SlideShare a Scribd company logo
1 of 39
Download to read offline
Inner Product Space
11 - 2
Today
◼ Inner Product Spaces
◼ Orthonormal Bases:Gram-Schmidt Process
◼ Mathematical Models and Least Square Analysis
◼ Applications
11 - 3
Inner Product Spaces
(1)
(2)
(3)
(4) and
if and only if
〉〈〉〈 uvvu ,, =
〉〈〉〈〉〈 wuvuwvu ,,, +=+
〉〈〉〈 vuvu ,, cc =
0, 〉〈 vv 0, =〉〈 vv
0=v
◼ Inner product:
Let u, v, and w be vectors in a vector space V, and let c be any
scalar. An inner product on V is a function that associates a
real number <u, v> with each pair of vectors u and v and
satisfies the following axioms.
11 - 4
◼ Note:
V
Rn
spacefor vectorproductinnergeneral,
)forproductinnerEuclidean(productdot
=
=
vu
vu
◼ Note:
A vector space V with an inner product is called an
inner product space.
( )•+,,VVector space:
Inner product
space:
( )•+ ,,,,V
11 - 5
◼ Ex 1: (The Euclidean inner product for Rn)
Show that the dot product in Rn satisfies the four
axioms of an inner product.
nnvuvuvu +++== 2211, vuvu 〉〈
),,,(,),,,( 2121 nn vvvuuu  == vu
Sol:
By Theorem 5.3, this dot product satisfies the required four
axioms. Thus it is an inner product on Rn.
11 - 6
◼ Ex 2: (A different inner product for Rn)
Show that the function defines an inner product on R2,
where and .
2211 2, vuvu +=〉〈 vu
),(),( 2121 vvuu == vu
Sol:
〉〈〉〈 uvvu ,22,)( 22112211 =+=+= uvuvvuvua
〉〈〉〈
〉〈
wuvu
wvu
,,
)2()2(
22
)(2)(,
22112211
22221111
222111
+=
+++=
+++=
+++=+
wuwuvuvu
wuvuwuvu
wvuwvu
),()( 21 wwb =w
11 - 7
◼ Note: (An inner product on Rn)
0,, 222111 +++= innn cvucvucvuc 〉〈 vu
〉〈〉〈 vuvu ,)(2)()2(,)( 22112211 cvcuvcuvuvuccc =+=+=
02,)(
2
2
2
1 += vvd 〉〈 vv
)0(0020, 21
2
2
2
1 ====+= vvv vvvv〉〈
11- 9
◼ Ex 3: (A function that is not an inner product)
Show that the following function is not an inner product on R3.
332211 2 vuvuvu +−= 〉〈 vu
Sol:
Let )1,2,1(=v
06)1)(1()2)(2(2)1)(1(,Then −=+−= vv
Axiom 4 is not satisfied.
Thus this function is not an inner product on R3.
11- 10
◼ Thm: (Properties of inner products)
Let u, v, and w be vectors in an inner product space V, and
let c be any real number.
(1)
(2)
(3)
0,, == 〉〈〉〈 0vv0
〉〈〉〈〉〈 wvwuwvu ,,, +=+
〉〈〉〈 vuvu ,, cc =
◼ Norm (length) of u:
〉〈 uuu ,|||| =
〉〈 uuu ,|||| 2
=
◼ Note:
11 - 11
u and v are orthogonal
if .
◼ Distance between u and v:
−−=−= vuvuvuvu ,||||),(d
◼ Angle between two nonzero vectors u and v:
 = 0,
||||||||
,
cos
vu
vu 〉〈
◼ Orthogonal:
0, =〉〈 vu
)( vu ⊥
11- 12
◼ Notes:
(1) If , then v is called a unit vector.
(2)
1|||| =v
0
1


v
v
⎯⎯⎯ →⎯ gNormalizin
v
v (the unit vector in
the direction of v)
not a unit
vector
11 - 13
◼ Ex 6: (Finding inner product)
)(inspolynomialbe24)(,21)(Let 2
22
xPxxxqxxp +−=−=
nnbababaqp +++= 1100〉,〈 is an inner product
?,)( =〉〈 qpa ?||||)( =qb ?),()( =qpdc
Sol:
2)1)(2()2)(0()4)(1(,)( =−+−+=〉〈 qpa
211)2(4,||||)( 222
=+−+== 〉〈 qqqb
22)3(2)3(
,||||),(
323)(
222
2
=−++−=
−−=−=
−+−=−
qpqpqpqpd
xxqpc 
11 - 15
◼ Properties of norm:
(1)
(2) if and only if
(3)
◼ Properties of distance:
(1)
(2) if and only if
(3)
0|||| u
0|||| =u 0u =
|||||||||| uu cc =
0),( vud
0),( =vud vu =
),(),( uvvu dd =
11 - 16
◼ Thm:
Let u and v be vectors in an inner product space V.
(1) Cauchy-Schwarz inequality:
(2) Triangle inequality:
(3) Pythagorean theorem :
u and v are orthogonal if and only if
|||||||||||| vuvu ++ Theorem 5.5
222
|||||||||||| vuvu +=+ Theorem 5.6
|||||||||,| vuvu 〉〈 Theorem
5.4
11 - 17
◼ Orthogonal projections in inner product spaces:
Let u and v be two vectors in an inner product space V,
such that . Then the orthogonal projection of u onto
v is given by
0v 
v
vv
vu
uv


