) = 3.142 X 103 rad/s o v = 56.56 mV sin(3142t + 40°)
  • 12. Example Problems  Example 4.10: Calculate the average value of the waveform below over one full cycle. -6 -4 -2 0 2 4 6 8 10 12 0 2 4 6 8 10 12
  • 13. What are the following for a wall outlet?  f  Veff = Vrms  Vpeak  Vave  Ieff = Irms  Ipeak  Iave 2  f = 60 Hz  Veff = Vrms = 120 V  Vpeak = Vrms = 170 V  Vave = 0 V  Ieff = Irms = limited by breaker  Ipeak = Irms  Iave = 0 A 2
  • 14. Effective Values  Average values for I or V are zero  If we use IV to measure power with a dc meter, we will get zero o Yet the resistor gets hot – power is dissipated o I and V are not always zero – you can get shocked from ac just like dc  We need a new definition for power
  • 15. Use Effective (rms) Values  PR = VRIR = IR 2R = VR 2/R  Look just like the dc forms of power o But we use rms values instead
  • 16. 4.7 The R, L, and C Elements  Ohm’s Law for Peak Values Resistors: Vpeak=IpeakR Capacitors: Vpeak=IpeakXC Inductors: Vpeak=IpeakXL
  • 17. Inductive Reactance  Recall the form of inductance  Since I for ac is constantly changing, there is a constant opposition to the flow of current o Inductive Reactance XL = wL = 2fL o Measured in ohms o Energy is stored in the coil, not dissipated like in the resistor. t i L v    
  • 18. Example  An inductor of 400 mH is connected across a 120 V, 60 Hz ac source. Find XL and the current through the coil a. XL = 2fL = 2(60 Hz)(0.4 H) XL = 151 W b. I = V/XL = 120 v/151 W I = 0.8 A
  • 19. XL vs. f graph for ideal inductor  XL = 2fL o Should give a straight line graph of slope 2L o Higher the L the greater the slope XL f
  • 20. Current V and I for an Inductor  From we see that voltage is greatest when the change of current is greatest. t i L v     Highest positive v Zero here Most negative here
  • 21. Voltage and Current (Coil) Current Voltage Voltage leads current by 90°
  • 22. Example Problems  Example 4.13: o The current iL through a 10-mH inductor is 5 sin(200t +30). Find the voltage vL across the inductor.
  • 23. Capacitive Reactance  The effect of a capacitor is to prevent changes in voltage o Keep the potential difference from building up in the circuit  Since the build up of potential is minimized, the flow of current is reduced. o Capacitors act like a resistance in an ac circuit.
  • 24. Capacitive Reactance  V is changing in ac circuits o But Q = VC, so the charge changes also o Since , current is greatest when change in voltage is greatest. t Q I    Voltage Current I leads V by 90°
  • 25. CIVIL  CIVIL is a memory aid.  For a capacitor C, current I leads the voltage V by 90 degrees.  For an inductor L, voltage V leads the current I by 90 degrees.
  • 26. Capacitive Reactance C f Xc 2 1   Xc also measured in ohms What is the capacitive reactance of a 50 mf capacitor when an alternating current of 60 Hz is applied? W     53 ) 10 50 )( 60 ( 2 1 2 1 6 c c X f X Hz fC X  
  • 27. Form of Reactance (Fig. 4.28) 0 50 100 150 200 250 300 0 1000 2000 3000 f (Hz) X C ( W ) C=1mF C=2mF
  • 28. Example Problems  Example 4.14: o The voltage across a 2-mF capacitor is 4mV (rms) at a phase angle of -60. If the applied frequency is 100kHz, find the sinusoidal expression for the current iC.
  • 29. 3.6 Phasors and Complex Numbers  A vector is a quantity has both magnitude and direction.  A scalar quantity has only a magnitude.  Examples: o Scalar: 50mph o Vector: 50mph North
  • 30.  A phasor is a complex number used to represent a sine wave’s amplitude and phase.  A complex number can be written as C = A + Bj where C is a complex number, A and B are real numbers and 1 j  
  • 31. Real Imaginary C=A+Bj q What is the magnitude of C? What is the direction of C? 2 2 B A C   A B tan 1   q
  • 32. Phasor Diagrams  We make the real axis the resistance  The imaginary axis is reactance o Inductive reactance is plotted on the +y axis o Capacitive reactance is plotted on the –y axis  The vector addition of R and X is Z R XL XC X = XL - XC
  • 33. Phasors  Form Reactance First X = XL – Xc  Form Impedance  Calculate phase angle 2 2 X R Z   ) R X ( Tan 1   f XL XC R  R X  R X Z
  • 34. Example Series R-L Circuit  A coil has a resistance of 2.4 W and a inductance of 5.8 mH. If it is connected to a 120-V, 60 Hz ac source, find the reactance and the current
  • 35. Solution XL = 2fL = 2(60 Hz)(5.8 X 10-3 H) XL = 2.19 W W W W 25 . 3 Z ) 19 . 2 ( ) 4 . 2 ( X R Z 2 2 2 2            4 . 42 ) 4 . 2 19 . 2 ( Tan ) R X ( Tan 1 1 f W W f XL R X R Z f
  • 36. Solution (cont’d)  I = V/Z  I = 120 V/3.25 W = 36.9 A ================================  Notice that if f = 120 Hz, then  XL = 2(120 Hz)(0.0058 H) = 4.37 W  Z = 4.99 W f = 61.2°  I = 24 A
  • 37. Example Series R-C Circuit  What is the current flow through a circuit with 120 V, 60 Hz source, an 80 mf capacitor, and a 24 W resistor?
