SlideShare a Scribd company logo
1
Geotechnical Engineering–I [CE-221]
BSc Civil Engineering – 4th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/2016session-geotech-i
Lecture # 21
10-Apr-2018
2
CONSOLIDATION – SUMMARY
H
e
e
Ssettlement
o
c



1
 = ’ + u





 

VC
HT
t
2
%60;
1004
2






 ufor
u
T

%60
);100(log933.0781.1 10


ufor
uT
AG
W
H
wS
S
S


 S
SwS
W
WAGH
e


)(
0

1
2log
p
p
e
CC


 





HHVV
mV





 








'
''
log
1 vo
vo
o
c
c
e
C
HS







 








'
''
log
1 vo
vo
o
r
c
e
C
HS

 






 





















'
''
log
1'
'
log
1 p
vo
o
c
vo
p
o
r
c
e
C
H
e
C
HS




For NCC
For OCC
If OCC is loaded beyond σp’
)10(009.0  LLCC Cr CC  1.0
Terzaghi & Peck (1948)
3
Practice Problem #1
Practice Problem #2
A clay layer 10’ thick had initial void ratio 1.4 and LL = 60%. Find change
in thickness of clay layer if pressure is increased from 1 ton/ft2 to 1.52
ton/ft2.
A consolidation test was performed on a sample with initial dimensions of H
= 20 mm and ring diameter = 63 mm. At the end of test, the sample height
was 13.3 mm and the oven dry weight of soil was 78.3 g. Assuming Gs =
2.66, find:
(i) The initial void ratio, eo
(ii) Final void ratio, ef
(iii) Total sample strain εf
4
Practice Problem #3
A saturated specimen of clay had undergone consolidation under a
pressure of 2 kg/cm2 in an oedometer test. Thickness of the specimen was
found to be 21.18 mm and its water content 12%. Subsequently with a
further increase in pressure 1 kg/cm2, the thickness of the specimen at the
end of 24 hours was reduced by 1.18 mm. From these data, compute the
coefficient of volume compressibility and compression index of the soil
assuming Gs = 2.7.
5
Practice Problem #4
Practice Problem #5
At a certain depth below the foundation of a building there exists a clay layer of
thickness 10 m. Above and below the clay layer there are incompressible permeable
soils. In a consolidation test on the clay sample with drainage at top and bottom, a
sample with initial thickness 2.54 cm was compressed under a steady pressure. Half
of the final settlement took place in 10 minutes after the application of pressure.
Find how long it will take for the settlement of the building to reach 50% of its
ultimate value?
If the clay layer had drainage only from top, what would be the settlement time for
50% consolidation?
A clay layer, whose total settlement under a given loading is expected to be 12 cm
settles 3 cm at the end of 1 month after the application of load increment. How
many months will be required to reach a settlement of 6 cm? How much settlement
will occur in 10 months? Assume the layer to have double drainage.
6
Practice Problem #6
How many days will be required by a clay stratum 5 m thick, draining at both
ends with an average value of coefficient of consolidation Cv = 40x10-4
cm2/sec to attain 50% of its ultimate settlement.
7
Practice Problem #7
Given:
When the total pressure acting at mid height of a consolidating clay layer is
200 kN/m2, the corresponding void ratio of the clay is 0.98. When the total
pressure acting at the same location is 500 kN/m2, the corresponding void
ratio decreases to 0.81.
Required:
The void ratio of the clay if the total pressure acting at mid height of the
consolidating clay layer is 1000 kN/m2.
8
Practice Problem #7
9
Practice Problem #8
A stratum of normally loaded clay of 7m thick is located at a depth of 12m
below ground level. The natural moisture content of the clay is 43% and
its liquid limit is 48%. The specific gravity of the solid particles is 2.76.
The water table is located at a depth of 5m below the ground surface. The
soil is sand above the clay stratum. The submerged unit weight of the sand
is 11 kN/m3 and the same weighs 18kN/m3 above the water table. The bulk
unit weight of the clay is 19.5 kN/m3. The average increase in pressure at
the center of the clay stratum is 120 kN/m2 due to the weight of a building
that will be constructed on the sand above the clay stratum. Estimate the
expected settlement of the structure.
10
Practice Problem #9
11
Practice Problem #8
12
CONCLUDED
REFERENCE MATERIAL
Principles of Geotechnical Engineering – (7th Edition)
Braja M. Das
Chapter #11
An Introduction to Geotechnical Engineering (2nd Edition)
By R. D. Holtz, W. D. Kovacs and T. C. Sheahan
Chapter #8 & 9