=
,
,
proj
◼ Note:
If v is a init vector, then .
The formula for the orthogonal projection of u onto v
takes the following simpler form.
1||||, 2
== vvv 〉〈
vvuuv = ,proj
11 - 18
◼ Ex 10: (Finding an orthogonal projection in R3)
Use the Euclidean inner product in R3 to find the
orthogonal projection of u=(6, 2, 4) onto v=(1, 2, 0).
Sol:
10)0)(4()2)(2()1)(6(, =++= vu
5021, 222
=++= vv
)0,4,2()0,2,1(proj 5
10
==


= v
vv
vu
uv
11 - 19
◼ Thm: (Orthogonal projection and distance)
Let u and v be two vectors in an inner product space V,
such that . Then0v 



vv
vu
vuuu v
,
,
,),()proj,( ccdd
11 - 20
Keywords
◼ inner product: 內積
◼ inner product space: 內積空間
◼ norm: 範數
◼ distance: 距離
◼ angle: 夾角
◼ orthogonal: 正交
◼ unit vector: 單位向量
◼ normalizing: 單範化
◼ Cauchy – Schwarz inequality: 科西 - 舒瓦茲不等式
◼ triangle inequality: 三角不等式
◼ Pythagorean theorem: 畢氏定理
◼ orthogonal projection: 正交投影
11 - 21
Today
◼ Length and Dot Product in Rn(Continued)
◼ Inner Product Spaces
◼ Orthonormal Bases:Gram-Schmidt Process
◼ Mathematical Models and Least Square Analysis
◼ Applications
11 - 22
Orthonormal Bases: Gram-Schmidt Process
◼ Orthogonal:
A set S of vectors in an inner product space V is called an
orthogonal set if every pair of vectors in the set is orthogonal.
◼ Orthonormal:
An orthogonal set in which each vector is a unit vector is
called orthonormal.
 




=
=
=
ji
ji
VS
ji
n
0
1
,
,,, 21
vv
vvv
 
0,
,,, 21
=
=
ji
n VS
vv
vvv 
ji 
◼ Note:
If S is a basis, then it is called an orthogonal basis or an
orthonormal basis.
5 - 23
◼ Ex 1: (A nonstandard orthonormal basis for R3)
Show that the following set is an orthonormal basis.









−







−









=
3
1
,
3
2
,
3
2
,
3
22
,
6
2
,
6
2
,0,
2
1
,
2
1
321
S
vvv
Sol:
Show that the three vectors are mutually orthogonal.
0
9
22
9
2
9
2
00
23
2
23
2
00
32
31
6
1
6
1
21
=+−−=
=+−=
=++−=
vv
vv
vv
11 - 24
Show that each vector is of length 1.
Thus S is an orthonormal set.
1||||
1||||
10||||
9
1
9
4
9
4
333
9
8
36
2
36
2
222
2
1
2
1
111
=++==
=++==
=++==
vvv
vvv
vvv
11 - 25
The standard basis is orthonormal.
◼ Ex 2: (An orthonormal basis for )
In , with the inner product
)(3 xP
221100, bababaqp ++=
},,1{ 2
xxB =
)(3 xP
Sol:
,001 2
1 xx ++=v ,00 2
2 xx ++=v ,00 2
3 xx ++=v
0)1)(0()0)(1()0)(0(,
,0)1)(0()0)(0()0)(1(,
,0)0)(0()1)(0()0)(1(,
32
31
21
=++=
=++=
=++=
vv
vv
vv
Then
11 - 26
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) 1110000
,1001100
,1000011
333
222
111
=++==
=++==
=++==
v,vv
v,vv
v,vv
11 - 27
◼ Thm : (Orthogonal sets are linearly independent)
If is an orthogonal set of nonzero vectors
in an inner product space V, then S is linearly independent.
 nS v,,v,v 21=
Pf:
S is an orthogonal set of nonzero vectors
0and0i.e. = iiji ji v,vv,v
iccc
ccc
iinn
nn
==+++
=+++
0,0,
0Let
2211
2211
vvvvv
vvv


