Stiffness Method Problem
Dr. Kasi Rekha
B.Tech., M.Tech., Ph.D., MIE
1
Presented by
• Analyze the continuous beam shown in figure
using Stiffness method.
2
40 kN 60 kN 80 kN
A B C
D
2m 4m 2m4m 4m
2 I 1.5 I
60 kN 80 kN
B C
D
4m 2m4m 4m
2 I 1.5 I
80 kN-m
• Step1:
– Degree of Freedom or Kinematic Indeterminacy : 3
3
B C
D
4m 2m4m 4m
2 I 1.5 I
θb θc θd
4
• Step 2:
– Assign Coordinate Numbers in the direction of degrees of
Freedom
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
5
• Step 3:
– Restrain the structure at all coordinates
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
6
• Step 4:
– Determination of Fixed End Moments
60 kN 80 kN
B C
D
4m 2m4m 4m
2 I 1.5 I
• 𝑀 𝐹
𝑏𝑐
= −
𝑤𝑎𝑏2
𝑙2 = −
60×4×42
82 = −60 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑐𝑏
=
𝑤𝑎2 𝑏
𝑙2 =
60×4×42
82 = 60 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑐𝑑
= −
𝑤𝑎𝑏2
𝑙2 = −
80×4×22
62 = −35.55 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑑𝑐
=
𝑤𝑎2 𝑏
𝑙2 =
80×22×4
62 = 71.11𝑘𝑁 − 𝑚
7
• Step 5:
– Calculation of forces in co ordinate numbers
𝑃1𝑙 = 𝑀 𝐹
𝑏𝑐
= - 60 kN-m
𝑃2𝑙 = 𝑀 𝐹
𝑐𝑏
+ 𝑀 𝐹
𝑐𝑑
= 60-35.55= 24.45 kN-m
𝑃3𝑙 = 𝑀 𝐹
𝑑𝑐
= 71.11 kN-m
8
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
• Step 6:
– Assembly of Stiffness Matrix
i. Applying Unit Rotation in co ordinate direction 1
9
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
θb = 1 θc = 0 θd = 0
10
𝐾11 = 𝐾𝑏𝑐 =
2𝐸𝐼
𝐿
[2𝜃 𝑏 + 𝜃𝑐] =
2𝐸(2𝐼)
8
2 × 1 + 0 =EI
𝐾21 = 𝐾𝑐𝑏 =
2𝐸𝐼
𝐿
[2𝜃𝑐 + 𝜃 𝑏] =
2𝐸(2𝐼)
8
2 × 0 + 1 = 0.5 EI
𝐾31 = 0
11
• Step 6:
– Assembly of Stiffness Matrix
ii. Applying Unit Rotation in co ordinate direction 2
8m 6m
θb = 0
1
2 3
2 I 1.5 I
θc = 1 θd = 0
12
𝐾12 = 𝐾𝑏𝑐 =
2𝐸𝐼
𝐿
[2𝜃 𝑏 + 𝜃𝑐] =
2𝐸(2𝐼)
8
2 × 0 + 1 = 0.5EI
3𝐾22 = 𝐾𝑐𝑏 + 𝐾𝑐𝑑
=
2𝐸𝐼
𝐿 𝑐𝑏
[2𝜃𝑐 + 𝜃 𝑏] +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃𝑐 + 𝜃 𝑑
0 =
2𝐸(2𝐼)
8
2 × 1 + 0 +
2𝐸(1.5𝐼)
6
2 × 1 + 0 = 2𝐸𝐼
𝐾32 = 𝐾 𝑑𝑐 =
2𝐸𝐼
𝐿 𝑏𝑐
