SlideShare a Scribd company logo
1 of 14
Download to read offline
Lesson 10
SUCCESSIVE DIFFERENTIATION:
LEIBNITZ'S THEOREM
OBJECTIVES
At the end of this session, you will be able to understand:
Definition
nth
Differential Coefficient of Standard Functions
Leibnitz’s Theorem
DIFFERENTIATION: If be a differentiable function of x, then)(xfy = )(' xf
dx
dy
= is called the first
differential coefficient of y w.r.t x.
Hence, differentiating both side w.r.t. x, we have
( ) ( )
( )
( )
2 2
2 2
2 3 3
2 3 3
' '' .
d dy d d
be represented by ;then ''
dx dx
d d
Similarly is represented by ; ie ''' and so on
dx dx
T
d dy d
f x f x
dx dx dx
y y
Let f x
dx dx
y d y d y
f x
dx dx
   
= =     
   
   
=   
   
  
=  
   
2 3
2 3
n
1 2 3
he expressions , , ,....... are called the first, second, third, .....nth differen-
tial coefficient of y.
These function are usually written as
y',y'',y''',......y or y ,y y ......
n
n
dy d y d y d y
dx dx d x dx
2 3
n..................y and also , , ,....... .n
Dy D y D y D y
nth
DIFFERENTIAL COEFFICIENT OF STANDARD FUNCTION:
(i) Differential Coefficient of :m
x
m 1
1
2 3
2 3
n
y = x , then y ;
y ( 1) ;y ( 1)( 2) and so on
In general, y ( 1)( 2)( 3).........................( 1) ;
m
m m
m n
If mx
m m x m m m x
m m m m m n x
−
− −
−
=
= − = − −
= − − − − +
1
Note: If m be a positive integer, we have
ny 1.2.3............ !;m m= =
Hence ( ) ( 1)( 2)( 3)............( 1)m m
nD x m m m m m n x n−
= − − − − +
(ii) Differential Coefficient of ( )m
ax b+ :
m 1
1
2 2 3 3
2 3
If y = (ax+b) , then ( ) ;
( 1)( ) ; ( 1)( 2)( ) and so on.
In general ( 1)( 2)( 3)............( 1)( )
m
m m
n m n
n
y am ax b
y a m m ax b x y a m m m ax b x
y a m m m m m n ax b x
−
− −
−
= +
= − + = − − +
= − − − − + +
[Note: In the first differentiation, the last term in it is ( )11+−m
)2
; in the second differentiation it is
i.e.( ;in the third differentiation it is ()1( −m )12 +−m −m i.e. )13( +−m .So the nth differentiation it
will be .])1+− n(m
Hence ( ) ( 1)( 2)( 3)............( 1)( )
!
or ( ) ( )
( )!
In case m is negative integer,let , where is positive integer, then
( ) ( )( 1)( 2)....
m n m n
m n m n
p n
D ax b a m m m m m n ax b
m
D ax b a ax b
m n
m p p
D ax b a p p p
−
−
−
+ = − − − − + +
+ = +
−
−
+ = − − − − −
1
................[ ( 1)]( )
( 1) ( 1)( 2)....................[( 1)]( )
( 1)!
( 1) ( )
( 1)!
Note1. If .then ( ) !
Note2. If 1, we have ( ) (
p n
n p nn
n n p n
n p n
n
p n ax b
p p p p n ax ba
p n
a ax b
p
m n D ax b a
m D ax b
− −
− −
− −
−
−
− − − +
= − + + − + +
− +
= − +
−
= + =
= − + = 1
1 1
1
1)( 1 1)................( 1 1) ( )
( 1) !
( 1) 1.2.3........... ( ) ! ( ) .( 1)
( )
n n
n n
n n n n nn
n
n a ax b
n a
na ax b n a ax b
ax b
− −
− − − −
+
− − − − − + +
−
− + = + =−
+
(iii) Differential Coefficient of ( )ax b+ :
1
1
2 2 3 3
2 32 2 3 3
4 4
3
4 4 4
(0!)
If log( ), ( )
( ) ( )
.1 .(1!) .2 .(2!)
. .
( ) ( ) ( ) ( )
2.3 .(3!)
and so on.( 1) .
( ) ( )
a a
y ax b then y a ax b
ax b ax b
a a a a
y y
ax b ax b ax b ax b
a a
y
ax b ax b
−
= + = = + =
+ +
= = − = = −
+ + + +
= = −
+ +
2
1
1
1
.( 1)!
In general, ( 1) .
( )
.( 1)!
Hence log( ) ( 1) . .
( )
( 1) ( 1)!
Note: log .
n
n
n n
n
n n
n
n
n
n
a n
y
ax b
a n
D ax b
ax b
n
D x
x
−
−
−
−
= −
+
−
+ = −
+
− −
=
(iv) Differential Coefficient of :bx
a
2 2
1 2
3 3
3
n
If , then log , (log ) .
, and so no.(log )
In general, ,(log )
Hence D . (log ) .
bx bx bx
bx
n nbx
n
bx n nbx
e
y a y ba a y b a a
y b a a
y b aa
a b aa
= = =
=
=
=
(v) Differential Coefficient of :ax
e
2 3 4
1 2 3 4
If , then
, , , and so on.
In general, , Hence .
ax
ax ax ax ax
n ax n ax n ax
n
y e
y ae y a e y a e y a e
y a e D e a e
=
= = = =
= =
(vi) Differential Coefficient of sin( ) :ax b+
1
2 2
2
1
If sin( ), then
cos( ) sin ( )
2
2
cos( ) sin ( ) ,and so on.
2
1
In General, .sin
2
1
Hence, ( ) sin
2
Note: sin
n
n n
n
y ax b
y a ax b a ax b
y a ax b ax ba
y ax b na
D ax b a ax b n
D x
π
π
π
π
= +
 
= + = + +  
 
= − + = + +  
 
= + + 
 
 
+ = + +  
sin
2
n
x
π  
= +   
  
3
(vii) Differential Coefficient of cos( ) :ax b+
1
2 2
2
If cos( ), then
sin( ) cos
2
2
sin cos ,and so on
2 2
1
In general, cos .
2
1
Hence, cos ( ) cos .
2
Note : cos co
n
n
n n
n
y ax b
y a ax b a ax b
y a ax b ax ba
y a ax b n
D x ax b a ax b n
D x
π
π π
π
π
= +
 
= − + = + + 
 
   
= − + + = + +   
   
 
= + + 
 
 
+ = + + 
 
=
1
s .
2
x nπ
 
+ 
 
(viii) Differential Coefficient of sin( ) and cos( ) :ax ax
e bx c e bx c+ +
1
2 2 2 1
1
If sin( ), then
sin( ) cos( ) [ sin( ) cos( )]
Putting cos and sin , we get
sin( ), where and tan ,
similary
ax
ax ax ax
ax
y e bx c
y e bx c be bx c e a bx c b bx c
a r b r
b
y re bx c r a b
a
φ φ
φ φ −
= +
= + + + = + +
= =
 