=
+++++
iii
inniiiii
c
cccc
v,v
v,vv,vv,vv,v 2211 
t.independenlinearlyis00 Siciii = v,v
11 - 28
◼ Corollary to Thm:
If V is an inner product space of dimension n, then any
orthogonal set of n nonzero vectors is a basis for V.
11 - 29
◼ Ex 4: (Using orthogonality to test for a basis)
Show that the following set is a basis for .4
R
)}1,1,2,1(,)1,2,0,1(,)1,0,0,1(,)2,2,3,2{(
4321
−−−−=S
vvvv
Sol:
: nonzero vectors
02262
02402
02002
41
31
21
=−−+−=
=−++−=
=−++=
vv
vv
vv
4321 ,,, vvvv
01201
01001
01001
43
42
32
=+−+=
=+++−=
=+++−=
vv
vv
vv
.orthogonalisS
4
forbasisais RS (by Corollary to Theorem
5.10)
11 - 30
◼ Thm: (Coordinates relative to an orthonormal basis)
If is an orthonormal basis for an inner
product space V, then the coordinate representation of a vector
w with respect to B is
},,,{ 21 nB vvv =
},,,{ 21 nB vvv  = is orthonormal
ji
ji
ji

=



=
0
1
, vv
Vw
nnkkk vvvw +++= 2211 (unique representation)
Pf:
is a basis for V},,,{ 21 nB vvv =
nn vvwvvwvvww +++= ,,, 2211 
11 - 31
ik
kkk
kkk
i
inniiii
inni
=
++++=
+++=
〉,〈〉,〈〉,〈
〉,)(〈〉,〈
11
2211
vvvvvv
vvvvvw


nn vvwvvwvvww +++= ,,, 2211 
◼ Note:
If is an orthonormal basis for V and ,},,,{ 21 nB vvv = Vw
Then the corresponding coordinate matrix of w relative to B is
 















=
n
B
vw
vw
vw
w
,
,
,
2
1

11 - 32
◼ Ex 5: (Representing vectors relative to an orthonormal basis)
Find the coordinates of w = (5, -5, 2) relative to the following
orthonormal basis for .
)}1,0,0(,)0,,(,)0,,{( 5
3
5
4
5
4
5
3
−=B
3
R
Sol:
2)1,0,0()2,5,5(,
7)0,,()2,5,5(,
1)0,,()2,5,5(,
33
5
3
5
4
22
5
4
5
3
11
=−==
−=−−==
−=−==
vwvw
vwvw
vwvw










−
−
=
2
7
1
][ Bw
11 - 33
◼ Gram-Schmidt orthonormalization process:
is a basis for an inner product space V},,,{ 21 nB uuu =
11Let uv =
})({1 1vw span=
}),({2 21 vvw span=
},,,{' 21 nB vvv =
},,,{''
2
2
n
n
B
v
v
v
v
v
v
1
1
=
is an orthogonal basis.
is an orthonormal
basis.

−
=
−=−= −
1
1 〉〈
〉〈
proj 1
n
i
i
ii
in
nnnn n
v
v,v
v,v
uuuv W

2
22
23
1
11
13
3333
〉〈
〉〈
〉〈
〉〈
proj 2
v
v,v
v,u
v
v,v
v,u
uuuv W −−=−=
1
11
12
2222
〉〈
〉〈
proj 1
v
v,v
v,u
uuuv W −=−=
11 - 34
Sol: )0,1,1(11 == uv
)2,0,0()0,
2
1
,
2
1
(
2/1
2/1
)0,1,1(
2
1
)2,1,0(
2
22
23
1
11
13
33
=−−−=


−


−= v
vv
vu
v
vv
vu
uv
◼ Ex 7: (Applying the Gram-Schmidt orthonormalization process)
Apply the Gram-Schmidt process to the following basis.
)}2,1,0(,)0,2,1(,)0,1,1{(
321
=B
uuu
)0,
2
1
,
2
1
()0,1,1(
2
3
)0,2,1(1
11
12
22 −=−=


−= v
vv
vu
uv
11 - 35
}2)0,(0,0),,
2
1
,
2
1
(0),1,(1,{},,{' 321
−
== vvvB
Orthogonal basis
}1)0,(0,0),,
2
1
,
2
1
(0),,
2
1
,
2
1
({},,{''
3
3
2
2 −
==
v
v
v
v
v
v
1
1
B
Orthonormal basis
11 - 36
◼ Ex 10: (Alternative form of Gram-Schmidt orthonormalization process)
Find an orthonormal basis for the solution space of the
homogeneous system of linear equations.
0622
07
4321
421
=+++
=++
xxxx
xxx
Sol:






