SlideShare a Scribd company logo
1 of 119
Download to read offline
Calculus
of
Integration
Prof. Dr. M. Abul-Ez
Mathematics Department
Faculty of Science
Sohag University
Mathematics For Engineering
2
Chapter 1
Indefinite Integration
If ( )F x is a function such that ( ) ( )F x f x′′′′ ==== on the interval [ , ]a b Then
( )F x is called an anti-derivative or indefinite of ( )f x . The indefinite
integral of the given function is not unique for example
2 2 2
, 3, 5x x x+ ++ ++ ++ + are indefinite integral of ( ) 2f x x==== since
2 2 2
( ) ( 3) ( 5) 2
d d d
x x x x
dx dx dx
= + = + == + = + == + = + == + = + = All of indefinite integral of
( ) 2f x x==== include in ( ) 2f x x c= += += += + where c called the constant of
integration, is an arbitrary constant.
1.1- Fundamental Integration Formula:
1
(1) ( ) ( )
(2) ( )
(3)
(4) 1
1
(5) ln
(6)
ln
(7)
m
m
x
x
x x
d
f x f x c
dx
u v dx udx vdx
udx udx
x
x dx c m
m
dx
x c
x
a
a dx c
a
e du e c
α αα αα αα α
++++
= += += += +
+ = ++ = ++ = ++ = +
====
= + ≠ −= + ≠ −= + ≠ −= + ≠ −
++++
= += += += +
= += += += +
= += += += +
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
Integration of Trigonometric functions:
(8) sin cos
(9) cos sin
(10) tan ln sec
(11) cot lncos
xdx x c
xdx x c
xdx x c
x dx x c
= − += − += − += − +
= += += += +
= += += += +
= += += += +
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
Indefinite Integration
3
(12) sec ln sec tan
(13) cosec ln csc cot
xdx x x c
dx x x c
= + += + += + += + +
= − += − += − += − +
∫∫∫∫
∫∫∫∫
2
2
(14) sec tan
(15) cosec cot
(16) sec tan sec
(17) cosec cot cosec
xdx x c
dx x c
x xdx x c
x xdx x c
= += += += +
= − += − += − += − +
= += += += +
= − += − += − += − +
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
Integration tends to inverse of Trigonometric functions:
1
2 2 2 1
1
2 2 2
1
1
2 2 2 1
1
2 2 2
1
sin
(18)
1
cos
1
tan
(19)
1
cot
1
sec
(20)
1
cosec
1
coth
(21)
1
ln
2
bx
c
dx b a
bxa b x c
b a
bx
c
dx ab a
bxa b x c
ab a
bx
c
dx a a
dx
bxx b x a c
a a
bx
c
ab adx
dx
bx ab x a c
ab bx a
−−−−
−−−−
−−−−
−−−−
−−−−
−−−−
−−−−

++++
==== 
−−−−−−−− ++++


++++
==== 
−−−−++++  ++++


++++
==== 
−−−−−−−− ++++


++++
==== 
−−−−−−−− ++++
++++
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
1
2 2 2
2 2
12 2
1
tanh
(22)
1
ln
2
ln( )
(23)
sinh
bx
c
ab adx
a bxa b x c
ab a bx
x x a cdx
x
cx a
a
−−−−
−−−−



++++
==== 
++++−−−−  ++++
 −−−−
 + + ++ + ++ + ++ + +
==== 
++++++++

∫∫∫∫
∫∫∫∫
Mathematics For Engineering
4
2 2
12 2
2
2 2 2 2 1
2
2 2 2 2 1
2
2 2 2 2 1
ln( )
(24)
cosh
1
(25) sin
2 2
1
(26) sinh
2 2
1
(27) cosh
2 2
x x a cdx
x
cx a
a
a x
a x x a x c
a
a x
x a x x a c
a
a x
x a x x a c
a
−−−−
−−−−
−−−−
−−−−
 + − ++ − ++ − ++ − +

==== 
++++−−−−

− = − + +− = − + +− = − + +− = − + +
+ = + + ++ = + + ++ = + + ++ = + + +
− = − − +− = − − +− = − − +− = − − +
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
In the following some lows witch we use to integrate the square of
trigonometric functions
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
2 2
2 2
2 2
2
2
(1)cos sin 1,
(2)1 tan sec ,
(3)cot 1 csc
1
(4) sin (1 cos2 )
2
1
(5)cos (1 cos2 )
2
1
(6)cos cos cos( ) cos( )
2
1
(7)sin sin cos( ) cos( )
2
1
(8)sin cos sin( ) sin( )
2
x x
x x
x x
x x
x x
x y x y x y
x y x y x y
x y x y x y
+ =+ =+ =+ =
+ =+ =+ =+ =
+ =+ =+ =+ =
= −= −= −= −
= += += += +
= + + −= + + −= + + −= + + −
= − − += − − += − − += − − +
= + + −= + + −= + + −= + + −
Integration of square of trigonometric functions:
2
2
2
1 1 1
(1) sin (1 cos2 ) cos2
2 2 2
1 1 1
(2) cos (1 cos2 ) cos2
2 2 2
(3) sec tan ,
x dx x dx x x c
x dx x dx x x c
x dx x c
    
= − = − += − = − += − = − += − = − +    
    
    
= + = + += + = + += + = + += + = + +    
    
= += += += +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
Indefinite Integration
5
2
2 2
2 2
(4) cosec cot
(5) tan (sec 1) tan
(6) cot (cosec 1) cot
x dx x c
x dx dx x x c
x dx x dx x x c
= − += − += − += − +
= − = − += − = − += − = − += − = − +
= − = − − += − = − − += − = − − += − = − − +
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
1
(7) cos cos cos( ) cos( )
2
1 sin( ) sin( )
2 ( )
1
(8) sin sin cos( ) cos( )
2
1 sin( ) sin( )
2 ( )
1
(9) sin cos sin( ) sin( )
2
ax bx dx a b x a b x dx
a b x a b x
c
a b a b
ax bxdx a b x a b x dx
a b x a b x
c
a b a b
ax bx dx a b x a b x dx
= + + −= + + −= + + −= + + −
    + −+ −+ −+ −
= + += + += + += + +    
+ −+ −+ −+ −    
= − − += − − += − − += − − +
    − +− +− +− +
= + += + += + += + +    
− +− +− +− +    
= + + −= + + −= + + −= + + −
====
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
1 cos( ) cos( )
2 ( ) ( )
a b x a b x
c
a b a b
    − + −− + −− + −− + −
+ ++ ++ ++ +    
+ −+ −+ −+ −    
Solved Examples:
5 6
1 4
3 3 3
1
1
1
:
6
3
4
1 ( )
( )
( 1)
1 1
ln ( )
( )
1 1 ( )
( ) , 1
( 1)( )
Exampl(1)
Exampl(2):
Exampl(3):
Exampl(4):
Exampl(5):
n
n
n
n
n
x dx x c
x dx x dx x c
ax b
ax b dx c
a n
dx ax b c
ax b a
ax b
dx ax b dx c n
a nax b
++++
− +− +− +− +
−−−−
= += += += +
= = += = += = += = +
++++
+ = ++ = ++ = ++ = +
++++
= + += + += + += + +
++++
++++
= + = + ≠= + = + ≠= + = + ≠= + = + ≠
− +− +− +− +++++
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
Mathematics For Engineering
6
1 3 1 3 3 5
2 2 2 2 2 2
2
3 5 2 3 2
4 3
1 2
2 2
(1 ) ( )
3 5
Find ( ) ( 2) , ( ) ( ) 2
2
Exampl(6):
Exampl(7):
Exampl(8):
dx ax b c
aax b
x x dx x x dx x dx x dx x x c
x dx
i x x dx ii dx iii x x dx
x
= + += + += + += + +
++++
− = − = − = − +− = − = − = − +− = − = − = − +− = − = − = − +
+ ++ ++ ++ +
++++
∫∫∫∫
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
3 2
3 5 2 5 6 3 6
1 3 32
34 4 4
44 3
3 3
3 2 32 2
2 3
substitute in the integral we have
1 1 1
( ) ( 2) ( 2)
3 18 18
1 1 4 4
( ) ( 2)
3 3 9 92
1 2 2
( ) 2 ( ) ( 2)
9 9 9
let u x du x du
i x x dx u du u c x c
x dx du
ii dx dx u du u x c
ux
iii x x dx u du u c x c
−−−−
= + ∴ == + ∴ == + ∴ == + ∴ =
+ = = + = + ++ = = + = + ++ = = + = + ++ = = + = + +
= = = = + += = = = + += = = = + += = = = + +
++++
+ = = + = + ++ = = + = + ++ = = + = + ++ = = + = + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
3 2 3 2
3 2 2
2 2 2
3 5 3
2 2 2 22 2 2
1 ( ) 1
( ) 1 1
( 1) 1 1
2 2
( 1) 1 ( 1) ( 1)
10 6
Exampl(9):
x x dx x x x x dx
x x x dx x x dx
x x x dx x x dx
x x dx x x dx x x c
+ = + − ++ = + − ++ = + − ++ = + − +
= + + − += + + − += + + − += + + − +
= + + − += + + − += + + − += + + − +
= + − + = + − + += + − + = + − + += + − + = + − + += + − + = + − + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
2 2
3
3 3
1 2 1
ln 2 3
2 3 2 2 3 2
1 6 1
ln(1 2 )
6 61 2 1 2
5 ( 1) 4 ( 1) 4
( 1) ( 1) ( 1) ( 1)
4
1 4ln 1
( 1)
Exampl(10):
Exampl(11):
Exampl(12):
dx dx
x c
x x
x dx x dx
x c
x x
x x x
dx dx dx dx
x x x x
dx
x x c
x
= = − += = − += = − += = − +
− −− −− −− −
− −− −− −− −
= − = − += − = − += − = − += − = − +
− −− −− −− −
+ + + ++ + + ++ + + ++ + + +
= = += = += = += = +
+ + + ++ + + ++ + + ++ + + +
    
= + = + + += + = + + += + = + + += + = + + +    
++++    
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
∫∫∫∫
Indefinite Integration
7
2 2 2 2 2
2 2 3
1 1
tan 2ln sec
2 2
1 1
(sec ) sec ( ) ln sec tan
2 2
1
sin cos sin (sin ) sin
3
Example(13):
Example(14):
Example(15):
xdx x c
x x dx x d x x x c
x xdx xd x x c
= += += += +
= = + += = + += = + += = + +
= = += = += = += = +
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
2 3 2 3 2 4 6
2 4 6
3 7 11
2 2 2
5 9 13
2 2 2
5 5 6
:
(1 ) (1 ) (1 3 3 )
1 3 3
( )
3 3
6 6 2
2
5 9 13
1
( 1) ( 1) ( 1) ( 1)
6
Example(16)
Example(17): x x x x x
x x x x x
dx dx dx
x x x
x x x
dx
x x x x
dx
x dx x dx x dx
x
x x x x c
e e dx e d e e c
+ + + + ++ + + + ++ + + + ++ + + + +
= == == == =
= + + += + + += + + += + + +
= + + += + + += + + += + + +
= + + + += + + + += + + + += + + + +
+ = + + = + ++ = + + = + ++ = + + = + ++ = + + = + +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
3 3 3
2 2
2
2 2
2 2
2 5 2
2 5 2 5
2 4
1 1
(3 )
3 3ln
1 ( 1) 1
ln( 1)
2 2( 1) ( 1)
1 ( 1) 1
( 1) ( 1)
2 2( 1) ( 1)
1 ( 1)
2 4
Example(18):
Example(19):
Example(20):
x x x
x x
x
x x
x x
x x
x x
x
a dx a dx a c
a
e d e
dx dx e c
e e
e dx d e
e d e
e e
e
c
−−−−
−−−−
= = += = += = += = +
−−−−
= = − += = − += = − += = − +
− −− −− −− −
−−−−
= = − −= = − −= = − −= = − −
− −− −− −− −
−−−−
= += += += +
−−−−
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
4 4
1 1
sin4 cos4 , (19) cos3 sin3
4 3
cos sin cos ( sin )
Example(21):
Example(22):
x dx x c x dx x c
x x dx x x dx
−−−−
= + = += + = += + = += + = +
= − −= − −= − −= − −
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
Mathematics For Engineering
8
3 2 3 4
5 2 5 2
5 6
5 2 4 2
2 2 2
1
tan sec tan (tan ) tan
4
cot cosec cot ( cosec )
1
cot (cot ) cot
6
cos sin cos sin (cos )
(1 sin ) sin (cos )
(1 2si
Example(23):
Example(24):
Example(25):
x x dx x d x x c
x x dx x x dx
x d x x c
x x dx x x xdx
x x xdx
= = += = += = += = +
= − −= − −= − −= − −
= − = − += − = − += − = − += − = − +
====
= −= −= −= −
= −= −= −= −
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
2 4 2
2 4 6
2 4 6 3 5 7
3 5 7
4 3 4 2
4 2
n sin )sin (cos )
(sin 2sin sin )(cos )
sin cos
1 2 1
( 2 )
3 5 7
1 2 1
sin sin sin
3 5 7
cos sin cos sin (sin )
cos (1 cos )(sin )
Example(26):
x x x xdx
x x x xdx
let y x dy xdx
I y y y dy y y y c
x x x c
x x dx x x x dx
x x dx
++++
= − += − += − += − +
==== ⇒⇒⇒⇒ ====
∴ = − + = − + +∴ = − + = − + +∴ = − + = − + +∴ = − + = − + +
= − + += − + += − + += − + +
====
= −= −= −= −
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
4 6
4 6 5 7
5 7
3 5
4 4
(cos cos )(sin )
cos sin
1 1
( )
5 7
1 1
cos cos
5 7
sin cos
sin cos
x x xdx
let y x dy xdx
I y y dy y y c
x x c
Try to solve x x dx
x x dx
= −= −= −= −
==== ⇒⇒⇒⇒ = −= −= −= −
∴ = − = − +∴ = − = − +∴ = − = − +∴ = − = − +
= − += − += − += − +
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
Indefinite Integration
9
4 3
3 4
2
2
sec tan sec (sec tan )
1
sec (sec ) sec
4
sin sin 1
tan sec sec
cos coscos
cos cos 1
cot cosec cot
sin sinsin
Example(27):
Example(28):
Example(29):
Example(30)
x x dx x x x dx
x d x c
x x
dx dx x x dx x c
x xx
x x
dx dx x x dx x c
x xx
====
= = += = += = += = +
= = = += = = += = = += = = +
= = = − += = = − += = = − += = = − +
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
2 2
2 2
2
2
(1 cos ) (1 cos )
1 cos 1 cos sin
cos
sin sin
cosec cot cosec
cot cosec
sec tan sec sec tan
sec sec
sec tan sec tan
ln sec tan
:
Example(31):
Exampl
dx x dx x dx
x x x
dx x dx
x x
xdx x x dx
x x c
x x x x x
x dx x dx dx
x x x x
x x c
− −− −− −− −
= == == == =
++++ −−−−
= −= −= −= −
= −= −= −= −
= − + += − + += − + += − + +
+ ++ ++ ++ +
= == == == =
+ ++ ++ ++ +
= + += + += + += + +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
2
4
cosec cot
cosec cosec
cosec cot
cosec cosec cot
ln cosec cot
cosec cot
int
( ) sin (2 3cos ) ,
sin sin
( ) , ( )
(2 3cos ) (2 3cos )
e(32):
Example(33):
x x
x dx x dx
x x
x x x
dx x x c
x x
FindThefolowing egrals
i I x x dx
x dx x dx
ii J iii K
x x
−−−−
====
−−−−
−−−−
= = − += = − += = − += = − +
−−−−
= += += += +
= == == == =
++++ ++++
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
3
2
3
2
2 3cos 3sin
1 1 2
( ) sin (2 3cos ) .
3 3 3
2
(2 3cos )
9
let u x du x dx
i I x x dx u du u
x c
= += += += + ⇒⇒⇒⇒ = −= −= −= −
− −− −− −− −            
∴ = + = =∴ = + = =∴ = + = =∴ = + = =             
            
−−−−    
= + += + += + += + +    
    
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
Mathematics For Engineering
10
(((( ))))
4 3
4 4
3
2 2
2
sin 1 1 2
( ) .2 (2 3cos )
3 3 3(2 3cos )
sin 1 1 1 1
( ) .
3 3 3 3(2 3cos )
1
(2 3cos )
9
(1 tan ) (1 2tan tan )
1 2tan (sec 1) 2tan
Example(34):
xdx du
ii J u c x c
x u
xdx du
iii K u du u
x u
x c
x dx x x dx
x x dx x
− −− −− −− −
−−−−
− − −− − −− − −− − −
= = = + = + += = = + = + += = = + = + += = = + = + +
++++
− − − −− − − −− − − −− − − −    
= = = == = = == = = == = = =     
    ++++
= + += + += + += + +
+ = + ++ = + ++ = + ++ = + +
= + + − == + + − == + + − == + + − =
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫ (((( ))))
(((( ))))
(((( ))))
2
2
2 2
2
2
2 2 2
sec
2ln sec tan
(1 cot )
(1 cot ) (1 2cot cot )
1 2cot (cosec 1)
2cot cosec 2ln sin cosec
(tan3 sec3 ) (tan 3 2tan3 sec3 sec 3 )
Example(35):
Example(36):
x dx
x x c
Find x dx
x dx x x dx
x x dx
x x dx x x c
x x dx x x x x dx
++++
= + += + += + += + +
++++
+ = + ++ = + ++ = + ++ = + +
= + + −= + + −= + + −= + + −
= + = − += + = − += + = − += + = − +
+ = + ++ = + ++ = + ++ = + +
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
(((( ))))
(((( ))))
2 2
2
sin sin sin
tan 2 tan tan
cos
(sec 3 1) 2tan3 sec3 sec 3
2sec 3 2tan 3 sec3 1
2 2
tan3 sec3
3 3
cos (sin )
1
sec (tan )
ln
sin
Example(37):
Example(38):
Example(39):
x x x
x x x
x
x x x x dx
x x x dx
x x x c
e x dx e d x e c
a x dx a d x a c
a
e x dx
= − + += − + += − + += − + +
= + −= + −= + −= + −
= + − += + − += + − += + − +
= = += = += = += = +
= = += = += = += = +
====
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
[[[[ ]]]]
cos cos
22
(cos )
lnsin )cot lnsin cot
1 1
lnsin
2 2
Example(40): (
x x
e d x e c
x x dx let y x dy xdx
I ydy y c x c
− = − +− = − +− = − +− = − +
==== ⇒⇒⇒⇒ ====
∴ = = + = +∴ = = + = +∴ = = + = +∴ = = + = +
∫∫∫∫
∫∫∫∫
∫∫∫∫
Indefinite Integration
11
(((( ))))3 2 3
2 2 2
2 2
2
2
(1 sec ) 1 3sec 3sec sec
1 3sec 3sec 1 tan sec
3 sec 3sec 1 tan (tan )
1
3ln sec tan tan tan 1 tan
2
1
ln(tan 1 tan )
2
co
Example(41):
Example(42):
x dx x x x dx
x x x x dx
dx x dx x dx x d x dx
x x x x x x
x x c
dx
+ = + + ++ = + + ++ = + + ++ = + + +
    = + + + += + + + += + + + += + + + +    
    
