SlideShare a Scribd company logo
1 of 46
Matrix Method for Beam
A simple beam example with two degree of freedom
 Each node of the beam will have two degrees of freedom:
a vertical displacement (corresponding to shear) and
a rotation (corresponding to bending moment)
•In this method counterclockwise (anticlockwise) moments and counter-clockwise rotations
are taken as positive
• Hence, there are two nodes and 4 degrees of freedom for a beam element.
resulting stiffness matrix is of the order 4x4
Stiffness matrix
• The elements of the stiffness matrix indicate the forces exerted on
the member by the restraints at the ends of the member when
unit displacements are imposed at each DOF of the member.
Impart unit displacement at 1: see the reaction force at other DOF (figure 1)
Impart unit displacement at 3:see the reaction at other DOF (figure 2)
Member stiffness
6EI/L2: moment developed due to unit displacement at 1,
moment AT X-Y plane (positive z direction)
Provide unit displacement at translation DOF (1,3)
3 3
2 2
3 3
2 2
12 12
0 0
6 6
0 0
12 12
0 0
6 6
0 0
EI EI
L L
EI EI
L L
K
EI EI
L L
EI EI
L L
 
 
 
 
 
  
 
 
 
 
 
1DOF: Translation at node 1
3: translation at Node 2
2 DOF: rotation at node 1
4: Rotation at node 2
*Note that 1 and 3 column ( corresponding to 1 &3dof) is filled
• The elements of the stiffness matrix indicate the forces exerted on the
member by the restraints at the ends of the member when unit displacements
are imposed at each DOF of the member.
+ Force: Upward
+ Moment: anti clockwise
Provide unit displacement at translation DOF (1,3)
3 3
2 2
3 3
2 2
12 12
0 0
6 6
0 0
12 12
0 0
6 6
0 0
EI EI
L L
EI EI
L L
K
EI EI
L L
EI EI
L L
 
 
 
 
 
  
 
 
 
 
 
1DOF: Translation at node 1
3: translation at Node 2
2 DOF: rotation at node 1
4: Rotation at node 2
*Note that 1 and 3 column ( corresponding to 1 &3dof) is filled
+ Force: Upward
+ Moment: anti clockwise
12EI/L3: restrained action developed in the direction of translation
6EI/L2: moment developed due to unit displacement at 1, moment AT X-Y plane
(positive z direction)
Due to unit rotation at node j, resisting moment (4EI/L) will
developed, the direction of moment will be z, (moment will act in x-y
plane), 6EI/L2 :Reactive force will developed at j
• The elements of the stiffness matrix indicate the forces exerted on
the member by the restraints at the ends of the member when
unit displacements are imposed at each DOF of the member.
• KAA is the moment require for unit rotation at A
• KBA is the moment Developed at B due to unit rotation at A
2 2
2 2
6 6
0 0
4 2
0 0
6 6
0 0
2 4
0 0
EI EI
L L
EI EI
L L
K
EI EI
L L
EI EI
L L
 
 
 
 
 
  
  
 
 
 
 
Provide unit Rotation at Rotational DOF (2,4)
*Note that 2 and 4 column ( corresponding to 3 &4 dof) is filled
Combination
3 2 3 2
2 2
3 2 3 2
2 2
12 6 12 6
6 4 6 2
12 6 12 6
6 2 6 4
EI EI EI EI
L L L L
EI EI EI EI
L L L L
K
EI EI EI EI
L L L L
EI EI EI EI
L L L L
 
 
 
 
 
  
   
 
 
 
 
3 3 2 2
2 2
3 3 2 2
2 2
12 12 6 6
0 0 0 0
6 6 4 2
0 0 0 0
12 12 6 6
0 0 0 0
6 6 2 4
0 0 0 0
EI EI EI EI
L L L L
EI EI EI EI
L L L L
K
EI EI EI EI
L L L L
EI EI EI EI
L L L L
   
   
   
   
   
    
     
   
   
   
   
Stiffness matrix for a beam Element
For the beam element, One column has a stiffness values correspond to two different
degrees of freedom (u and θ) and the equilibrium of two different DoF is not defined and
therefore the sum of every single column of the element stiffness matrix will never be
zero.
We need to consider the fixed end moment that is acting on the beam
Load in Beam
• Load directly acting at the joint: as load vector
• Load on the member: when the load acting on the member then
the load can be taken into account by calculating fixed end action
(Shearing force and bending moment)
• Fixed end action ((Shearing force and bending moment)) can be
transformed into joint loads along with actual load acting at the
joint as follows
            
      
      
1
:
:
EA EA
EM
EF
f K x f x K f f
for momnet
M K f
for force
F K U f


    
 