−
−
⎯⎯ →⎯





08210
01201
06212
07011 .. EJG












−
+











−
=












−
+−
=













1
0
8
1
0
1
2
2
82
2
4
3
2
1
ts
t
s
ts
ts
x
x
x
x
11 - 37
Thus one basis for the solution space is
)}1,0,8,1(,)0,1,2,2{(},{ 21 −−== vvB
( )
( ) ( )
( )1,2,4,3
01,2,,2
9
18
10,8,1,
,
,
01,2,,2
1
11
12
22
11
−−=
−
−
−−=


−=
−==
v
vv
vu
uv
uv
( )( ) 1,2,4,30,1,2,2' −−−= B (orthogonal basis)











 −−





 −
=
30
1
,
30
2
,
30
4
,
30
3
,0,
3
1
,
3
2
,
3
2
''B
(orthonormal
basis)
11 - 38
Keywords:
◼ orthogonal set: 正交集合
◼ orthonormal set: 單範正交集合
◼ orthogonal basis: 正交基底
◼ orthonormal basis: 單範正交基底
◼ linear independent: 線性獨立
◼ Gram-Schmidt Process: Gram-Schmidt過程
End of Chapter
11 - 39

More Related Content

What's hot

Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimensionATUL KUMAR YADAV
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & DimensionManikanta satyala
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisRavi Gelani
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectorsRakib Hossain
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace2461998
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and EigenvectorsVinod Srivastava
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsaman1894
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT 03062679929
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference InterpolationVARUN KUMAR
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpointoaishnosaj
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matricesEasyStudy3
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectorsAmit Singh
 

What's hot (20)

Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Complex integration
Complex integrationComplex integration
Complex integration
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
P1 . norm vector space
P1 . norm vector spaceP1 . norm vector space
P1 . norm vector space
 
Metric space
Metric spaceMetric space
Metric space
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectors
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace
 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Vector Spaces
Vector SpacesVector Spaces
Vector Spaces
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
 

Similar to Inner Product Space Gram-Schmidt Process

Vcla - Inner Products
Vcla - Inner ProductsVcla - Inner Products
Vcla - Inner ProductsPreetshah1212
 
Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash mathsyash bhathawala
 
Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash mathsyash bhathawala
 
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...Smit Shah
 
Inner product space
Inner product spaceInner product space
Inner product spaceSheharBano31
 
Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)Himanshi Upadhyay
 
Chapter 4: Vector Spaces - Part 5/Slides By Pearson
Chapter 4: Vector Spaces - Part 5/Slides By PearsonChapter 4: Vector Spaces - Part 5/Slides By Pearson
Chapter 4: Vector Spaces - Part 5/Slides By PearsonChaimae Baroudi
 
2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and DimensionCeni Babaoglu, PhD
 
Vectors space definition with axiom classification
Vectors space definition with axiom classificationVectors space definition with axiom classification
Vectors space definition with axiom classificationkishor pokar
 
Perspective in Informatics 3 - Assignment 1 - Answer Sheet
Perspective in Informatics 3 - Assignment 1 - Answer SheetPerspective in Informatics 3 - Assignment 1 - Answer Sheet
Perspective in Informatics 3 - Assignment 1 - Answer SheetHoang Nguyen Phong
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesGopi Saiteja
 

Similar to Inner Product Space Gram-Schmidt Process (20)

Vcla - Inner Products
Vcla - Inner ProductsVcla - Inner Products
Vcla - Inner Products
 
Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash maths
 
Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash maths
 
Ch4
Ch4Ch4
Ch4
 
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
 
Inner product space
Inner product spaceInner product space
Inner product space
 
Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)
 
Chapter 4: Vector Spaces - Part 5/Slides By Pearson
Chapter 4: Vector Spaces - Part 5/Slides By PearsonChapter 4: Vector Spaces - Part 5/Slides By Pearson
Chapter 4: Vector Spaces - Part 5/Slides By Pearson
 
ANALISIS VECTORIAL.pdf
ANALISIS VECTORIAL.pdfANALISIS VECTORIAL.pdf
ANALISIS VECTORIAL.pdf
 
Vectors 2.pdf
Vectors 2.pdfVectors 2.pdf
Vectors 2.pdf
 
Pre-Calculus - Vectors
Pre-Calculus - VectorsPre-Calculus - Vectors
Pre-Calculus - Vectors
 
2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension
 
1639 vector-linear algebra
1639 vector-linear algebra1639 vector-linear algebra
1639 vector-linear algebra
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Vector space
Vector spaceVector space
Vector space
 
