H.W 4
CE525 THEORY OF MATRIX STRUCTURAL ANALYSIS
SUBMITTED BY : KAMARAN SHEKHA ABDULLAH 201568536
DATE : 23 / 11 / 2016
Page 1
L
Mi = M j M j
Mi +M j
L
Mi +M j
L
M
M
+
+
M
A B
M
EI
M
EI
M
EI
+
+
ML
2EI ML
2EI
Mb=0 : (ML/2EI)(L/3)+ (ML/2EI)(2L/3) = 0
M =
L/3
L/3
Real Beam Conjugate Beam
8.00 m8.00 m8.00 m
H.W 5
CE525 THEORY OF MATRIX STRUCTURAL ANALYSIS
SUBMITTED BY : KAMARAN SHEKHA ABDULLAH 201568536
DATE : 23 / 11 / 2016
Determination of all support reactions
SOLUTION :
6 kN/m
I 2I I
1
5
2
6
3
7
4
8
1
Page 1
25.60 kN.m
-4.80 kN -19.20 kN
+25.6 kN.m
3
25.60 kN.m
-19.2 kN -4.80 kN
-25.6 kN.m
2
48.00 kN.m
-24 kN -24 kN
+48 kN.m- 48 kN.m
8 m 8 m 8 m
+
1
+4.80 kN +19.20 kN
-25.6 kN.m
3
+19.2 kN +4.80 kN
+25.6 kN.m
2
+24 kN +24 kN
-48 kN.m+ 48 kN.m
8 m 8 m 8 m
0 kN.m0 kN.m
+4.80 kN +43.20 kN +43.20 kN +4.80 kN
- 22.4 kN.m +22.4 kN.m
p left = WL /10
= 6*8 / 10
=4.80 kN
p right = WL /2.5
= 6*8 / 2.5
=19.2 kN
P = WL /2
= 6*8 /2
=24 kN
P left = WL /2.5
= 6*8 / 2.5
=19.2 kN
P right= WL /10
= 6*8 / 10
=4.80 kN
* Finding stiffness MATRIX for each members
Q = K * D
Page 2
0/EI = 0.5 D1 + 0.25 D2 + 0 D3 + 0 D4
22.4/EI = 0.25 D1 + 1.5 D2 + 0.5 D3 + 0 D4
-22.4/EI = 0 D1 + 0.5 D2 + 1.5 D3 + 0.25 D4
0/EI = 0 D1 + 0 D2 + 0.25 D3 + 0.50 D4
WE FIND THAT :
D1 = -12.8/ EI rad.
D2 = 25.6 / EI rad.
D3= -25.6 / EI rad.
D4= 12.8 / EI rad.
After that we find the (Q)
Q5 = {(-0.0938)(-12.8)}+{(-0.0938)(25.6)}
Q5 = -1.2 kN
Q6 = {(0.0938)(-12.8)}+{(-0.0938)(25.6)}+{(-0.1876)(-25.6)}
Q6 = 1.2 kN
Q7 = {0}+{(0.1876)(25.6)}+{(0.0938)(-25.6)}+{(-0.0938)(12.8)}
Q7 = 1.2 kN
Q8 = {(0.0938)(-25.6)}+{(-0.0938)(12.8)}
Q5 = -1.2 kN
Finally find the reactions
R5 = +4.80 +( -1.20 ) = 3.60 kN
R6 = +43.20 +( 1.20) = 44.40 kN
R7 = +43.20 + (1.20) = 44.40 kN
R8 = +4.80 +( -1.2) = 3.60 kN
Page 3
EXAMPLE BEAM 1
CE525 THEORY OF MATRIX STRUCTURAL ANALYSIS
SUBMITTED BY : KAMARAN SHEKHA ABDULLAH 201568536
DATE : 18 / 12 / 2016
Page 1
12.00 m 8.00 m
A B
Determine moment in (A) and (B)
SOLUTION :
30 kN/m
45 kN/m
kN.m
+360 kN.m-360 kN.m -240 kN.m +240 kN.m
kN.m
P = WL /2 = 30*12 / 2 = 180 kN
180 kN 180 kN 180 kN 180 kN
+
30 kN/m - 360 kN.m+360 kN.m
180 kN 180 kN
+240 kN.m -240 kN.m
180 kN 180 kN
8.00 m12.00 m
12.00 m 8.00 m
1
4 26
35
180 kN 180+180
=360 kN
180 kN
45 kN/m
+120 kN.m
Page 2
Q = K + D
K = K1 + K2
120 = 4166.667 D1 + 260.417 * -0.03
Page 3
D1 = 0.03067 rad
* Now we find out Q3 and Q 5
Q3 = {1250 * 0.03067 }+{468.75* -0.03 }
Q3 = 24.275 kn.m
Q5 = {833.33 * 0.03067 }+{-208.33* -0.03 }
Q5 = 31.8081 kn.m
* finally we find out M3 and M 5
M3 = - 240 + 24.275 kn.m
= - 215.73 kN.m Ans.