 
Solution Steps
 Step1 : find the global stiffness matrix
 SteP 2: Load: two types
(i) active force acting at the joint
(ii) if the load act on the member( in between the joint): load needs to
convert equivalent joint end (fixed end action) consider it as active force
      EAF K U f 
 Step3: Now solve for reaction: (two part):
Part1 : FD (force obtained from force-deformation relation)
Part 2: fixed end moment (FE)
So total reaction: FR= FD – Ftotal
            1
EA EAf K x f x K f f

    
P=100, EI=1000, L=1
Fixed end action (Equivalent joint load)
0
0
4
34 2
2
;
8
8
4
0 2
2
0
8
8
FA
P
PLP
PL P
P
P PLF PL
PL
P
P
PL
PL
 
   
    
    
    
    
       
       
     
     
     
     
           
 
(Fixedend action)re
Equivalent nodalload
4 40
3 30
2 20
8 8
0
2 2
8 8
EA T
P P
PL PL
P P
F F F PL PL
PL PL
P
P P
P
PL PL
   
   
   
    
    
    
        
         
      
     
          
   
   
      
3 2 3 2
2 2
3 2 3 2
2 2
12 6 12 6
6 4 6 2
12 6 12 6
6 2 6 4
EI EI EI EI
L L L L
EI EI EI EI
L L L L
K
EI EI EI EI
L L L L
EI EI EI EI
L L L L
 
 
 
 
 
  
   
 
 
 
 
3 2 3 2
2 2
3 2 3 3 2 2 3 2
2 2 2 2
3 2 3 2
2
12 6 12 6
0 0
6 4 6 2
0 0
12 6 12 12 6 6 12 6
6 2 6 6 4 4 6 2
12 6 12 6
0 0
6 2
0 0
G
EI EI EI EI
L L L L
EI EI EI EI
L L L L
EI EI EI EI EI EI EI EI
L L L L L L L L
K
EI EI EI EI EI EI EI EI
L L L L L L L L
EI EI EI EI
L L L L
EI EI
L


   
        
   

   
      
   
  
2
6 4EI EI
L L L
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 4 2
2 4
GR
EI EI EI
L L L
K
EI EI
L L
  
  
  
 
  
4
3
2
8
2
8
Total
P
PL
P
F PL
PL
P
P
PL
 
 
 
 
 
 
  
  
 
 
 
 
 
 
  
8
8
R
PL
PL
F
PL
 
  
  
 
  
Reduced Global Matrix Reduced Global Force Vector
P=100, EI=1000, L=1
4 4 2
2 4
GR
EI EI EI
L L L
K
EI EI
L L
  
  
  
 
  
8
8
R
PL
PL
F
PL
 
  
  
 
  
P=100, EI=1000, L=1
4
6
900
8000 2000 112.58
2000 4000 100 12.5
8
U
U
 
      
       
      
  
4 0.0152
6 0.0045
U
U
   
   
   
Reaction
3 2 3 2
2 2
3 2 3 3 2 2 3 2
2 2 2 2
3 2 3 2
2
12 6 12 6
0 0
6 4 6 2
0 0
12 6 12 12 6 6 12 6
6 2 6 6 4 4 6 2
12 6 12 6
0 0
6 2
0 0
G
EI EI EI EI
L L L L
EI EI EI EI
L L L L
EI EI EI EI EI EI EI EI
L L L L L L L L
K
EI EI EI EI EI EI EI EI
L L L L L L L L
EI EI EI EI
L L L L
EI EI
L


   
        
   

   
      
   
  
2
6 4EI EI
L L L
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
0
0
0.0152
0
0.0045
U
 
 
 
 
  
 
 
 
 
Reaction = FD -Ftotal
FD= KU FD= force obtained from force deformation relation
Reaction at support
    
 
6
0.0152
2
0.0152
6
0 0.0152 0.0045
8 2
0.0152 0.0045
6 6
0.0152 0.0045
2 4
0.0152 0.0045
D
EI
L
EI
L
EI
L
f K x
EI EI
L L
EI EI
L L
EI EI
L L
 
 
 
 
 
 
      
   
             
    
 
            
    

          
     



P=100, EI=1000, L=1
   
   
   
   
6000 0.0152 91.2
2000 0.0152 30.4
0 0.0152 6000 0.0045 27
8000 0.0152 2000 0.0045 112.6
6000 0.0152 6000 0.0045 64.2
2000 0.0152 4000 0.0045 12.4
   
   
   
       
   
      
         
   
       
Reaction at the support can be obtained by subtracting the (Ftotal) from the reaction
coming from the force deformation relation (FD)
          EA D EAf K x f f f   
Considering First Term
41
32
23
4
8
5
6 2
8
P
PL
f
Pf
f
Kx PL
f PL
f P
P
f
PL
 
 
 
   
   
   
   
    
    
   
   
   
 
 
 
          EA D EAf K x f f f   
 
91.2
30.4
27
112.6
64.2
12.4
Df Kx
 
 
 
 
   
 
 
 
 