Vectors space definition with axiom classification
Vectors space definition with axiom classificationVectors space definition with axiom classification
Vectors space definition with axiom classification
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
Mcs 013 solve assignment
Mcs 013 solve assignmentMcs 013 solve assignment
Mcs 013 solve assignment
 
Perspective in Informatics 3 - Assignment 1 - Answer Sheet
Perspective in Informatics 3 - Assignment 1 - Answer SheetPerspective in Informatics 3 - Assignment 1 - Answer Sheet
Perspective in Informatics 3 - Assignment 1 - Answer Sheet
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
 

More from EasyStudy3

2. polynomial interpolation
2. polynomial interpolation2. polynomial interpolation
2. polynomial interpolationEasyStudy3
 
Chapter2 slides-part 2-harish complete
Chapter2 slides-part 2-harish completeChapter2 slides-part 2-harish complete
Chapter2 slides-part 2-harish completeEasyStudy3
 
Chapter 12 vectors and the geometry of space merged
Chapter 12 vectors and the geometry of space mergedChapter 12 vectors and the geometry of space merged
Chapter 12 vectors and the geometry of space mergedEasyStudy3
 
Chapter 5 gen chem
Chapter 5 gen chemChapter 5 gen chem
Chapter 5 gen chemEasyStudy3
 
Topic 4 gen chem guobi
Topic 4 gen chem guobiTopic 4 gen chem guobi
Topic 4 gen chem guobiEasyStudy3
 
Gen chem topic 3 guobi
Gen chem topic 3  guobiGen chem topic 3  guobi
Gen chem topic 3 guobiEasyStudy3
 
Gen chem topic 1 guobi
Gen chem topic 1 guobiGen chem topic 1 guobi
Gen chem topic 1 guobiEasyStudy3
 

More from EasyStudy3 (20)

Week 7
Week 7Week 7
Week 7
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Week 6
Week 6Week 6
Week 6
 
2. polynomial interpolation
2. polynomial interpolation2. polynomial interpolation
2. polynomial interpolation
 
Chapter2 slides-part 2-harish complete
Chapter2 slides-part 2-harish completeChapter2 slides-part 2-harish complete
Chapter2 slides-part 2-harish complete
 
L6
L6L6
L6
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
2
22
2
 
Lec#4
Lec#4Lec#4
Lec#4
 
Chapter 12 vectors and the geometry of space merged
Chapter 12 vectors and the geometry of space mergedChapter 12 vectors and the geometry of space merged
Chapter 12 vectors and the geometry of space merged
 
Week 5
Week 5Week 5
Week 5
 
Chpater 6
Chpater 6Chpater 6
Chpater 6
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Lec#3
Lec#3Lec#3
Lec#3
 
Chapter 16 2
Chapter 16 2Chapter 16 2
Chapter 16 2
 
Chapter 5 gen chem
Chapter 5 gen chemChapter 5 gen chem
Chapter 5 gen chem
 
Topic 4 gen chem guobi
Topic 4 gen chem guobiTopic 4 gen chem guobi
Topic 4 gen chem guobi
 
Gen chem topic 3 guobi
Gen chem topic 3  guobiGen chem topic 3  guobi
Gen chem topic 3 guobi
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Gen chem topic 1 guobi
Gen chem topic 1 guobiGen chem topic 1 guobi
Gen chem topic 1 guobi
 

Recently uploaded

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 

Recently uploaded (20)