[2𝜃 𝑑 + 𝜃𝑐] =
2𝐸(1.5𝐼)
6
2 × 0 + 1 = 0.5EI
13
• Step 6:
– Assembly of Stiffness Matrix
iii. Applying Unit Rotation in co ordinate direction 3
2 I 1.5 I
8m 6m
1
2 3
θb = 0
θc = 0 θd = 1
14
0𝐾13 = 𝐾𝑏𝑐 = 0
3𝐾23 = 𝐾𝑐𝑑
=
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃𝑐 + 𝜃 𝑑
0 =
2𝐸(1.5𝐼)
6
2 × 0 + 1 = 0.5𝐸𝐼
𝐾33 = 𝐾 𝑑𝑐 =
2𝐸𝐼
𝐿 𝑏𝑐
[2𝜃 𝑑 + 𝜃𝑐] =
2𝐸(1.5𝐼)
6
2 × 1 + 0 = EI
• GLOBAL STIFFNESS MATRIX
𝐾 =
𝐾11 𝐾12 𝐾13
𝐾21 𝐾22 𝐾23
𝐾31 𝐾32 𝐾33
= EI
1 0.5 0
0.5 2 0.5
0 0.5 1
15
• STEP7:
– Calculation of Actual Forces
𝑃 − 𝑃𝐿 =
𝑃1 − 𝑃1𝐿
𝑃2 − 𝑃2𝐿
𝑃3 − 𝑃3𝐿
=
−80 − (−60)
0 − 24.45
0 − 71.11
=
−20
−24.45
−71.11
16
17
• GLOBAL STIFFNESS MATRIX
K Δ = P-𝑃𝐿
EI
1 0.5 0
0.5 2 0.5
0 0.5 1
Δ1
Δ2
Δ3
=
−20
−24.45
−71.11
Δ1 + 0.5 Δ2 = -20
0.5 Δ1 + 2 Δ2 + 0.5 Δ3 = -24.45
0.5Δ2 + Δ3 = -71.11
−
27.035
𝐸𝐼
Δ1 = 𝜃 𝑏 =
14.07
𝐸𝐼
Δ2 = 𝜃𝑐 =
−
78.145
𝐸𝐼
Δ3 = 𝜃 𝑑 =
• Step 8:
– Final Moments
𝑀 𝑎𝑏 = ̶ 80 kN-m
𝑀 𝑏𝑐 = 𝑀 𝐹
𝑏𝑐 +
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃 𝑏 + 𝜃𝑐 −
3𝐸𝐼∆
𝐿 𝑏𝑐
= -60+
2𝐸(2𝐼)
8
(
2×(−27.035)
𝐸𝐼
+
(14.07)
𝐸𝐼
) = -80 kN-m
18
𝑀𝑐𝑏 = 𝑀 𝐹
𝑐𝑏 +
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃𝑐 + 𝜃 𝑏 −
3𝐸𝐼∆
𝐿 𝑏𝑐
= 60+
2𝐸(2𝐼)
8
(
2×(14.07)
𝐸𝐼
+
(−27.035
𝐸𝐼
) = 60.55kN-m
𝑀𝑐𝑑 = 𝑀 𝐹
𝑐𝑑 +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃𝑐 + 𝜃 𝑑 −
3𝐸𝐼∆
𝐿 𝑐𝑑
= -35.55+
2𝐸(1.5𝐼)
6
(
2×(14.07)
𝐸𝐼
+
(−78.145)
𝐸𝐼
) = -60.55 kN-m
𝑀 𝑑𝑐 = 𝑀 𝐹
𝑑𝑐 +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃 𝑑 + 𝜃𝑐 −
3𝐸𝐼∆
𝐿 𝑐𝑑
= 71.11+
2𝐸(1.5𝐼)
6
(
2×(−78.145)
𝐸𝐼
+
(14.07)
𝐸𝐼
) = 0
19
20
40 kN 60 kN 80 kN
A B C
D
2m 4m 2m4m 4m
2 I 1.5 I
80 kN-m
60.55 kN-m
120 kN-m
106.66kN-m
• Assessment question:
• Analyze the continuous beam shown in figure using stiffness
matrix method.
21
70kN
A
B C
6m3m 5m
80kN/
m
100kN
2m
D
2 I 1.5 I I
THANK YOU
22

ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD

  • 1.
    Stiffness Method Problem Dr.Kasi Rekha B.Tech., M.Tech., Ph.D., MIE 1 Presented by
  • 2.