1 91.2 100
2 30.4 25
3 27 150
4 100 112.6 12.5
5 100 64.2 50
6 12.4 12.5
1 191.2
2 55.4
3 123
4 0
5 114.2
6 0
f
f
f
f
f
f
f
f
f
f
f
f
     
     
     
     
      
      
      
     
     
   
   
   
   
   
   
   
   
   
Page 191, weave and Gere
K = zeros(2,2);
U = zeros(2,1);
F = zeros(2,1);
K(1,1)=8000;
K(2,1)=2000;
K(1,2)=2000;
K(2,2)=4000;
F(1,1)=112.5;
F(2,1)=12.5;
U = KF
p=100;
EI=1000;
L=1;
u1=-5*p*L*L/(EI*112);
Find the displacement and forces using Matrix
method and Draw SFD and BMD
          EA D EAf K x f f f   
For the beam shown, use the stiffness method to:
(a) Determine the deflection and rotation at B.
(b) Determine all the reactions at supports.
(c) Draw the quantitative shear and bending moment diagrams.
(a) Determine the deflection and rotation at B.
(b) Determine all the reactions at supports.
(c) Draw the quantitative shear and bending moment diagrams.
Fixed End Moment
 
4.5
6.75
4.5 5
6.75 3.75
5
3.75
EAf
 
 
 
 
 
  
 
 
 
3 2 3 2
1 1 1 1
2 2
1 1 1 1
3 2 3 3 2 2 3 2
1 1 1 2 1 2 2 2
2 2 2 2
1 1 1 2 1 2 2 2
3
2
12 6 12 6
0 0
6 4 6 2
0 0
12 6 12 12 6 6 12 6
6 2 6 6 4 4 6 2
12 6
0 0
G
EI EI EI EI
L L L L
EI EI EI EI
L L L L
EI EI EI EI EI EI EI EI
L L L L L L L L
K
EI EI EI EI EI EI EI EI
L L L L L L L L
EI E
L


   
        
   

   
      
   
  2 3 2
2 2 2
2 2
2 2 2 2
12 6
6 2 6 4
0 0
I EI EI
L L L
EI EI EI EI
L L L L
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.5
6.75
4.5 5
6.75 3.75
5
3.75
EAf
 
 
 
 
 
  
 
 
 
 
4.5
6.75
4.5 5
6.75 3.75
5
3.75
EAf
 
 
 
 
  
  
 
 
 
41 2 2
6
2 2
1
4 1 2 2
6
2 2
4 4 2
0 3
0 3.752 4
4 4 2
3
3.752 4
EI EI EI
xL L L
xEI EI
L L
EI EI EI
x L L L
x EI EI
L L

  
  
                  
 
  
  
  
            
 
  
 
4.5
6.75
4.5 5
6.75 3.75
5
3.75
EAf
 
 
 
 
  
  
 
 
 
4
6
0.779 /
2.423 /
bx EI
x c EI


     
      
     
3 2 3 2
1 1 1 1
2 2
1 1 1 1
3 2 3 3 2 2 3 2
1 1 1 2 1 2 2 2
2 2 2
1 1 1 2
12 6 12 6
0 0
6 4 6 2
0 0
12 6 12 12 6 6 12 6
6 2 6 6
1
2
3
4
5
6
EI EI EI EI
L L L L
EI EI EI EI
L L L L
EI EI EI EI EI EI EI EI
L L L L L L L L
EI EI EI EI
L L L L
f
f
f
f
f
f
  
 
 
  
 
 
              
     
 
    
 
 
 
 
 
  
2
1 2 2 2
3 2 3 2
2 2 2 2
2 2
2 2 2 2
0
0
0
0.779
4 4 6 2
0
12 6 12 6
0 0
6 2 6 4
0 0
2.423
4.5
6.75
9.5
EI EI EI EI EI
L L L L
EI EI EI EI
L L L L
EI EI EI EI
L L L L EI
  
  
  
  
  
  
  
  
    
  
                   
       
  
  
   
    
3
5
3.75
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  


reaction
6
0.779
2
9
2
0.779
9
1 4.6
0 0.779 2.423
2 2
3
3
4 4 24
0.779 2.423
5 3
9 3
6
6
6
0.779 2.423
2 23
3
2 4
0.779 2.423
3 3
f
f
f
f
f
f


  
 
   
    
  
   
   
  
 
 
 
 
 
 
 
 
 
   
   
   
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
5
6.75
9.5
3
5
3.75


 
 
 
 
 
 
 
1 4.557 4.557
2 6.923 6.923
3 11.115 11.115
4 3 3 0
5 2.134 2.134
6 3.75 3.75 0
f
f
f
f
f
f
     
     
     
     
      
     
     
     
     
1 4.557 4.557
2 6.923 6.923
3 11.115 11.115
4 3 3 0
5 2.134 2.134
6 3.75 3.75 0
f
f
f
f
f
f
     