= + + = + =  
 
+
2
1
1
2 2 12
1
2 2 12
, ,and so on.sin( 2 )
Hence, sin( ) sin( )
where ( ) and tan .
Similarly, cos( ) cos( )
where ( ) and tan .
ax
n ax n ax
n ax n ax
y r bx ce
D e bx c r bx c ne
b
r a b
a
D e bx c r bx c ne
b
r a b
a
φ
φ
φ
φ
φ
−
−
= + +
+ = + +
 
= + =  
 
+ = + +
 
= + =  
 
Example. Find the derivative ofth
n .cossin cxbxeax
Solution.
4
{ }
2 2 / 2 1
/ 22 2
1
Let sin cos (2sin cos )
2
1 1
[sin( ) sin )] [ sin sin( ) ].( ( )
2 2
Now sin( ) ( ) sin tan
( ) si
1
2
ax ax
ax ax ax
n n axax
n ax
n
y e bx cx e bx cx
e bx cx x e x e b cbx c b c
b
D bx cx b c e bx c ne
a
a b c e
y
−
= =
= + + = + −− +
  
 + = + + +    
  
+ +
x
∴ =
{ }
{ }
1
/ 22 2 1
n tan ( )/( )
( )
( ) sin tan( )
n ax
x n b c ab c
b c
a b c e x nb c
a
−
−
 + ++
 
 − 
+ − − +  
  
Example. If .0)(2thatproved,sin 22
12 =++−= ybaayybxey ax
Solution.
1
2 2
2
2
1
2 2
Let sin , sin cos
and sin 2 sin ...............(1)
Also 2 2 sin 2 cos ...............(2)
and ( )
ax ax ax
ax ax ax
ax ax
y e bx y ae bx be bx
y a e bx abe b e bx
ay a e bx abe bx
a b y a
= ∴ = +
= + −
− = − −
+ = 2 2
2 2
2 1
sin sin .................(3)
Adding (1),(2)and (3), we get
y - 2ay ( ) 0
ax ax
e bx b e bx
a b y
+
+ + =
LEIBNITZ'S THEOREM:
The find nth
differential coefficient of two function of x
If u and v are any two functions of x such that all their desired differential coefficients exist, then the nth
differential coefficient of their product is given by
1 1 2
1 2
1 2 2
( ) ( ). . . ....... . ...... .
or
( 1)
( ) ( ). . .............
2!
n n n n n n n n r r
r
n n n n
n
D uv D u v c D u Dv c D u D v c D n D v uD v
n n
D uv D u v nD u Dv D uD v n
− − −
− −
= + + + + + +
−
= + + + + 1
.n
DuD v uDv−
+
Proof.
5
Let , we have
( ) ( ) ( ). . ........ ......(1)
From (1) we see that the theorem is true for n 1.
Now assume that the theorem is true for a particular val
n
y uv
Dy uv D u Du v u Dv
=
= = +
=
1 2 2
1 2
1 1
1
ue of n,we have
( ) ( ). . . ....... .
...... ............(2)
Differentiating both siede of (2
n n n n n n r r
c c r
n r r n
r
D uv D u v n D u Dv n D u D v c D u D v
n D uD v uD v
− − −
− − +
+
= + + + +
+ + +
( )
( ) (
( )
1 1 1 2
1 1
1 2 2 3 1 1
2 2
1 1 2
1 1
) w,r,t,x, we get
( ) ( ). . .
. . ..... . .
. . ..... .
n n n n n
c c
n n n r r n r
c c cr cr
n r r n r r n
cr cr
D uv D u v D uDv n D u Dv n D u D v
n D u D v n D u D v n D u D v n D u D v
n D u D v n D u D v DuD v u
+ + −
− − − + −
− + − − +
+ +
 = + + + 
+ + + + +
+ + + + +( )1
1 1 1 2
1 1 2
1 1
1
1
.
Rearranging the term, we get
( ) ( ). (1 ) ( ) ( ) .
..... ( )( . ) ...... ...(3)
But we know that
r
n n n n
c c c
n r r n
cr r
n n
D v
D uv D u v n D uDv n n D u D v
n n D u D v uD v
c c
+
+ + −
− + +
+
= + + + + + +
+ + + +
+ 1
1 1
1 1
1 0 1 1 1 2 2,
1 1 1 1 1 2
1 2
1 1
1
. Therefore
1 , and so on.
Hence(3) gives
( ) ( ). ( ). ( ).( ) .........
..... . .....
n
r r
n n n n n n n
n n n n n n
n n r r
r
c
c c c c c c c
D uv D u v c D u Dv c D u D v
c D u D v
+
+ +
+ +
+ + + + −
+ − +
+
=
+ = + = + =
= + + +
+ + + 1
. . ..............(4)n
u D v+
)r+
From (4) we see that if the theorem is true for any value of n, it is also true for the next value of n. But
we have already seen that the theorem is true for n =1.Hence is must be true for n =2 and so for n =3,
and so on. Thus the Leibnitz's theorem is true for all positive integral values of n.
Example. Find the nth differential coefficients of
(i) sin cos ,
(ii) log[( )( )].
ax bx
ax b cx d+ +
Solution.
6
1 1
(i) Let sin cos [2sin cos ] [2sin( ) sin( ) ].
2 2
1
we know that sin( ) sin .
2
1 1
( ) sin ( ) ( ) sin ( ) .
2 2
n n
n n n
y ax bx ax bx a b x a b
D ax b a ax b n
y a b a b x n a b a b x n
π
π π
= = = + + −
 
+ = + + 
 
    1
2
x

∴ = + + + + − − +   
   


[ ]
n 1
1 1
1
(ii) Let log ( )( ) log( ) log( ).
We know that log( ) ( 1) ( 1)! ( )
( 1) ( 1)! ( ) ( 1) ( 1)! ( )
( 1) ( 1)! .
( ) ( )
n n n
n n n n n
n
n n
n
n n
y ax b cx d ax b cx d
D ax b n a ax b
y n a ax b n c cx
a c
n
ax b cx d
− −
− − −
−
= + + = + + +
+ = − − +
n
d −
∴ = − − + + − − +
 