    • Analyze thecontinuous beam shown in figure using Stiffness method. 2 40 kN 60 kN 80 kN A B C D 2m 4m 2m4m 4m 2 I 1.5 I 60 kN 80 kN B C D 4m 2m4m 4m 2 I 1.5 I 80 kN-m
  • 3.
    • Step1: – Degreeof Freedom or Kinematic Indeterminacy : 3 3 B C D 4m 2m4m 4m 2 I 1.5 I θb θc θd
  • 4.
    4 • Step 2: –Assign Coordinate Numbers in the direction of degrees of Freedom B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 5.
    5 • Step 3: –Restrain the structure at all coordinates B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 6.
    6 • Step 4: –Determination of Fixed End Moments 60 kN 80 kN B C D 4m 2m4m 4m 2 I 1.5 I
  • 7.
    • 𝑀 𝐹 𝑏𝑐 =− 𝑤𝑎𝑏2 𝑙2 = − 60×4×42 82 = −60 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑐𝑏 = 𝑤𝑎2 𝑏 𝑙2 = 60×4×42 82 = 60 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑐𝑑 = − 𝑤𝑎𝑏2 𝑙2 = − 80×4×22 62 = −35.55 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑑𝑐 = 𝑤𝑎2 𝑏 𝑙2 = 80×22×4 62 = 71.11𝑘𝑁 − 𝑚 7
  • 8.
    • Step 5: –Calculation of forces in co ordinate numbers 𝑃1𝑙 = 𝑀 𝐹 𝑏𝑐 = - 60 kN-m 𝑃2𝑙 = 𝑀 𝐹 𝑐𝑏 + 𝑀 𝐹 𝑐𝑑 = 60-35.55= 24.45 kN-m 𝑃3𝑙 = 𝑀 𝐹 𝑑𝑐 = 71.11 kN-m 8 B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 9.
    • Step 6: –Assembly of Stiffness Matrix i. Applying Unit Rotation in co ordinate direction 1 9 B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3 θb = 1 θc = 0 θd = 0
  • 10.
    10 𝐾11 = 𝐾𝑏𝑐= 2𝐸𝐼 𝐿 [2𝜃 𝑏 + 𝜃𝑐] = 2𝐸(2𝐼) 8 2 × 1 + 0 =EI 𝐾21 = 𝐾𝑐𝑏 = 2𝐸𝐼 𝐿 [2𝜃𝑐 + 𝜃 𝑏] = 2𝐸(2𝐼) 8 2 × 0 + 1 = 0.5 EI 𝐾31 = 0
  • 11.
    11 • Step 6: –Assembly of Stiffness Matrix ii. Applying Unit Rotation in co ordinate direction 2 8m 6m θb = 0 1 2 3 2 I 1.5 I θc = 1 θd = 0
  • 12.
    12 𝐾12 = 𝐾𝑏𝑐= 2𝐸𝐼 𝐿 [2𝜃 𝑏 + 𝜃𝑐] = 2𝐸(2𝐼) 8 2 × 0 + 1 = 0.5EI 3𝐾22 = 𝐾𝑐𝑏 + 𝐾𝑐𝑑 = 2𝐸𝐼 𝐿 𝑐𝑏 [2𝜃𝑐 + 𝜃 𝑏] + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃𝑐 + 𝜃 𝑑 0 = 2𝐸(2𝐼) 8 2 × 1 + 0 + 2𝐸(1.5𝐼) 6 2 × 1 + 0 = 2𝐸𝐼 𝐾32 = 𝐾 𝑑𝑐 = 2𝐸𝐼 𝐿 𝑏𝑐 [2𝜃 𝑑 + 𝜃𝑐] = 2𝐸(1.5𝐼) 6 2 × 0 + 1 = 0.5EI
  • 13.
    13 • Step 6: –Assembly of Stiffness Matrix iii. Applying Unit Rotation in co ordinate direction 3 2 I 1.5 I 8m 6m 1 2 3 θb = 0 θc = 0 θd = 1
  • 14.