    = + + + += + + + += + + + += + + + +    
    
= + + + + += + + + + += + + + + += + + + + +
+ + + ++ + + ++ + + ++ + + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
sin 2
1 cos2sec2 cot 2 1 cos2
sin2 sin 2
1 cos2 2sin2
sin2 1 1 1
ln ln 1 cos2
1 cos 2 2 2 2
dx xdx
dx
xx x x
x x
let u x du xdx
x dx du
u x c
x u
= == == == =
− −− −− −− −−−−−
= −= −= −= − ⇒⇒⇒⇒ ====
∴ = = = − +∴ = = = − +∴ = = = − +∴ = = = − +
−−−−
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
(((( ))))
(((( ))))
(((( ))))
(((( ))))
3
3 2 3
2 2
2 2
2 2
2 2
find (1 tan )
(1 tan ) (1 3tan 3tan tan )
1 3tan 3(sec 1) tan tan
1 3tan 3sec 3 tan (sec 1)
1 3tan 3sec 3 tan sec tan
2 2tan 3sec tan sec
2
Example(43): x dx
x dx x x x dx
x x x x dx
x x x x dx
x x x x x dx
x x x x dx
d
++++
+ = + + ++ = + + ++ = + + ++ = + + +
= + + − += + + − += + + − += + + − +
= + + − + −= + + − + −= + + − + −= + + − + −
= + + − + −= + + − + −= + + − + −= + + − + −
= − + + += − + + += − + + += − + + +
= −= −= −= −
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
2 2
2
1
2
1
2
2tan 3sec tan sec
1
2 2ln sec 3tan tan
2
sin
39
1
tan
5 55
Example(44):
Example(45):
x x dx x dx x x dx
x x x x c
dx x
dx c
x
dx x
c
x
−−−−
−−−−
+ + ++ + ++ + ++ + +
= − + + + += − + + + += − + + + += − + + + +
= += += += +
−−−−
= += += += +
++++
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
∫∫∫∫
∫∫∫∫
Mathematics For Engineering
12
3 2 3
2
2
2
3
(1 cos ) (1 3cos 3cos cos )
3
1 3cos (1 cos2 ) cos cos
2
3 3
1 3cos cos2 cos (1 sin )
2 2
5 3
4cos cos2 sin cos
2 2
5 3 1
4sin sin2 sin
2 4 3
Example(46):
x dx x x x dx
x x x x dx
x x x x dx
x x x x dx
x x x x c
+ = + + ++ = + + ++ = + + ++ = + + +
    
= + + + += + + + += + + + += + + + +    
    
    
= + + + + −= + + + + −= + + + + −= + + + + −    
    
    
= + + −= + + −= + + −= + + −    
    
= + + − += + + − += + + − += + + − +
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
3 2 3
2
2
2
3
(1 sin ) (1 3sin 3sin sin )
3
1 3sin (1 cos2 ) sin sin
2
3 3
1 3sin cos2 sin (1 cos )
2 2
5 3
4sin cos2 sin cos
2 2
5 3 1
4cos sin 2 cos
2 4 3
Example(47):
x dx x x x dx
x x x x dx
x x x x dx
x x x x dx
x x x x c
+ = + + ++ = + + ++ = + + ++ = + + +
    
= + + − += + + − += + + − += + + − +    
    
    
= + + − + −= + + − + −= + + − + −= + + − + −    
    
    
= + + −= + + −= + + −= + + −    
    
= − + + += − + + += − + + += − + + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
(((( ))))
2
1 1
2 22 3
2
4 9
1 1 2 2 1 2
. tan tan
4 4 3 3 6 34 9
Example(48):
dx
find
x
dx dx x x
c c
x x
− −− −− −− −
++++
= = + = += = + = += = + = += = + = +
++++ ++++
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
(((( ))))
1 1
2 2 24 2
9 3
1
2 2 2
Another solution:
1 1 1 3 2 1 2
. tan tan
9 9 9 2 3 6 34 9 1 1
Another solution:
1 2 1 1 2
. tan
2 2 3 34 9 (2 ) 3
dx dx dx x x
c
x x x
dx dx x
c
x x
− −− −− −− −
−−−−
= = = = += = = = += = = = += = = = +
+ ++ ++ ++ + ++++
= = += = += = += = +
+ ++ ++ ++ +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
Indefinite Integration
13
(((( )))) (((( ))))
1
2 2 2
1
2 2
2 2 3
1 3
6 3 2 3 2
2
where f(x)is linear
2 1 2
sec
3 34 9 2 (2 ) (3)
( ) 1 ( )
Accordingto sec
( ) ( )
1 3 1 ( ) 1
sin
3 3 31 1 ( ) 1 ( )
sin
cos
Example(49):
Example(50):
Example(51):
dx dx x
c
x x x x
f x f x
c
a a
f x f x a
x dx x dx d x
x c
x x x
xdx
−−−−
−−−−
−−−−
= = += = += = += = +
− −− −− −− −
′′′′
= += += += +
−−−−
= = = += = = += = = += = = +
− − −− − −− − −− − −
++++
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
1
2
2
4 2 2 2 2
1 2
2
4 2
(cos )
tan (cos )
1 cos 1
cos sin 1 2cos sin 1 (cos )
2 2cos 1 (cos ) 1 (cos ) 1
tan (cos )
Another solution: cos 2cos sin
cos sin 1 1
ta
2 2cos 1 1
Example(52):
d x
x c
x xdx x xdx d x
x x
x c
let u x du x xdx
x xdx du
u
−−−−
−−−−
= − = − += − = − += − = − += − = − +
++++
−−−−
= == == == =
+ + ++ + ++ + ++ + +
= += += += +
==== ⇒⇒⇒⇒ ====
−−−−
∴ = =∴ = =∴ = =∴ = =
+ ++ ++ ++ +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
1 1 2
1
2 2 2
1
2 2 2
3 2
2 2
2
1
1
n tan (cos )
2
1 4 1 4
sin
4 4 525 16 5 (4 )
( 2)
sin
24 ( 2) 2 ( 2)
3 4 3 4
(3 4)
1 1
3
4 4tan
2
Example(53):
Example(54):
Example(55):
Example
u c x c
dx dx x
c
x x
dx dx x
c
x x
x x x
dx x dx
x x
x
x x c
− −− −− −− −
−−−−
−−−−
−−−−
−−−−
+ = ++ = ++ = ++ = +
= = += = += = += = +
− −− −− −− −
++++
= = += = += = += = +
− + − +− + − +− + − +− + − +
− +− +− +− +     
= − += − += − += − +    
+ ++ ++ ++ +    
= − + += − + += − + += − + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
2 2 2 2
1
4 13 ( 4 4) 9 ( 2) 3
1 ( 2)
tan
3 3
(56):
dx dx dx
x x x x x
x
c−−−−
= == == == =
+ + + + + + ++ + + + + + ++ + + + + + ++ + + + + + +
++++
= += += += +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
Mathematics For Engineering
14
2 2 2
1
2 2
2 2 2
2 2
20 8 20 ( 8 ) 36 ( 8 16 16)
( 4)
sin
66 ( 4)
( 3) 1 2 6 1 ( 2 4) 2
2 25 4 5 4 5 4
1 ( 2 2) 1 2
2 25 4 5 4
1 ( 2 2
2
Example(57):
Example(58):
dx dx dx
x x x x x x
dx x
c
x
x x x
dx dx dx
x x x x x x
x
dx dx
x x x x
x
−−−−
= == == == =
+ − − − − − + −+ − − − − − + −+ − − − − − + −+ − − − − − + −
−−−−
= = += = += = += = +
− −− −− −− −
+ − − − − − − −+ − − − − − − −+ − − − − − − −+ − − − − − − −
= == == == =
− − − − − −− − − − − −− − − − − −− − − − − −
− − − − −− − − − −− − − − −− − − − −
= += += += +
− − − −− − − −− − − −− − − −
− − −− − −− − −− − −
====
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
2 2
2 1
2
2
) 1
5 4 9 ( 2)
1 ( 2)
.2 5 4 sin
2 3
Another solution (5 4 ) 2 4
put 3 ( (5 4 )) ( 2 4)
1 1
, 1, 3 ( 2 4) 1,
2 2
dx dx
x x x
x
x x c
d
x x x
dx
d
x A x x B A x B
dx
A B x x
−−−−
+ =+ =+ =+ =
− − − +− − − +− − − +− − − +
− +− +− +− +
= − − + += − − + += − − + += − − + +
− − = − −− − = − −− − = − −− − = − −
+ = − − + = − − ++ = − − + = − − ++ = − − + = − − ++ = − − + = − − +
− −− −− −− −
∴ = = + = − − +∴ = = + = − − +∴ = = + = − − +∴ = = + = − − +
∫ ∫∫ ∫∫ ∫∫ ∫
1
2
2 2
1
2
2 2 2
2 1
2
( 2 4) 1( 3)
5 4 5 4
( 2 4) 1 ( 2 2)
25 4 5 4 5 4
1 ( 2)
.2 5 4 sin
2 39 ( 2)
xx
dx dx
x x x x
x dx dx x dx
x x x x x x
dx x
x x c
x
−−−−
−−−−
−−−−
− − +− − +− − +− − +++++
====
− − − −− − − −− − − −− − − −
− −− −− −− − − − −− − −− − −− − −
= + == + == + == + =
− − − − − −− − − − − −− − − − − −− − − − − −
− +− +− +− +
+ = − − + ++ = − − + ++ = − − + ++ = − − + +
− +− +− +− +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
2
2 3
9 12 8
1 39
2 3 (18 12) , 3 12
9 9
Example(59):
x
dx
x x
put x A x B A B A
++++
− +− +− +− +
+ = − ++ = − ++ = − ++ = − + ⇒⇒⇒⇒ = = + == = + == = + == = + =
∫∫∫∫
Indefinite Integration
15
2 2
2 2
2 2
2 2
2 1
2 3 1 (18 12) 39
99 12 8 9 12 8
1 (18 12) 1 39
9 99 12 8 9 12 8
1 (18 12) 1 39
9 99 12 8 (9 12 4) 4
1 (18 12) 1 39
9 99 12 8 (3 2) 4
1 39 1 1 (3
ln 9 12 8 . . tan
9 9 3 2
x x
dx dx
x x x x
x
dx dx
x x x x
x
dx dx
x x x x
x
dx dx
x x x
x
x x −−−−
+ − ++ − ++ − ++ − +
∴ =∴ =∴ =∴ =
− + − +− + − +− + − +− + − +
−−−−
= += += += +
− + − +− + − +− + − +− + − +
−−−−
= += += += +
− + − + +− + − + +− + − + +− + − + +
−−−−
= += += += +
− + − +− + − +− + − +− + − +
−−−−
= − + += − + += − + += − + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
2)
2
c++++
[[[[ ]]]]
[[[[ ]]]]
2
2 2 2 2
2 2
2 2
2
2 (4 2 )
4
1 1
, 4, 2 (4 2 ) 8
2 2
(4 2 ) 82 1 1 (4 2 ) 1 8
2 2 24 4 4 4
1 (4 2 ) 1 8
2 24 4 (4 4 )
1 (4 2 ) 1 8
4
2 24 4 ( 2)
Example(60):
x
dx put x A x B
x x
A B x x
xx x
dx dx dx dx
x x x x x x x x
x dx dx
x x x x
x dx dx
x
x x x
++++
+ = − ++ = − ++ = − ++ = − +
−−−−
− −− −− −− −
∴ = = + = − +∴ = = + = − +∴ = = + = − +∴ = = + = − +
− +− +− +− ++ − − −+ − − −+ − − −+ − − −
= = −= = −= = −= = −
− − − −− − − −− − − −− − − −
− −− −− −− −
= −= −= −= −
− − − +− − − +− − − +− − − +
− −− −− −− −
= − = − −= − = − −= − = − −= − = − −
− − −− − −− − −− − −
∫∫∫∫
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
2 11 ( 2)
sin
2 2
x
x c−−−− −−−−
− +− +− +− +
Exercise(1)
Integrate the following functions with respect to x :
3
4 3
2 2 3 7
2
1 2
(1) (3 2 4 ) (2)( 3)( 4) (3)( )
2
1
(4)( 2) (5)(3 1) (6)
4 10)
( 1)
(7) (2 3) (8) (3 4) (9)
2 4
x x x x x x
x
x x
x
x
x x x x
x x
− + − + + +− + − + + +− + − + + +− + − + + +
+ −+ −+ −+ −
−−−−
++++
+ −+ −+ −+ −
+ ++ ++ ++ +
Mathematics For Engineering
16
2 2
2
2
3 4
2
3 sin tan 2
2 2
5
2
2 3 2
2
(1 ) 1
(10) (11) (12)
13 1
2 2 2
(13) (14) (15) ( 2)
2 2 2
(16)10 (17) cos (18)5 sec
sec 2
(19) sin (3 2cos ) (20) (21)
3 5tan 3
ln( 1) (1 ln ) ( )
(22) (23) (24)
( 1)
x x x
x
x
x x
x x x
xx x
x x x
x x
x x x
a x x
x e
x x
x e
x x x e e
xx
−−−−
+ −+ −+ −+ −
++++++++
+ + ++ + ++ + ++ + +
++++
++++ + ++ ++ ++ +
−−−−
++++
−−−− ++++
+ + ++ + ++ + ++ + +
++++
2 3 4
5 2 4 2
2
2
2
(25)(cos sin ) (26)sin cos (27)cos sin
sin8
(28)tan sec (29)cot cosec (30)
9 sin 4
sin 1 cos 2 cot ((1 cosec )
(31) (32) (33)
2 sin 2 cosec(1 cos )
sec 3 1 1
(34) (35) (36)
1 sin2 1 cos2(1 tan3 )
(1
(37)
x
e
x x x x x x
x
x x x
x
x x x x
x x xx
x
x xx
−−−−
++++
+ ++ ++ ++ +
++++++++
− −− −− −− −++++
3 5
2
2 2
22 4
cot ) (1 tan) 1
(38) (39)
1 sin2 1 cos 2 5
sec sin cos
(40) (41) (42)
1 cos 24 tan 1
x
x
x
x x x
x e x x
xx e
+ ++ ++ ++ +
− −− −− −− − ++++
++++− −− −− −− −
22 2
2 22
2 2
tan cot 1
(43) (44) (45)
2 8cos 4 sin 4
1 2 3 1
(46) (47) (48)
6 13 3 4 32 8
2 1
(49) (50)
27 6 12 4
x x
x xx x
x x
x x x xx x
x x
x x x x
+ −+ −+ −+ −− −− −− −− −
− −− −− −− −
+ + − ++ + − ++ + − ++ + − ++ −+ −+ −+ −
−−−−
+ − + −+ − + −+ − + −+ − + −
Indefinite Integration
17
Integration of Hyperbolic Functions
For x any real number we define Hyperbolic functions as follows:
1 1 2
(1) sinh ( ) (4)cosech
2 sinh ( )
1 1 2
(2) cosh ( ) (5)sech
2 cosh ( )
sinh ( ) 1 ( )
(3) tanh , (6)coth
cosh tanh( ) ( )
x x
x x
x x
x x
x x x x
x x x x
x e e x
x e e
x e e x
x e e
x e e e e
x x
x xe e e e
−−−−
−−−−
−−−−
−−−−
− −− −− −− −
− −− −− −− −
= − = == − = == − = == − = =
−−−−
= + = == + = == + = == + = =
++++
− +− +− +− +
= = = == = = == = = == = = =
+ −+ −+ −+ −
and hyperbolic functions satisfy the following lows:
2 2
2 2
2 2
(1) cosh sinh 1
(2) 1 tanh sech
(3) coth 1 cosech
(4) sinh( ) sinh cosh cosh sinh
(5) sinh( ) sinh cosh cosh sinh
(6) cosh( ) cosh cosh sinh sinh
(7) cosh( ) cosh cosh sinh sinh
(8) sinh2
x x
x x
x x
x y x y x y
x y x y x y
x y x y x y
x y x y x y
− =
− =
− =
+ = +
− = −
+ = +
− = −
[ ]
[ ]
2 2
2
2
2
2sinh cosh
(9) cosh 2 cosh sinh
1
(10) sinh cosh2 1
2
1
(11) cosh cosh2 1
2
(12) cosh sinh
(13) cosh sinh
2tanh
(14)tanh2
1 tanh
x
x
x x x
x x x
x x
x x
x x e
x x e
x
x
x
−
=
= +
= −
= +
+ =
− =
=
+
we can proof this lows by using the definition
in the following we stat integration formula for hyperbolic functions
Mathematics For Engineering
18
2
2
2 2 2
(1) sinh cosh
(2) cosh sinh
(3) tanh lncosh
(4) coth ln sinh
(5) sech tanh
(6) cosech coth
(7) sech tanh sech
(8) cosech coth cosech
1
(9) sinh
xdx x c
xdx x c
xdx x c
xdx x c
xdx x c
xdx x c
x x dx x c
x x dx x c
dx
bb x a
−−−−
= += += += +
= += += += +
= += += += +
= += += += +
= += += += +
= − += − += − += − +
=− +=− +=− +=− +
= − += − += − += − +
====
++++
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
1
1
2 2 2
1
2 2 2
1
2 2 2
2
1
(10) cosh
1
tanh
(11)
1
ln
2
1
coth
(12)
1
ln
2
Solved Examples:
1 cosh cosh
(1) sech
cosh cosh 1 si
bx
c
a
dx bx
c
b ab x a
bx
c
dx ab a
a bxa b x
c
ab a bx
bx
c
dx ab a
bx ab x a c
ab bx a
x x
xdx dx dx
x x
−−−−
−−−−
−−−−
++++
= += += += +
−−−−

++++
==== 
++++−−−−  ++++
 −−−−

++++
==== 
−−−−−−−−  ++++
 ++++
= = == = == = == = =
++++
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
1
2
2
3 2 2
3
tan (sinh )
nh
1 1 1
(2) sinh (cosh2 1) sinh2
2 4 2
(3) cosh 2 (1 sinh 2 )cosh2 cosh2 sinh 2 cosh2
1 1 sinh 2
sinh2
2 2 3
dx x c
x
xdx x dx x x c
xdx x x dx x dx x x dx
x
x c
−−−−
= += += += +
= − = − += − = − += − = − += − = − +
= + = += + = += + = += + = +
= + += + += + += + +
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
Indefinite Integration
19
2 2
3 3
5 5
3 3
8 2 8 2
(4) cosh2 .
2
1 1 1
( ) ( )
2 2 3
(5) sinh5
2
1 1 1 1
( ) ( )
2 2 8 2
x x
x x
x x x x
x x
x x
x x x x
e e
e x dx e dx
e e dx e e c
e e
e x dx e dx
e e dx e e c
−−−−
− −− −− −− −
−−−−
− −− −− −− −
++++
====
= + = − += + = − += + = − += + = − +
−−−−
====
= − = + += − = + += − = + += − = + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
Solved Examples
[[[[ ]]]]
2 2
1
2
2
2
1
: sinh3 cosh3
3
1 cosh cosh
: sech
cosh cosh 1 sinh
(sinh )
tan (sinh )
1 sinh
1 1 1
: sinh cosh2 1 sinh2
2 2 2
: cosh 3
Example(1)
Example(2)
Example(3)
Example(4)
xdx x c
x x
x dx dx dx dx
x x x
d x
x c
x
x dx x dx x x c
x d
−−−−
= += += += +
= = == = == = == = =
++++
= = += = += = += = +
++++
    
= − = − += − = − += − = − += − = − +    
    
∫∫∫∫
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫ [[[[ ]]]]
2 2
4 2 2
2 2 2 3
1 1 1
cosh6 1 sinh6
2 2 6
1
: tanh 5 1 sech 5 tanh5
5
: sech 1 tanh sech
1
sech tanh sech tanh tanh
3
Example(5)
Example(6)
x x dx x x c
x dx x dx x x c
x dx x x dx
xdx x xdx x x c
    
= + = + += + = + += + = + += + = + +    
    
        = − = − += − = − += − = − += − = − +             
    = −= −= −= −
    
= − = − += − = − += − = − += − = − +
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
3 2
2
2
3
: sinh 4 sinh 4 (sinh4 )
(cosh 4 1)(sinh4 )
(cosh 4 (sinh4 ) (sinh4 )
1 1
cosh 4 cosh4
12 4
Example(7) xdx x x dx
x x dx
x x dx x dx
x x c
====
= −= −= −= −
= −= −= −= −
= − += − += − += − +
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
Mathematics For Engineering
20
3 3
3 3
4 2
4 2
3 3
2 2 2 3 3
5
5
( ) 1
: cosh3 ( )
2 2
1 1
( )
2 2 4 2
( ) 1
: sinh3 ( )
2 2
1 1
( )
2 2 5
Example(8)
Example(9)
x x
x x x x x
x x
x x
x x
x x x x x
x
x x x
e e
e xdx e dx e e e dx
e e
e e dx c
e e
e xdx e dx e e e dx
e
e e dx e c
−−−−
−−−−
−−−−
−−−−
−−−−
−−−−
− −− −− −− −
++++
= = += = += = += = +
    