= − − + 
+ + 
Example. Find the nth derivatives of 2
1
.
1 5 6x x− +
Solution.
2
2
1 1
1
1 1
Let .
(2 1)(3 1)6 5 1
1 (3 1) (2
,
2 1 3 1 (2 1)(3 1)6 5 1
1 1
Putting ,1 , i.e. 3 ; putting , 2.
2 3 2
2 3
Hence 2(2 1) 3(3 1)
2 1 3 1
Therefor 2(2 1)
n
n n
y
x xx x
A B A x B x
x x x xx x
B
x B x A
y x x
x x
d
y x
dx
− −
−
= =
− −− +
− + −1)
∴ ≡ + ≡
− − − −− +
= = − = − = =
= + = − − −
− −
 = − 
1
1 1
1 1
1 1
1 1
3(3 1)
Now we apply the formula,
( ) ( 1) ( !)( ) .
Hence 2.2 ( 1) ( !)(2 1) 3.3 ( 1) ( !)(3 1) .
2 3
or ( 1) ( !) .
(2 1) (3 1)
n
x
n
n n n n
n n n n n n
n n
n
n n n
d
x
dx
D ax b n ax b a
y n x n x
y n
x x
−
− − −
− − − −
+ +
+ +
 − − 
+ = − +
= − − − − −
 
= − + 
− − 
7
Example.
1 /2
If sin cos , prove that 1 ( 1) sin 2 .n n n
y ax ax y a ax = + = + − 
1 /22
1/ 2
Let sin cos , then
1 1
sin cos
2 2
1 1
sin cos
2 2
1 1
1 2sin cos
2 2
[1 sin(2
n n
n
n
n
n
y ax ax
y a ax n a ax n
a ax n ax n
a ax n ax n
a a
π π
π π
π π
= +
   
∴ = + + +   
   
     
= + + +     
      
    
= + + +    
    
= + 1 /2 1/ 2
1/ 2
)] [1 sin cos2 cos sin 2 ]
[1 ( 1) sin 2 ] [ sin 0 and cos ( 1) ]n n n
n
x n n ax n
y a ax n n
π π π
π π
+ = + +
= + − = = −Q
ax
Example.
2 2
2 2 2 2 2
2 3
If cos sin , prove that .
d p a b
p a b p
d p
θ θ
θ
 
= + + = 
 
2
Solution.
2 2 2 2 2
2 2
Given cos sin ...(1)
Differentiating both sides of (1) w.r.t , we get
2 2( )cos sin ...(2)
Aga
p a b
dp
p b a
d
θ θ
θ
θ θ
θ
= +
 
∴ = − 
 
22
2 2 2 2
2
2
in differentiating both sides of (2) w.r.t , we get
( )(cos sin ) ...(3)
Multiplying (3) by and substituting the value of form (1) a
d p dp
p b a
dd
dp
p
d
θ
θ θ
θθ
θ
   
+ = − −   
  
2
3 2 2 2 2 2 2 2 2 2 2
2
2
3 2 2 2 2 2 2 2 2 2 2 2 2 2
2
nd (3), we get
( ) cos sin ( )(cos sin )
or ( cos sin )( )(cos sin ) ( ) cos sin
d p
p b a p b a
d
d p
p a b b a b a
d
θ θ θ θ
θ
θ θ θ θ θ θ θ
θ
 
+ − = − − 
 
 
= + − − − − 
 
8
2
4 3 2 2 2 2 2 2 2 2 2 2 2 2
2
2 2 2 2 2
or ( )[(cos sin )( cos sin ) ( )cos sin ]
( cos sin )
d p
p p b a a b b a
d
a b
θ θ θ θ θ
θ
θ θ
 
+ = − − + − − 
 
+ −
θ
2 2 2 4 2 4 2 2 2 2 2
2 2 2 2 2 2
2 2 2
2 3
=( )[( cos sin ) ( cos sin )
= (cos sin )
Hence .
b a a b a b
b a a b
d p a b
p
d p
θ θ θ θ
θ θ
θ
− − + +
+ =
 
+ = 
 
Example. 1
Find if log .n
ny y x −
= x
Solution.
1 1 1 1 2 1
3 1 3 1
By Leibnitz's theoram, we get
( 1)
( log ) ( )log ( ) log ( ) log
2!
( 1)( 2)
( ) log ....... .
3!
!
Now ;
( )!
n n n n n n n n
n
n n n n
n m m n n n
n n
y D x x D x x nD x D x D x D
n n n
D x D x x D Logx
m
D x x D x
m n
− − − − − −
− − −
−
−
= = + +
− −
+ + +
=
−
2
x
1
1 1 1 1
2 1 3 1 2
1
2
0
!
; ( 1)!
( 1)!
( 1)! ( 1)!
;
1! 2!
( 1)!
and log ( 1)
Hence
1 ( 1) ( 1)! ! ( 1)( 2) ( 1)!
( 1)!
2! 1! 3! 2!
n m m n n n
n n n n
n n
n
n
m
D x x D x n
m n
n n
D x x D x x
n
D x
x
n n n n n n n
n n x
x x
y
−
− − + − −
− − − −
−
=
= ∴ = −
− +
− −
= =
−
= −
− − − − − 
− + − + 
 
=
2
3
1
1
1
1 2 3
2
....
( 1) ( 1)!
.......
( 1)!
= [1 {1 ...... ( 1) }]
( 1)!
=
n
n
n
n n n n
n
x
x
n
x
x
n
c c c c
x
n
x
−
−
+
 