More Related Content

What's hot

Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Make Mannan
 
_lateral_earth_pressure_(foundation engineering)
_lateral_earth_pressure_(foundation engineering)_lateral_earth_pressure_(foundation engineering)
_lateral_earth_pressure_(foundation engineering)
sharda university
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Muhammad Irfan
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of piles
Latif Hyder Wadho
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Muhammad Irfan
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
Latif Hyder Wadho
 
Bearing capacity of Soil
Bearing capacity of SoilBearing capacity of Soil
Bearing capacity of Soil
Pirpasha Ujede
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Make Mannan
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Muhammad Irfan
 
Geotechnical Engineering-I [Lec #9: Atterberg limits]
Geotechnical Engineering-I [Lec #9: Atterberg limits]Geotechnical Engineering-I [Lec #9: Atterberg limits]
Geotechnical Engineering-I [Lec #9: Atterberg limits]
Muhammad Irfan
 
Consolidation Properties
Consolidation PropertiesConsolidation Properties
Consolidation Properties
Sanchari Halder
 
Class 7 Consolidation Test ( Geotechnical Engineering )
Class 7    Consolidation Test ( Geotechnical Engineering )Class 7    Consolidation Test ( Geotechnical Engineering )
Class 7 Consolidation Test ( Geotechnical Engineering )
Hossam Shafiq I
 
Earth pressure( soil mechanics)
Earth pressure( soil mechanics)Earth pressure( soil mechanics)
Earth pressure( soil mechanics)
Darshil Vekaria
 
Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma
ABHISHEK SHARMA
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Muhammad Irfan
 
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Muhammad Irfan
 
Earth pressure
Earth pressureEarth pressure
Earth pressure
Abhishek Kansara
 
Examples on seepage
Examples on seepageExamples on seepage
Examples on seepage
Malika khalil
 

What's hot (20)

Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
 
_lateral_earth_pressure_(foundation engineering)
_lateral_earth_pressure_(foundation engineering)_lateral_earth_pressure_(foundation engineering)
_lateral_earth_pressure_(foundation engineering)
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of piles
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
 
Bearing capacity of Soil
Bearing capacity of SoilBearing capacity of Soil
Bearing capacity of Soil
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Geotechnical Engineering-I [Lec #9: Atterberg limits]
Geotechnical Engineering-I [Lec #9: Atterberg limits]Geotechnical Engineering-I [Lec #9: Atterberg limits]
Geotechnical Engineering-I [Lec #9: Atterberg limits]
 
Consolidation Properties
Consolidation PropertiesConsolidation Properties
Consolidation Properties
 
Class 7 Consolidation Test ( Geotechnical Engineering )
Class 7    Consolidation Test ( Geotechnical Engineering )Class 7    Consolidation Test ( Geotechnical Engineering )
Class 7 Consolidation Test ( Geotechnical Engineering )
 
Earth pressure( soil mechanics)
Earth pressure( soil mechanics)Earth pressure( soil mechanics)
Earth pressure( soil mechanics)
 
Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
 
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Soil slope stability
Soil slope stabilitySoil slope stability
Soil slope stability
 
Earth pressure
Earth pressureEarth pressure
Earth pressure
 
Examples on seepage
Examples on seepageExamples on seepage
Examples on seepage
 

Similar to Geotechnical Engineering-I [Lec #21: Consolidation Problems]