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 

Inner Product Space Gram-Schmidt Process

  • 2. 11 - 2 Today ◼ Inner Product Spaces ◼ Orthonormal Bases:Gram-Schmidt Process ◼ Mathematical Models and Least Square Analysis ◼ Applications
  • 3. 11 - 3 Inner Product Spaces (1) (2) (3) (4) and if and only if 〉〈〉〈 uvvu ,, = 〉〈〉〈〉〈 wuvuwvu ,,, +=+ 〉〈〉〈 vuvu ,, cc = 0, 〉〈 vv 0, =〉〈 vv 0=v ◼ Inner product: Let u, v, and w be vectors in a vector space V, and let c be any scalar. An inner product on V is a function that associates a real number <u, v> with each pair of vectors u and v and satisfies the following axioms.
  • 4. 11 - 4 ◼ Note: V Rn spacefor vectorproductinnergeneral, )forproductinnerEuclidean(productdot = = vu vu ◼ Note: A vector space V with an inner product is called an inner product space. ( )•+,,VVector space: Inner product space: ( )•+ ,,,,V
  • 5. 11 - 5 ◼ Ex 1: (The Euclidean inner product for Rn) Show that the dot product in Rn satisfies the four axioms of an inner product. nnvuvuvu +++== 2211, vuvu 〉〈 ),,,(,),,,( 2121 nn vvvuuu  == vu Sol: By Theorem 5.3, this dot product satisfies the required four axioms. Thus it is an inner product on Rn.
  • 6. 11 - 6 ◼ Ex 2: (A different inner product for Rn) Show that the function defines an inner product on R2, where and . 2211 2, vuvu +=〉〈 vu ),(),( 2121 vvuu == vu Sol: 〉〈〉〈 uvvu ,22,)( 22112211 =+=+= uvuvvuvua 〉〈〉〈 〉〈 wuvu wvu ,, )2()2( 22 )(2)(, 22112211 22221111 222111 += +++= +++= +++=+ wuwuvuvu wuvuwuvu wvuwvu ),()( 21 wwb =w
  • 7. 11 - 7 ◼ Note: (An inner product on Rn) 0,, 222111 +++= innn cvucvucvuc 〉〈 vu 〉〈〉〈 vuvu ,)(2)()2(,)( 22112211 cvcuvcuvuvuccc =+=+= 02,)( 2 2 2 1 += vvd 〉〈 vv )0(0020, 21 2 2 2 1 ====+= vvv vvvv〉〈
  • 8.
  • 9. 11- 9 ◼ Ex 3: (A function that is not an inner product) Show that the following function is not an inner product on R3. 332211 2 vuvuvu +−= 〉〈 vu Sol: Let )1,2,1(=v 06)1)(1()2)(2(2)1)(1(,Then −=+−= vv Axiom 4 is not satisfied. Thus this function is not an inner product on R3.
  • 10. 11- 10 ◼ Thm: (Properties of inner products) Let u, v, and w be vectors in an inner product space V, and let c be any real number. (1) (2) (3) 0,, == 〉〈〉〈 0vv0 〉〈〉〈〉〈 wvwuwvu ,,, +=+ 〉〈〉〈 vuvu ,, cc = ◼ Norm (length) of u: 〉〈 uuu ,|||| = 〉〈 uuu ,|||| 2 = ◼ Note:
  • 11. 11 - 11 u and v are orthogonal if . ◼ Distance between u and v: −−=−= vuvuvuvu ,||||),(d ◼ Angle between two nonzero vectors u and v:  = 0, |||||||| , cos vu vu 〉〈 ◼ Orthogonal: 0, =〉〈 vu )( vu ⊥
  • 12. 11- 12 ◼ Notes: (1) If , then v is called a unit vector. (2) 1|||| =v 0 1   v v ⎯⎯⎯ →⎯ gNormalizin v v (the unit vector in the direction of v) not a unit vector
  • 13. 11 - 13 ◼ Ex 6: (Finding inner product) )(inspolynomialbe24)(,21)(Let 2 22 xPxxxqxxp +−=−= nnbababaqp +++= 1100〉,〈 is an inner product ?,)( =〉〈 qpa ?||||)( =qb ?),()( =qpdc Sol: 2)1)(2()2)(0()4)(1(,)( =−+−+=〉〈 qpa 211)2(4,||||)( 222 =+−+== 〉〈 qqqb 22)3(2)3( ,||||),( 323)( 222 2 =−++−= −−=−= −+−=− qpqpqpqpd xxqpc 
  • 14.
  • 15. 11 - 15 ◼ Properties of norm: (1) (2) if and only if (3) ◼ Properties of distance: (1) (2) if and only if (3) 0|||| u 0|||| =u 0u = |||||||||| uu cc = 0),( vud 0),( =vud vu = ),(),( uvvu dd =
  • 16. 11 - 16 ◼ Thm: Let u and v be vectors in an inner product space V. (1) Cauchy-Schwarz inequality: (2) Triangle inequality: (3) Pythagorean theorem : u and v are orthogonal if and only if |||||||||||| vuvu ++ Theorem 5.5 222 |||||||||||| vuvu +=+ Theorem 5.6 |||||||||,| vuvu 〉〈 Theorem 5.4