= + = + += + = + += + = + += + = + +        −−−−    
−−−−
= = −= = −= = −= = −
    
= + = + += + = + += + = + += + = + +        
    
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
(((( ))))
1
2
1 1
: sinh
2 2
1 1
2 2
1 1
2 2
1 1
2 2
cosh sinh
Try to solve sinh by parts
: sinh
16
Example(10)
Example(11)
x x x x
x x
x x x x
x x x x
x x dx x e e dx xe xe dx
xe dx xe dx
xe e xe e c
x e e e e c
x x x c
x x dx
dx x
x
− −− −− −− −
−−−−
− −− −− −− −
− −− −− −− −
−−−−
    = − = −= − = −= − = −= − = −
    
= −= −= −= −
            = − − − − += − − − − += − − − − += − − − − +
            
            = − − − += − − − += − − − += − − − +
            
= − += − += − += − +
====
++++
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
1
2
3 2
2
2
3
4
: cosh
525
: sinh 4 sinh 4 (sinh4 )
(cosh 4 1)(sinh4 )
(cosh 4 (sinh4 ) (sinh4 )
1 1
cosh 4 cosh4
12 4
Example(12)
Example(13)
c
dx x
c
x
xdx x x dx
x x dx
x x dx x dx
x x c
−−−−
++++
= += += += +
−−−−
====
= −= −= −= −
= −= −= −= −
= − += − += − += − +
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
Indefinite Integration
21
Exercise(2)
Integrate the following functions:
2 2
2 2 3
2
5 2
3 4 5 2
4 2
2
(1)sinh3 (2)cosesh (3) sinh
(4)sinh cosh (5) sinh3 (6) cosh3
sech
(7) sinh (3 2cosh ) (8) (9)(cosh sinh )
3 5tanh
(10)sinh cosh (11)cosh sinh (12)tanh sech
sinh8
(13)coth cosech (14)
9 sinh
x
x x x x
x x e x e x
x
x x x x
x
x x x x x x
x
x
+ ++ ++ ++ +
−−−−
++++ 2
2
2
3 5 2
2
sinh cosh
(15)
4 1 cosh 2
sinh 1 cosh2 coth ((1 cosech )
(16) (17) (18)
2 sinh2 cosech(1 cosh )
sech 3 1 1
(19) (20) (21)
1 sinh2 1 cosh2(1 tanh3 )
(1 coth ) (1 tanh) sec
(22) (23) (24)
1 sinh2 1 cosh2 4 tanh
x x
x x
x x x x
x x xx
x
x xx
x x
x x x
++++
+ ++ ++ ++ +
++++++++
− +− +− +− +++++
+ ++ ++ ++ +
− −− −− −− − −−−−
Mathematics For Engineering
22
Methods of Integration:
(1) Integration by parts
When u and v are differentiable functions then
( )
( )
d uv udv vdu
udv d uv vdu
= += += += +
= −= −= −= −
and by integrate ( ) (1)udv d uv vdu= −= −= −= −∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
to apply this rule we refer to our problem by the integral
u dv∫∫∫∫ and we must separate it into two parts one part being u and
the other being dv and we find du and v by differentiation u and
integrate dv .
Note that
It is very important how to chose the function to be integrated, and
the function to be differentiated such that the integration on the
right side in (1) is much easier to evaluate than the one on the left.
Solved Examples:
Example (1): Find x
xe dx∫∫∫∫
Solution:
If we chose x
u e==== to be differentiated and dv xdx==== to be
integrated
2 21 1
2 2
x x x
xe dx x e x e dx∴ = −∴ = −∴ = −∴ = −∫ ∫∫ ∫∫ ∫∫ ∫
and its clear that the integration in the R.H.S is more difficult than
the given integration then
we use the partation as follows
let
then
by substituting in the rule then
x
x
x x x
u x dv e dx
du dx v e
xe dx xe e dx
= == == == =
= == == == =
= −= −= −= −∫ ∫∫ ∫∫ ∫∫ ∫
Note that : The integral in the right side x
e dx∫∫∫∫ is simple than the
integral x
xe dx∫∫∫∫ Finally x x
I xe e c= − += − += − += − + .
Indefinite Integration
23
Example (2): Find: 2
lnx xdx∫∫∫∫
Solution:
Consider the partition 2
lnu x dv x dx= == == == =
Then
3
1
3
x
du dx v
x
= == == == =
Substitute in the rule we have:
3 3 3 3 3
21 1
ln ln ln
3 3 3 3 3 9
x x x x x
I x dx x x dx x c
x
∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +∫ ∫∫ ∫∫ ∫∫ ∫
Try to solve ln ,n
nI x xdx n= ∈= ∈= ∈= ∈∫∫∫∫
Example (3): Find 1x x dx++++∫∫∫∫
Solution:
Let 1u x dv xdx= = += = += = += = +
3
2
2
(1 )
3
du dx v x∴ = = +∴ = = +∴ = = +∴ = = +
by using partition rule
( )udv d uv vdu= −= −= −= −∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
3 3 3 5
2 2 2 2
2 2 2 2 2
(1 ) (1 ) (1 ) ( )( )(1 )
3 3 3 3 5
x x
I x x dx x x c∴ = + − + = + − + +∴ = + − + = + − + +∴ = + − + = + − + +∴ = + − + = + − + +∫∫∫∫
(try with thenew partation what hapen)
trytosolve
1
( ) ,n
u x dv xdx
x ax b dx n
= + == + == + == + =
+ ∈+ ∈+ ∈+ ∈∫∫∫∫
Example (4): Find sinx xdx∫∫∫∫
Solution:
Let sinu x dv xdx= == == == =
cosdu dx v x∴ = = −∴ = = −∴ = = −∴ = = −
by using partition rule
( )udv d uv vdu= −= −= −= −∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
sin cos cos cos sinI x xdx x x xdx x x x c∴ = = − + = − + +∴ = = − + = − + +∴ = = − + = − + +∴ = = − + = − + +∫ ∫∫ ∫∫ ∫∫ ∫
Mathematics For Engineering
24
(try with thepartation what hapen)
try to solve is positive integer
sin
sinn
n
u x dv xdx
I x xdx n
= == == == =
==== ∫∫∫∫
Example (5): Find cosx x dx∫∫∫∫
Solution:
let cos
sin
u x dv xdx
du dx v x
= == == == =
∴ = =∴ = =∴ = =∴ = =
sin sin sin cosI x x xdx x x x c∴ = − = − +∴ = − = − +∴ = − = − +∴ = − = − +∫∫∫∫
trytosolve is positive integercosn
nI x xdx n==== ∫∫∫∫
Example (6): Find 2
sinx xdx∫∫∫∫
Solution:
2
sin
2 cos
let u x dv xdx
du xdx v x
= == == == =
∴ = = −∴ = = −∴ = = −∴ = = −
by substituting in the rule
2
cos 2 cos (1)
cos (5)
cos cos
sin
I x x x xdx
we can solve x xdx by parts as in example
x x dx let u x dv xdx
du dx v x
∴ = − +∴ = − +∴ = − +∴ = − +
= == == == =
∴ = =∴ = =∴ = =∴ = =
∫∫∫∫
∫∫∫∫
∫∫∫∫
from(2) in (1)
sin sin sin cos (2)I x x x dx x x x∴ = − = −∴ = − = −∴ = − = −∴ = − = −∫∫∫∫
2 2
2
cos 2 cos cos 2( sin cos )
cos 2 sin 2cos
I x x x xdx x x x x x c
x x x x x c
∴ = − + = − + − +∴ = − + = − + − +∴ = − + = − + − +∴ = − + = − + − +
= − + − += − + − += − + − += − + − +
∫∫∫∫
Example (7): Find 2
cosx xdx∫∫∫∫
Solution:
2
cos
2 sin
u x dv xdx
du xdx v x
= == == == =
∴ = =∴ = =∴ = =∴ = =
Indefinite Integration
25
2 2
2
sin 2 sin sin 2( cos sin )
sin 2 cos 2sin
I x x x x dx x x x x x c
x x x x x c
∴ = − = − − + +∴ = − = − − + +∴ = − = − − + +∴ = − = − − + +
= + − += + − += + − += + − +
∫∫∫∫
Example (8): Find 2 x
x e dx∫∫∫∫
Solution:
2
2 2
2
2 2( )
x
x
x x x x x
u x dv e dx
du xdx v e
I x e xe dx x e xe e c
= == == == =
∴ = =∴ = =∴ = =∴ = =
∴ = − = + − +∴ = − = + − +∴ = − = + − +∴ = − = + − +∫∫∫∫
where is a positive integerm x
mtryto solve I x e dx m==== ∫∫∫∫
Example (9): Find 1
sin xdx−−−−
∫∫∫∫
Solution:
1
2
sin
1
u x dv dx
dx
du let v x
x
−−−−
= == == == =
∴ = =∴ = =∴ = =∴ = =
−−−−
1 1
2 2
1 2
sin sin
21 1
xdx xdx
I udv uv vdu x x x x
x x
− −− −− −− −
= = − − = −= = − − = −= = − − = −= = − − = −
− −− −− −− −
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
1 1 2
2
1 2 1
sin sin .2 1
2 21
xdx
x x x x x c
x
− −− −− −− −−−−−
= + = + − += + = + − += + = + − += + = + − +
−−−−
∫∫∫∫
try tosolve where is a positive integer1
sinx xdx m−−−−
∫∫∫∫
Example (10): Find 1
tan x dx−−−−
∫∫∫∫
Solution
1
2
tan
1
u x dv dx
dx
du let v x
x
−−−−
= == == == =
∴ = =∴ = =∴ = =∴ = =
++++
1 1 1
2 2
1 2
tan tan tan
21 1
xdx xdx
udv xdx x x x x
x x
− − −− − −− − −− − −
∴ = = − = −∴ = = − = −∴ = = − = −∴ = = − = −
+ ++ ++ ++ +
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
Mathematics For Engineering
26
1 21
tan ln(1 )
2
x x x c−−−−
= − + += − + += − + += − + +
Example (11): Find sin , cosax ax
I e bxdx J e bxdx= == == == =∫ ∫∫ ∫∫ ∫∫ ∫
Solution:
These integrals are of importance in the theory of electric currents, if
each integral is evaluated by parts, the other one is obtained.
sin
1
cos
ax
ax
let u e dv bxdx
du ae dx v bx
b
= == == == =
−−−−
∴ = =∴ = =∴ = =∴ = =
(((( ))))
where
1 1
sin cos cos
cos cos
cos (1)
cos
ax ax ax
ax
ax
ax
ax
I e bxdx e bx bx ae dx
b b
e a
bx e bxdx
b b
e a
I bx J
b b
J e bxdx
− −− −− −− −    
= = −= = −= = −= = −     
    
−−−−
= += += += +
−−−−
∴ = +∴ = +∴ = +∴ = +
====
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
Similarly taking the second integral J
let cos
1
sin
1 1 1
sin sin . sin sin
1
sin (2)
ax
ax
ax ax ax ax
ax
u e dv bxdx
du ae dx v bx
b
a
J e bx bx ae dx e bx e bx dx
b b b b
a
J e bx I
b b
= == == == =
∴ = =∴ = =∴ = =∴ = =
∴ = − = −∴ = − = −∴ = − = −∴ = − = −
= −= −= −= −
∫ ∫∫ ∫∫ ∫∫ ∫
from (1),(2) we get
2
2 2
2
2 2
1
cos sin cos sin
cos sin
ax ax
ax ax
ax
ax
e a a e a a
I bx e bx I bx e bx I
b b b b b b b
a e a
I I bx e bx
bb b
− −− −− −− −    
∴ = + − = + −∴ = + − = + −∴ = + − = + −∴ = + − = + −    
    
−−−−
+ = ++ = ++ = ++ = +
Indefinite Integration
27
2 2 2
2 2 2
2
2 2 2
2 2 2 2
(1 ) ( ) cos sin
cos sin
cos sin
ax
ax
ax
ax
ax ax
a a b e a
I I bx e bx
bb b b
b e a
I bx e bx
bb a b
b a
e bx e bx c
b a b a
+ −+ −+ −+ −
+ = = ++ = = ++ = = ++ = = +
    −−−−
∴ = +∴ = +∴ = +∴ = +    
++++         
−−−−    
= + += + += + += + +    
+ −+ −+ −+ −    
[[[[ ]]]]
and from(2)
2 2
2
2 2
2 2 2 2
2 2 2 2
sin cos sin
1 1
sin sin cos
1
sin cos
1
1 sin cos
co
ax
ax
ax
ax ax
ax
ax
ax
ax
ax
e
I e bxdx b bx a bx c
b a
a a e a
J e bx I e bx bx J
b b b b b b
ae a
e bx bx J
b b b
a a a b ae
J J J J e bx bx
bb b b b
J e
= = − + += = − + += = − + += = − + +
++++
    −−−−
= − = − += − = − += − = − += − = − +    
        
= + −= + −= + −= + −
            ++++
+ = + = = ++ = + = = ++ = + = = ++ = + = = +            
                        
∴ =∴ =∴ =∴ =
∫∫∫∫
[[[[ ]]]]2 2
s sin cos
ax
e
bxdx b bx a bx c
b a
= + += + += + += + +
++++
∫∫∫∫
in the integrals sinh , coshax ax
I e bxdx J e bxdx= == == == =∫ ∫∫ ∫∫ ∫∫ ∫ we use the
diffination of the hyperbolic functions sinh , coshbx bx as a functions
of x
e then
( ) ( )
( ) ( )
sinh ,
2 2
cosh ,
2 2
bx bx a b x a b x
ax ax
bx bx a b x a b x
ax ax
e e e e
Ih e bxdx e dx dx
e e e e
Jh e bxdx e dx dx
− + −− + −− + −− + −
− + −− + −− + −− + −
            − −− −− −− −
= = == = == = == = =            
            
            
            + ++ ++ ++ +
= = == = == = == = =            
            
            
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
Example (12): Find 5 22
(1 )
dx
I
x
====
++++
∫∫∫∫
Mathematics For Engineering
28
Solution:
consider
5 2
5 2
3 2
3 2
2
2
2
2
(1 )
(1 )
(1 )
(1 )
dx
I x dx
x
dx
J x dx
x
−−−−
−−−−
= = += = += = += = +
++++
= = += = += = += = +
++++
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
3 2
5 2
3 2 5 2
3 2 5 2
3 2 3 2 5 2
3 2 3 2 5 2 3 2
2
2
2 2 2
2 2 2
2 2 2
2 2 2 2
(1 )
3 (1 )
(1 ) 3 (1 )
(1 ) 3 (1 1)(1 )
(1 ) 3 (1 ) (1 )
(1 ) 3 (1 ) (1 ) (1 ) 3 3
3 (1
u x dv dx
du x x dx v x
J x x x x dx
x x x x dx
x x x x dx
x x x x dx x x J I
I x
−−−−
−−−−
− −− −− −− −
− −− −− −− −
− − −− − −− − −− − −
− − − −− − − −− − − −− − − −
= + == + == + == + =
∴ = − + =∴ = − + =∴ = − + =∴ = − + =
= + + += + + += + + += + + +
= + + + − += + + + − += + + + − += + + + − +
    = + + + − += + + + − += + + + − += + + + − +
    