    14 0𝐾13 = 𝐾𝑏𝑐= 0 3𝐾23 = 𝐾𝑐𝑑 = 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃𝑐 + 𝜃 𝑑 0 = 2𝐸(1.5𝐼) 6 2 × 0 + 1 = 0.5𝐸𝐼 𝐾33 = 𝐾 𝑑𝑐 = 2𝐸𝐼 𝐿 𝑏𝑐 [2𝜃 𝑑 + 𝜃𝑐] = 2𝐸(1.5𝐼) 6 2 × 1 + 0 = EI
  • 15.
    • GLOBAL STIFFNESSMATRIX 𝐾 = 𝐾11 𝐾12 𝐾13 𝐾21 𝐾22 𝐾23 𝐾31 𝐾32 𝐾33 = EI 1 0.5 0 0.5 2 0.5 0 0.5 1 15
  • 16.
    • STEP7: – Calculationof Actual Forces 𝑃 − 𝑃𝐿 = 𝑃1 − 𝑃1𝐿 𝑃2 − 𝑃2𝐿 𝑃3 − 𝑃3𝐿 = −80 − (−60) 0 − 24.45 0 − 71.11 = −20 −24.45 −71.11 16
  • 17.
    17 • GLOBAL STIFFNESSMATRIX K Δ = P-𝑃𝐿 EI 1 0.5 0 0.5 2 0.5 0 0.5 1 Δ1 Δ2 Δ3 = −20 −24.45 −71.11 Δ1 + 0.5 Δ2 = -20 0.5 Δ1 + 2 Δ2 + 0.5 Δ3 = -24.45 0.5Δ2 + Δ3 = -71.11 − 27.035 𝐸𝐼 Δ1 = 𝜃 𝑏 = 14.07 𝐸𝐼 Δ2 = 𝜃𝑐 = − 78.145 𝐸𝐼 Δ3 = 𝜃 𝑑 =
  • 18.
    • Step 8: –Final Moments 𝑀 𝑎𝑏 = ̶ 80 kN-m 𝑀 𝑏𝑐 = 𝑀 𝐹 𝑏𝑐 + 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃 𝑏 + 𝜃𝑐 − 3𝐸𝐼∆ 𝐿 𝑏𝑐 = -60+ 2𝐸(2𝐼) 8 ( 2×(−27.035) 𝐸𝐼 + (14.07) 𝐸𝐼 ) = -80 kN-m 18
  • 19.
    𝑀𝑐𝑏 = 𝑀𝐹 𝑐𝑏 + 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃𝑐 + 𝜃 𝑏 − 3𝐸𝐼∆ 𝐿 𝑏𝑐 = 60+ 2𝐸(2𝐼) 8 ( 2×(14.07) 𝐸𝐼 + (−27.035 𝐸𝐼 ) = 60.55kN-m 𝑀𝑐𝑑 = 𝑀 𝐹 𝑐𝑑 + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃𝑐 + 𝜃 𝑑 − 3𝐸𝐼∆ 𝐿 𝑐𝑑 = -35.55+ 2𝐸(1.5𝐼) 6 ( 2×(14.07) 𝐸𝐼 + (−78.145) 𝐸𝐼 ) = -60.55 kN-m 𝑀 𝑑𝑐 = 𝑀 𝐹 𝑑𝑐 + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃 𝑑 + 𝜃𝑐 − 3𝐸𝐼∆ 𝐿 𝑐𝑑 = 71.11+ 2𝐸(1.5𝐼) 6 ( 2×(−78.145) 𝐸𝐼 + (14.07) 𝐸𝐼 ) = 0 19
  • 20.
    20 40 kN 60kN 80 kN A B C D 2m 4m 2m4m 4m 2 I 1.5 I 80 kN-m 60.55 kN-m 120 kN-m 106.66kN-m
  • 21.
    • Assessment question: •Analyze the continuous beam shown in figure using stiffness matrix method. 21 70kN A B C 6m3m 5m 80kN/ m 100kN 2m D 2 I 1.5 I I
  • 22.