M5 = +360 +31.8081
= 391.81 kN.m Ans.
* Also we can find out reactions :
Q2 = {-468.75* 0.03067 }+{-117.88* -0.03 }
Q2 = -10.84 kN
Q4 = {260.417* 0.03067 }+{151.91* -0.03 }
Q4 = 3.43 kN
Q6 = {208.33* 0.03067 }+{-34.722* -0.03 }
Q6 = 7.43 kN
Reactions :
R2 = 180 + (-10.84)
= 169.16 kN
R4 = 360 + (+3.43 )
= 363.43 kN
R6 = 180 + (+7.43)
= 187.43 kN
EXAMPLE BEAM 2
CE525 THEORY OF MATRIX STRUCTURAL ANALYSIS
SUBMITTED BY : KAMARAN SHEKHA ABDULLAH 201568536
DATE : 18 / 12 / 2016
Page 1
4.0 m 4.0 m
B
Determine displacement at internal hinge node 2 , and moment at node (1) , E = 200 Gpa ,
and I = 200*6
10 mm^4 .
SOLUTION :
30 kN/m
=40 kN.m
+40 kN.m-40 kN.m -20 kN.m +20 kN.m
M = PL / 8
= 40*4 / 8
=20 kN.m
P = WL /2 = 30*4 / 2 = 60 kN
-60 kN -60 kN -20 kN -20 kN
+
30 kN/m - 40 kN.m+40 kN.m
+60 kN +60 kN
+20 kN.m -20 kN.m
+20 kN +20 kN
4.0 m4.0 m
4.0 m
1
3 75
64
+60 kN 60+20
=+80 kN
+20 kN
2
40 kN
4.0 m
2.0 m
40 kN
-60+-20
= -80 kN
1NODE
2NODE 3NODE
Page 2
Q = K * D
-20 = 40,000 D1 + 0,0 D2 +15,000 D3
+40 = 0.0 D1 + 40,000 D2 + -15,000 D3
-80 = 15,000 D1 + -15,0 D2 +15,000 D3
Page 3
D1 = +0.005249 rad Ans.
* Now we find out Q4
Q4 = {0 * 0.00475 }+{20,000* -0.00475 } +{-15,000 * -0.01533}
Q4 =+134.95 kN .m
* finally we find out M4
M4 = + 134.95 + 40
= + 174.95 kN.m Ans.
D2 = - 0.00475 rad Ans.
D3 = - 0.01533 m Ans.

Stiffness matrix method for beam , examples ce525

  • 1.
    H.W 4 CE525 THEORYOF MATRIX STRUCTURAL ANALYSIS SUBMITTED BY : KAMARAN SHEKHA ABDULLAH 201568536 DATE : 23 / 11 / 2016 Page 1 L Mi = M j M j Mi +M j L Mi +M j L M M + + M A B M EI M EI M EI + + ML 2EI ML 2EI Mb=0 : (ML/2EI)(L/3)+ (ML/2EI)(2L/3) = 0 M = L/3 L/3 Real Beam Conjugate Beam
  • 2.
    8.00 m8.00 m8.00m H.W 5 CE525 THEORY OF MATRIX STRUCTURAL ANALYSIS SUBMITTED BY : KAMARAN SHEKHA ABDULLAH 201568536 DATE : 23 / 11 / 2016 Determination of all support reactions SOLUTION : 6 kN/m I 2I I 1 5 2 6 3 7 4 8 1 Page 1 25.60 kN.m -4.80 kN -19.20 kN +25.6 kN.m 3 25.60 kN.m -19.2 kN -4.80 kN -25.6 kN.m 2 48.00 kN.m -24 kN -24 kN +48 kN.m- 48 kN.m 8 m 8 m 8 m + 1 +4.80 kN +19.20 kN -25.6 kN.m 3 +19.2 kN +4.80 kN +25.6 kN.m 2 +24 kN +24 kN -48 kN.m+ 48 kN.m 8 m 8 m 8 m 0 kN.m0 kN.m +4.80 kN +43.20 kN +43.20 kN +4.80 kN - 22.4 kN.m +22.4 kN.m p left = WL /10 = 6*8 / 10 =4.80 kN p right = WL /2.5 = 6*8 / 2.5 =19.2 kN P = WL /2 = 6*8 /2 =24 kN P left = WL /2.5 = 6*8 / 2.5 =19.2 kN P right= WL /10 = 6*8 / 10 =4.80 kN
  • 3.
    * Finding stiffnessMATRIX for each members Q = K * D Page 2
  • 4.