    = + + + − + = + + −= + + + − + = + + −= + + + − + = + + −= + + + − + = + + −
    
∴ =∴ =∴ =∴ =
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
3 22
) 2x J−−−−
+ ++ ++ ++ +
To solve consider with the partation
3 2
3 2 1 2
1 2
1 2 1 2
1 2
2
2 2
2
2 3 2
2 2 2 3 2 2 2 2 3 2
2 2 1 2 2
(1 ) 2
(1)
3 3
(1 ) (1 )
(1 )
(1 )
(1 ) (1 ) (1 ) (1 1)(1 )
(1 ) (1 ) (1 )
x x
I J
dx dx
J K
x x
u x dv dx
du x x dx v x
K x x x x dx x x x x dx
x x x x
−−−−
−−−−
− −− −− −− −
−−−−
−−−−
− −− −− −− −
−−−−
++++
= += += += +
= == == == =
+ ++ ++ ++ +
= + == + == + == + =
= − + == − + == − + == − + =
= + + + = + + + − += + + + = + + + − += + + + = + + + − += + + + = + + + − +
= + + + − += + + + − += + + + − += + + + − +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
Substitute in(1)
1 2
1 2
1 2
3 2
1 2
3 2 2
2
2
2
2
(1 )
(1 )
(1 )
(1 ) 2
3 3 (1 )
dx x x K J
x
J x x c
x
x x x
I c
x
−−−−
−−−−
−−−−
−−−−
= + + −= + + −= + + −= + + −
= + = += + = += + = += + = +
++++
++++
∴ = + +∴ = + +∴ = + +∴ = + +
++++
Indefinite Integration
29
Example (13): Find 3
sec x dx∫∫∫∫
Solution:
3 2
2
3 2 2
3 3
3
sec sec sec
sec sec
sec tan tan
sec sec tan sec tan sec tan sec (sec 1)
sec tan (sec sec ) sec tan (sec sec
2 sec sec tan sec sec tan
x dx x xdx
u x dv xdx
du x xdx v x
x dx x x x xdx x x x x dx
x x x x dx x x xdx xdx
x dx x x xdx x x
====
= == == == =
= == == == =
∴ = − = − −∴ = − = − −∴ = − = − −∴ = − = − −
= − − = − += − − = − += − − = − += − − = − +
= + == + == + == + =
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
3
ln sec tan
1 1
sec sec tan ln sec tan
2 2
x x c
x dx x x x x c
+ + ++ + ++ + ++ + +
∴ = + + +∴ = + + +∴ = + + +∴ = + + +∫∫∫∫
Example (14): Find 2 2
I x a dx= += += += +∫∫∫∫
Solution:
2 2 2 2
2 2
2 2 2 2
2 2 2 2 2 2
2 2 2 2
2 2 2
2 2
2 2 2 2
2 2 2 2 2 1
2 2 2 2 2 1
2 2 2
(14)
( )
( )
sinh
2 sinh
2
I x a dx let u x a dv dx
xdx
du v x
x a
x dx x a a dx
I x a dx x x a x x a
x a x a
x a dx a dx
x x a
x a x a
x
x x a x a dx a
a
x
x a dx x x a a
a
x
x a dx x
−−−−
−−−−
= + = + == + = + == + = + == + = + =
= == == == =
++++
+ −+ −+ −+ −
= + = + − = + −= + = + − = + −= + = + − = + −= + = + − = + −
+ ++ ++ ++ +
++++
= + − += + − += + − += + − +
+ ++ ++ ++ +
= + − + += + − + += + − + += + − + +
∴ + = + +∴ + = + +∴ + = + +∴ + = + +
∴ + =∴ + =∴ + =∴ + =
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
2
2 1
sinh
2
a x
a c
a
−−−−
+ + ++ + ++ + ++ + +
Mathematics For Engineering
30
Example (15): Find 2 2
I a x dx= −= −= −= −∫∫∫∫
Solution:
2 2
2 2
2 2 2 2
2 2 2 2 2 2
2 2 2 2
2 2 2
2 2
2 2 2 2
2 2 2 2 2 1
2 2 2 2 2 1
2
2 2 2 2 1
( )
( )
sin
2 sin
sin
2 2
let u a x dv dx
xdx
du v x
a x
x dx a x a dx
I x a dx x a x x a x
a x a x
a x dx a dx
x a x
a x a x
x
x a x a x dx a
a
x
a x dx x a x a
a
x a x
a x dx a x
a
−−−−
−−−−
−−−−
= − == − == − == − =
−−−−
= == == == =
−−−−
− − −− − −− − −− − −
= + = − − = − −= + = − − = − −= + = − − = − −= + = − − = − −
− −− −− −− −
−−−−
= − − += − − += − − += − − +
− −− −− −− −
= − − − += − − − += − − − += − − − +
∴ − = − +∴ − = − +∴ − = − +∴ − = − +
∴ − = − +∴ − = − +∴ − = − +∴ − = − +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫ c++++
Exercise(3)
Integrate the following function with respect to x :
2 3
2 3
4 2 3 2
1 1 1 1
2
(1) (i) sin (ii) sin3 (iii) sin (iv) cos
(2) (i) ln (ii) ln (iii) ln (iv) ln
(3) (i) (ii) (iii) (iv) sin
(4) (i) cos (ii) sin (iii) tan (iv) cot
(5) (i) sin (ii) sin cos (
n
x x x x
x x x x x x x x
x x x x x x x x
xe x e xe e x
x x x x
x x x x x
−−−−
− − − −− − − −− − − −− − − −
2
2 1 2
3
1 1 1 3
3 2 5 5 3
iii) sec (iv) sinh
ln
(6) (i) sin (ii) 4 (iii) (iv)sin sin3
(7) (i) cos (ii) sin (iii) tan (iv)sin
(8) (i) sin cos (ii) cos (iii) sec (iv)cosec
x x x x
x
x x x x x
x
x x x x
x x x x x
−−−−
− − −− − −− − −− − −
++++
Indefinite Integration
31
Reduction Formula
A Reduction Formula succeeds if ultimately it produces an integral
which can be evaluated. We use the partition of integration to prove
the following reduction formulas:
1
m m m-2
1 1
If I sin I sin cos I(1) then show thatm m m
x dx x x
m m
−−−−− −− −− −− −
= = += = += = += = +∫∫∫∫
proof:
1 1
m
1
2
1 2 2
m
1 2 2
1
I sin sin (sin ) sin ( cos )
sin ( cos )
( 1)sin (cos ) , cos
I sin cos ( 1) sin (cos )
sin cos ( 1) sin (1 sin )
sin cos ( 1) sin
m m m
m
m
m m
m m
m m
x dx x xdx x d x
let u x dv d x
du m x x dx v x
x x m x x dx
x x m x x dx
x x m
− −− −− −− −
−−−−
−−−−
− −− −− −− −
− −− −− −− −
−−−−
= = = −= = = −= = = −= = = −
= = −= = −= = −= = −
∴ = − = −∴ = − = −∴ = − = −∴ = − = −
= − + −= − + −= − + −= − + −
= − + − −= − + − −= − + − −= − + − −
= − + −= − + −= − + −= − + −
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
(((( ))))
2
1
m 2 m
1
m 2
1
m 2
( 1) sin
I sin cos ( 1) ( 1)I
1 ( 1) I sin cos ( 1)
1 ( 1)
I sin cos
m
m
m
m
m
m
m
xdx m xdx
x x m I m
m x x m I
m
x x I
m m
−−−−
−−−−
−−−−
−−−−
−−−−
−−−−
−−−−
− −− −− −− −
= − + − − −= − + − − −= − + − − −= − + − − −
∴ + − = − + −∴ + − = − + −∴ + − = − + −∴ + − = − + −
− −− −− −− −
= += += += +
∫∫∫∫
similarly we can prove that
1
m m m-2
1 1
If I cos I cos sin I(2) then show thatm m m
x dx x x
m m
−−−− −−−−
= = += = += = += = +∫∫∫∫
[[[[ ]]]] [[[[ ]]]]
m m m-1
m m m-1
m m m-1
1
If I I I
1
If I I I
ln ln
If I log I log I
(3) then show that
(4) then show that
(5) then show that
m ax m ax
m x m x
m m
m
x e dx x e
a a
m
x a dx x a
a a
x dx x x m
= = −= = −= = −= = −
= = −= = −= = −= = −
= = −= = −= = −= = −
∫∫∫∫
∫∫∫∫
∫∫∫∫
Mathematics For Engineering
32
m
1
m m-22
1
m m m-2
2
m m m-2
If I sin
( 1)
I cos sin I
tan
If I tan I I
1
sec tan 2
If I sec I I
1 1
(6)
then show that
(7) then show that
(8) then show that
m
m
m
m
m
m
m
x ax dx
x m m m
ax x ax
a aa
x
dx
m
x x m
dx
m m
−−−−
−−−−
−−−−
====
− −− −− −− −
= + −= + −= + −= + −
= = −= = −= = −= = −
−−−−
−−−−
= = += = += = += = +
− −− −− −− −
∫∫∫∫
∫∫∫∫
∫∫∫∫
m
2
m m-2
n
n
If I cosec
cosec cot 2
I I
1 1
If I cos , sin
I sin . cos
(9) then show that
(10)
show that
m
m
n n
n
n n
n n n
x dx
x x m
m m
x bx dx J x bx dx
x bx nJ J x bx n I
−−−−
====
− −− −− −− −
= += += += +
− −− −− −− −
= == == == =
= − = −= − = −= − = −= − = −
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
Exercise(4)
If
if and prove that
find
Find the reduction formula connecting
given that
Show that
1 1 4 4
, 2, 2
,
cosh sinh
sinh , cosh ,
sin sin
cos , sin
(1)
(2)
(3)
n n
n n
n n
n n n n
m n m m
m n
m n
n n
n n
I x x dx J x x dx
I x x n J J x x n I I J
I and I
I x x dx
I x dx J x dx
n
− −− −− −− −
− +− +− +− +
= == == == =
= − = −= − = −= − = −= − = −
====
= == == == =
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
provethat
Find thereducionformulafor
are positive integer.
1
2
1
2
2 2
sin cos ( 1) .
cos sin ( 1) .
1-1sin sin( 1) sin sin
1 ,
,
(4)
(5)
n
n n
n
n n
n
m
I x x n I
nJ x x n J
n nx n x dx x nx
n
x x dx
m n
−−−−
−−−−
−−−−
−−−−
= + −= + −= + −= + −
= − + −= − + −= − + −= − + −
+ =+ =+ =+ =∫∫∫∫
    ++++
    ∫∫∫∫
Indefinite Integration
33
find
find
find
find
Findthereducionformulafor
Findthereducionformulafor
4cos cos
3sin sin
3sin sin
3cos cos
sinh cosh tanh
(6)
(7)
(8)
(9)
(10) (11) (12)
(13
ax n axxdx xdx
ax n axxdx e xdx
n x dx x x dx
n x dx x x dx
n n nx dx x dx x dx
e e
e
x
x
∫∫∫∫
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
cosech sech
Show thatIf
coth
2(2 3) ( 2)sin 1 2
1 2 2 2 2( cos ) ( 1)( ) ( 1)( )
( cos )
) (14) (15)
(16)
n n n x dx
n n
a n I n Im x n nIn na b x n a b n a b
xdx xdx
dx
a b x
I
∫∫∫∫
− −− −− −− −− −− −− −− −= + −= + −= + −= + −
−−−−+ − − − −+ − − − −+ − − − −+ − − − −
∫ ∫∫ ∫∫ ∫∫ ∫
==== ∫∫∫∫
++++
Mathematics For Engineering
34
Trigonometric Integrals
The following identities are employed to find the Trigonometric
Integrals
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
2 2
2 2
2 2
2
2
2
2
(1) sin cos 1
(2)tan 1 sec
(3)1 cot csc
1
(4) sin 1 cos2
2
1
(5) cos 1 cos2
2
(6) sin2 2sin cos
(7) 1 cos2 2sin
(8)1 cos2 2cos
1
(9) sin cos sin( ) sin( )
2
1
(10) sin sin cos( ) cos( )
2
(
x x
x x
x x
x x
x x
x x x
x x
x x
x y x y x y
x y x y x y
+ =+ =+ =+ =
+ =+ =+ =+ =
+ =+ =+ =+ =
= −= −= −= −
= += += += +
====
− =− =− =− =
+ =+ =+ =+ =
= − + += − + += − + += − + +
= − − += − − += − − += − − +
[[[[ ]]]]
1
11) cos cos cos( ) cos( )
2
x y x y x y= − + += − + += − + += − + +
(1)Integrals in the form sinm
x dx∫∫∫∫
if m is odd positive integer
1
sin sin (sin )m m
x dx x xdx−−−−
====∫ ∫∫ ∫∫ ∫∫ ∫ and use
1
1 2 2sin (1 cos )
m
m
x x
−−−−
−−−−
= −= −= −= − and
take cos siny x dy xdx==== ⇒⇒⇒⇒ = −= −= −= −
if m is even odd positive integer use
[[[[ ]]]] [[[[ ]]]]2 21 1
sin 1 cos2 ,cos 1 cos2
2 2
x x x x= − = += − = += − = += − = +
Indefinite Integration
35
Also we can use the following reduction formula
1
m m-2
1 1
I sin sin cos Im m m
xdx x x
m m
−−−−− −− −− −− −
= = += = += = += = +∫∫∫∫
Example (1): Find 3
sin xdx∫∫∫∫
Solution:
3 2 2
3 2 3 3
sin sin (sin ) (1 cos )(sin )
cos sin
1 1
sin (1 ) cos cos
3 3
xdx x xdx x xdx
let y x dy xdx
xdx y dy y y x x c
= = −= = −= = −= = −
= = −= = −= = −= = −
            
∴ = − − = − − = − − +∴ = − − = − − = − − +∴ = − − = − − = − − +∴ = − − = − − = − − +            
            
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
Example (2): Find 5
sin xdx∫∫∫∫
Solution:
5 4 2 2
5 2 2 2 2 3
2 3
sin sin (sin ) (1 cos ) (sin )
cos sin
1
sin (1 ) (1 2 )
3
1
cos cos cos
3
xdx x xdx x xdx
let y x dy xdx
xdx y dy y y dy y y y
x x x c
= = −= = −= = −= = −
= = −= = −= = −= = −
    
∴ = − − = − − + = − − +∴ = − − = − − + = − − +∴ = − − = − − + = − − +∴ = − − = − − + = − − +    
    
    
= − − + += − − + += − − + += − − + +    
    
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
Example (3): Find 4
sin xdx∫∫∫∫
Solution:
4 2 2 2
2
1
(3) sin sin sin (1 cos2 )
4
1 1 1
1 2cos2 cos 2 1 2cos2 (1 cos4 )
4 4 2
1 3 1 1 3 1
2cos2 cos4 sin2 sin4
4 2 2 4 2 8
xdx x xdx x dx
x x dx x x dx
x
x x dx x x c
= = −= = −= = −= = −
        = − + = − + −= − + = − + −= − + = − + −= − + = − + −             
            
= − − = − − += − − = − − += − − = − − += − − = − − +            
            
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
Mathematics For Engineering
36
(2)Integrals in the form cosm
x dx∫∫∫∫
(i) if m is odd positive integer 1
cos cos (cos )m m
x dx x xdx−−−−
====∫ ∫∫ ∫∫ ∫∫ ∫ and use
1
1 2 2cos (1 sin )
m
m
x x
−−−−
−−−−
= −= −= −= − and take sin cosy x dy xdx==== ⇒⇒⇒⇒ ====
(ii)if m is even odd positive integer use
[[[[ ]]]] [[[[ ]]]]2 21 1
sin 1 cos2 ,cos 1 cos2
2 2
x x x x= − = += − = += − = += − = +
(iii) we can use the successive formula.
1
m m-2
1 1
I cos cos sin Im m m
xdx x x
m m
−−−− −−−−
= = += = += = += = +∫∫∫∫
Example (4): Find 3
cos xdx∫∫∫∫
Solution:
3 2 2
3 2 3 3
cos cos (cos ) (1 sin )(cos )
sin cos
1 1
cos (1 ) sin sin
3 3
xdx x xdx x xdx
let y x dy xdx
xdx y d y y y c x c
= = −= = −= = −= = −
= == == == =
            
∴ = − = − + = − +∴ = − = − + = − +∴ = − = − + = − +∴ = − = − + = − +            
            
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
Example (5): Find 5
cos xdx∫∫∫∫
Solution:
5 4 2 2
5 2 2 2
2 3 2 3
cos cos (cos ) (1 sin ) (cos )
sin cos
cos (1 ) (1 2 )
1 1
sin sin sin
3 3
xdx x xdx x xdx
let y x dy xdx
xdx y dy y y dy
y y y x x x c
= = −= = −= = −= = −
= == == == =
∴ = − = − +∴ = − = − +∴ = − = − +∴ = − = − +
            
= − + = − + += − + = − + += − + = − + += − + = − + +            
            
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
Example (6): Find 4
cos xdx∫∫∫∫
Solution:
4 2 2 21
cos cos cos (1 cos2 )
4
x dx x x dx x dx= = += = += = += = +∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
Indefinite Integration
37
21 1 1
1 2cos2 cos 2 1 2cos2 (1 cos4 )
4 4 2
1 3 1 1 3 1
2cos2 cos4 sin2 sin4
4 2 2 4 2 8
x x dx x x dx
x
x x dx x x c
        = + + = + + += + + = + + += + + = + + += + + = + + +             
            
= + + = + + += + + = + + += + + = + + += + + = + + +            
            
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
(3)Integrals in the form tanm
x dx∫∫∫∫
(i) if m is odd positive integer then m-1 is even
1 2 ( 1) 2
tan tan (tan ) (sec 1) (tan )
sec sec tan
m m m
x dx x xdx x x dx
put y x dy x xdx
− −− −− −− −
= = −= = −= = −= = −
= → == → == → == → =
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
(ii)if m is even odd positive integer use
2 2 2 2 2
tan tan (sec 1) tan sec tanm m m m
x dx x x dx x xdx xdx− − −− − −− − −− − −
= − = −= − = −= − = −= − = −∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
(reduction formula)
Example (7): Find 5
tan xdx∫∫∫∫
Solution:
5 3 2 3 2
3 2 3
3 2 2
3 2 2
4 2
2
tan , sec
tan tan (tan ) tan (sec 1)
tan sec tan
tan sec tan (sec 1)
tan sec (tan sec tan )
1 1
tan tan ln sec
4 2
let y x dy xdx
xdx x x dx x x dx
x xdx xdx
x xdx x x dx
x xdx x x x dx
x x x c
= == == == =
= = −= = −= = −= = −
= −= −= −= −
= − −= − −= − −= − −
= − −= − −= − −= − −
= − + += − + += − + += − + +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
Example (8):Find 6
tan xdx∫∫∫∫
Solution:
6 4 2 4 2
tan tan (tan ) tan (sec 1)x dx x x dx x x dx= = −= = −= = −= = −∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
Mathematics For Engineering
38
4 2 4
4 2 2 2
4 2 2 2 2
4 2 2 2 2
4 2 2 2 2
5 3
tan sec tan
tan sec tan (sec 1)
tan sec tan sec tan
tan sec tan sec (sec 1)
tan sec tan sec sec
1 1
tan tan tan
5 3
x x dx x dx
x x dx x dx
x x dx x x dx x dx
x x dx x x dx x dx
x x dx x x dx x dx dx
x x x x c
= −= −= −= −
= − −= − −= − −= − −
= − += − += − += − +
= − + −= − + −= − + −= − + −
= − + −= − + −= − + −= − + −
= − + − += − + − += − + − += − + − +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
In general we use the reduction formula
1
m m m-2
tan
If I tan Then I I
( 1)
m
m
axdx
a m
−−−−
= = −= = −= = −= = −
−−−−
∫∫∫∫
(4)Integrals in the form: cotm
x dx∫∫∫∫
(i) if m is odd positive integer then m-1 is even
1 2 1 2
cot cot (cot ) (cosec 1) (cot )
cosec cosec cot
m m m
x dx x xdx x x dx
put y x dy x xdx
− −− −− −− −
= = −= = −= = −= = −
= → = −= → = −= → = −= → = −
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
(ii)if m is even odd positive integer use integration by parts
2 2
2 2 2
cot cot (cosec 1)
cot cosec cot
m m
m m
x dx x x dx
x xdx xdx
−−−−
− −− −− −− −
= −= −= −= −
= −= −= −= −
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
In general we can use the reduction formula
1
m m m-2
cot
If I cot Then I I
( 1)
m
m
axdx
a m
−−−−
= = − −= = − −= = − −= = − −
−−−−
∫∫∫∫
Example (9): Find 4
cot 3xdx∫∫∫∫
Solution:
4 2 2 2 2
2 2 2
cot 3 cot 3 (cot 3 ) cot 3 (cosec 3 1)
cot 3 cosec 3 cot 3
x dx x x dx x x dx
x x dx x dx
= = −= = −= = −= = −
= −= −= −= −
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
Indefinite Integration
39
2 2 2
2 2 2
3
cot 3 cosec 3 (cosec 3 1)
cot 3 cosec 3 cosec 3
1 1
cot 3 cot 3
9 3
x x dx x dx
x x dx x dx dx
x x x c
= − −= − −= − −= − −
= − += − += − += − +
= + + += + + += + + += + + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
(5)Integrals in the form: secm
x dx∫∫∫∫
(i) if m is odd positive integer then m-1 is even
1 2 ( 1) 2
sec sec (sec ) (tan 1) (sec )
sec sec tan
m m m
x dx x xdx x x dx
put y x dy x xdx
− −− −− −− −
= = −= = −= = −= = −
= → == → == → == → =
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
(ii)if m is even odd positive integer use
2 2
2 ( 2)/ 2
sec sec (sec )
tan sec (tan 1)
m m
m
x dx x xdx
put y x and x x
−−−−
−−−−
====
= = += = += = += = +
∫ ∫∫ ∫∫ ∫∫ ∫
to get the reduction formula
2
m m-2
sec tan 2
I sec I
1 1
m
m x m
dx
m m
−−−−
−−−−
= = += = += = += = +
− −− −− −− −
∫∫∫∫
Example (10): Find 4
sec 2xdx∫∫∫∫
Solution:
4 2 2 2 2
2 2 2 3
(10) sec 2 sec 2 (sec 2 ) sec 2 (1 tan 2 )
1 1
sec 2 sec 2 tan 2 tan2 tan 2
2 6
xdx x x dx x x dx
x dx x xdx x x c
= = += = += = += = +
= + = + += + = + += + = + += + = + +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
(6)Integrals in the form: cosecm
x dx∫∫∫∫
(i) if m is odd positive integer then m-1 is even
Mathematics For Engineering
40
1 2 ( 1) 2
cosec cosec (cosec ) (cot 1) (cosec )
cosec cosec cot
m m m
x dx x xdx x x dx
put y x dy x xdx
− −− −− −− −
= = += = += = += = +
= → = −= → = −= → = −= → = −
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
(ii)if m is even odd positive integer use
2 2
2 2/ 2
cosec cosec (cosec )
cot cosec (cot 1)
m m
m
x dx x xdx
put y x and x x
−−−−
−−−−
====
= = += = += = += = +
∫ ∫∫ ∫∫ ∫∫ ∫
to get the reduction formula
Example (11): Find 6
cosec axdx∫∫∫∫
Solution:
6 4 2 2 2 2
2 4 2
2 2 2 4 2
3 5
(11) cosec cosec (cosec ) (1 cot ) (cosec )
(1 2cot cot )(cosec )
(cosec 2cot cosec cot cosec )
1 2 1
cot cot cot
3 5
axdx ax ax dx ax ax dx
ax ax ax dx
ax ax ax ax ax dx
ax ax ax c
a a a
= = += = += = += = +
= + += + += + += + +
= + += + += + += + +
−−−−
= − − += − − += − − += − − +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
∫∫∫∫
(7)Integrals in the form cos sinm n
x x dx∫∫∫∫ , , are positive integersm n
If m is an odd
1
cos sin cos sin (cos ) and put sinm n m n
x x dx x x xdx y x−−−−
= == == == =∫ ∫∫ ∫∫ ∫∫ ∫
If n is an odd
1
cos sin cos sin (sin ) andput cosm n m n
x x dx x x xdx y x−−−−
= == == == =∫ ∫∫ ∫∫ ∫∫ ∫
if m and n are both an even we use
[[[[ ]]]] [[[[ ]]]]2 21 1
sin 1 cos2 ,cos 1 cos2
2 2
x x x x= − = += − = += − = += − = +
Example (12): Find 2 2
sin cosx xdx∫∫∫∫
Solution:
(((( ))))
2
22 2 1
(12) sin cos sin cos sin2
2
x x dx x x dx x dx
    