+ 
 
 − −
+ 
 
−
− − − − + + −
− ( 1)!
[1 (1 1)n n
x
−
− − =
9
1 2
1
1 1 1
1
2 1 1 1
1
1 1
Aliter. log ( 1) log .
( 1) log ( 1) .
Differentiating both sides ( 1)times, we have
( ) ( 1) .
( 1) ( 1) (
n n
n n n
n n n n
n n n
y x x y n x x x
xy n x x x n y x
n
D xy n D y D x
xy n y n y
− −
− − −
− − − −
− +
= ∴ = − +
∴ = − + = − +
−
= − +
2n−
∴ + − = − +
( 1)
1)! or n
n
n y
!
x
−
− =
Example.
2
2 1y cos(log ) sin(log ), show that 0If a x b x x y xy y= + + +
2 2
2 1and (2 1) ( 1) 0.n n nx y n xy n y+ ++ − + + =
=
Solution.
1 1
2 1
2
2 1
Let cos(log ) sin(log ),
1 1
sin(log ). cos(log ) or sin(log ) cos(log )
Now again differentiating both sides, we get
1 1
cos(log ). sin(log )
or [ cos(log )
y a x b x
y a x b x xy a x b x
x x
xy y a x b x
x x
x y xy a x b
= +
= − + = − +
+ = − −
+ = − +
2
2 1
2
2 1
2
2 1
2 2 1 2 2 2 1
2 2 2 1 1
sin(log )]
or
or 0.
Again differentiating both sides in times by Leibnitz's theorem,
( ) ( ) ( ) 0.
( 1)
or + 0
2
or
n n n
n n n n n
n
x
x y xy y
x y xy y
D x y D xy D y
n n
x D y nDx D y D x D y xD y nD y y− − +
+ = −
+ + =
+ + =
−
+ + +
2
2 1 1
2 2
2 1
2 ( 1) 0
or (2 1) ( 1) 0.
n n n n n n
n n n
x y nxy n n y xy ny y
x y n xy n y
+ + +
+ +
+ + − + + + =
+ − + + =
+ =
x 2
Example If prove that1
sin( sin ).y m −
= 2
2 1(1 ) 0x y xy m y− − + =
2
and deduce that
2 2
2 12 1) (n nn xy n+ ++ −(1 ) ( ) 0.x y m y− − − n =
xSolution: Let 1
sin( sin ).y m −
=
10
1 2 2 2
1 1
2
2 2 2 2 2 1 2 2 2
1
2 2 2 2
1
2 2 2
1 2 1 1 2
cos( sin ). . or (1 ) cos ( sin ).
(1 )
(1 ) sin ( sin )
(1 ) .
Again differentiating both sides, we have
2 (1 ) 2 2 0. or
m
y m x x y m m
x
or x y m m m x m m y
x y m y m
y y x xy m yy y
− −
−
= − =
−
− = − = −
∴ − + =
− − + =
2 1
x
2 2
1
2 2
2 1 1
2 2 2
2 1
(1 ) 0.
Now differntiating n time by Leibnitz's theorem, we get
( 1)
(1 ) ( 2 ) ( 2) 0,
2!
or (1 ) (2 1) ( ) 0.
n n n n n n
n n n
x xy m y
n n
y x ny x y xy ny m y
x y n xy n m y
+ + +
+ +
− + =
−
− + − + − − − + =
− − + − − =
To find The nth Derivative When x = 0
Example: Find ( 1
0) . if sin( sin ).ny y a −
= x
x
Solution:
Let ……..(1)1
sin( sin ).y a −
=
1
1
2
2 2 2 2 1 2 2 2 1 2 2
1
2 2 2 2 2
1
cos( sin ). ,
(1 )
or (1 ) cos ( sin ) sin ( sin )
or (1 ) 0. ................(2)
Differentiating (2), w
a
y a x
x
y x a a x a a a x a a y
y x a y a
−
− − 2
∴ =
−
− = = − = −
− + − =
2 2 2
1 2 1 1
2 2
2 1 1
2
2 1 1
e have
2 (1 ) ( 2 ) 2 0.
(1 ) 0 ...................(3)
Differentiating (3) n times, we have
( 1)
(1 ) 2 .2
2!
n n n n
y y x y x a yy
or y x xy a y
n n
y x ny x y xy n+ + +
− − − + =
− + + =
−
− − − − − 2
2 2 2
2 1
0.
or (1 ) (2 1) ( ) 0. ..................(4)
n n
n n n
y a y
y x n xy n a y+ +
+ =
− − + − − =
Putting x = 0 in (1), we get (y)0 = 0.
Putting x = 0 in (2), we get (y1)0 = 0
Putting x = 0 in (3), we get (y2)0 = 0 and
11
Putting x = 0 in (4), we get
2 2
2 0 0( ) ( )(n ny n a+ = − )y
.
.
.
a
.
0n
Now putting n = 2 in (5),
2 2
6 0 2 0( ) (2 )( ) 0y a y= − =
Putting n = 4 in (5),
2 2
6 0 4 0( ) (4 )( ) 0y a y= − =
Similarly 8 0( ) 0y =
Thus the derivatives for which n is even are zero
Again, putting
2 2 2 2
3 0 1 01,( ) (1 ).( ) (1 ) .n y a y a= = − −
Now when n is odd.
2 2
2 0 0( ) ( )( )n ny n a y+ = −
Putting n is place of (n-2) we obtain
[ ]
2 2
0 2 0
2 2 2 2 2 2 2 2
3 0
2 2 2 2 2 2 2 2
( ) ( 2) ( )
( 2) ( 4) ( 6) ......... 3
( 2) ( 4) ......... 3 1 . .
n ny n a y
n a n a n a a y
n a n a a a a
−
 = − − 
       = − − − − − − −       
       = − − − − − −       
Example.
1 2
2 1
2
2 1
If tan , prove that (1 ) 2 0 and deduce that
(1 ) 2( 1) ( 1) 0 Hence determine ( )n n n
y x x y xy
x y n xy n n y y
−
+ +
= + + =
+ + + + + =
Solution.
1
1 2
2
1
Let tan .........(1)
1
, ...(2)
(1 )
or (1 ) 1 0. ...(3)
Differentiating (3), we
y x
y
x
x y
−
=
∴ =
+
+ − =
2
2 1
2
2 1 1
2
2 1
get (1 ) 2 0 .........(4)
Now , differentiating (4) n times by Leibnitz's theorem, we get
( 1)
(1 ) (2 ) .2 2 2 0
2!
or (1 ) 2( 1) ( 1)
n n n n n
n n
x y xy
n n
y x ny x y xy ny
x y n xy n n y
+ + +
+ +
+ + =
−
+ + + + + =
+ + + + + 0 .........(5)n =
12
[ ]
0 1 0 2 0
2 0 0
Putting x = 0, in (1),(2) and (4), we get
( ) 0, ( ) 1, ( ) 0.
Also putting x = 0 in (5) we get
( ) ( 1) ( ) . .............(6)
Putting n-2 in
n n
y y y
y n n y+
= = =
= − +
0 2 0
4 0
n-2 0 4 0
place of n in the foumula (6),we get
( ) [( 1)( 2)]( )
[ {( 1)( 2)}][ {( 3)( 4)}]( )
Since from (6), we have (y ) {( 3)( 4)}]( )
Case I. When n is even, we h
n n
n
n
y n n y
n n n n y
n n y
−
−
−
= − −
= − − − − − −
= − − −
0 2 0
2 0
0
ave
( ) [ {[( 1)( 2)}][ {( 3)( 4)}]....[ (3)(2)]( )
= 0, Since ( ) 0.
Case II. When n is odd, we have
( ) [ {[( 1)( 2)][ {( 3)( 4)}]....[ (4)(3)]
n
n
y n n n n y
y
y n n n n
= − − − − − − −
=
= − − − − − − − 1 0
( 1)2
1 0
[ (2)(1)( )
( 1) ( 1)!, since (y ) 1.n
y
n−
−
= − − =
13
ADDITIONAL PROBLEMS:
1. Find the nth differential coefficient of
( )( )
3
2
2
( ) sin
( ) sin cos3
( ) cos sin
x
( )
2 2 3
ax
i x
ii x x
iii e x x
iv
x x+ +
2. If ( )2 2
2 1sin , prove that 2 0ax
bx y ay a b y= − +y e + =
3. If ( ) ( )1 2
2 1cos sin , prove that 1 0x x y xy m y−
= − − 2
+ =y m and
( )2 2
2 11 (2 1) ( )n nx y n xy m n y+ +− − + + − 2
0n =
4. If ( ) ( )
21 2
2 1sin , prove that 1 2 0y x x y xy−
= − − − = and deduce that
( )2 2
2 11 (2 1)n nx y n xy n y+ +− − + − 0n =
5. If (
1
tan
, prove thatx
y e
−
= )2
2 11 {2( 1) 1} ( 1)n nx y n x y n n y+ ++ + + − + + 0n =
14