Geotechnical Engineering-I [Lec #22A: Consolidation Problem Sheet]
Geotechnical Engineering-I [Lec #22A: Consolidation Problem Sheet]Geotechnical Engineering-I [Lec #22A: Consolidation Problem Sheet]
Geotechnical Engineering-I [Lec #22A: Consolidation Problem Sheet]
Muhammad Irfan
 
Gte ii-readytoprint
Gte ii-readytoprintGte ii-readytoprint
Gte ii-readytoprint
jagadish108
 
Geotechnical Engineering-I [Lec #16: Soil Compaction - Practice Problems]
Geotechnical Engineering-I [Lec #16: Soil Compaction - Practice Problems]Geotechnical Engineering-I [Lec #16: Soil Compaction - Practice Problems]
Geotechnical Engineering-I [Lec #16: Soil Compaction - Practice Problems]
Muhammad Irfan
 
Gte set2used
Gte set2usedGte set2used
Gte set2used
jagadish108
 
Standard Compaction Test | Jameel Academy
Standard Compaction Test | Jameel AcademyStandard Compaction Test | Jameel Academy
Standard Compaction Test | Jameel Academy
Jameel Academy
 
Ground imrovement introduction
Ground imrovement   introductionGround imrovement   introduction
Ground imrovement introduction
Sanjay Thakare
 
Ce 6601 qb
Ce 6601 qbCe 6601 qb
Ce 6601 qb
KUTTYMA SRI
 
Gte ii-ready
Gte ii-readyGte ii-ready
Gte ii-ready
jagadish108
 
Gte ii-ready
Gte ii-readyGte ii-ready
Gte ii-ready
jagadish108
 
Building an Airport Over a Swamp, Mexico
Building an Airport Over a Swamp, MexicoBuilding an Airport Over a Swamp, Mexico
Building an Airport Over a Swamp, Mexico
Hilit Noy
 
Concrete mcq with ans.pdf
Concrete mcq with ans.pdfConcrete mcq with ans.pdf
Concrete mcq with ans.pdf
Roshani Shahi
 
Design construction and behavior of bored cast in situ concrete
Design construction and behavior of bored cast in situ concreteDesign construction and behavior of bored cast in situ concrete
Design construction and behavior of bored cast in situ concrete
Lữ Phát
 
Mokpo symposium pecker 2006
Mokpo symposium pecker 2006Mokpo symposium pecker 2006
Mokpo symposium pecker 2006gefyra-rion
 
Soil Bearing Capacity and Case study of Black Cotton Soil
Soil Bearing Capacity and Case study of Black Cotton SoilSoil Bearing Capacity and Case study of Black Cotton Soil
Soil Bearing Capacity and Case study of Black Cotton Soil
Praveen S.K
 
Shaft Grouting - Improving the capacity of bored piles by shaft grouting
Shaft Grouting - Improving the capacity of bored piles by shaft grouting Shaft Grouting - Improving the capacity of bored piles by shaft grouting
Shaft Grouting - Improving the capacity of bored piles by shaft grouting
Nam N.N Tran M.Eng, PMP
 
Ex 8 standard proctor test
Ex 8 standard proctor testEx 8 standard proctor test
Ex 8 standard proctor test
bhimaji40
 
Effect of encasement length on geosynthetic reinforced stone columns
Effect of encasement length on geosynthetic reinforced stone columnsEffect of encasement length on geosynthetic reinforced stone columns
Effect of encasement length on geosynthetic reinforced stone columns
eSAT Publishing House
 
Compacting Factor Test
Compacting Factor TestCompacting Factor Test
Compacting Factor Test
XinYee Khoo
 

Similar to Geotechnical Engineering-I [Lec #21: Consolidation Problems] (20)