     
     
     
      
     
     
     
     
To get the reaction take moment
about node 1:
6.92-6.4-1*9*4.5=R2x9
R2=4.44
R1=9-4.44=4.56
1 4.557 4.557
2 6.923 6.923
3 11.115 11.115
4 3 3 0
5 2.134 2.134
6 3.75 3.75 0
f
f
f
f
f
f
     
     
     
     
      
     
     
     
     
To get the reaction take moment
about node 1:
6.92-6.4-1*9*4.5=R2x9
R2=4.44
R1=9-4.44=4.56
Q3
P=1000=P2y
M1=1000 N-m=M2
L1=1m=L2
(EI)=1000
(EI)2=2000
W=100 N per meter length
Find the deflection and support reaction at both the end
End beam Matrix method
Conjugate beam Method and Carry over factor
Conjugate beam
Now consider a determinate beam, subjected to
moment M’ at end B and assume that rotation
(θA2, θB2)occur due to applied moment M’
First consider SS beam and apply
moment ‘M’ at A and draw
conjugate beam diagram
Conclusion
if a positive moment ‘M’ is applied to the hinged end of a beam then a positive moment of
(M/2) will be transferred to the fixed end
Support settlement
Alternate:
• Such support settlements induce fixed end moments in the beams
so as to hold the end slopes of the members as zero
• Applied load is zero, so fixed end
moment is Mf=0
• No rotation pure translation so θA,
θB =0
• MAB=-(6EI/L)Δ
• MBA= =(6EI/L)Δ
3 3 2 2
2 2
3 3 2 2
2 2
3 2 3 2
2 2
3
12 12 6 6
0 0 0 0
6 6 4 2
0 0 0 0
12 12 6 6
0 0 0 0
6 6 2 4
0 0 0 0
12 6 12 6
6 4 6 2
12 6
EI EI EI EI
L L L L
EI EI EI EI
L L L L
K
EI EI EI EI
L L L L
EI EI EI EI
L L L L
EI EI EI EI
L L L L
EI EI EI EI
L L L LK
EI E
L
   
   
   
   
   
    
     
   
   
   
   


  2 3 2
2 2
12 6
6 2 6 4
I EI EI
L L L
EI EI EI EI
L L L L
 
 
 
 
 
 
 
 
 
 
 
FINITE ELEMENT ANALYSIS UNIT - II
https://www.slideshare.net/ASHOKKUMAR27088700/me6603-finite-element-
analysis-unit-ii-notes-and-question-bank

More Related Content

What's hot

Designing a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - Webinar
Designing a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - WebinarDesigning a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - Webinar
Designing a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - WebinarClearCalcs
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular rahul183
 
Post tensioned slabs design fundamentals anas alakhras
Post tensioned slabs design fundamentals anas alakhrasPost tensioned slabs design fundamentals anas alakhras
Post tensioned slabs design fundamentals anas alakhrasAnass Alakhrass MSCEng,PMP,RMP
 
Buckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresBuckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresMahdi Damghani
 
Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5propaul
 
Structural Analysis - Virtual Work Method
Structural Analysis - Virtual Work MethodStructural Analysis - Virtual Work Method
Structural Analysis - Virtual Work MethodLablee Mejos
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Wind Design to AS/NZ 1170.2 Webinar Slides - ClearCalcs
Wind Design to AS/NZ 1170.2 Webinar Slides - ClearCalcsWind Design to AS/NZ 1170.2 Webinar Slides - ClearCalcs
Wind Design to AS/NZ 1170.2 Webinar Slides - ClearCalcsClearCalcs
 
Response Spectrum
Response SpectrumResponse Spectrum
Response SpectrumTeja Ande
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodAnas Share
 
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3propaul
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shellneikrof
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatWajahat Ullah
 
Steel Design to AS4100 1998 (+A1,2016) Webinar - ClearCalcs
Steel Design to AS4100 1998 (+A1,2016) Webinar - ClearCalcsSteel Design to AS4100 1998 (+A1,2016) Webinar - ClearCalcs
Steel Design to AS4100 1998 (+A1,2016) Webinar - ClearCalcsClearCalcs
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holePraditaFirmansyah
 

What's hot (20)

Designing a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - Webinar
Designing a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - WebinarDesigning a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - Webinar
Designing a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - Webinar
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Post tensioned slabs design fundamentals anas alakhras
Post tensioned slabs design fundamentals anas alakhrasPost tensioned slabs design fundamentals anas alakhras
Post tensioned slabs design fundamentals anas alakhras
 
5. stress function
5.  stress function5.  stress function
5. stress function
 
Buckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresBuckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structures
 
Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5
 
Structural Analysis - Virtual Work Method
Structural Analysis - Virtual Work MethodStructural Analysis - Virtual Work Method
Structural Analysis - Virtual Work Method
 
Strain energy
Strain energyStrain energy
Strain energy
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
 