= == == == =     
    
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
Indefinite Integration
41
21 1 1 1 1
sin 2 (1 cos4 ) ( sin4 )
4 4 2 8 4
x dx x dx x x c= = − = − += = − = − += = − = − += = − = − +∫ ∫∫ ∫∫ ∫∫ ∫
Example (13): Find 3 4
sin cosax axdx∫∫∫∫
Solution:
3 4 2 4
2 4
4 6
4 6
5 7
(13) sin cos sin cos (sin )
(1 cos )cos (sin )
(cos cos )(sin )
(cos sin cos sin )
1 1
cos cos
5 7
ax axdx ax ax axdx
ax ax axdx
ax ax axdx
ax axdx ax axdx
ax ax c
a a
====
= −= −= −= −
= −= −= −= −
= −= −= −= −
−−−−
= + += + += + += + +
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
Example (14): Find 4 2
sin cosax ax dx∫∫∫∫
Solution:
[[[[ ]]]]
2
4 2
2
2
2 2
1 1
(14) sin cos (1 cos2 ) (1 cos2 )
2 2
1
(1 cos2 )(1 cos2 )(1 cos2 )
8
1
(1 cos2 )(1 cos 2 )
8
1
(1 cos2 )sin 2
8
1
sin 2 cos2 sin 2
8
1 1
(1 cos4
8 2
ax ax dx ax ax dx
ax ax ax dx
ax ax dx
ax ax dx
ax dx ax ax dx
            
= − += − += − += − +            
            
= − − += − − += − − += − − +
    = − −= − −= − −= − −
    
    = −= −= −= −
    
    = −= −= −= −
    
= −= −= −= −
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
2
3
3
) cos2 sin 2
1 1 1 1 1
( . cos4 ) . sin 2
8 2 4 3 2
1 1 1
( sin4 sin 2 )
16 64 48
ax dx ax ax dx
x ax ax c
a a
x ax ax c
a a
    
−−−−    
    
    
= − − += − − += − − += − − +    
    
= − − += − − += − − += − − +
∫ ∫∫ ∫∫ ∫∫ ∫
Mathematics For Engineering
42
The reduction formula for cos sinm n
x x dx∫∫∫∫
Case (1): if m and n are positive integer:
1 1
1 2 1
2 2
2 2
2 2
sin .cos
sin .( 1).cos .( sin ) cos .( 1)sin (cos )
( 1)sin .cos ( 1)cos sin
( 1)sin .cos sin ( 1)cos sin
( 1)sin .cos (1 cos ) ( 1)cos sin
m n
m n n m
m n n m
m n n m
m n n m
d
x x
dx
x n x x x m x x
n x x m x x
n x x x m x x
n x x x m x
+ −+ −+ −+ −
+ − −+ − −+ − −+ − −
+ −+ −+ −+ −
−−−−
−−−−
    
    
= − − + += − − + += − − + += − − + +
= − − + += − − + += − − + += − − + +
= − − + += − − + += − − + += − − + +
= − − − + += − − − + += − − − + += − − − + +
2
( 1)sin .cos ( )cos sinm n n m
x
n x x m n x x−−−−
= − − + += − − + += − − + += − − + +
by integrating both sides w.r.to x we have
are positive integers
1 1
2
,( 2) ,
1 1
, ,( 2)
sin .cos
( 1)sin .cos ( )cos sin
( 1) ( )
1 ( 1)
cos sin sin .cos
( ) ( )
,
m n
m n n m
m n m n
m n m n
m n m n
x x
n x x dx m n x x dx
n I m n I
n
I x x dx x x I
m n m n
m n
+ −+ −+ −+ −
−−−−
−−−−
+ −+ −+ −+ −
−−−−
    
    
= − − + += − − + += − − + += − − + +
= − − + += − − + += − − + += − − + +
−−−−
= = −= = −= = −= = −
+ ++ ++ ++ +∴∴∴∴
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
Example(15):
4 6 5 5
4,6 4,4
5 5 5 3
4,2
5 5 5 3 5
4,0
4
4
1 1
sin cos sin cos
10 2
1 1 1 3
sin cos sin cos
10 2 8 8
1 1 1 3 1 1
sin cos sin cos sin cos
10 2 8 8 6 6
3 1 1
sin sin2 sin4
8 4 23
I x x dx x x I
x x x x I
x x x x x x I
I x dx x x x
= = −= = −= = −= = −
    
= − −= − −= − −= − −    
    
        
= − − −= − − −= − − −= − − −        
        
= = − += = − += = − += = − +
∫∫∫∫
∫∫∫∫
Indefinite Integration
43
5 5
4,6
5 3 5
5 5 5 3 5
1
sin cos
10
1 1 3 1 1 3 1 1
sin cos sin cos sin2 sin4
2 8 8 6 6 8 4 23
1 1 3 3
sin cos sin cos sin cos
10 16 32 256
1 3
sin2 sin4
128 1204
I x x
x x x x x x x
x x x x x x x
x x
∴ =∴ =∴ =∴ =
            
− − − − +− − − − +− − − − +− − − − +            
            
= − + −= − + −= − + −= − + −
+ −+ −+ −+ −
Case (2): if m and n are negative integers :
1 1
1 1
2 2
2 2
2
sin .cos
sin .( 1).cos .( sin ) cos .( 1)sin (cos )
( 1)sin .cos ( 1)sin cos
( 1)sin .cos ( 1)sin cos (1 sin )
( 1)sin .cos ( 1)sin cos ( 1)
m n
m n n m
m n m n
m n m n
m n m n
d
x x
dx
x n x x x m x x
n x x m x x
n x x m x x x
n x x m x x m
+ ++ ++ ++ +
+ ++ ++ ++ +
+ ++ ++ ++ +
++++
++++
    
    
= + − + += + − + += + − + += + − + +
= − − + += − − + += − − + += − − + +
= − − + + −= − − + + −= − − + + −= − − + + −
= − − + + − += − − + + − += − − + + − += − − + + − + 2
2
sin cos
( 2)sin .cos ( 1)sin cos
m n
m n m n
x x
m n x x m x x
++++
++++
= − + + + += − + + + += − + + + += − + + + +
by integrating both sides w.r.to x we have
are negative integars
1 1 2
1 1
( 2), ,
1 1
, ( 2),
sin .cos ( 2)sin .cos ( 1) sin cos
sin .cos ( 2) ( 1)
1 ( 2)
sin cos sin .cos
( 1) ( 1)
,
m n m n m n
m n
m n m n
m n m n
m n m n
x x m n x x dx m x x dx
x x m n I m I
m n
I x x dx x x I
m m
m n
+ − ++ − ++ − ++ − +
+ −+ −+ −+ −
++++
+ ++ ++ ++ +
++++
     = − + + + += − + + + += − + + + += − + + + +
    
= − + + + += − + + + += − + + + += − + + + +
+ ++ ++ ++ +
= = += = += = += = +
+ ++ ++ ++ +∴∴∴∴
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
Example(16):
Mathematics For Engineering
44
3 2
4, 3 ( 2, 3)4 3
( 2, 3)3 2
1 5
sin cos
3 3sin cos
1 5
33sin cos
dx
I x x I
x x
I
x x
− −− −− −− −
− − − −− − − −− − − −− − − −
− −− −− −− −
−−−−
= = += = += = += = +
−−−−
= += += += +
∫∫∫∫
1 2
2, 3 0, 3 0, 32
3 2 2
0, 3 3
2 3
0, 3
2, 3
1
(sin ) cos 3 3
sin cos
sec sec sec sec tan sec tan
cos
sec tan sec (1 sec ) sec tan sec sec
1 1
sec tan ln sec tan
2 2
1
sin
I x x I I
x x
dx
I xdx x xdx x x x x dx
x
x x x x dx x x xdx x dx
I x x x x
I
− −− −− −− −
− − − −− − − −− − − −− − − −
−−−−
−−−−
− −− −− −− −
−−−−
= − + = += − + = += − + = += − + = +
= = = = −= = = = −= = = = −= = = = −
= − + = − −= − + = − −= − + = − −= − + = − −
= −= −= −= −
−−−−
∴ =∴ =∴ =∴ =
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
2
( 4, 3) 3 2 2
3 3
sec tan ln sec tan
2 2cos
1 5 5 5
sec tan ln sec tan
3 33sin cos 3sin cos
x x x x
x x
I x x x x c
x x x x
− −− −− −− −
+ −+ −+ −+ −
−−−−
∴ = − + − +∴ = − + − +∴ = − + − +∴ = − + − +
Case (3): if m is positive and n is negative integers:
1 1
1 1 2
2 2
sin .cos
sin .( 1).cos .( sin ) cos .( 1)sin (cos )
( 1)sin .cos ( 1)sin cos
m n
m n n m
m n m n
d
x x
dx
x n x x x m x x
n x x m x x
− +− +− +− +
− + −− + −− + −− + −
− +− +− +− +
    
    
= + − + −= + − + −= + − + −= + − + −
= − + + −= − + + −= − + + −= − + + −
by integrating both sides w.r.to x we have
is positive and is negative integars
1 1
2 2
, ( 2),( 2)
1 1
, ( 1),( 2
sin .cos
( 1) sin .cos ( 1) sin cos
( 1) ( 1)
1 ( 1)
cos sin sin .cos
( 1) ( 1)
m n
m n m n
m n m n
m n m n
m n m n
x x
n x x dx m x x dx
n I m I
m
I x x dx x x I
n n
m n
− +− +− +− +
− +− +− +− +
− +− +− +− +
− +− +− +− +
− =− =− =− =
    
    
= − + + −= − + + −= − + + −= − + + −
= − + + −= − + + −= − + + −= − + + −
− −− −− −− −
= = += = += = += = +
+ ++ ++ ++ +∴∴∴∴
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
Indefinite Integration
45
Example(17):
6 5
5 7
(6, 8) (4, 6) (4, 6)8 7
3
3 5
(4, 6) (2, 4) (2, 4)5
3
(2, 4) (0, 2) (0, 2)3
(0, 2) 2
sin 1 5 1 sin 5
sin cos
7 7 7 7cos cos
1 3 sin 3
sin (cos )
5 5 55cos
1 1 sin 1
sin (cos )
3 3 33cos
cos
x dx x
I x x I I
x x
x
I x x I I
x
x
I x x I I
x
dx
I
x
−−−−
− − −− − −− − −− − −
−−−−
− − −− − −− − −− − −
−−−−
− − −− − −− − −− − −
−−−−
= = − + = −= = − + = −= = − + = −= = − + = −
− −− −− −− −
−−−−
= + = −= + = −= + = −= + = −
− −− −− −− −
−−−−
= + = −= + = −= + = −= + = −
− −− −− −− −
====
∫∫∫∫
2
3
(2, 4) (4, 6)3 5 3
6 5 3
(6, 8)8 7 5 3
sec tan
sin 1 sin sin 1
tan , tan
3 53cos 5cos 5cos
sin 1 sin sin sin 1
tan
7 7cos cos 7cos 7cos
x dx x
x x x
I x I x
x x x
x dx x x x
I x
x x x x
− −− −− −− −
−−−−
= == == == =
∴ = − = − +∴ = − = − +∴ = − = − +∴ = − = − +
−−−−
= = − + −= = − + −= = − + −= = − + −
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
we can solve this example without reduction formulas
6
6 2 7
8
sin 1
tan sec tan
7cos
x dx
x xdx x c
x
= = += = += = += = +∫ ∫∫ ∫∫ ∫∫ ∫
Case (4): if m is negative and n is positive integers:
1 1
1 2 1
2 2
sin .cos
sin .( 1).cos .( sin ) cos .( 1)sin cos
( 1)sin .cos ( 1)sin cos
m n
m n n m
m n m n
d
x x
dx
x n x x x m x x
n x x m x x
+ −+ −+ −+ −
+ − −+ − −+ − −+ − −
+ −+ −+ −+ −
    
    
= − − + += − − + += − − + += − − + +
= − − + += − − + += − − + += − − + +
by integrating both sides w.r.to x we have
is negative and is positive integars
1 1 2 2
( 2),( 2) ,
1 1
, ( 2),( 2)
sin .cos ( 1) sin .cos ( 1) sin cos
( 1) ( 1)
1 ( 1)
cos sin sin .cos
( 1) ( 1)
m n m n m n
m n m n
m n m n
m n m n
x x n x x dx m x x dx
n I m I
n
I x x dx x x I
m m
m n
+ − + −+ − + −+ − + −+ − + −
+ −+ −+ −+ −
+ −+ −+ −+ −
+ −+ −+ −+ −
     = − − + += − − + += − − + += − − + +
    
= − − + += − − + += − − + += − − + +
−−−−
= = += = += = += = +
+ ++ ++ ++ +∴∴∴∴
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
Mathematics For Engineering
46
Example(18):
4 3
3 5
( 6,4) ( 4,2) ( 4,2)6 5
3
( 4,2) ( 2,0) ( 2,0)3
2
( 2,0) 2
( 4,2) 3
4
( 6,46
cos 1 3 cos 3
cos sin
5 5 5sin 5sin
1 1 cos 1
cos sin
3 3 33sin
csec cot
sin
cos 1
cot
33sin
cos
sin
x dx x
I x x I I
x x
x
I x x I I
x
dx
I x dx x
x
x
I
x
x dx
I
x
−−−−
− − −− − −− − −− − −
−−−−
− − −− − −− − −− − −
−−−−
−−−−
−−−−
−−−−
= = − − = −= = − − = −= = − − = −= = − − = −
−−−−
= + = −= + = −= + = −= + = −
− −− −− −− −
= = = −= = = −= = = −= = = −
−−−−
∴ = +∴ = +∴ = +∴ = +
====
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
3
) 5 3
cos cos 1
cot
55sin 5sin
x x
c
x x
−−−−
= + − += + − += + − += + − +∫∫∫∫
we can solve this example without reduction formulas
4
4 2 5
6
cos 1
cot cosec cot
5sin
x dx
x x dx x c
x
−−−−
= = += = += = += = +∫ ∫∫ ∫∫ ∫∫ ∫
(8)Integrals in the form sec tanm n
x x dx∫∫∫∫ , , are positive integersm n
If n is an odd and m either an even or odd
1 1
sec tan sec tan (sec tan )
andput sec
m n m n
x x dx x x x xdx
y x
− −− −− −− −
====
====
∫ ∫∫ ∫∫ ∫∫ ∫
If m is an even ,n either an even or odd
2 2
sec tan sec tan (sec ) andput tanm n m n
x x dx x x xdx y x−−−−
= == == == =∫ ∫∫ ∫∫ ∫∫ ∫
Example (19): Find 4 3
sec 3 tan 3x x dx∫∫∫∫
Solution:
4 3 3 2 2
3 2 2
5 3 2
sec 3 tan 3 tan 3 sec 3 (sec 3 )
tan 3 (tan 3 1)(sec 3 )
(tan 3 tan 3 )(sec 3 )
x x dx x x x dx
x x x dx
x x x dx
====
= −= −= −= −
= −= −= −= −
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
Indefinite Integration
47
5 3 6 4 6 4
tan3 3sec3
1 1 1 1 1 1 1
( ) tan 3 tan 3
3 3 6 4 3 6 4
put y x dy x dx
I y y dy y y x x c
= ∴ == ∴ == ∴ == ∴ =
            
∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +            
            
∫∫∫∫
Example (20): Find 3 2
sec tanx x dx∫∫∫∫
Solution:
3 2 3 2 5 3
5 3
5 3 2 3
5
3 3
3 3 2 3 3 2
3
(16) sec tan sec (sec 1) (sec sec )
(1)
sec sec sec sec tan
sec tan tan (3sec tan )
sec tan 3 sec tan sec tan 3 sec (sec 1)
sec tan 3 (
x x dx x x dx x x dx
I I I
let I x dx x x dx x d x
x x x x x dx
x x x x dx x x x x dx
x x
= − = −= − = −= − = −= − = −
∴ = −∴ = −∴ = −∴ = −
= = == = == = == = =
= −= −= −= −
= − = − −= − = − −= − = − −= − = − −
= −= −= −= −
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
5 3
3
5 3
3 2
3
2
2 3
sec sec )
1
sec tan (2)
4
sec sec sec sec tan
sec tan tan (sec tan ) sec tan sec tan
sec tan sec (sec 1) sec tan (sec sec )
1
sec tan ln sec tan
2
x x dx
I x x I
and I x dx x x dx x d x
x x x x x dx x x x x dx
x x x x dx x x x x dx
x x x
−−−−
    ∴ = +∴ = +∴ = +∴ = +
    
= = == = == = == = =
= − = −= − = −= − = −= − = −
= − − = − −= − − = − −= − − = − −= − − = − −
= + += + += + += + +
∫∫∫∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
(3)x        
(((( ))))
(((( ))))
3 3
3 3 3
3
3
1 1
(1),(2) (3) sec tan sec tan 3
4 4
1 3
sec tan sec tan ln sec tan
4 2
1 3
sec tan sec tan ln sec tan
4 8
from and I x x I I x x I
x x x x x x
x x x x x x c
            = + − = −= + − = −= + − = −= + − = −
            
    
= − + += − + += − + += − + +    
    
    
= − + + += − + + += − + + += − + + +    
    
Mathematics For Engineering
48
Example (21): Find 3 3
sec tanax ax dx∫∫∫∫
Solution:
3 3 2 2
2 2
4 2
4 2 5 3 5 3
(17) sec tan sec tan (sec tan )
sec (sec 1)(sec tan )
(sec sec )(sec tan )
sec sec tan
1 1 1 1 1 1 1
( ) sec sec
5 3 5 3
ax ax dx ax ax ax ax dx
ax ax ax ax dx
ax ax ax ax dx
put y ax dy a ax ax
I y y dy y y ax ax c
a a a
====
= −= −= −= −
= −= −= −= −
= ∴ == ∴ == ∴ == ∴ =
            
∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +            
            
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
(9)Integrals in the form cosec cotm n
x x dx∫∫∫∫ , , are positive integersm n
If n is an odd and m either an even or odd
1 1
cosec cot cosec cot (cosec cot )
andput cosec
m n m n
x x dx x x x xdx
y x
− −− −− −− −
====
====
∫ ∫∫ ∫∫ ∫∫ ∫
If m is an even ,n either an even or odd
2 2
cosec cot cosec cot (cosec )
andput cot
m n m n
x x dx x x xdx
y x
−−−−
====
====
∫ ∫∫ ∫∫ ∫∫ ∫
Example (22): Find 3 3
cot cosecax ax dx∫∫∫∫
Solution:
3 3 2 2
2 2
2 4
3 3 2 4 3 5
cot cosec cot cosec (cosec cot )
(1 cosec ) cosec (cosec cot )
(cosec cosec ) (cosec cot )
cosec cosec cot
1 1
cot cosec ( )
3 5
1
ax ax dx ax ax ax ax dx
ax ax ax ax dx
ax ax ax ax dx
if y ax dy a ax axdx
ax ax dx y y dy y y
a a
====
= −= −= −= −
= −= −= −= −
= = −= = −= = −= = −
∴ = − − = − +∴ = − − = − +∴ = − − = − +∴ = − − = − +
= −= −= −= −
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
3 51
cosec cosec
3 5
ax ax c
a a
+ ++ ++ ++ +
Indefinite Integration
49
Example (23): Find 3 4
cot cosecax ax dx∫∫∫∫
Solution:
3 4 3 2 2
3 2 2
3 5 2
2
3 4 3 5 4 6
4
(19) cot cosec cot cosec (cosec )
cot (1 cot )(cosec )
(cot cot )(cosec )
cot cosec
1 1 1 1
cot cosec ( y ) y
4 6
1 1
cot co
4 6
ax ax dx ax ax ax dx
ax ax ax dx
ax ax ax dx
if y ax dy a ax dx
ax ax dx y dy y
a a
ax
a a
====
= += += += +
= += += += +
= = −= = −= = −= = −
− −− −− −− −     
∴ = + = +∴ = + = +∴ = + = +∴ = + = +    
    