    0/EI = 0.5D1 + 0.25 D2 + 0 D3 + 0 D4 22.4/EI = 0.25 D1 + 1.5 D2 + 0.5 D3 + 0 D4 -22.4/EI = 0 D1 + 0.5 D2 + 1.5 D3 + 0.25 D4 0/EI = 0 D1 + 0 D2 + 0.25 D3 + 0.50 D4 WE FIND THAT : D1 = -12.8/ EI rad. D2 = 25.6 / EI rad. D3= -25.6 / EI rad. D4= 12.8 / EI rad. After that we find the (Q) Q5 = {(-0.0938)(-12.8)}+{(-0.0938)(25.6)} Q5 = -1.2 kN Q6 = {(0.0938)(-12.8)}+{(-0.0938)(25.6)}+{(-0.1876)(-25.6)} Q6 = 1.2 kN Q7 = {0}+{(0.1876)(25.6)}+{(0.0938)(-25.6)}+{(-0.0938)(12.8)} Q7 = 1.2 kN Q8 = {(0.0938)(-25.6)}+{(-0.0938)(12.8)} Q5 = -1.2 kN Finally find the reactions R5 = +4.80 +( -1.20 ) = 3.60 kN R6 = +43.20 +( 1.20) = 44.40 kN R7 = +43.20 + (1.20) = 44.40 kN R8 = +4.80 +( -1.2) = 3.60 kN Page 3
  • 5.
    EXAMPLE BEAM 1 CE525THEORY OF MATRIX STRUCTURAL ANALYSIS SUBMITTED BY : KAMARAN SHEKHA ABDULLAH 201568536 DATE : 18 / 12 / 2016 Page 1 12.00 m 8.00 m A B Determine moment in (A) and (B) SOLUTION : 30 kN/m 45 kN/m kN.m +360 kN.m-360 kN.m -240 kN.m +240 kN.m kN.m P = WL /2 = 30*12 / 2 = 180 kN 180 kN 180 kN 180 kN 180 kN + 30 kN/m - 360 kN.m+360 kN.m 180 kN 180 kN +240 kN.m -240 kN.m 180 kN 180 kN 8.00 m12.00 m 12.00 m 8.00 m 1 4 26 35 180 kN 180+180 =360 kN 180 kN 45 kN/m +120 kN.m
  • 6.
    Page 2 Q =K + D K = K1 + K2
  • 7.
    120 = 4166.667D1 + 260.417 * -0.03 Page 3 D1 = 0.03067 rad * Now we find out Q3 and Q 5 Q3 = {1250 * 0.03067 }+{468.75* -0.03 } Q3 = 24.275 kn.m Q5 = {833.33 * 0.03067 }+{-208.33* -0.03 } Q5 = 31.8081 kn.m * finally we find out M3 and M 5 M3 = - 240 + 24.275 kn.m = - 215.73 kN.m Ans. M5 = +360 +31.8081 = 391.81 kN.m Ans. * Also we can find out reactions : Q2 = {-468.75* 0.03067 }+{-117.88* -0.03 } Q2 = -10.84 kN Q4 = {260.417* 0.03067 }+{151.91* -0.03 } Q4 = 3.43 kN Q6 = {208.33* 0.03067 }+{-34.722* -0.03 } Q6 = 7.43 kN Reactions : R2 = 180 + (-10.84) = 169.16 kN R4 = 360 + (+3.43 ) = 363.43 kN R6 = 180 + (+7.43) = 187.43 kN
  • 8.
    EXAMPLE BEAM 2 CE525THEORY OF MATRIX STRUCTURAL ANALYSIS SUBMITTED BY : KAMARAN SHEKHA ABDULLAH 201568536 DATE : 18 / 12 / 2016 Page 1 4.0 m 4.0 m B Determine displacement at internal hinge node 2 , and moment at node (1) , E = 200 Gpa , and I = 200*6 10 mm^4 . SOLUTION : 30 kN/m =40 kN.m +40 kN.m-40 kN.m -20 kN.m +20 kN.m M = PL / 8 = 40*4 / 8 =20 kN.m P = WL /2 = 30*4 / 2 = 60 kN -60 kN -60 kN -20 kN -20 kN + 30 kN/m - 40 kN.m+40 kN.m +60 kN +60 kN +20 kN.m -20 kN.m +20 kN +20 kN 4.0 m4.0 m 4.0 m 1 3 75 64 +60 kN 60+20 =+80 kN +20 kN 2 40 kN 4.0 m 2.0 m 40 kN -60+-20 = -80 kN 1NODE 2NODE 3NODE
  • 9.
  • 10.
    -20 = 40,000D1 + 0,0 D2 +15,000 D3 +40 = 0.0 D1 + 40,000 D2 + -15,000 D3 -80 = 15,000 D1 + -15,0 D2 +15,000 D3 Page 3 D1 = +0.005249 rad Ans. * Now we find out Q4 Q4 = {0 * 0.00475 }+{20,000* -0.00475 } +{-15,000 * -0.01533} Q4 =+134.95 kN .m * finally we find out M4 M4 = + 134.95 + 40 = + 174.95 kN.m Ans. D2 = - 0.00475 rad Ans. D3 = - 0.01533 m Ans.