More Related Content

What's hot

Series solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular pointSeries solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular pointvaibhav tailor
 
Definite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralShaifulIslam56
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1Selvaraj John
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equationPratik Sudra
 
Area Under the Curve
Area Under the CurveArea Under the Curve
Area Under the Curvealexbeja
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculusHabibur Rahman
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremHassan Ahmed
 
Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Digvijaysinh Gohil
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler methodSohaib Butt
 

What's hot (20)

Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Series solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular pointSeries solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular point
 
Definite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite Integral
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
 
Area Under the Curve
Area Under the CurveArea Under the Curve
Area Under the Curve
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculus
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green Theorem
 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
Vector space
Vector spaceVector space
Vector space
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 

Similar to Succesive differntiation

ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manualnodyligomi
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonPamelaew
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولanasKhalaf4
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationDev Singh
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculoMan50035
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any indexindu psthakur
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableAlexander Decker
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15Carlos Fuentes
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculoFavian Flores
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesIrfaan Bahadoor
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19JAVIERTELLOCAMPOS
 

Similar to Succesive differntiation (20)

maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
Hw5sols
Hw5solsHw5sols
Hw5sols
 
Integral calculus
  Integral calculus   Integral calculus
Integral calculus
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
Maths ms
Maths msMaths ms
Maths ms
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any index
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Binomial
BinomialBinomial
Binomial
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin series
 
Vivek
VivekVivek
Vivek
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
 

More from JaydevVadachhak

More from JaydevVadachhak (20)

Complain management system
Complain management systemComplain management system
Complain management system
 
Formal and informal letters
Formal and informal lettersFormal and informal letters
Formal and informal letters
 
Communicating across cultures
Communicating across culturesCommunicating across cultures
Communicating across cultures
 
7 cs of communication
7 cs of communication7 cs of communication
7 cs of communication
 
communication types , levels , barriers
 communication types , levels , barriers communication types , levels , barriers
communication types , levels , barriers
 
social responsibility
 social responsibility social responsibility
social responsibility
 
2. personality development
2. personality development2. personality development
2. personality development
 
professional ethics and human values
 professional ethics and human values professional ethics and human values
professional ethics and human values
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Transformer
TransformerTransformer
Transformer
 
Electrical safety
Electrical safetyElectrical safety
Electrical safety
 
Non verbal communication
Non verbal communicationNon verbal communication
Non verbal communication
 
Internal communication
Internal communicationInternal communication
Internal communication
 
Ir spectroscopy
Ir spectroscopyIr spectroscopy
Ir spectroscopy
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
cement
 cement cement
cement
 
Cathodic protection
Cathodic protectionCathodic protection
Cathodic protection
 
1 bch101 water treatment
1 bch101  water treatment1 bch101  water treatment
1 bch101 water treatment
 
Handprint activities and sustainability
Handprint activities and sustainabilityHandprint activities and sustainability
Handprint activities and sustainability
 
Solid waste
Solid wasteSolid waste
Solid waste
 

Recently uploaded

Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 

Recently uploaded (20)

Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 

Succesive differntiation

  • 1. Lesson 10 SUCCESSIVE DIFFERENTIATION: LEIBNITZ'S THEOREM OBJECTIVES At the end of this session, you will be able to understand: Definition nth Differential Coefficient of Standard Functions Leibnitz’s Theorem DIFFERENTIATION: If be a differentiable function of x, then)(xfy = )(' xf dx dy = is called the first differential coefficient of y w.r.t x. Hence, differentiating both side w.r.t. x, we have ( ) ( ) ( ) ( ) 2 2 2 2 2 3 3 2 3 3 ' '' . d dy d d be represented by ;then '' dx dx d d Similarly is represented by ; ie ''' and so on dx dx T d dy d f x f x dx dx dx y y Let f x dx dx y d y d y f x dx dx     = =              =           =       2 3 2 3 n 1 2 3 he expressions , , ,....... are called the first, second, third, .....nth differen- tial coefficient of y. These function are usually written as y',y'',y''',......y or y ,y y ...... n n dy d y d y d y dx dx d x dx 2 3 n..................y and also , , ,....... .n Dy D y D y D y nth DIFFERENTIAL COEFFICIENT OF STANDARD FUNCTION: (i) Differential Coefficient of :m x m 1 1 2 3 2 3 n y = x , then y ; y ( 1) ;y ( 1)( 2) and so on In general, y ( 1)( 2)( 3).........................( 1) ; m m m m n If mx m m x m m m x m m m m m n x − − − − = = − = − − = − − − − + 1
  • 2. Note: If m be a positive integer, we have ny 1.2.3............ !;m m= = Hence ( ) ( 1)( 2)( 3)............( 1)m m nD x m m m m m n x n− = − − − − + (ii) Differential Coefficient of ( )m ax b+ : m 1 1 2 2 3 3 2 3 If y = (ax+b) , then ( ) ; ( 1)( ) ; ( 1)( 2)( ) and so on. In general ( 1)( 2)( 3)............( 1)( ) m m m n m n n y am ax b y a m m ax b x y a m m m ax b x y a m m m m m n ax b x − − − − = + = − + = − − + = − − − − + + [Note: In the first differentiation, the last term in it is ( )11+−m )2 ; in the second differentiation it is i.e.( ;in the third differentiation it is ()1( −m )12 +−m −m i.e. )13( +−m .So the nth differentiation it will be .])1+− n(m Hence ( ) ( 1)( 2)( 3)............( 1)( ) ! or ( ) ( ) ( )! In case m is negative integer,let , where is positive integer, then ( ) ( )( 1)( 2).... m n m n m n m n p n D ax b a m m m m m n ax b m D ax b a ax b m n m p p D ax b a p p p − − − + = − − − − + + + = + − − + = − − − − − 1 ................[ ( 1)]( ) ( 1) ( 1)( 2)....................[( 1)]( ) ( 1)! ( 1) ( ) ( 1)! Note1. If .then ( ) ! Note2. If 1, we have ( ) ( p n n p nn n n p n n p n n p n ax b p p p p n ax ba p n a ax b p m n D ax b a m D ax b − − − − − − − − − − − + = − + + − + + − + = − + − = + = = − + = 1 1 1 1 1)( 1 1)................( 1 1) ( ) ( 1) ! ( 1) 1.2.3........... ( ) ! ( ) .( 1) ( ) n n n n n n n n nn n n a ax b n a na ax b n a ax b ax b − − − − − − + − − − − − + + − − + = + =− + (iii) Differential Coefficient of ( )ax b+ : 1 1 2 2 3 3 2 32 2 3 3 4 4 3 4 4 4 (0!) If log( ), ( ) ( ) ( ) .1 .(1!) .2 .(2!) . . ( ) ( ) ( ) ( ) 2.3 .(3!) and so on.( 1) . ( ) ( ) a a y ax b then y a ax b ax b ax b a a a a y y ax b ax b ax b ax b a a y ax b ax b − = + = = + = + + = = − = = − + + + + = = − + + 2
  • 3. 1 1 1 .( 1)! In general, ( 1) . ( ) .( 1)! Hence log( ) ( 1) . . ( ) ( 1) ( 1)! Note: log . n n n n n n n n n n n a n y ax b a n D ax b ax b n D x x − − − − = − + − + = − + − − = (iv) Differential Coefficient of :bx a 2 2 1 2 3 3 3 n If , then log , (log ) . , and so no.(log ) In general, ,(log ) Hence D . (log ) . bx bx bx bx n nbx n bx n nbx e y a y ba a y b a a y b a a y b aa a b aa = = = = = = (v) Differential Coefficient of :ax e 2 3 4 1 2 3 4 If , then , , , and so on. In general, , Hence . ax ax ax ax ax n ax n ax n ax n y e y ae y a e y a e y a e y a e D e a e = = = = = = = (vi) Differential Coefficient of sin( ) :ax b+ 1 2 2 2 1 If sin( ), then cos( ) sin ( ) 2 2 cos( ) sin ( ) ,and so on. 2 1 In General, .sin 2 1 Hence, ( ) sin 2 Note: sin n n n n y ax b y a ax b a ax b y a ax b ax ba y ax b na D ax b a ax b n D x π π π π = +   = + = + +     = − + = + +     = + +      + = + +   sin 2 n x π   = +       3
  • 4. (vii) Differential Coefficient of cos( ) :ax b+ 1 2 2 2 If cos( ), then sin( ) cos 2 2 sin cos ,and so on 2 2 1 In general, cos . 2 1 Hence, cos ( ) cos . 2 Note : cos co n n n n n y ax b y a ax b a ax b y a ax b ax ba y a ax b n D x ax b a ax b n D x π π π π π = +   = − + = + +        = − + + = + +          = + +      + = + +    = 1 s . 2 x nπ   +    (viii) Differential Coefficient of sin( ) and cos( ) :ax ax e bx c e bx c+ + 1 2 2 2 1 1 If sin( ), then sin( ) cos( ) [ sin( ) cos( )] Putting cos and sin , we get sin( ), where and tan , similary ax ax ax ax ax y e bx c y e bx c be bx c e a bx c b bx c a r b r b y re bx c r a b a φ φ φ φ − = + = + + + = + + = =   = + + = + =     + 2 1 1 2 2 12 1 2 2 12 , ,and so on.sin( 2 ) Hence, sin( ) sin( ) where ( ) and tan . Similarly, cos( ) cos( ) where ( ) and tan . ax n ax n ax n ax n ax y r bx ce D e bx c r bx c ne b r a b a D e bx c r bx c ne b r a b a φ φ φ φ φ − − = + + + = + +   = + =     + = + +   = + =     Example. Find the derivative ofth n .cossin cxbxeax Solution. 4