−−−−
= −= −= −= −
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
∫∫∫∫
∫ ∫∫ ∫∫ ∫∫ ∫
6
4 4
t
try to solve cot cosec
ax c
ax ax dx
++++
∫∫∫∫
As similar we can integrate the following
sinh , cosh , tanh
cosech , sech , coth
sinh cosh
sech tanh
cosech coth
n n n
n n n
n m
n m
n m
xdx xdx xdx
x xdx xdx
x xdx
x xdx
x xdx
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
Mathematics For Engineering
50
Exercise(5)
Find
3 2
4 4 2 5
3 2 3 3
4
10 2
5 5
(1) sinh (2) sin 4
(3) cot cosec (4) sin cos
(5) sinh cosh (6) sin cos
(7) sin2 cos4 (8) cos
(9) cos (10) sin cos
(11) cosh(2 )cosh(3 ) (12) cos sin
(13) sin3 cos5
n
x dx x dx
x x dx x x dx
x x dx x x dx
x x dx x dx
x dx x x dx
x x dx xdx
x
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
3 5
3 2
3
3
4
3 5 3 4
2 4 3 5
2 4 2 3
3
(14) sin cos
(15) sin cos (16) sin5 cos
cos
(17) (18) tan
sin
(19) tan sec (20) tan sec
(21) tan sec (22) cot cosec
(23) cot cosec (24) cot cosec
(25) cot
x dx x x dx
x x dx x x dx
x
dx x dx
x
x x dx x x dx
x x dx x x dx
x x dx x x dx
x
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
4 3 3
5 5
6 5
5 5
4 4
5 3 2 4
3 4
cosec (26) cot cosec
(27) sec (28) cosec
(29) sec (30) cot
(31) coth (32) cosech
(33) coth (34) cosech
(35) coth cosech (36) coth cosech
(37) coth cosech (3
x dx x x dx
x dx x dx
x dx x dx
x dx x dx
x dx x dx
x x dx x x dx
x x dx
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫
∫∫∫∫
4 3
2 4
8) coth cosech
(39) coth cosech
x x dx
x x dx
∫∫∫∫
∫∫∫∫
Indefinite Integration
51
Trigonometric Substitutions:
An Integrand which contains one of the form
2 2 2 2 2 2 2 2 2
, ,a b x a b x b x a− + −− + −− + −− + −
may be transformed into another simple integrals contains
trigonometric functions of new variable. The substituting according
the following rules:
2
2 2 2 2 2
2
2
2 2 2 2 2 2 2
2
For sin , sin cos
( sin ) 1 sin cos
(i)
a a a
a b x put x x dx d
b bb
a
a b x a b a a
b
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θ θ θθ θ θθ θ θθ θ θ
− = = =− = = =− = = =− = = =
∴ − = − = − =∴ − = − = − =∴ − = − = − =∴ − = − = − =
2
2 2 2 2 2 2
2
2
2 2 2 2 2 2 2 2
2
For tan , tan sec
( tan ) 1 tan sec
(ii)
a a a
a b x put x x dx d
b bb
a
a b x a b a a
b
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θ θ θθ θ θθ θ θθ θ θ
+ = = =+ = = =+ = = =+ = = =
∴ + = + = + =∴ + = + = + =∴ + = + = + =∴ + = + = + =
2
2 2 2 2 2
2
2
2 2 2 2 2 2 2
2
For sec , sec sec tan
( sec ) sec 1 tan
(iii)
a a a
b x a put x x dx d
b bb
a
b x a b a a a
b
θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ
θ θ θθ θ θθ θ θθ θ θ
− = = =− = = =− = = =− = = =
∴ − = − = − =∴ − = − = − =∴ − = − = − =∴ − = − = − =
2
2
2 2
2
2 2 2
(iv)For , tan
sin cos 2
2
sin 2sin cos ,
2 2 1
1
cos cos sin ,
2 2 1
1 1 1
sec (1 tan ) (1 )
2 2 2 2 2
dx dx x
put u
a b x a b x
x x u
x
u
x x u
x
u
x x
du dx dx u dx
====
± ±± ±± ±± ±
∴ = =∴ = =∴ = =∴ = =
++++
−−−−
= − == − == − == − =
++++
= = + = += = + = += = + = += = + = +
∫ ∫∫ ∫∫ ∫∫ ∫
Mathematics For Engineering
52
2
2 2 2
2 2 1
, sin , cos
1 1 1
du u u
dx x x
u u u
−−−−
∴ = = =∴ = = =∴ = = =∴ = = =
+ + ++ + ++ + ++ + +
2
2
2 2
2
2 2 2
2
2 2 2
(v)For , tanh
sinh cosh 2
2
sinh 2sinh cosh ,
2 2 1
1
cosh cosh sinh ,
2 2 1
1 1 1
sech (1 tanh ) (1 )
2 2 2 2 2
2 2 1
, sinh , cosh
1 1 1
dx dx x
put u
a b x a b x
x x u
x
u
x x u
x
u
x x
du dx dx u dx
du u u
dx x x
u u u
====
± ±± ±± ±± ±
∴ = =∴ = =∴ = =∴ = =
−−−−
++++
= + == + == + == + =
−−−−
= = − = −= = − = −= = − = −= = − = −
++++
∴ = = =∴ = = =∴ = = =∴ = = =
− − −− − −− − −− − −
∫ ∫∫ ∫∫ ∫∫ ∫
Example(1): Find
2
2
4
x dx
x −−−−
∫∫∫∫
Solution:
(((( ))))
2 2 2 2
2 2
3
2
2 2 2 2
2sec 2sec tan ,
1
4 4sec 4 2tan , tan sec 1 4
2
4sec (2sec tan )
4sec
2tan4
2sec tan 2ln sec tan
1 1 1
2. . 4 2ln 4 4 2ln 4
2 2 2 4 2 2 4
put x dx d
x x
x dx d
d
x
x x x x
x x x x c
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θ θθ θθ θθ θ
θθθθ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
= ∴ == ∴ == ∴ == ∴ =
− = − = = − = −− = − = = − = −− = − = = − = −− = − = = − = −
∴ = =∴ = =∴ = =∴ = =
−−−−
= + += + += + += + +
            
= − + + − = − + + − += − + + − = − + + − += − + + − = − + + − += − + + − = − + + − +            
            
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
Indefinite Integration
53
Example(2): Find
2
9
xdx
x−−−−
∫∫∫∫
Solution:
[[[[ ]]]]
(((( ))))
2 2 2
2 2
2
2
2
1 1 2
3sin 3cos , 9 9 (3sin ) 3 1 sin 3cos
9sin 3cos 1
9 sin 9 1 cos2
3cos 29
9 1 9 1
sin2 2sin cos
2 2 2 2
9 9 9
sin sin 9
2 3 3 3 2 3 2
let x dx d x
x dx d
d d
x
x x x x x
x c− −− −− −− −
==== ⇒⇒⇒⇒ = − = − = − == − = − = − == − = − = − == − = − = − =
∴ = = == −∴ = = == −∴ = = == −∴ = = == −
−−−−
            
= − = −= − = −= − = −= − = −            
            
    −−−−
    = − = − − += − = − − += − = − − += − = − − +
    
    
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
θ θ θ θ θ θθ θ θ θ θ θθ θ θ θ θ θθ θ θ θ θ θ
θ θ θθ θ θθ θ θθ θ θ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θθθθ
θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ
Example(3): Find
2
9 4
dx
x x++++
∫∫∫∫
Solution:
2
2 2
2
2
2
put 2 3tan 2 3sec
9 4 9 9tan 3sec
(3/ 2)sec 1 sec 1 cos
(3/ 2)tan 3sec 3 tan 3 cos sin9 4
1 1
cosec ln cosec cot (1)
3 3
2 3 9 4
2 3tan tan ,cot , cosec
3 2 2
1
ln cosec
3
x dx d
x
dx d d d
x x
d
x x
x
x x
I
==== ⇒⇒⇒⇒ ====
+ = + =+ = + =+ = + =+ = + =
∴ = = =∴ = = =∴ = = =∴ = = =
++++
= = −= = −= = −= = −
++++
==== ⇒⇒⇒⇒ = = == = == = == = =
∴ =∴ =∴ =∴ =
∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
∫∫∫∫
Q
θ θ θθ θ θθ θ θθ θ θ
θ θθ θθ θθ θ
θ θ θ θ θ θθ θ θ θ θ θθ θ θ θ θ θθ θ θ θ θ θ
θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θθθθ
2
1 9 4 3
cot ln
3 2 2
x
c
x x
++++
− = − +− = − +− = − +− = − +θθθθ
Example(3): Find
5 4cos
dx
x++++∫∫∫∫
Solution:
Mathematics For Engineering
54
(((( ))))
(((( ))))
2
2 2
2
2
2 2 2
2
2
1 1
2
tan
2
1
cos cos sin ,
2 2 1
2
1
2 2
5 4cos 1 5(1 ) 4(1 )
(1 ) 5 4
1
tan
2 2 2 2tan tan
3 3 3 39
x
put u
x x u
x
u
du
dx
u
dx du du
x u u u
u
u
x
du u
c
u
− −− −− −− −
====
−−−−
∴ = − =∴ = − =∴ = − =∴ = − =
++++
====
++++
= == == == =
++++     −−−− + + −+ + −+ + −+ + −
+ ++ ++ ++ +        ++++    
    
    
= = = += = = += = = += = = +    
++++     
    
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫∫∫∫
Example(3): Find
12 13sin
dx
x++++∫∫∫∫
Solution:
2 2
2
2
2
2 2
2 2
tan sin 2sin cos ,
2 2 2 1 1
2 2
12 13sin 2 12(1 ) 13(2 )1 12 13
1
2
(2 3)(3 2)12 12 26 6 13 6
2 1 1 1
ln 2 3
15 2 3 5 3 2 15 1
x x x u du
put u x dx
u u
dx du du
x u u uu
u
du du du
u uu u u u
du du
u
u u
= ∴ = = == ∴ = = == ∴ = = == ∴ = = =
+ ++ ++ ++ +
= == == == =
++++             + ++ ++ ++ +    + ++ ++ ++ +              ++++    
= = == = == = == = =
+ ++ ++ ++ +            + + + ++ + + ++ + + ++ + + +
            
− −− −− −− −
= + = + += + = + += + = + += + = + +
+ ++ ++ ++ +
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∫ ∫∫ ∫∫ ∫∫ ∫ ln 3 2
5
1 1
ln 2tan 3 ln 3tan 2
15 2 15 2
u
x x
c
++++
−−−−
= + + + += + + + += + + + += + + + +
Indefinite Integration
55
Exercise(6)
Prove that
2 3/ 2 2
2 2
2
2 2
22 2 2
2 2 2
2
1
2 2 3/ 2 2 2
2 2 2
2 2
2 2
1
(1)
(4 ) 4 4
25 5 25
(2) 5ln 25
1
(3)
(4) 4 4 2ln( 4)
2
(5) sin
( ) ( )
(6) 4 4 2ln( 4)
2
(7)
x
dx c
x x
x x
dx x c
x c
a x
dx c
a xx a x
x
x dx x x x c
x x x
dx c
aa x a x
x
x dx x x x c
x a
dx x a
x
−−−−
= += += += +
−−−− −−−−
− − −− − −− − −− − −
= + − += + − += + − += + − +
−−−−
= − += − += − += − +
−−−−
+ = + + + + ++ = + + + + ++ = + + + + ++ = + + + + +
= − += − += − += − +
− −− −− −− −
− = − + + − +− = − + + − +− = − + + − +− = − + + − +
++++
= += += += +
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫
2 2
2 2
2 2
2 5/ 2 2 3/ 2
2 2 3/ 2 2 2 2
2
2 2
ln
2
(8)
(4 ) 12(4 )
(9)
( ) ( )
9
(10)
99
a x a a
c
x a a
x dx x
c
x x
dx x
c
a x a a x
dx x
c
xx x
+ −+ −+ −+ −
+ ++ ++ ++ +
+ ++ ++ ++ +
= += += += +
− −− −− −− −
= += += += +
++++ ++++
−−−−
= − += − += − += − +
−−−−
∫∫∫∫
∫∫∫∫
∫∫∫∫
2
2 2
2
2
2 2 2 2 2 5/ 2 2 2 3/ 2
1
(11) 16 8ln 16
216
1
(12) ( ) ( )
5 3
x dx
x x x x c
x
a
x a x dx a x a x c
    = − + + − += − + + − += − + + − += − + + − +
        −−−−
− = − − − +− = − − − +− = − − − +− = − − − +
∫∫∫∫
∫∫∫∫
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus
  Integral calculus

More Related Content

What's hot

51549 0131469657 ism-8
51549 0131469657 ism-851549 0131469657 ism-8
51549 0131469657 ism-8Carlos Fuentes
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15Carlos Fuentes
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsKavin Ruk
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2José Encalada
 
Compfuncdiff
CompfuncdiffCompfuncdiff
Compfuncdiffdianenz
 
Calculo purcell 9 ed solucionario
Calculo  purcell  9 ed   solucionarioCalculo  purcell  9 ed   solucionario
Calculo purcell 9 ed solucionarioLuis Manuel Leon
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19JAVIERTELLOCAMPOS
 

What's hot (10)

51549 0131469657 ism-8
51549 0131469657 ism-851549 0131469657 ism-8
51549 0131469657 ism-8
 
Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
Capitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na EdicionCapitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na Edicion
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
Compfuncdiff
CompfuncdiffCompfuncdiff
Compfuncdiff
 
Calculo purcell 9 ed solucionario
Calculo  purcell  9 ed   solucionarioCalculo  purcell  9 ed   solucionario
Calculo purcell 9 ed solucionario
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
 

Viewers also liked

Presentació Comms Together
Presentació Comms Together Presentació Comms Together
Presentació Comms Together Comms Together
 
Xixili proposal
Xixili proposalXixili proposal
Xixili proposalAh Liz
 
المراجعة النهائية ومراجعة ليلة الامتحان فى الميكانيكا
المراجعة النهائية ومراجعة ليلة الامتحان فى الميكانيكا المراجعة النهائية ومراجعة ليلة الامتحان فى الميكانيكا
المراجعة النهائية ومراجعة ليلة الامتحان فى الميكانيكا منتدى الرياضيات المتقدمة
 
4 basic html form
4 basic html form4 basic html form
4 basic html formM Stalaktit
 
جبر - سوريا- كتاب الانشطة و التدريبات - صف عاشرg10-alg
جبر - سوريا- كتاب الانشطة و التدريبات - صف عاشرg10-algجبر - سوريا- كتاب الانشطة و التدريبات - صف عاشرg10-alg
جبر - سوريا- كتاب الانشطة و التدريبات - صف عاشرg10-algمنتدى الرياضيات المتقدمة
 
How Hospitals Can Save Millions by Cutting Surgical Waste
How Hospitals Can Save Millions by Cutting Surgical WasteHow Hospitals Can Save Millions by Cutting Surgical Waste
How Hospitals Can Save Millions by Cutting Surgical WasteUSC Consulting Group
 
Telekom und viasto - Vortrag auf HR-Messe "Zukunft Personal 2013"
Telekom und viasto - Vortrag auf HR-Messe "Zukunft Personal 2013"Telekom und viasto - Vortrag auf HR-Messe "Zukunft Personal 2013"
Telekom und viasto - Vortrag auf HR-Messe "Zukunft Personal 2013"viasto GmbH
 
تفاضل وتكامل ليلة الامتحان 2013 التوقعات الفعلية الجزء الثانى
تفاضل وتكامل ليلة الامتحان 2013 التوقعات الفعلية الجزء الثانىتفاضل وتكامل ليلة الامتحان 2013 التوقعات الفعلية الجزء الثانى
تفاضل وتكامل ليلة الامتحان 2013 التوقعات الفعلية الجزء الثانىمنتدى الرياضيات المتقدمة
 

Viewers also liked (16)

Presentació Comms Together
Presentació Comms Together Presentació Comms Together
Presentació Comms Together
 
دليل التقويم رياضيات 2 جميع الفروع
دليل التقويم رياضيات 2 جميع الفروعدليل التقويم رياضيات 2 جميع الفروع
دليل التقويم رياضيات 2 جميع الفروع
 
دورة برمجة عصبية
دورة برمجة عصبيةدورة برمجة عصبية
دورة برمجة عصبية
 
هندسة - سوريا - كتاب المعلم -g10-geometry
   هندسة - سوريا - كتاب المعلم -g10-geometry   هندسة - سوريا - كتاب المعلم -g10-geometry
هندسة - سوريا - كتاب المعلم -g10-geometry
 
اعمالى مجمعة
اعمالى مجمعةاعمالى مجمعة
اعمالى مجمعة
 
نماذج امتحانات الرياضيات 2 طبقا لمواصفات 2014
نماذج امتحانات الرياضيات 2 طبقا لمواصفات 2014نماذج امتحانات الرياضيات 2 طبقا لمواصفات 2014
نماذج امتحانات الرياضيات 2 طبقا لمواصفات 2014
 
Xixili proposal
Xixili proposalXixili proposal
Xixili proposal
 
دليل التقويم مكانيكا س و ج
دليل التقويم مكانيكا س و جدليل التقويم مكانيكا س و ج
دليل التقويم مكانيكا س و ج
 
المراجعة النهائية ومراجعة ليلة الامتحان فى الميكانيكا
المراجعة النهائية ومراجعة ليلة الامتحان فى الميكانيكا المراجعة النهائية ومراجعة ليلة الامتحان فى الميكانيكا
المراجعة النهائية ومراجعة ليلة الامتحان فى الميكانيكا
 
4 basic html form
4 basic html form4 basic html form
4 basic html form
 
Tiger
TigerTiger
Tiger
 
جبر - سوريا- كتاب الانشطة و التدريبات - صف عاشرg10-alg
جبر - سوريا- كتاب الانشطة و التدريبات - صف عاشرg10-algجبر - سوريا- كتاب الانشطة و التدريبات - صف عاشرg10-alg
جبر - سوريا- كتاب الانشطة و التدريبات - صف عاشرg10-alg
 
How Hospitals Can Save Millions by Cutting Surgical Waste
How Hospitals Can Save Millions by Cutting Surgical WasteHow Hospitals Can Save Millions by Cutting Surgical Waste
How Hospitals Can Save Millions by Cutting Surgical Waste
 
Telekom und viasto - Vortrag auf HR-Messe "Zukunft Personal 2013"
Telekom und viasto - Vortrag auf HR-Messe "Zukunft Personal 2013"Telekom und viasto - Vortrag auf HR-Messe "Zukunft Personal 2013"
Telekom und viasto - Vortrag auf HR-Messe "Zukunft Personal 2013"
 
تفاضل وتكامل ليلة الامتحان 2013 التوقعات الفعلية الجزء الثانى
تفاضل وتكامل ليلة الامتحان 2013 التوقعات الفعلية الجزء الثانىتفاضل وتكامل ليلة الامتحان 2013 التوقعات الفعلية الجزء الثانى
تفاضل وتكامل ليلة الامتحان 2013 التوقعات الفعلية الجزء الثانى
 
دليل المعلم - مصر - الصف الاول الثانوى 2013-2014
دليل المعلم - مصر - الصف الاول الثانوى 2013-2014دليل المعلم - مصر - الصف الاول الثانوى 2013-2014
دليل المعلم - مصر - الصف الاول الثانوى 2013-2014
 

Similar to Integral calculus

Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculoMan50035
 
Calculo
CalculoCalculo
CalculoJu Lio
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integralesGeovanny Jiménez
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiationJaydevVadachhak
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCarlon Baird
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولanasKhalaf4
 
51546 0131469657 ism-5
51546 0131469657 ism-551546 0131469657 ism-5
51546 0131469657 ism-5Carlos Fuentes
 
01 derivadas
01   derivadas01   derivadas
01 derivadasklorofila
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Calculo de integrais_indefinidos_com_aplicacao_das_proprie
Calculo de integrais_indefinidos_com_aplicacao_das_proprieCalculo de integrais_indefinidos_com_aplicacao_das_proprie
Calculo de integrais_indefinidos_com_aplicacao_das_proprieRigo Rodrigues
 

Similar to Integral calculus (20)

Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulas de calculo
Formulas de calculoFormulas de calculo
Formulas de calculo
 
Calculo
CalculoCalculo
Calculo
 
Calculo
CalculoCalculo
Calculo
 
Tablas calculo
Tablas calculoTablas calculo
Tablas calculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integrales
 
Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
51546 0131469657 ism-5
51546 0131469657 ism-551546 0131469657 ism-5
51546 0131469657 ism-5
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Calculo de integrais_indefinidos_com_aplicacao_das_proprie
Calculo de integrais_indefinidos_com_aplicacao_das_proprieCalculo de integrais_indefinidos_com_aplicacao_das_proprie
Calculo de integrais_indefinidos_com_aplicacao_das_proprie
 