Modelling and finite element analysis: Question Papers
Modelling and finite element analysis: Question PapersModelling and finite element analysis: Question Papers
Modelling and finite element analysis: Question Papers
 
Wind Design to AS/NZ 1170.2 Webinar Slides - ClearCalcs
Wind Design to AS/NZ 1170.2 Webinar Slides - ClearCalcsWind Design to AS/NZ 1170.2 Webinar Slides - ClearCalcs
Wind Design to AS/NZ 1170.2 Webinar Slides - ClearCalcs
 
Response Spectrum
Response SpectrumResponse Spectrum
Response Spectrum
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
Steel Design to AS4100 1998 (+A1,2016) Webinar - ClearCalcs
Steel Design to AS4100 1998 (+A1,2016) Webinar - ClearCalcsSteel Design to AS4100 1998 (+A1,2016) Webinar - ClearCalcs
Steel Design to AS4100 1998 (+A1,2016) Webinar - ClearCalcs
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_hole
 
Unit 2 stresses in composite sections
Unit 2  stresses in composite sectionsUnit 2  stresses in composite sections
Unit 2 stresses in composite sections
 

Similar to Method for beam 20 1-2020

Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationmayur1347
 
Tính tần số riêng của dầm
Tính tần số riêng của dầm Tính tần số riêng của dầm
Tính tần số riêng của dầm Chieu Hua
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_methodMahdi Damghani
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solutionMOHANRAJ PHYSICS
 
Kites team l2
Kites team l2Kites team l2
Kites team l2aero103
 
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualFeedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualDakotaFredericks
 
Strength of Materials
Strength of MaterialsStrength of Materials
Strength of MaterialsAditya .
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionAlexander Litvinenko
 
Electron diffraction: Tutorial with exercises and solutions (EMAT Workshop 2017)
Electron diffraction: Tutorial with exercises and solutions (EMAT Workshop 2017)Electron diffraction: Tutorial with exercises and solutions (EMAT Workshop 2017)
Electron diffraction: Tutorial with exercises and solutions (EMAT Workshop 2017)Joke Hadermann
 
Lecture 2.pdf
Lecture 2.pdfLecture 2.pdf
Lecture 2.pdfYesuf3
 
App E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfApp E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfpingu111
 
Lecture 8- Rigid Bodies- Equilibrium 3D.ppt
Lecture 8- Rigid Bodies- Equilibrium 3D.pptLecture 8- Rigid Bodies- Equilibrium 3D.ppt
Lecture 8- Rigid Bodies- Equilibrium 3D.pptShvanHakim1
 
Chapter 2 basic structure concepts
Chapter 2  basic structure conceptsChapter 2  basic structure concepts
Chapter 2 basic structure conceptsSimon Foo
 

Similar to Method for beam 20 1-2020 (20)

Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
Tính tần số riêng của dầm
Tính tần số riêng của dầm Tính tần số riêng của dầm
Tính tần số riêng của dầm
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_method
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
FSI_plate.pptx
FSI_plate.pptxFSI_plate.pptx
FSI_plate.pptx
 
Kites team l2
Kites team l2Kites team l2
Kites team l2
 
Trial
TrialTrial
Trial
 
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualFeedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
 
Ch12 ssm
Ch12 ssmCh12 ssm
Ch12 ssm
 
Strength of Materials
Strength of MaterialsStrength of Materials
Strength of Materials
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Slides
SlidesSlides
Slides
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
Angular momentum
Angular momentumAngular momentum
Angular momentum
 
Mte 583 class 18b
Mte 583 class 18bMte 583 class 18b
Mte 583 class 18b
 
Electron diffraction: Tutorial with exercises and solutions (EMAT Workshop 2017)
Electron diffraction: Tutorial with exercises and solutions (EMAT Workshop 2017)Electron diffraction: Tutorial with exercises and solutions (EMAT Workshop 2017)
Electron diffraction: Tutorial with exercises and solutions (EMAT Workshop 2017)
 
Lecture 2.pdf
Lecture 2.pdfLecture 2.pdf
Lecture 2.pdf
 
App E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfApp E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdf
 
Lecture 8- Rigid Bodies- Equilibrium 3D.ppt
Lecture 8- Rigid Bodies- Equilibrium 3D.pptLecture 8- Rigid Bodies- Equilibrium 3D.ppt
Lecture 8- Rigid Bodies- Equilibrium 3D.ppt
 
Chapter 2 basic structure concepts
Chapter 2  basic structure conceptsChapter 2  basic structure concepts
Chapter 2 basic structure concepts
 

Recently uploaded

HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 

Recently uploaded (20)