  • 5. { } 2 2 / 2 1 / 22 2 1 Let sin cos (2sin cos ) 2 1 1 [sin( ) sin )] [ sin sin( ) ].( ( ) 2 2 Now sin( ) ( ) sin tan ( ) si 1 2 ax ax ax ax ax n n axax n ax n y e bx cx e bx cx e bx cx x e x e b cbx c b c b D bx cx b c e bx c ne a a b c e y − = = = + + = + −− +     + = + + +        + + x ∴ = { } { } 1 / 22 2 1 n tan ( )/( ) ( ) ( ) sin tan( ) n ax x n b c ab c b c a b c e x nb c a − −  + ++    −  + − − +      Example. If .0)(2thatproved,sin 22 12 =++−= ybaayybxey ax Solution. 1 2 2 2 2 1 2 2 Let sin , sin cos and sin 2 sin ...............(1) Also 2 2 sin 2 cos ...............(2) and ( ) ax ax ax ax ax ax ax ax y e bx y ae bx be bx y a e bx abe b e bx ay a e bx abe bx a b y a = ∴ = + = + − − = − − + = 2 2 2 2 2 1 sin sin .................(3) Adding (1),(2)and (3), we get y - 2ay ( ) 0 ax ax e bx b e bx a b y + + + = LEIBNITZ'S THEOREM: The find nth differential coefficient of two function of x If u and v are any two functions of x such that all their desired differential coefficients exist, then the nth differential coefficient of their product is given by 1 1 2 1 2 1 2 2 ( ) ( ). . . ....... . ...... . or ( 1) ( ) ( ). . ............. 2! n n n n n n n n r r r n n n n n D uv D u v c D u Dv c D u D v c D n D v uD v n n D uv D u v nD u Dv D uD v n − − − − − = + + + + + + − = + + + + 1 .n DuD v uDv− + Proof. 5
  • 6. Let , we have ( ) ( ) ( ). . ........ ......(1) From (1) we see that the theorem is true for n 1. Now assume that the theorem is true for a particular val n y uv Dy uv D u Du v u Dv = = = + = 1 2 2 1 2 1 1 1 ue of n,we have ( ) ( ). . . ....... . ...... ............(2) Differentiating both siede of (2 n n n n n n r r c c r n r r n r D uv D u v n D u Dv n D u D v c D u D v n D uD v uD v − − − − − + + = + + + + + + + ( ) ( ) ( ( ) 1 1 1 2 1 1 1 2 2 3 1 1 2 2 1 1 2 1 1 ) w,r,t,x, we get ( ) ( ). . . . . ..... . . . . ..... . n n n n n c c n n n r r n r c c cr cr n r r n r r n cr cr D uv D u v D uDv n D u Dv n D u D v n D u D v n D u D v n D u D v n D u D v n D u D v n D u D v DuD v u + + − − − − + − − + − − + + +  = + + +  + + + + + + + + + +( )1 1 1 1 2 1 1 2 1 1 1 1 . Rearranging the term, we get ( ) ( ). (1 ) ( ) ( ) . ..... ( )( . ) ...... ...(3) But we know that r n n n n c c c n r r n cr r n n D v D uv D u v n D uDv n n D u D v n n D u D v uD v c c + + + − − + + + = + + + + + + + + + + + 1 1 1 1 1 1 0 1 1 1 2 2, 1 1 1 1 1 2 1 2 1 1 1 . Therefore 1 , and so on. Hence(3) gives ( ) ( ). ( ). ( ).( ) ......... ..... . ..... n r r n n n n n n n n n n n n n n n r r r c c c c c c c c D uv D u v c D u Dv c D u D v c D u D v + + + + + + + + + − + − + + = + = + = + = = + + + + + + 1 . . ..............(4)n u D v+ )r+ From (4) we see that if the theorem is true for any value of n, it is also true for the next value of n. But we have already seen that the theorem is true for n =1.Hence is must be true for n =2 and so for n =3, and so on. Thus the Leibnitz's theorem is true for all positive integral values of n. Example. Find the nth differential coefficients of (i) sin cos , (ii) log[( )( )]. ax bx ax b cx d+ + Solution. 6
  • 7. 1 1 (i) Let sin cos [2sin cos ] [2sin( ) sin( ) ]. 2 2 1 we know that sin( ) sin . 2 1 1 ( ) sin ( ) ( ) sin ( ) . 2 2 n n n n n y ax bx ax bx a b x a b D ax b a ax b n y a b a b x n a b a b x n π π π = = = + + −   + = + +        1 2 x  ∴ = + + + + − − +          [ ] n 1 1 1 1 (ii) Let log ( )( ) log( ) log( ). We know that log( ) ( 1) ( 1)! ( ) ( 1) ( 1)! ( ) ( 1) ( 1)! ( ) ( 1) ( 1)! . ( ) ( ) n n n n n n n n n n n n n n y ax b cx d ax b cx d D ax b n a ax b y n a ax b n c cx a c n ax b cx d − − − − − − = + + = + + + + = − − + n d − ∴ = − − + + − − +   = − − +  + +  Example. Find the nth derivatives of 2 1 . 1 5 6x x− + Solution. 2 2 1 1 1 1 1 Let . (2 1)(3 1)6 5 1 1 (3 1) (2 , 2 1 3 1 (2 1)(3 1)6 5 1 1 1 Putting ,1 , i.e. 3 ; putting , 2. 2 3 2 2 3 Hence 2(2 1) 3(3 1) 2 1 3 1 Therefor 2(2 1) n n n y x xx x A B A x B x x x x xx x B x B x A y x x x x d y x dx − − − = = − −− + − + −1) ∴ ≡ + ≡ − − − −− + = = − = − = = = + = − − − − −  = −  1 1 1 1 1 1 1 1 1 3(3 1) Now we apply the formula, ( ) ( 1) ( !)( ) . Hence 2.2 ( 1) ( !)(2 1) 3.3 ( 1) ( !)(3 1) . 2 3 or ( 1) ( !) . (2 1) (3 1) n x n n n n n n n n n n n n n n n n n d x dx D ax b n ax b a y n x n x y n x x − − − − − − − − + + + +  − −  + = − + = − − − − −   = − +  − −  7
  • 8. Example. 1 /2 If sin cos , prove that 1 ( 1) sin 2 .n n n y ax ax y a ax = + = + −  1 /22 1/ 2 Let sin cos , then 1 1 sin cos 2 2 1 1 sin cos 2 2 1 1 1 2sin cos 2 2 [1 sin(2 n n n n n n y ax ax y a ax n a ax n a ax n ax n a ax n ax n a a π π π π π π = +     ∴ = + + +              = + + +                  = + + +          = + 1 /2 1/ 2 1/ 2 )] [1 sin cos2 cos sin 2 ] [1 ( 1) sin 2 ] [ sin 0 and cos ( 1) ]n n n n x n n ax n y a ax n n π π π π π + = + + = + − = = −Q ax Example. 2 2 2 2 2 2 2 2 3 If cos sin , prove that . d p a b p a b p d p θ θ θ   = + + =    2 Solution. 2 2 2 2 2 2 2 Given cos sin ...(1) Differentiating both sides of (1) w.r.t , we get 2 2( )cos sin ...(2) Aga p a b dp p b a d θ θ θ θ θ θ = +   ∴ = −    22 2 2 2 2 2 2 in differentiating both sides of (2) w.r.t , we get ( )(cos sin ) ...(3) Multiplying (3) by and substituting the value of form (1) a d p dp p b a dd dp p d θ θ θ θθ θ     + = − −       2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 nd (3), we get ( ) cos sin ( )(cos sin ) or ( cos sin )( )(cos sin ) ( ) cos sin d p p b a p b a d d p p a b b a b a d θ θ θ θ θ θ θ θ θ θ θ θ θ   + − = − −      = + − − − −    8
  • 9. 2 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 or ( )[(cos sin )( cos sin ) ( )cos sin ] ( cos sin ) d p p p b a a b b a d a b θ θ θ θ θ θ θ θ   + = − − + − −    + − θ 2 2 2 4 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 =( )[( cos sin ) ( cos sin ) = (cos sin ) Hence . b a a b a b b a a b d p a b p d p θ θ θ θ θ θ θ − − + + + =   + =    Example. 1 Find if log .n ny y x − = x Solution. 1 1 1 1 2 1 3 1 3 1 By Leibnitz's theoram, we get ( 1) ( log ) ( )log ( ) log ( ) log 2! ( 1)( 2) ( ) log ....... . 3! ! Now ; ( )! n n n n n n n n n n n n n n m m n n n n n y D x x D x x nD x D x D x D n n n D x D x x D Logx m D x x D x m n − − − − − − − − − − − = = + + − − + + + = − 2 x 1 1 1 1 1 2 1 3 1 2 1 2 0 ! ; ( 1)! ( 1)! ( 1)! ( 1)! ; 1! 2! ( 1)! and log ( 1) Hence 1 ( 1) ( 1)! ! ( 1)( 2) ( 1)! ( 1)! 2! 1! 3! 2! n m m n n n n n n n n n n n m D x x D x n m n n n D x x D x x n D x x n n n n n n n n n x x x y − − − + − − − − − − − = = ∴ = − − + − − = = − = − − − − − −  − + − +    = 2 3 1 1 1 1 2 3 2 .... ( 1) ( 1)! ....... ( 1)! = [1 {1 ...... ( 1) }] ( 1)! = n n n n n n n n x x n x x n c c c c x n x − − +   +     − − +    − − − − − + + − − ( 1)! [1 (1 1)n n x − − − = 9