Geotechnical Engineering-I [Lec #22A: Consolidation Problem Sheet]
Geotechnical Engineering-I [Lec #22A: Consolidation Problem Sheet]Geotechnical Engineering-I [Lec #22A: Consolidation Problem Sheet]
Geotechnical Engineering-I [Lec #22A: Consolidation Problem Sheet]
 
Gte ii-readytoprint
Gte ii-readytoprintGte ii-readytoprint
Gte ii-readytoprint
 
Geotechnical Engineering-I [Lec #16: Soil Compaction - Practice Problems]
Geotechnical Engineering-I [Lec #16: Soil Compaction - Practice Problems]Geotechnical Engineering-I [Lec #16: Soil Compaction - Practice Problems]
Geotechnical Engineering-I [Lec #16: Soil Compaction - Practice Problems]
 
Gte set2used
Gte set2usedGte set2used
Gte set2used
 
Standard Compaction Test | Jameel Academy
Standard Compaction Test | Jameel AcademyStandard Compaction Test | Jameel Academy
Standard Compaction Test | Jameel Academy
 
Ground imrovement introduction
Ground imrovement   introductionGround imrovement   introduction
Ground imrovement introduction
 
Ce 6601 qb
Ce 6601 qbCe 6601 qb
Ce 6601 qb
 
Vacuum concrete
Vacuum concreteVacuum concrete
Vacuum concrete
 
Gte ii-ready
Gte ii-readyGte ii-ready
Gte ii-ready
 
Gte ii-ready
Gte ii-readyGte ii-ready
Gte ii-ready
 
Building an Airport Over a Swamp, Mexico
Building an Airport Over a Swamp, MexicoBuilding an Airport Over a Swamp, Mexico
Building an Airport Over a Swamp, Mexico
 
Concrete mcq with ans.pdf
Concrete mcq with ans.pdfConcrete mcq with ans.pdf
Concrete mcq with ans.pdf
 
Design construction and behavior of bored cast in situ concrete
Design construction and behavior of bored cast in situ concreteDesign construction and behavior of bored cast in situ concrete
Design construction and behavior of bored cast in situ concrete
 
Mokpo symposium pecker 2006
Mokpo symposium pecker 2006Mokpo symposium pecker 2006
Mokpo symposium pecker 2006
 
Soil Bearing Capacity and Case study of Black Cotton Soil
Soil Bearing Capacity and Case study of Black Cotton SoilSoil Bearing Capacity and Case study of Black Cotton Soil
Soil Bearing Capacity and Case study of Black Cotton Soil
 
Lisbonne
LisbonneLisbonne
Lisbonne
 
Shaft Grouting - Improving the capacity of bored piles by shaft grouting
Shaft Grouting - Improving the capacity of bored piles by shaft grouting Shaft Grouting - Improving the capacity of bored piles by shaft grouting
Shaft Grouting - Improving the capacity of bored piles by shaft grouting
 
Ex 8 standard proctor test
Ex 8 standard proctor testEx 8 standard proctor test
Ex 8 standard proctor test
 
Effect of encasement length on geosynthetic reinforced stone columns
Effect of encasement length on geosynthetic reinforced stone columnsEffect of encasement length on geosynthetic reinforced stone columns
Effect of encasement length on geosynthetic reinforced stone columns
 
Compacting Factor Test
Compacting Factor TestCompacting Factor Test
Compacting Factor Test
 

More from Muhammad Irfan

Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Muhammad Irfan
 

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
 

Recently uploaded

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 

Recently uploaded (20)

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 

Geotechnical Engineering-I [Lec #21: Consolidation Problems]