  • 39. Solution (cont’d)  What happens is the frequency doubles?  XC = 16.6 W Z = 29.2 W f = 34.6°  I = 4.11 A
  • 40. Example - Series RLC Circuit XL XC R  R X  R X Z X = XL - XC Z2 = R2 + X2 A 240 V, 60 Hz line is connected to a circuit containing a resistor of 15 W, an inductor of 0.08 H, and a capacitor of 80 mf. Compute the circuit impedance and current.
  • 41. Solution W   2 . 30 ) H 08 . 0 )( Hz 60 ( 2 L f 2 XL    W   2 . 33 ) f 10 X 80 )( Hz 60 ( 2 1 C f 2 1 X 6 C     W W W 0 . 3 2 . 33 2 . 30 X X X C L       W W W 3 . 15 ) 3 ( ) 15 ( X R Z 2 2 2 2       A 7 . 15 3 . 15 V 240 Z V I    W
  • 42. Power Factor  In dc circuits we had P = IV and this still holds in purely resistive circuits with ac  In general, I and V are out of phase in ac circuits. o At times V and I are negative and power is drawn from the circuit. o Thus the true power must be less than IV
  • 44. Power Factor  Power Factor = cos f X R Z f X 2 2 X R R Z R cos    f For purely inductive or purely capacitive circuits, f = 90° and cos f = 0 - no power is dissipated
  • 45. Example  An industrial plant service line has an impressed power of 100 KV-A on a 60 Hz line at 440 V. An installed motor offers a total ohmic resistance of 350 W and an inductance of 1 H. Find… a) The inductive reactance b) The impedance c) The current d) The power factor e) The power used by the motor f) The size capacitor required to change PF to 95%.
  • 46. Solution W W W 4 . 514 ) 377 ( ) 350 ( X R Z ) b 2 2 2 L 2      W   377 H) Hz)(1 (60 2 fL 2 X a) L    A 855 . 0 4 . 514 V 440 Z V I c)    W 68 . 0 4 . 514 350 Z R PF ) d    W W KW 68 ) PF )( A KV 100 ( P ) e   
  • 48. Series Resonance 2 C L 2 ) X X ( R Z    If XL = XC, then Z = R and the circuit is purely resistive. This will occur at a certain frequency LC 2 1 f 1 LC f 4 C f 2 1 L f 2 res 2 2        By altering L or C, the circuit can be made to resonate at any frequency. This condition makes X = 0 V and I will be in phase minimum Z and maximum I
  • 49. Parallel RC Circuit  General Scheme o Form impedance for each branch o From Kirchhoff’s Current Law  iT = i1 + i2 ) t sin( Z V i ) t sin( Z V i 2 2 2 1 1 1 f w f w     The possibility of different phase angles means parallel impedances do not add as simply as for dc circuits
  • 50. Total Current and Definitions           ) t sin( Z 1 ) t sin( Z 1 V i 2 2 1 1 T f w f w 2 2 2 2 2 2 1 2 1 1 X R Z X R Z     Define 2 2 Z X B and Z R G   G is called the conductance B is called the susceptance
  • 51. Rule for Adding Parallel Impedances 2 1 2 1 T 2 2 1 2 2 1 T G G B B tan ) B B ( ) G G ( Z 1        q Note: by convention, XC always carries a negative sign in computing the impedances. Y = 1/ZT is called the admittance
  • 53. Resistive Elements  If parallel impedance contains only resistors, we have o G = 1/R B = 0 R 1 R 1 B G Y Z 1 2 2 2 T      And the equation of parallel resistances results.
  • 54. Example W 5 R Z1   0 B R 1 G 0 X 1 1 1    C 2 C 2 X X Z   S 0377 . 0 B C f 2 X 1 Z X B 0 G 2 C 2 2 C 2 2          W W 91 . 4 Z S 204 . 0 ) 0377 . 0 ( ) 5 ( 1 ) B B ( ) G G ( Y T 2 2 2 2 1 2 2 1        
  • 55. Parallel Resonance C 2 C 3 X X Z   C f 2 X 1 Z X B 0 G C 2 3 C 3 3         L 2 L 2 X X Z   Add L and C in parallel L f 2 1 X 1 B 0 G L 2 2    
  • 56. Parallel Resonance         3 2 2 3 2 2 3 2 2 3 2 T B B B B B B G G Z 1         C f 2 L f 2 1     LC f 4 - 1 L f 2 Z L f 2 LC f 4 - 1 Z 1 2 2 T 2 2 T       Resonance occurs when the denominator becomes zero
  • 57. Parallel Resonance  Same relationship as for series resonance o In series resonance the impedance is a minimum (Z=R) o In parallel resonance the impedance is a maximum (Y=0) LC 2 1 fres  
  • 58. Resonance Comparisons Series Parallel Z Min Max Y=1/Z Max Min I Max Min V=IZ Min Max
  • 59. Quality (Q) Factor  At resonance, wo, define  The current in the circuit is… R L Q 0 0 w  2 2 2 LC 1 1 R L 1 1 R V Z V I                 w w At resonance (series) Z = R, so we can write the current at resonance as IM = V/R
  • 60. Q-Factor  Using the definition and a little manipulation, we can derive… 2 0 0 2 0 M Q 1 1 I I            w w w w