Calculo i
Calculo iCalculo i
Calculo i
 

Recently uploaded

Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 

Recently uploaded (20)

Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 

Integral calculus

  • 1. Calculus of Integration Prof. Dr. M. Abul-Ez Mathematics Department Faculty of Science Sohag University
  • 2. Mathematics For Engineering 2 Chapter 1 Indefinite Integration If ( )F x is a function such that ( ) ( )F x f x′′′′ ==== on the interval [ , ]a b Then ( )F x is called an anti-derivative or indefinite of ( )f x . The indefinite integral of the given function is not unique for example 2 2 2 , 3, 5x x x+ ++ ++ ++ + are indefinite integral of ( ) 2f x x==== since 2 2 2 ( ) ( 3) ( 5) 2 d d d x x x x dx dx dx = + = + == + = + == + = + == + = + = All of indefinite integral of ( ) 2f x x==== include in ( ) 2f x x c= += += += + where c called the constant of integration, is an arbitrary constant. 1.1- Fundamental Integration Formula: 1 (1) ( ) ( ) (2) ( ) (3) (4) 1 1 (5) ln (6) ln (7) m m x x x x d f x f x c dx u v dx udx vdx udx udx x x dx c m m dx x c x a a dx c a e du e c α αα αα αα α ++++ = += += += + + = ++ = ++ = ++ = + ==== = + ≠ −= + ≠ −= + ≠ −= + ≠ − ++++ = += += += + = += += += + = += += += + ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ Integration of Trigonometric functions: (8) sin cos (9) cos sin (10) tan ln sec (11) cot lncos xdx x c xdx x c xdx x c x dx x c = − += − += − += − + = += += += + = += += += + = += += += + ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫
  • 3. Indefinite Integration 3 (12) sec ln sec tan (13) cosec ln csc cot xdx x x c dx x x c = + += + += + += + + = − += − += − += − + ∫∫∫∫ ∫∫∫∫ 2 2 (14) sec tan (15) cosec cot (16) sec tan sec (17) cosec cot cosec xdx x c dx x c x xdx x c x xdx x c = += += += + = − += − += − += − + = += += += + = − += − += − += − + ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ Integration tends to inverse of Trigonometric functions: 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 sin (18) 1 cos 1 tan (19) 1 cot 1 sec (20) 1 cosec 1 coth (21) 1 ln 2 bx c dx b a bxa b x c b a bx c dx ab a bxa b x c ab a bx c dx a a dx bxx b x a c a a bx c ab adx dx bx ab x a c ab bx a −−−− −−−− −−−− −−−− −−−− −−−− −−−−  ++++ ====  −−−−−−−− ++++   ++++ ====  −−−−++++  ++++   ++++ ====  −−−−−−−− ++++   ++++ ====  −−−−−−−− ++++ ++++ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 1 2 2 2 2 2 12 2 1 tanh (22) 1 ln 2 ln( ) (23) sinh bx c ab adx a bxa b x c ab a bx x x a cdx x cx a a −−−− −−−−    ++++ ====  ++++−−−−  ++++  −−−−  + + ++ + ++ + ++ + + ====  ++++++++  ∫∫∫∫ ∫∫∫∫
  • 4. Mathematics For Engineering 4 2 2 12 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 ln( ) (24) cosh 1 (25) sin 2 2 1 (26) sinh 2 2 1 (27) cosh 2 2 x x a cdx x cx a a a x a x x a x c a a x x a x x a c a a x x a x x a c a −−−− −−−− −−−− −−−−  + − ++ − ++ − ++ − +  ====  ++++−−−−  − = − + +− = − + +− = − + +− = − + + + = + + ++ = + + ++ = + + ++ = + + + − = − − +− = − − +− = − − +− = − − + ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ In the following some lows witch we use to integrate the square of trigonometric functions [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] 2 2 2 2 2 2 2 2 (1)cos sin 1, (2)1 tan sec , (3)cot 1 csc 1 (4) sin (1 cos2 ) 2 1 (5)cos (1 cos2 ) 2 1 (6)cos cos cos( ) cos( ) 2 1 (7)sin sin cos( ) cos( ) 2 1 (8)sin cos sin( ) sin( ) 2 x x x x x x x x x x x y x y x y x y x y x y x y x y x y + =+ =+ =+ = + =+ =+ =+ = + =+ =+ =+ = = −= −= −= − = += += += + = + + −= + + −= + + −= + + − = − − += − − += − − += − − + = + + −= + + −= + + −= + + − Integration of square of trigonometric functions: 2 2 2 1 1 1 (1) sin (1 cos2 ) cos2 2 2 2 1 1 1 (2) cos (1 cos2 ) cos2 2 2 2 (3) sec tan , x dx x dx x x c x dx x dx x x c x dx x c      = − = − += − = − += − = − += − = − +               = + = + += + = + += + = + += + = + +          = += += += + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫
  • 5. Indefinite Integration 5 2 2 2 2 2 (4) cosec cot (5) tan (sec 1) tan (6) cot (cosec 1) cot x dx x c x dx dx x x c x dx x dx x x c = − += − += − += − + = − = − += − = − += − = − += − = − + = − = − − += − = − − += − = − − += − = − − + ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] 1 (7) cos cos cos( ) cos( ) 2 1 sin( ) sin( ) 2 ( ) 1 (8) sin sin cos( ) cos( ) 2 1 sin( ) sin( ) 2 ( ) 1 (9) sin cos sin( ) sin( ) 2 ax bx dx a b x a b x dx a b x a b x c a b a b ax bxdx a b x a b x dx a b x a b x c a b a b ax bx dx a b x a b x dx = + + −= + + −= + + −= + + −     + −+ −+ −+ − = + += + += + += + +     + −+ −+ −+ −     = − − += − − += − − += − − +     − +− +− +− + = + += + += + += + +     − +− +− +− +     = + + −= + + −= + + −= + + − ==== ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 1 cos( ) cos( ) 2 ( ) ( ) a b x a b x c a b a b     − + −− + −− + −− + − + ++ ++ ++ +     + −+ −+ −+ −     Solved Examples: 5 6 1 4 3 3 3 1 1 1 : 6 3 4 1 ( ) ( ) ( 1) 1 1 ln ( ) ( ) 1 1 ( ) ( ) , 1 ( 1)( ) Exampl(1) Exampl(2): Exampl(3): Exampl(4): Exampl(5): n n n n n x dx x c x dx x dx x c ax b ax b dx c a n dx ax b c ax b a ax b dx ax b dx c n a nax b ++++ − +− +− +− + −−−− = += += += + = = += = += = += = + ++++ + = ++ = ++ = ++ = + ++++ = + += + += + += + + ++++ ++++ = + = + ≠= + = + ≠= + = + ≠= + = + ≠ − +− +− +− +++++ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫
  • 6. Mathematics For Engineering 6 1 3 1 3 3 5 2 2 2 2 2 2 2 3 5 2 3 2 4 3 1 2 2 2 (1 ) ( ) 3 5 Find ( ) ( 2) , ( ) ( ) 2 2 Exampl(6): Exampl(7): Exampl(8): dx ax b c aax b x x dx x x dx x dx x dx x x c x dx i x x dx ii dx iii x x dx x = + += + += + += + + ++++ − = − = − = − +− = − = − = − +− = − = − = − +− = − = − = − + + ++ ++ ++ + ++++ ∫∫∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ 3 2 3 5 2 5 6 3 6 1 3 32 34 4 4 44 3 3 3 3 2 32 2 2 3 substitute in the integral we have 1 1 1 ( ) ( 2) ( 2) 3 18 18 1 1 4 4 ( ) ( 2) 3 3 9 92 1 2 2 ( ) 2 ( ) ( 2) 9 9 9 let u x du x du i x x dx u du u c x c x dx du ii dx dx u du u x c ux iii x x dx u du u c x c −−−− = + ∴ == + ∴ == + ∴ == + ∴ = + = = + = + ++ = = + = + ++ = = + = + ++ = = + = + + = = = = + += = = = + += = = = + += = = = + + ++++ + = = + = + ++ = = + = + ++ = = + = + ++ = = + = + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 3 2 3 2 3 2 2 2 2 2 3 5 3 2 2 2 22 2 2 1 ( ) 1 ( ) 1 1 ( 1) 1 1 2 2 ( 1) 1 ( 1) ( 1) 10 6 Exampl(9): x x dx x x x x dx x x x dx x x dx x x x dx x x dx x x dx x x dx x x c + = + − ++ = + − ++ = + − ++ = + − + = + + − += + + − += + + − += + + − + = + + − += + + − += + + − += + + − + = + − + = + − + += + − + = + − + += + − + = + − + += + − + = + − + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 2 2 3 3 3 1 2 1 ln 2 3 2 3 2 2 3 2 1 6 1 ln(1 2 ) 6 61 2 1 2 5 ( 1) 4 ( 1) 4 ( 1) ( 1) ( 1) ( 1) 4 1 4ln 1 ( 1) Exampl(10): Exampl(11): Exampl(12): dx dx x c x x x dx x dx x c x x x x x dx dx dx dx x x x x dx x x c x = = − += = − += = − += = − + − −− −− −− − − −− −− −− − = − = − += − = − += − = − += − = − + − −− −− −− − + + + ++ + + ++ + + ++ + + + = = += = += = += = + + + + ++ + + ++ + + ++ + + +      = + = + + += + = + + += + = + + += + = + + +     ++++     ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫∫∫
  • 7. Indefinite Integration 7 2 2 2 2 2 2 2 3 1 1 tan 2ln sec 2 2 1 1 (sec ) sec ( ) ln sec tan 2 2 1 sin cos sin (sin ) sin 3 Example(13): Example(14): Example(15): xdx x c x x dx x d x x x c x xdx xd x x c = += += += + = = + += = + += = + += = + + = = += = += = += = + ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 2 3 2 3 2 4 6 2 4 6 3 7 11 2 2 2 5 9 13 2 2 2 5 5 6 : (1 ) (1 ) (1 3 3 ) 1 3 3 ( ) 3 3 6 6 2 2 5 9 13 1 ( 1) ( 1) ( 1) ( 1) 6 Example(16) Example(17): x x x x x x x x x x dx dx dx x x x x x x dx x x x x dx x dx x dx x dx x x x x x c e e dx e d e e c + + + + ++ + + + ++ + + + ++ + + + + = == == == = = + + += + + += + + += + + + = + + += + + += + + += + + + = + + + += + + + += + + + += + + + + + = + + = + ++ = + + = + ++ = + + = + ++ = + + = + + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 3 3 3 2 2 2 2 2 2 2 2 5 2 2 5 2 5 2 4 1 1 (3 ) 3 3ln 1 ( 1) 1 ln( 1) 2 2( 1) ( 1) 1 ( 1) 1 ( 1) ( 1) 2 2( 1) ( 1) 1 ( 1) 2 4 Example(18): Example(19): Example(20): x x x x x x x x x x x x x x x a dx a dx a c a e d e dx dx e c e e e dx d e e d e e e e c −−−− −−−− = = += = += = += = + −−−− = = − += = − += = − += = − + − −− −− −− − −−−− = = − −= = − −= = − −= = − − − −− −− −− − −−−− = += += += + −−−− ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ 4 4 1 1 sin4 cos4 , (19) cos3 sin3 4 3 cos sin cos ( sin ) Example(21): Example(22): x dx x c x dx x c x x dx x x dx −−−− = + = += + = += + = += + = + = − −= − −= − −= − − ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫
  • 8. Mathematics For Engineering 8 3 2 3 4 5 2 5 2 5 6 5 2 4 2 2 2 2 1 tan sec tan (tan ) tan 4 cot cosec cot ( cosec ) 1 cot (cot ) cot 6 cos sin cos sin (cos ) (1 sin ) sin (cos ) (1 2si Example(23): Example(24): Example(25): x x dx x d x x c x x dx x x dx x d x x c x x dx x x xdx x x xdx = = += = += = += = + = − −= − −= − −= − − = − = − += − = − += − = − += − = − + ==== = −= −= −= − = −= −= −= − ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ 2 4 2 2 4 6 2 4 6 3 5 7 3 5 7 4 3 4 2 4 2 n sin )sin (cos ) (sin 2sin sin )(cos ) sin cos 1 2 1 ( 2 ) 3 5 7 1 2 1 sin sin sin 3 5 7 cos sin cos sin (sin ) cos (1 cos )(sin ) Example(26): x x x xdx x x x xdx let y x dy xdx I y y y dy y y y c x x x c x x dx x x x dx x x dx ++++ = − += − += − += − + ==== ⇒⇒⇒⇒ ==== ∴ = − + = − + +∴ = − + = − + +∴ = − + = − + +∴ = − + = − + + = − + += − + += − + += − + + ==== = −= −= −= − ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ 4 6 4 6 5 7 5 7 3 5 4 4 (cos cos )(sin ) cos sin 1 1 ( ) 5 7 1 1 cos cos 5 7 sin cos sin cos x x xdx let y x dy xdx I y y dy y y c x x c Try to solve x x dx x x dx = −= −= −= − ==== ⇒⇒⇒⇒ = −= −= −= − ∴ = − = − +∴ = − = − +∴ = − = − +∴ = − = − + = − += − += − += − + ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫
  • 9. Indefinite Integration 9 4 3 3 4 2 2 sec tan sec (sec tan ) 1 sec (sec ) sec 4 sin sin 1 tan sec sec cos coscos cos cos 1 cot cosec cot sin sinsin Example(27): Example(28): Example(29): Example(30) x x dx x x x dx x d x c x x dx dx x x dx x c x xx x x dx dx x x dx x c x xx ==== = = += = += = += = + = = = += = = += = = += = = + = = = − += = = − += = = − += = = − + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ 2 2 2 2 2 2 (1 cos ) (1 cos ) 1 cos 1 cos sin cos sin sin cosec cot cosec cot cosec sec tan sec sec tan sec sec sec tan sec tan ln sec tan : Example(31): Exampl dx x dx x dx x x x dx x dx x x xdx x x dx x x c x x x x x x dx x dx dx x x x x x x c − −− −− −− − = == == == = ++++ −−−− = −= −= −= − = −= −= −= − = − + += − + += − + += − + + + ++ ++ ++ + = == == == = + ++ ++ ++ + = + += + += + += + + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ 2 4 cosec cot cosec cosec cosec cot cosec cosec cot ln cosec cot cosec cot int ( ) sin (2 3cos ) , sin sin ( ) , ( ) (2 3cos ) (2 3cos ) e(32): Example(33): x x x dx x dx x x x x x dx x x c x x FindThefolowing egrals i I x x dx x dx x dx ii J iii K x x −−−− ==== −−−− −−−− = = − += = − += = − += = − + −−−− = += += += + = == == == = ++++ ++++ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 3 2 3 2 2 3cos 3sin 1 1 2 ( ) sin (2 3cos ) . 3 3 3 2 (2 3cos ) 9 let u x du x dx i I x x dx u du u x c = += += += + ⇒⇒⇒⇒ = −= −= −= − − −− −− −− −             ∴ = + = =∴ = + = =∴ = + = =∴ = + = =                           −−−−     = + += + += + += + +          ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫
  • 10. Mathematics For Engineering 10 (((( )))) 4 3 4 4 3 2 2 2 sin 1 1 2 ( ) .2 (2 3cos ) 3 3 3(2 3cos ) sin 1 1 1 1 ( ) . 3 3 3 3(2 3cos ) 1 (2 3cos ) 9 (1 tan ) (1 2tan tan ) 1 2tan (sec 1) 2tan Example(34): xdx du ii J u c x c x u xdx du iii K u du u x u x c x dx x x dx x x dx x − −− −− −− − −−−− − − −− − −− − −− − − = = = + = + += = = + = + += = = + = + += = = + = + + ++++ − − − −− − − −− − − −− − − −     = = = == = = == = = == = = =          ++++ = + += + += + += + + + = + ++ = + ++ = + ++ = + + = + + − == + + − == + + − == + + − = ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ (((( )))) (((( )))) (((( )))) 2 2 2 2 2 2 2 2 2 sec 2ln sec tan (1 cot ) (1 cot ) (1 2cot cot ) 1 2cot (cosec 1) 2cot cosec 2ln sin cosec (tan3 sec3 ) (tan 3 2tan3 sec3 sec 3 ) Example(35): Example(36): x dx x x c Find x dx x dx x x dx x x dx x x dx x x c x x dx x x x x dx ++++ = + += + += + += + + ++++ + = + ++ = + ++ = + ++ = + + = + + −= + + −= + + −= + + − = + = − += + = − += + = − += + = − + + = + ++ = + ++ = + ++ = + + ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ (((( )))) (((( )))) 2 2 2 sin sin sin tan 2 tan tan cos (sec 3 1) 2tan3 sec3 sec 3 2sec 3 2tan 3 sec3 1 2 2 tan3 sec3 3 3 cos (sin ) 1 sec (tan ) ln sin Example(37): Example(38): Example(39): x x x x x x x x x x x dx x x x dx x x x c e x dx e d x e c a x dx a d x a c a e x dx = − + += − + += − + += − + + = + −= + −= + −= + − = + − += + − += + − += + − + = = += = += = += = + = = += = += = += = + ==== ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ [[[[ ]]]] cos cos 22 (cos ) lnsin )cot lnsin cot 1 1 lnsin 2 2 Example(40): ( x x e d x e c x x dx let y x dy xdx I ydy y c x c − = − +− = − +− = − +− = − + ==== ⇒⇒⇒⇒ ==== ∴ = = + = +∴ = = + = +∴ = = + = +∴ = = + = + ∫∫∫∫ ∫∫∫∫ ∫∫∫∫
  • 11. Indefinite Integration 11 (((( ))))3 2 3 2 2 2 2 2 2 2 (1 sec ) 1 3sec 3sec sec 1 3sec 3sec 1 tan sec 3 sec 3sec 1 tan (tan ) 1 3ln sec tan tan tan 1 tan 2 1 ln(tan 1 tan ) 2 co Example(41): Example(42): x dx x x x dx x x x x dx dx x dx x dx x d x dx x x x x x x x x c dx + = + + ++ = + + ++ = + + ++ = + + +     = + + + += + + + += + + + += + + + +              = + + + += + + + += + + + += + + + +          = + + + + += + + + + += + + + + += + + + + + + + + ++ + + ++ + + ++ + + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ sin 2 1 cos2sec2 cot 2 1 cos2 sin2 sin 2 1 cos2 2sin2 sin2 1 1 1 ln ln 1 cos2 1 cos 2 2 2 2 dx xdx dx xx x x x x let u x du xdx x dx du u x c x u = == == == = − −− −− −− −−−−− = −= −= −= − ⇒⇒⇒⇒ ==== ∴ = = = − +∴ = = = − +∴ = = = − +∴ = = = − + −−−− ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ (((( )))) (((( )))) (((( )))) (((( )))) 3 3 2 3 2 2 2 2 2 2 2 2 find (1 tan ) (1 tan ) (1 3tan 3tan tan ) 1 3tan 3(sec 1) tan tan 1 3tan 3sec 3 tan (sec 1) 1 3tan 3sec 3 tan sec tan 2 2tan 3sec tan sec 2 Example(43): x dx x dx x x x dx x x x x dx x x x x dx x x x x x dx x x x x dx d ++++ + = + + ++ = + + ++ = + + ++ = + + + = + + − += + + − += + + − += + + − + = + + − + −= + + − + −= + + − + −= + + − + − = + + − + −= + + − + −= + + − + −= + + − + − = − + + += − + + += − + + += − + + + = −= −= −= − ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 2 2 2 1 2 1 2 2tan 3sec tan sec 1 2 2ln sec 3tan tan 2 sin 39 1 tan 5 55 Example(44): Example(45): x x dx x dx x x dx x x x x c dx x dx c x dx x c x −−−− −−−− + + ++ + ++ + ++ + + = − + + + += − + + + += − + + + += − + + + + = += += += + −−−− = += += += + ++++ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫∫∫ ∫∫∫∫