★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 

Method for beam 20 1-2020

  • 2. A simple beam example with two degree of freedom  Each node of the beam will have two degrees of freedom: a vertical displacement (corresponding to shear) and a rotation (corresponding to bending moment) •In this method counterclockwise (anticlockwise) moments and counter-clockwise rotations are taken as positive • Hence, there are two nodes and 4 degrees of freedom for a beam element. resulting stiffness matrix is of the order 4x4
  • 3. Stiffness matrix • The elements of the stiffness matrix indicate the forces exerted on the member by the restraints at the ends of the member when unit displacements are imposed at each DOF of the member. Impart unit displacement at 1: see the reaction force at other DOF (figure 1) Impart unit displacement at 3:see the reaction at other DOF (figure 2)
  • 4. Member stiffness 6EI/L2: moment developed due to unit displacement at 1, moment AT X-Y plane (positive z direction)
  • 5. Provide unit displacement at translation DOF (1,3) 3 3 2 2 3 3 2 2 12 12 0 0 6 6 0 0 12 12 0 0 6 6 0 0 EI EI L L EI EI L L K EI EI L L EI EI L L                        1DOF: Translation at node 1 3: translation at Node 2 2 DOF: rotation at node 1 4: Rotation at node 2 *Note that 1 and 3 column ( corresponding to 1 &3dof) is filled • The elements of the stiffness matrix indicate the forces exerted on the member by the restraints at the ends of the member when unit displacements are imposed at each DOF of the member. + Force: Upward + Moment: anti clockwise
  • 6. Provide unit displacement at translation DOF (1,3) 3 3 2 2 3 3 2 2 12 12 0 0 6 6 0 0 12 12 0 0 6 6 0 0 EI EI L L EI EI L L K EI EI L L EI EI L L                        1DOF: Translation at node 1 3: translation at Node 2 2 DOF: rotation at node 1 4: Rotation at node 2 *Note that 1 and 3 column ( corresponding to 1 &3dof) is filled + Force: Upward + Moment: anti clockwise 12EI/L3: restrained action developed in the direction of translation 6EI/L2: moment developed due to unit displacement at 1, moment AT X-Y plane (positive z direction)
  • 7. Due to unit rotation at node j, resisting moment (4EI/L) will developed, the direction of moment will be z, (moment will act in x-y plane), 6EI/L2 :Reactive force will developed at j
  • 8. • The elements of the stiffness matrix indicate the forces exerted on the member by the restraints at the ends of the member when unit displacements are imposed at each DOF of the member. • KAA is the moment require for unit rotation at A • KBA is the moment Developed at B due to unit rotation at A
  • 9. 2 2 2 2 6 6 0 0 4 2 0 0 6 6 0 0 2 4 0 0 EI EI L L EI EI L L K EI EI L L EI EI L L                         Provide unit Rotation at Rotational DOF (2,4) *Note that 2 and 4 column ( corresponding to 3 &4 dof) is filled
  • 10. Combination 3 2 3 2 2 2 3 2 3 2 2 2 12 6 12 6 6 4 6 2 12 6 12 6 6 2 6 4 EI EI EI EI L L L L EI EI EI EI L L L L K EI EI EI EI L L L L EI EI EI EI L L L L                          3 3 2 2 2 2 3 3 2 2 2 2 12 12 6 6 0 0 0 0 6 6 4 2 0 0 0 0 12 12 6 6 0 0 0 0 6 6 2 4 0 0 0 0 EI EI EI EI L L L L EI EI EI EI L L L L K EI EI EI EI L L L L EI EI EI EI L L L L                                               
  • 11. Stiffness matrix for a beam Element For the beam element, One column has a stiffness values correspond to two different degrees of freedom (u and θ) and the equilibrium of two different DoF is not defined and therefore the sum of every single column of the element stiffness matrix will never be zero.
  • 12. We need to consider the fixed end moment that is acting on the beam
  • 13. Load in Beam • Load directly acting at the joint: as load vector • Load on the member: when the load acting on the member then the load can be taken into account by calculating fixed end action (Shearing force and bending moment) • Fixed end action ((Shearing force and bending moment)) can be transformed into joint loads along with actual load acting at the joint as follows                            1 : : EA EA EM EF f K x f x K f f for momnet M K f for force F K U f           