  • 1. 1 Geotechnical Engineering–I [CE-221] BSc Civil Engineering – 4th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/2016session-geotech-i Lecture # 21 10-Apr-2018
  • 2. 2 CONSOLIDATION – SUMMARY H e e Ssettlement o c    1  = ’ + u         VC HT t 2 %60; 1004 2        ufor u T  %60 );100(log933.0781.1 10   ufor uT AG W H wS S S    S SwS W WAGH e   )( 0  1 2log p p e CC          HHVV mV                ' '' log 1 vo vo o c c e C HS                  ' '' log 1 vo vo o r c e C HS                                 ' '' log 1' ' log 1 p vo o c vo p o r c e C H e C HS     For NCC For OCC If OCC is loaded beyond σp’ )10(009.0  LLCC Cr CC  1.0 Terzaghi & Peck (1948)
  • 3. 3 Practice Problem #1 Practice Problem #2 A clay layer 10’ thick had initial void ratio 1.4 and LL = 60%. Find change in thickness of clay layer if pressure is increased from 1 ton/ft2 to 1.52 ton/ft2. A consolidation test was performed on a sample with initial dimensions of H = 20 mm and ring diameter = 63 mm. At the end of test, the sample height was 13.3 mm and the oven dry weight of soil was 78.3 g. Assuming Gs = 2.66, find: (i) The initial void ratio, eo (ii) Final void ratio, ef (iii) Total sample strain εf
  • 4. 4 Practice Problem #3 A saturated specimen of clay had undergone consolidation under a pressure of 2 kg/cm2 in an oedometer test. Thickness of the specimen was found to be 21.18 mm and its water content 12%. Subsequently with a further increase in pressure 1 kg/cm2, the thickness of the specimen at the end of 24 hours was reduced by 1.18 mm. From these data, compute the coefficient of volume compressibility and compression index of the soil assuming Gs = 2.7.
  • 5. 5 Practice Problem #4 Practice Problem #5 At a certain depth below the foundation of a building there exists a clay layer of thickness 10 m. Above and below the clay layer there are incompressible permeable soils. In a consolidation test on the clay sample with drainage at top and bottom, a sample with initial thickness 2.54 cm was compressed under a steady pressure. Half of the final settlement took place in 10 minutes after the application of pressure. Find how long it will take for the settlement of the building to reach 50% of its ultimate value? If the clay layer had drainage only from top, what would be the settlement time for 50% consolidation? A clay layer, whose total settlement under a given loading is expected to be 12 cm settles 3 cm at the end of 1 month after the application of load increment. How many months will be required to reach a settlement of 6 cm? How much settlement will occur in 10 months? Assume the layer to have double drainage.
  • 6. 6 Practice Problem #6 How many days will be required by a clay stratum 5 m thick, draining at both ends with an average value of coefficient of consolidation Cv = 40x10-4 cm2/sec to attain 50% of its ultimate settlement.
  • 7. 7 Practice Problem #7 Given: When the total pressure acting at mid height of a consolidating clay layer is 200 kN/m2, the corresponding void ratio of the clay is 0.98. When the total pressure acting at the same location is 500 kN/m2, the corresponding void ratio decreases to 0.81. Required: The void ratio of the clay if the total pressure acting at mid height of the consolidating clay layer is 1000 kN/m2.
  • 9. 9 Practice Problem #8 A stratum of normally loaded clay of 7m thick is located at a depth of 12m below ground level. The natural moisture content of the clay is 43% and its liquid limit is 48%. The specific gravity of the solid particles is 2.76. The water table is located at a depth of 5m below the ground surface. The soil is sand above the clay stratum. The submerged unit weight of the sand is 11 kN/m3 and the same weighs 18kN/m3 above the water table. The bulk unit weight of the clay is 19.5 kN/m3. The average increase in pressure at the center of the clay stratum is 120 kN/m2 due to the weight of a building that will be constructed on the sand above the clay stratum. Estimate the expected settlement of the structure.
  • 12. 12 CONCLUDED REFERENCE MATERIAL Principles of Geotechnical Engineering – (7th Edition) Braja M. Das Chapter #11 An Introduction to Geotechnical Engineering (2nd Edition) By R. D. Holtz, W. D. Kovacs and T. C. Sheahan Chapter #8 & 9