  • 17. 11 - 17 ◼ Orthogonal projections in inner product spaces: Let u and v be two vectors in an inner product space V, such that . Then the orthogonal projection of u onto v is given by 0v  v vv vu uv   = , , proj ◼ Note: If v is a init vector, then . The formula for the orthogonal projection of u onto v takes the following simpler form. 1||||, 2 == vvv 〉〈 vvuuv = ,proj
  • 18. 11 - 18 ◼ Ex 10: (Finding an orthogonal projection in R3) Use the Euclidean inner product in R3 to find the orthogonal projection of u=(6, 2, 4) onto v=(1, 2, 0). Sol: 10)0)(4()2)(2()1)(6(, =++= vu 5021, 222 =++= vv )0,4,2()0,2,1(proj 5 10 ==   = v vv vu uv
  • 19. 11 - 19 ◼ Thm: (Orthogonal projection and distance) Let u and v be two vectors in an inner product space V, such that . Then0v     vv vu vuuu v , , ,),()proj,( ccdd
  • 20. 11 - 20 Keywords ◼ inner product: 內積 ◼ inner product space: 內積空間 ◼ norm: 範數 ◼ distance: 距離 ◼ angle: 夾角 ◼ orthogonal: 正交 ◼ unit vector: 單位向量 ◼ normalizing: 單範化 ◼ Cauchy – Schwarz inequality: 科西 - 舒瓦茲不等式 ◼ triangle inequality: 三角不等式 ◼ Pythagorean theorem: 畢氏定理 ◼ orthogonal projection: 正交投影
  • 21. 11 - 21 Today ◼ Length and Dot Product in Rn(Continued) ◼ Inner Product Spaces ◼ Orthonormal Bases:Gram-Schmidt Process ◼ Mathematical Models and Least Square Analysis ◼ Applications
  • 22. 11 - 22 Orthonormal Bases: Gram-Schmidt Process ◼ Orthogonal: A set S of vectors in an inner product space V is called an orthogonal set if every pair of vectors in the set is orthogonal. ◼ Orthonormal: An orthogonal set in which each vector is a unit vector is called orthonormal.       = = = ji ji VS ji n 0 1 , ,,, 21 vv vvv   0, ,,, 21 = = ji n VS vv vvv  ji  ◼ Note: If S is a basis, then it is called an orthogonal basis or an orthonormal basis.
  • 23. 5 - 23 ◼ Ex 1: (A nonstandard orthonormal basis for R3) Show that the following set is an orthonormal basis.          −        −          = 3 1 , 3 2 , 3 2 , 3 22 , 6 2 , 6 2 ,0, 2 1 , 2 1 321 S vvv Sol: Show that the three vectors are mutually orthogonal. 0 9 22 9 2 9 2 00 23 2 23 2 00 32 31 6 1 6 1 21 =+−−= =+−= =++−= vv vv vv
  • 24. 11 - 24 Show that each vector is of length 1. Thus S is an orthonormal set. 1|||| 1|||| 10|||| 9 1 9 4 9 4 333 9 8 36 2 36 2 222 2 1 2 1 111 =++== =++== =++== vvv vvv vvv
  • 25. 11 - 25 The standard basis is orthonormal. ◼ Ex 2: (An orthonormal basis for ) In , with the inner product )(3 xP 221100, bababaqp ++= },,1{ 2 xxB = )(3 xP Sol: ,001 2 1 xx ++=v ,00 2 2 xx ++=v ,00 2 3 xx ++=v 0)1)(0()0)(1()0)(0(, ,0)1)(0()0)(0()0)(1(, ,0)0)(0()1)(0()0)(1(, 32 31 21 =++= =++= =++= vv vv vv Then
  • 26. 11 - 26 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 1110000 ,1001100 ,1000011 333 222 111 =++== =++== =++== v,vv v,vv v,vv
  • 27. 11 - 27 ◼ Thm : (Orthogonal sets are linearly independent) If is an orthogonal set of nonzero vectors in an inner product space V, then S is linearly independent.  nS v,,v,v 21= Pf: S is an orthogonal set of nonzero vectors 0and0i.e. = iiji ji v,vv,v iccc ccc iinn nn ==+++ =+++ 0,0, 0Let 2211 2211 vvvvv vvv   = +++++ iii inniiiii c cccc v,v v,vv,vv,vv,v 2211  t.independenlinearlyis00 Siciii = v,v
  • 28. 11 - 28 ◼ Corollary to Thm: If V is an inner product space of dimension n, then any orthogonal set of n nonzero vectors is a basis for V.