  • 14. Solution Steps  Step1 : find the global stiffness matrix  SteP 2: Load: two types (i) active force acting at the joint (ii) if the load act on the member( in between the joint): load needs to convert equivalent joint end (fixed end action) consider it as active force       EAF K U f   Step3: Now solve for reaction: (two part): Part1 : FD (force obtained from force-deformation relation) Part 2: fixed end moment (FE) So total reaction: FR= FD – Ftotal             1 EA EAf K x f x K f f      
  • 16. Fixed end action (Equivalent joint load) 0 0 4 34 2 2 ; 8 8 4 0 2 2 0 8 8 FA P PLP PL P P P PLF PL PL P P PL PL                                                                                 (Fixedend action)re Equivalent nodalload 4 40 3 30 2 20 8 8 0 2 2 8 8 EA T P P PL PL P P F F F PL PL PL PL P P P P PL PL                                                                                     
  • 17. 3 2 3 2 2 2 3 2 3 2 2 2 12 6 12 6 6 4 6 2 12 6 12 6 6 2 6 4 EI EI EI EI L L L L EI EI EI EI L L L L K EI EI EI EI L L L L EI EI EI EI L L L L                          3 2 3 2 2 2 3 2 3 3 2 2 3 2 2 2 2 2 3 2 3 2 2 12 6 12 6 0 0 6 4 6 2 0 0 12 6 12 12 6 6 12 6 6 2 6 6 4 4 6 2 12 6 12 6 0 0 6 2 0 0 G EI EI EI EI L L L L EI EI EI EI L L L L EI EI EI EI EI EI EI EI L L L L L L L L K EI EI EI EI EI EI EI EI L L L L L L L L EI EI EI EI L L L L EI EI L                                       2 6 4EI EI L L L                                  
  • 18. 4 4 2 2 4 GR EI EI EI L L L K EI EI L L               4 3 2 8 2 8 Total P PL P F PL PL P P PL                                  8 8 R PL PL F PL              Reduced Global Matrix Reduced Global Force Vector P=100, EI=1000, L=1
  • 19. 4 4 2 2 4 GR EI EI EI L L L K EI EI L L               8 8 R PL PL F PL              P=100, EI=1000, L=1 4 6 900 8000 2000 112.58 2000 4000 100 12.5 8 U U                            4 0.0152 6 0.0045 U U            
  • 20. Reaction 3 2 3 2 2 2 3 2 3 3 2 2 3 2 2 2 2 2 3 2 3 2 2 12 6 12 6 0 0 6 4 6 2 0 0 12 6 12 12 6 6 12 6 6 2 6 6 4 4 6 2 12 6 12 6 0 0 6 2 0 0 G EI EI EI EI L L L L EI EI EI EI L L L L EI EI EI EI EI EI EI EI L L L L L L L L K EI EI EI EI EI EI EI EI L L L L L L L L EI EI EI EI L L L L EI EI L                                       2 6 4EI EI L L L                                     0 0 0 0.0152 0 0.0045 U                    Reaction = FD -Ftotal FD= KU FD= force obtained from force deformation relation
  • 21. Reaction at support        6 0.0152 2 0.0152 6 0 0.0152 0.0045 8 2 0.0152 0.0045 6 6 0.0152 0.0045 2 4 0.0152 0.0045 D EI L EI L EI L f K x EI EI L L EI EI L L EI EI L L                                                                                    P=100, EI=1000, L=1                 6000 0.0152 91.2 2000 0.0152 30.4 0 0.0152 6000 0.0045 27 8000 0.0152 2000 0.0045 112.6 6000 0.0152 6000 0.0045 64.2 2000 0.0152 4000 0.0045 12.4                                                      Reaction at the support can be obtained by subtracting the (Ftotal) from the reaction coming from the force deformation relation (FD)           EA D EAf K x f f f    Considering First Term
  • 22. 41 32 23 4 8 5 6 2 8 P PL f Pf f Kx PL f PL f P P f PL                                                             EA D EAf K x f f f      91.2 30.4 27 112.6 64.2 12.4 Df Kx                     1 91.2 100 2 30.4 25 3 27 150 4 100 112.6 12.5 5 100 64.2 50 6 12.4 12.5 1 191.2 2 55.4 3 123 4 0 5 114.2 6 0 f f f f f f f f f f f f                                                                                             
  • 23. Page 191, weave and Gere K = zeros(2,2); U = zeros(2,1); F = zeros(2,1); K(1,1)=8000; K(2,1)=2000; K(1,2)=2000; K(2,2)=4000; F(1,1)=112.5; F(2,1)=12.5; U = KF p=100; EI=1000; L=1; u1=-5*p*L*L/(EI*112);
  • 24. Find the displacement and forces using Matrix method and Draw SFD and BMD           EA D EAf K x f f f   
  • 25. For the beam shown, use the stiffness method to: (a) Determine the deflection and rotation at B. (b) Determine all the reactions at supports. (c) Draw the quantitative shear and bending moment diagrams.