  • 10. 1 2 1 1 1 1 1 2 1 1 1 1 1 1 Aliter. log ( 1) log . ( 1) log ( 1) . Differentiating both sides ( 1)times, we have ( ) ( 1) . ( 1) ( 1) ( n n n n n n n n n n n n y x x y n x x x xy n x x x n y x n D xy n D y D x xy n y n y − − − − − − − − − − + = ∴ = − + ∴ = − + = − + − = − + 2n− ∴ + − = − + ( 1) 1)! or n n n y ! x − − = Example. 2 2 1y cos(log ) sin(log ), show that 0If a x b x x y xy y= + + + 2 2 2 1and (2 1) ( 1) 0.n n nx y n xy n y+ ++ − + + = = Solution. 1 1 2 1 2 2 1 Let cos(log ) sin(log ), 1 1 sin(log ). cos(log ) or sin(log ) cos(log ) Now again differentiating both sides, we get 1 1 cos(log ). sin(log ) or [ cos(log ) y a x b x y a x b x xy a x b x x x xy y a x b x x x x y xy a x b = + = − + = − + + = − − + = − + 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 sin(log )] or or 0. Again differentiating both sides in times by Leibnitz's theorem, ( ) ( ) ( ) 0. ( 1) or + 0 2 or n n n n n n n n n x x y xy y x y xy y D x y D xy D y n n x D y nDx D y D x D y xD y nD y y− − + + = − + + = + + = − + + + 2 2 1 1 2 2 2 1 2 ( 1) 0 or (2 1) ( 1) 0. n n n n n n n n n x y nxy n n y xy ny y x y n xy n y + + + + + + + − + + + = + − + + = + = x 2 Example If prove that1 sin( sin ).y m − = 2 2 1(1 ) 0x y xy m y− − + = 2 and deduce that 2 2 2 12 1) (n nn xy n+ ++ −(1 ) ( ) 0.x y m y− − − n = xSolution: Let 1 sin( sin ).y m − = 10
  • 11. 1 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 1 1 2 cos( sin ). . or (1 ) cos ( sin ). (1 ) (1 ) sin ( sin ) (1 ) . Again differentiating both sides, we have 2 (1 ) 2 2 0. or m y m x x y m m x or x y m m m x m m y x y m y m y y x xy m yy y − − − = − = − − = − = − ∴ − + = − − + = 2 1 x 2 2 1 2 2 2 1 1 2 2 2 2 1 (1 ) 0. Now differntiating n time by Leibnitz's theorem, we get ( 1) (1 ) ( 2 ) ( 2) 0, 2! or (1 ) (2 1) ( ) 0. n n n n n n n n n x xy m y n n y x ny x y xy ny m y x y n xy n m y + + + + + − + = − − + − + − − − + = − − + − − = To find The nth Derivative When x = 0 Example: Find ( 1 0) . if sin( sin ).ny y a − = x x Solution: Let ……..(1)1 sin( sin ).y a − = 1 1 2 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 cos( sin ). , (1 ) or (1 ) cos ( sin ) sin ( sin ) or (1 ) 0. ................(2) Differentiating (2), w a y a x x y x a a x a a a x a a y y x a y a − − − 2 ∴ = − − = = − = − − + − = 2 2 2 1 2 1 1 2 2 2 1 1 2 2 1 1 e have 2 (1 ) ( 2 ) 2 0. (1 ) 0 ...................(3) Differentiating (3) n times, we have ( 1) (1 ) 2 .2 2! n n n n y y x y x a yy or y x xy a y n n y x ny x y xy n+ + + − − − + = − + + = − − − − − − 2 2 2 2 2 1 0. or (1 ) (2 1) ( ) 0. ..................(4) n n n n n y a y y x n xy n a y+ + + = − − + − − = Putting x = 0 in (1), we get (y)0 = 0. Putting x = 0 in (2), we get (y1)0 = 0 Putting x = 0 in (3), we get (y2)0 = 0 and 11
  • 12. Putting x = 0 in (4), we get 2 2 2 0 0( ) ( )(n ny n a+ = − )y . . . a . 0n Now putting n = 2 in (5), 2 2 6 0 2 0( ) (2 )( ) 0y a y= − = Putting n = 4 in (5), 2 2 6 0 4 0( ) (4 )( ) 0y a y= − = Similarly 8 0( ) 0y = Thus the derivatives for which n is even are zero Again, putting 2 2 2 2 3 0 1 01,( ) (1 ).( ) (1 ) .n y a y a= = − − Now when n is odd. 2 2 2 0 0( ) ( )( )n ny n a y+ = − Putting n is place of (n-2) we obtain [ ] 2 2 0 2 0 2 2 2 2 2 2 2 2 3 0 2 2 2 2 2 2 2 2 ( ) ( 2) ( ) ( 2) ( 4) ( 6) ......... 3 ( 2) ( 4) ......... 3 1 . . n ny n a y n a n a n a a y n a n a a a a −  = − −         = − − − − − − −               = − − − − − −        Example. 1 2 2 1 2 2 1 If tan , prove that (1 ) 2 0 and deduce that (1 ) 2( 1) ( 1) 0 Hence determine ( )n n n y x x y xy x y n xy n n y y − + + = + + = + + + + + = Solution. 1 1 2 2 1 Let tan .........(1) 1 , ...(2) (1 ) or (1 ) 1 0. ...(3) Differentiating (3), we y x y x x y − = ∴ = + + − = 2 2 1 2 2 1 1 2 2 1 get (1 ) 2 0 .........(4) Now , differentiating (4) n times by Leibnitz's theorem, we get ( 1) (1 ) (2 ) .2 2 2 0 2! or (1 ) 2( 1) ( 1) n n n n n n n x y xy n n y x ny x y xy ny x y n xy n n y + + + + + + + = − + + + + + = + + + + + 0 .........(5)n = 12
  • 13. [ ] 0 1 0 2 0 2 0 0 Putting x = 0, in (1),(2) and (4), we get ( ) 0, ( ) 1, ( ) 0. Also putting x = 0 in (5) we get ( ) ( 1) ( ) . .............(6) Putting n-2 in n n y y y y n n y+ = = = = − + 0 2 0 4 0 n-2 0 4 0 place of n in the foumula (6),we get ( ) [( 1)( 2)]( ) [ {( 1)( 2)}][ {( 3)( 4)}]( ) Since from (6), we have (y ) {( 3)( 4)}]( ) Case I. When n is even, we h n n n n y n n y n n n n y n n y − − − = − − = − − − − − − = − − − 0 2 0 2 0 0 ave ( ) [ {[( 1)( 2)}][ {( 3)( 4)}]....[ (3)(2)]( ) = 0, Since ( ) 0. Case II. When n is odd, we have ( ) [ {[( 1)( 2)][ {( 3)( 4)}]....[ (4)(3)] n n y n n n n y y y n n n n = − − − − − − − = = − − − − − − − 1 0 ( 1)2 1 0 [ (2)(1)( ) ( 1) ( 1)!, since (y ) 1.n y n− − = − − = 13
  • 14. ADDITIONAL PROBLEMS: 1. Find the nth differential coefficient of ( )( ) 3 2 2 ( ) sin ( ) sin cos3 ( ) cos sin x ( ) 2 2 3 ax i x ii x x iii e x x iv x x+ + 2. If ( )2 2 2 1sin , prove that 2 0ax bx y ay a b y= − +y e + = 3. If ( ) ( )1 2 2 1cos sin , prove that 1 0x x y xy m y− = − − 2 + =y m and ( )2 2 2 11 (2 1) ( )n nx y n xy m n y+ +− − + + − 2 0n = 4. If ( ) ( ) 21 2 2 1sin , prove that 1 2 0y x x y xy− = − − − = and deduce that ( )2 2 2 11 (2 1)n nx y n xy n y+ +− − + − 0n = 5. If ( 1 tan , prove thatx y e − = )2 2 11 {2( 1) 1} ( 1)n nx y n x y n n y+ ++ + + − + + 0n = 14