  • 29. 11 - 29 ◼ Ex 4: (Using orthogonality to test for a basis) Show that the following set is a basis for .4 R )}1,1,2,1(,)1,2,0,1(,)1,0,0,1(,)2,2,3,2{( 4321 −−−−=S vvvv Sol: : nonzero vectors 02262 02402 02002 41 31 21 =−−+−= =−++−= =−++= vv vv vv 4321 ,,, vvvv 01201 01001 01001 43 42 32 =+−+= =+++−= =+++−= vv vv vv .orthogonalisS 4 forbasisais RS (by Corollary to Theorem 5.10)
  • 30. 11 - 30 ◼ Thm: (Coordinates relative to an orthonormal basis) If is an orthonormal basis for an inner product space V, then the coordinate representation of a vector w with respect to B is },,,{ 21 nB vvv = },,,{ 21 nB vvv  = is orthonormal ji ji ji  =    = 0 1 , vv Vw nnkkk vvvw +++= 2211 (unique representation) Pf: is a basis for V},,,{ 21 nB vvv = nn vvwvvwvvww +++= ,,, 2211 
  • 31. 11 - 31 ik kkk kkk i inniiii inni = ++++= +++= 〉,〈〉,〈〉,〈 〉,)(〈〉,〈 11 2211 vvvvvv vvvvvw   nn vvwvvwvvww +++= ,,, 2211  ◼ Note: If is an orthonormal basis for V and ,},,,{ 21 nB vvv = Vw Then the corresponding coordinate matrix of w relative to B is                  = n B vw vw vw w , , , 2 1 
  • 32. 11 - 32 ◼ Ex 5: (Representing vectors relative to an orthonormal basis) Find the coordinates of w = (5, -5, 2) relative to the following orthonormal basis for . )}1,0,0(,)0,,(,)0,,{( 5 3 5 4 5 4 5 3 −=B 3 R Sol: 2)1,0,0()2,5,5(, 7)0,,()2,5,5(, 1)0,,()2,5,5(, 33 5 3 5 4 22 5 4 5 3 11 =−== −=−−== −=−== vwvw vwvw vwvw           − − = 2 7 1 ][ Bw
  • 33. 11 - 33 ◼ Gram-Schmidt orthonormalization process: is a basis for an inner product space V},,,{ 21 nB uuu = 11Let uv = })({1 1vw span= }),({2 21 vvw span= },,,{' 21 nB vvv = },,,{'' 2 2 n n B v v v v v v 1 1 = is an orthogonal basis. is an orthonormal basis.  − = −=−= − 1 1 〉〈 〉〈 proj 1 n i i ii in nnnn n v v,v v,v uuuv W  2 22 23 1 11 13 3333 〉〈 〉〈 〉〈 〉〈 proj 2 v v,v v,u v v,v v,u uuuv W −−=−= 1 11 12 2222 〉〈 〉〈 proj 1 v v,v v,u uuuv W −=−=
  • 34. 11 - 34 Sol: )0,1,1(11 == uv )2,0,0()0, 2 1 , 2 1 ( 2/1 2/1 )0,1,1( 2 1 )2,1,0( 2 22 23 1 11 13 33 =−−−=   −   −= v vv vu v vv vu uv ◼ Ex 7: (Applying the Gram-Schmidt orthonormalization process) Apply the Gram-Schmidt process to the following basis. )}2,1,0(,)0,2,1(,)0,1,1{( 321 =B uuu )0, 2 1 , 2 1 ()0,1,1( 2 3 )0,2,1(1 11 12 22 −=−=   −= v vv vu uv
  • 35. 11 - 35 }2)0,(0,0),, 2 1 , 2 1 (0),1,(1,{},,{' 321 − == vvvB Orthogonal basis }1)0,(0,0),, 2 1 , 2 1 (0),, 2 1 , 2 1 ({},,{'' 3 3 2 2 − == v v v v v v 1 1 B Orthonormal basis
  • 36. 11 - 36 ◼ Ex 10: (Alternative form of Gram-Schmidt orthonormalization process) Find an orthonormal basis for the solution space of the homogeneous system of linear equations. 0622 07 4321 421 =+++ =++ xxxx xxx Sol:       − − ⎯⎯ →⎯      08210 01201 06212 07011 .. EJG             − +            − =             − +− =              1 0 8 1 0 1 2 2 82 2 4 3 2 1 ts t s ts ts x x x x
  • 37. 11 - 37 Thus one basis for the solution space is )}1,0,8,1(,)0,1,2,2{(},{ 21 −−== vvB ( ) ( ) ( ) ( )1,2,4,3 01,2,,2 9 18 10,8,1, , , 01,2,,2 1 11 12 22 11 −−= − − −−=   −= −== v vv vu uv uv ( )( ) 1,2,4,30,1,2,2' −−−= B (orthogonal basis)             −−       − = 30 1 , 30 2 , 30 4 , 30 3 ,0, 3 1 , 3 2 , 3 2 ''B (orthonormal basis)
  • 38. 11 - 38 Keywords: ◼ orthogonal set: 正交集合 ◼ orthonormal set: 單範正交集合 ◼ orthogonal basis: 正交基底 ◼ orthonormal basis: 單範正交基底 ◼ linear independent: 線性獨立 ◼ Gram-Schmidt Process: Gram-Schmidt過程