  • 26. (a) Determine the deflection and rotation at B. (b) Determine all the reactions at supports. (c) Draw the quantitative shear and bending moment diagrams.
  • 27. Fixed End Moment   4.5 6.75 4.5 5 6.75 3.75 5 3.75 EAf                   
  • 28. 3 2 3 2 1 1 1 1 2 2 1 1 1 1 3 2 3 3 2 2 3 2 1 1 1 2 1 2 2 2 2 2 2 2 1 1 1 2 1 2 2 2 3 2 12 6 12 6 0 0 6 4 6 2 0 0 12 6 12 12 6 6 12 6 6 2 6 6 4 4 6 2 12 6 0 0 G EI EI EI EI L L L L EI EI EI EI L L L L EI EI EI EI EI EI EI EI L L L L L L L L K EI EI EI EI EI EI EI EI L L L L L L L L EI E L                                      2 3 2 2 2 2 2 2 2 2 2 2 12 6 6 2 6 4 0 0 I EI EI L L L EI EI EI EI L L L L                                         4.5 6.75 4.5 5 6.75 3.75 5 3.75 EAf                   
  • 29.   4.5 6.75 4.5 5 6.75 3.75 5 3.75 EAf                    
  • 30. 41 2 2 6 2 2 1 4 1 2 2 6 2 2 4 4 2 0 3 0 3.752 4 4 4 2 3 3.752 4 EI EI EI xL L L xEI EI L L EI EI EI x L L L x EI EI L L                                                          4.5 6.75 4.5 5 6.75 3.75 5 3.75 EAf                     4 6 0.779 / 2.423 / bx EI x c EI                     
  • 31. 3 2 3 2 1 1 1 1 2 2 1 1 1 1 3 2 3 3 2 2 3 2 1 1 1 2 1 2 2 2 2 2 2 1 1 1 2 12 6 12 6 0 0 6 4 6 2 0 0 12 6 12 12 6 6 12 6 6 2 6 6 1 2 3 4 5 6 EI EI EI EI L L L L EI EI EI EI L L L L EI EI EI EI EI EI EI EI L L L L L L L L EI EI EI EI L L L L f f f f f f                                                        2 1 2 2 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0.779 4 4 6 2 0 12 6 12 6 0 0 6 2 6 4 0 0 2.423 4.5 6.75 9.5 EI EI EI EI EI L L L L EI EI EI EI L L L L EI EI EI EI L L L L EI                                                                            3 5 3.75                                      
  • 32. reaction 6 0.779 2 9 2 0.779 9 1 4.6 0 0.779 2.423 2 2 3 3 4 4 24 0.779 2.423 5 3 9 3 6 6 6 0.779 2.423 2 23 3 2 4 0.779 2.423 3 3 f f f f f f                                                                                                             5 6.75 9.5 3 5 3.75                 1 4.557 4.557 2 6.923 6.923 3 11.115 11.115 4 3 3 0 5 2.134 2.134 6 3.75 3.75 0 f f f f f f                                                       
  • 33. 1 4.557 4.557 2 6.923 6.923 3 11.115 11.115 4 3 3 0 5 2.134 2.134 6 3.75 3.75 0 f f f f f f                                                       
  • 34. To get the reaction take moment about node 1: 6.92-6.4-1*9*4.5=R2x9 R2=4.44 R1=9-4.44=4.56 1 4.557 4.557 2 6.923 6.923 3 11.115 11.115 4 3 3 0 5 2.134 2.134 6 3.75 3.75 0 f f f f f f                                                       
  • 35. To get the reaction take moment about node 1: 6.92-6.4-1*9*4.5=R2x9 R2=4.44 R1=9-4.44=4.56
  • 36. Q3 P=1000=P2y M1=1000 N-m=M2 L1=1m=L2 (EI)=1000 (EI)2=2000 W=100 N per meter length Find the deflection and support reaction at both the end
  • 37. End beam Matrix method
  • 38. Conjugate beam Method and Carry over factor
  • 39. Conjugate beam Now consider a determinate beam, subjected to moment M’ at end B and assume that rotation (θA2, θB2)occur due to applied moment M’ First consider SS beam and apply moment ‘M’ at A and draw conjugate beam diagram
  • 40. Conclusion if a positive moment ‘M’ is applied to the hinged end of a beam then a positive moment of (M/2) will be transferred to the fixed end
  • 42. Alternate: • Such support settlements induce fixed end moments in the beams so as to hold the end slopes of the members as zero • Applied load is zero, so fixed end moment is Mf=0 • No rotation pure translation so θA, θB =0 • MAB=-(6EI/L)Δ • MBA= =(6EI/L)Δ
  • 43.
  • 44.
  • 45.
  • 46. 3 3 2 2 2 2 3 3 2 2 2 2 3 2 3 2 2 2 3 12 12 6 6 0 0 0 0 6 6 4 2 0 0 0 0 12 12 6 6 0 0 0 0 6 6 2 4 0 0 0 0 12 6 12 6 6 4 6 2 12 6 EI EI EI EI L L L L EI EI EI EI L L L L K EI EI EI EI L L L L EI EI EI EI L L L L EI EI EI EI L L L L EI EI EI EI L L L LK EI E L                                                    2 3 2 2 2 12 6 6 2 6 4 I EI EI L L L EI EI EI EI L L L L                       FINITE ELEMENT ANALYSIS UNIT - II https://www.slideshare.net/ASHOKKUMAR27088700/me6603-finite-element- analysis-unit-ii-notes-and-question-bank