  • 12. Mathematics For Engineering 12 3 2 3 2 2 2 3 (1 cos ) (1 3cos 3cos cos ) 3 1 3cos (1 cos2 ) cos cos 2 3 3 1 3cos cos2 cos (1 sin ) 2 2 5 3 4cos cos2 sin cos 2 2 5 3 1 4sin sin2 sin 2 4 3 Example(46): x dx x x x dx x x x x dx x x x x dx x x x x dx x x x x c + = + + ++ = + + ++ = + + ++ = + + +      = + + + += + + + += + + + += + + + +               = + + + + −= + + + + −= + + + + −= + + + + −               = + + −= + + −= + + −= + + −          = + + − += + + − += + + − += + + − + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 3 2 3 2 2 2 3 (1 sin ) (1 3sin 3sin sin ) 3 1 3sin (1 cos2 ) sin sin 2 3 3 1 3sin cos2 sin (1 cos ) 2 2 5 3 4sin cos2 sin cos 2 2 5 3 1 4cos sin 2 cos 2 4 3 Example(47): x dx x x x dx x x x x dx x x x x dx x x x x dx x x x x c + = + + ++ = + + ++ = + + ++ = + + +      = + + − += + + − += + + − += + + − +               = + + − + −= + + − + −= + + − + −= + + − + −               = + + −= + + −= + + −= + + −          = − + + += − + + += − + + += − + + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ (((( )))) 2 1 1 2 22 3 2 4 9 1 1 2 2 1 2 . tan tan 4 4 3 3 6 34 9 Example(48): dx find x dx dx x x c c x x − −− −− −− − ++++ = = + = += = + = += = + = += = + = + ++++ ++++ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ (((( )))) 1 1 2 2 24 2 9 3 1 2 2 2 Another solution: 1 1 1 3 2 1 2 . tan tan 9 9 9 2 3 6 34 9 1 1 Another solution: 1 2 1 1 2 . tan 2 2 3 34 9 (2 ) 3 dx dx dx x x c x x x dx dx x c x x − −− −− −− − −−−− = = = = += = = = += = = = += = = = + + ++ ++ ++ + ++++ = = += = += = += = + + ++ ++ ++ + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫
  • 13. Indefinite Integration 13 (((( )))) (((( )))) 1 2 2 2 1 2 2 2 2 3 1 3 6 3 2 3 2 2 where f(x)is linear 2 1 2 sec 3 34 9 2 (2 ) (3) ( ) 1 ( ) Accordingto sec ( ) ( ) 1 3 1 ( ) 1 sin 3 3 31 1 ( ) 1 ( ) sin cos Example(49): Example(50): Example(51): dx dx x c x x x x f x f x c a a f x f x a x dx x dx d x x c x x x xdx −−−− −−−− −−−− = = += = += = += = + − −− −− −− − ′′′′ = += += += + −−−− = = = += = = += = = += = = + − − −− − −− − −− − − ++++ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ 1 2 2 4 2 2 2 2 1 2 2 4 2 (cos ) tan (cos ) 1 cos 1 cos sin 1 2cos sin 1 (cos ) 2 2cos 1 (cos ) 1 (cos ) 1 tan (cos ) Another solution: cos 2cos sin cos sin 1 1 ta 2 2cos 1 1 Example(52): d x x c x xdx x xdx d x x x x c let u x du x xdx x xdx du u −−−− −−−− = − = − += − = − += − = − += − = − + ++++ −−−− = == == == = + + ++ + ++ + ++ + + = += += += + ==== ⇒⇒⇒⇒ ==== −−−− ∴ = =∴ = =∴ = =∴ = = + ++ ++ ++ + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 1 1 2 1 2 2 2 1 2 2 2 3 2 2 2 2 1 1 n tan (cos ) 2 1 4 1 4 sin 4 4 525 16 5 (4 ) ( 2) sin 24 ( 2) 2 ( 2) 3 4 3 4 (3 4) 1 1 3 4 4tan 2 Example(53): Example(54): Example(55): Example u c x c dx dx x c x x dx dx x c x x x x x dx x dx x x x x x c − −− −− −− − −−−− −−−− −−−− −−−− + = ++ = ++ = ++ = + = = += = += = += = + − −− −− −− − ++++ = = += = += = += = + − + − +− + − +− + − +− + − + − +− +− +− +      = − += − += − += − +     + ++ ++ ++ +     = − + += − + += − + += − + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 2 2 2 2 1 4 13 ( 4 4) 9 ( 2) 3 1 ( 2) tan 3 3 (56): dx dx dx x x x x x x c−−−− = == == == = + + + + + + ++ + + + + + ++ + + + + + ++ + + + + + + ++++ = += += += + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
  • 14. Mathematics For Engineering 14 2 2 2 1 2 2 2 2 2 2 2 20 8 20 ( 8 ) 36 ( 8 16 16) ( 4) sin 66 ( 4) ( 3) 1 2 6 1 ( 2 4) 2 2 25 4 5 4 5 4 1 ( 2 2) 1 2 2 25 4 5 4 1 ( 2 2 2 Example(57): Example(58): dx dx dx x x x x x x dx x c x x x x dx dx dx x x x x x x x dx dx x x x x x −−−− = == == == = + − − − − − + −+ − − − − − + −+ − − − − − + −+ − − − − − + − −−−− = = += = += = += = + − −− −− −− − + − − − − − − −+ − − − − − − −+ − − − − − − −+ − − − − − − − = == == == = − − − − − −− − − − − −− − − − − −− − − − − − − − − − −− − − − −− − − − −− − − − − = += += += + − − − −− − − −− − − −− − − − − − −− − −− − −− − − ==== ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 2 2 2 1 2 2 ) 1 5 4 9 ( 2) 1 ( 2) .2 5 4 sin 2 3 Another solution (5 4 ) 2 4 put 3 ( (5 4 )) ( 2 4) 1 1 , 1, 3 ( 2 4) 1, 2 2 dx dx x x x x x x c d x x x dx d x A x x B A x B dx A B x x −−−− + =+ =+ =+ = − − − +− − − +− − − +− − − + − +− +− +− + = − − + += − − + += − − + += − − + + − − = − −− − = − −− − = − −− − = − − + = − − + = − − ++ = − − + = − − ++ = − − + = − − ++ = − − + = − − + − −− −− −− − ∴ = = + = − − +∴ = = + = − − +∴ = = + = − − +∴ = = + = − − + ∫ ∫∫ ∫∫ ∫∫ ∫ 1 2 2 2 1 2 2 2 2 2 1 2 ( 2 4) 1( 3) 5 4 5 4 ( 2 4) 1 ( 2 2) 25 4 5 4 5 4 1 ( 2) .2 5 4 sin 2 39 ( 2) xx dx dx x x x x x dx dx x dx x x x x x x dx x x x c x −−−− −−−− −−−− − − +− − +− − +− − +++++ ==== − − − −− − − −− − − −− − − − − −− −− −− − − − −− − −− − −− − − = + == + == + == + = − − − − − −− − − − − −− − − − − −− − − − − − − +− +− +− + + = − − + ++ = − − + ++ = − − + ++ = − − + + − +− +− +− + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ 2 2 3 9 12 8 1 39 2 3 (18 12) , 3 12 9 9 Example(59): x dx x x put x A x B A B A ++++ − +− +− +− + + = − ++ = − ++ = − ++ = − + ⇒⇒⇒⇒ = = + == = + == = + == = + = ∫∫∫∫
  • 15. Indefinite Integration 15 2 2 2 2 2 2 2 2 2 1 2 3 1 (18 12) 39 99 12 8 9 12 8 1 (18 12) 1 39 9 99 12 8 9 12 8 1 (18 12) 1 39 9 99 12 8 (9 12 4) 4 1 (18 12) 1 39 9 99 12 8 (3 2) 4 1 39 1 1 (3 ln 9 12 8 . . tan 9 9 3 2 x x dx dx x x x x x dx dx x x x x x dx dx x x x x x dx dx x x x x x x −−−− + − ++ − ++ − ++ − + ∴ =∴ =∴ =∴ = − + − +− + − +− + − +− + − + −−−− = += += += + − + − +− + − +− + − +− + − + −−−− = += += += + − + − + +− + − + +− + − + +− + − + + −−−− = += += += + − + − +− + − +− + − +− + − + −−−− = − + += − + += − + += − + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 2) 2 c++++ [[[[ ]]]] [[[[ ]]]] 2 2 2 2 2 2 2 2 2 2 2 (4 2 ) 4 1 1 , 4, 2 (4 2 ) 8 2 2 (4 2 ) 82 1 1 (4 2 ) 1 8 2 2 24 4 4 4 1 (4 2 ) 1 8 2 24 4 (4 4 ) 1 (4 2 ) 1 8 4 2 24 4 ( 2) Example(60): x dx put x A x B x x A B x x xx x dx dx dx dx x x x x x x x x x dx dx x x x x x dx dx x x x x ++++ + = − ++ = − ++ = − ++ = − + −−−− − −− −− −− − ∴ = = + = − +∴ = = + = − +∴ = = + = − +∴ = = + = − + − +− +− +− ++ − − −+ − − −+ − − −+ − − − = = −= = −= = −= = − − − − −− − − −− − − −− − − − − −− −− −− − = −= −= −= − − − − +− − − +− − − +− − − + − −− −− −− − = − = − −= − = − −= − = − −= − = − − − − −− − −− − −− − − ∫∫∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 2 11 ( 2) sin 2 2 x x c−−−− −−−− − +− +− +− + Exercise(1) Integrate the following functions with respect to x : 3 4 3 2 2 3 7 2 1 2 (1) (3 2 4 ) (2)( 3)( 4) (3)( ) 2 1 (4)( 2) (5)(3 1) (6) 4 10) ( 1) (7) (2 3) (8) (3 4) (9) 2 4 x x x x x x x x x x x x x x x x x − + − + + +− + − + + +− + − + + +− + − + + + + −+ −+ −+ − −−−− ++++ + −+ −+ −+ − + ++ ++ ++ +
  • 16. Mathematics For Engineering 16 2 2 2 2 3 4 2 3 sin tan 2 2 2 5 2 2 3 2 2 (1 ) 1 (10) (11) (12) 13 1 2 2 2 (13) (14) (15) ( 2) 2 2 2 (16)10 (17) cos (18)5 sec sec 2 (19) sin (3 2cos ) (20) (21) 3 5tan 3 ln( 1) (1 ln ) ( ) (22) (23) (24) ( 1) x x x x x x x x x x xx x x x x x x x x x a x x x e x x x e x x x e e xx −−−− + −+ −+ −+ − ++++++++ + + ++ + ++ + ++ + + ++++ ++++ + ++ ++ ++ + −−−− ++++ −−−− ++++ + + ++ + ++ + ++ + + ++++ 2 3 4 5 2 4 2 2 2 2 (25)(cos sin ) (26)sin cos (27)cos sin sin8 (28)tan sec (29)cot cosec (30) 9 sin 4 sin 1 cos 2 cot ((1 cosec ) (31) (32) (33) 2 sin 2 cosec(1 cos ) sec 3 1 1 (34) (35) (36) 1 sin2 1 cos2(1 tan3 ) (1 (37) x e x x x x x x x x x x x x x x x x x xx x x xx −−−− ++++ + ++ ++ ++ + ++++++++ − −− −− −− −++++ 3 5 2 2 2 22 4 cot ) (1 tan) 1 (38) (39) 1 sin2 1 cos 2 5 sec sin cos (40) (41) (42) 1 cos 24 tan 1 x x x x x x x e x x xx e + ++ ++ ++ + − −− −− −− − ++++ ++++− −− −− −− − 22 2 2 22 2 2 tan cot 1 (43) (44) (45) 2 8cos 4 sin 4 1 2 3 1 (46) (47) (48) 6 13 3 4 32 8 2 1 (49) (50) 27 6 12 4 x x x xx x x x x x x xx x x x x x x x + −+ −+ −+ −− −− −− −− − − −− −− −− − + + − ++ + − ++ + − ++ + − ++ −+ −+ −+ − −−−− + − + −+ − + −+ − + −+ − + −
  • 17. Indefinite Integration 17 Integration of Hyperbolic Functions For x any real number we define Hyperbolic functions as follows: 1 1 2 (1) sinh ( ) (4)cosech 2 sinh ( ) 1 1 2 (2) cosh ( ) (5)sech 2 cosh ( ) sinh ( ) 1 ( ) (3) tanh , (6)coth cosh tanh( ) ( ) x x x x x x x x x x x x x x x x x e e x x e e x e e x x e e x e e e e x x x xe e e e −−−− −−−− −−−− −−−− − −− −− −− − − −− −− −− − = − = == − = == − = == − = = −−−− = + = == + = == + = == + = = ++++ − +− +− +− + = = = == = = == = = == = = = + −+ −+ −+ − and hyperbolic functions satisfy the following lows: 2 2 2 2 2 2 (1) cosh sinh 1 (2) 1 tanh sech (3) coth 1 cosech (4) sinh( ) sinh cosh cosh sinh (5) sinh( ) sinh cosh cosh sinh (6) cosh( ) cosh cosh sinh sinh (7) cosh( ) cosh cosh sinh sinh (8) sinh2 x x x x x x x y x y x y x y x y x y x y x y x y x y x y x y − = − = − = + = + − = − + = + − = − [ ] [ ] 2 2 2 2 2 2sinh cosh (9) cosh 2 cosh sinh 1 (10) sinh cosh2 1 2 1 (11) cosh cosh2 1 2 (12) cosh sinh (13) cosh sinh 2tanh (14)tanh2 1 tanh x x x x x x x x x x x x x x e x x e x x x − = = + = − = + + = − = = + we can proof this lows by using the definition in the following we stat integration formula for hyperbolic functions
  • 18. Mathematics For Engineering 18 2 2 2 2 2 (1) sinh cosh (2) cosh sinh (3) tanh lncosh (4) coth ln sinh (5) sech tanh (6) cosech coth (7) sech tanh sech (8) cosech coth cosech 1 (9) sinh xdx x c xdx x c xdx x c xdx x c xdx x c xdx x c x x dx x c x x dx x c dx bb x a −−−− = += += += + = += += += + = += += += + = += += += + = += += += + = − += − += − += − + =− +=− +=− +=− + = − += − += − += − + ==== ++++ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 1 1 2 2 2 1 2 2 2 1 2 2 2 2 1 (10) cosh 1 tanh (11) 1 ln 2 1 coth (12) 1 ln 2 Solved Examples: 1 cosh cosh (1) sech cosh cosh 1 si bx c a dx bx c b ab x a bx c dx ab a a bxa b x c ab a bx bx c dx ab a bx ab x a c ab bx a x x xdx dx dx x x −−−− −−−− −−−− ++++ = += += += + −−−−  ++++ ====  ++++−−−−  ++++  −−−−  ++++ ====  −−−−−−−−  ++++  ++++ = = == = == = == = = ++++ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ 1 2 2 3 2 2 3 tan (sinh ) nh 1 1 1 (2) sinh (cosh2 1) sinh2 2 4 2 (3) cosh 2 (1 sinh 2 )cosh2 cosh2 sinh 2 cosh2 1 1 sinh 2 sinh2 2 2 3 dx x c x xdx x dx x x c xdx x x dx x dx x x dx x x c −−−− = += += += + = − = − += − = − += − = − += − = − + = + = += + = += + = += + = + = + += + += + += + + ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
  • 19. Indefinite Integration 19 2 2 3 3 5 5 3 3 8 2 8 2 (4) cosh2 . 2 1 1 1 ( ) ( ) 2 2 3 (5) sinh5 2 1 1 1 1 ( ) ( ) 2 2 8 2 x x x x x x x x x x x x x x x x e e e x dx e dx e e dx e e c e e e x dx e dx e e dx e e c −−−− − −− −− −− − −−−− − −− −− −− − ++++ ==== = + = − += + = − += + = − += + = − + −−−− ==== = − = + += − = + += − = + += − = + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ Solved Examples [[[[ ]]]] 2 2 1 2 2 2 1 : sinh3 cosh3 3 1 cosh cosh : sech cosh cosh 1 sinh (sinh ) tan (sinh ) 1 sinh 1 1 1 : sinh cosh2 1 sinh2 2 2 2 : cosh 3 Example(1) Example(2) Example(3) Example(4) xdx x c x x x dx dx dx dx x x x d x x c x x dx x dx x x c x d −−−− = += += += + = = == = == = == = = ++++ = = += = += = += = + ++++      = − = − += − = − += − = − += − = − +          ∫∫∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ [[[[ ]]]] 2 2 4 2 2 2 2 2 3 1 1 1 cosh6 1 sinh6 2 2 6 1 : tanh 5 1 sech 5 tanh5 5 : sech 1 tanh sech 1 sech tanh sech tanh tanh 3 Example(5) Example(6) x x dx x x c x dx x dx x x c x dx x x dx xdx x xdx x x c      = + = + += + = + += + = + += + = + +                  = − = − += − = − += − = − += − = − +                  = −= −= −= −      = − = − += − = − += − = − += − = − + ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 3 2 2 2 3 : sinh 4 sinh 4 (sinh4 ) (cosh 4 1)(sinh4 ) (cosh 4 (sinh4 ) (sinh4 ) 1 1 cosh 4 cosh4 12 4 Example(7) xdx x x dx x x dx x x dx x dx x x c ==== = −= −= −= − = −= −= −= − = − += − += − += − + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫
  • 20. Mathematics For Engineering 20 3 3 3 3 4 2 4 2 3 3 2 2 2 3 3 5 5 ( ) 1 : cosh3 ( ) 2 2 1 1 ( ) 2 2 4 2 ( ) 1 : sinh3 ( ) 2 2 1 1 ( ) 2 2 5 Example(8) Example(9) x x x x x x x x x x x x x x x x x x x x x x e e e xdx e dx e e e dx e e e e dx c e e e xdx e dx e e e dx e e e dx e c −−−− −−−− −−−− −−−− −−−− −−−− − −− −− −− − ++++ = = += = += = += = +      = + = + += + = + += + = + += + = + +        −−−−     −−−− = = −= = −= = −= = −      = + = + += + = + += + = + += + = + +              ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ (((( )))) 1 2 1 1 : sinh 2 2 1 1 2 2 1 1 2 2 1 1 2 2 cosh sinh Try to solve sinh by parts : sinh 16 Example(10) Example(11) x x x x x x x x x x x x x x x x dx x e e dx xe xe dx xe dx xe dx xe e xe e c x e e e e c x x x c x x dx dx x x − −− −− −− − −−−− − −− −− −− − − −− −− −− − −−−−     = − = −= − = −= − = −= − = −      = −= −= −= −             = − − − − += − − − − += − − − − += − − − − +                          = − − − += − − − += − − − += − − − +              = − += − += − += − + ==== ++++ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ 1 2 3 2 2 2 3 4 : cosh 525 : sinh 4 sinh 4 (sinh4 ) (cosh 4 1)(sinh4 ) (cosh 4 (sinh4 ) (sinh4 ) 1 1 cosh 4 cosh4 12 4 Example(12) Example(13) c dx x c x xdx x x dx x x dx x x dx x dx x x c −−−− ++++ = += += += + −−−− ==== = −= −= −= − = −= −= −= − = − += − += − += − + ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫
  • 21. Indefinite Integration 21 Exercise(2) Integrate the following functions: 2 2 2 2 3 2 5 2 3 4 5 2 4 2 2 (1)sinh3 (2)cosesh (3) sinh (4)sinh cosh (5) sinh3 (6) cosh3 sech (7) sinh (3 2cosh ) (8) (9)(cosh sinh ) 3 5tanh (10)sinh cosh (11)cosh sinh (12)tanh sech sinh8 (13)coth cosech (14) 9 sinh x x x x x x x e x e x x x x x x x x x x x x x x x + ++ ++ ++ + −−−− ++++ 2 2 2 3 5 2 2 sinh cosh (15) 4 1 cosh 2 sinh 1 cosh2 coth ((1 cosech ) (16) (17) (18) 2 sinh2 cosech(1 cosh ) sech 3 1 1 (19) (20) (21) 1 sinh2 1 cosh2(1 tanh3 ) (1 coth ) (1 tanh) sec (22) (23) (24) 1 sinh2 1 cosh2 4 tanh x x x x x x x x x x xx x x xx x x x x x ++++ + ++ ++ ++ + ++++++++ − +− +− +− +++++ + ++ ++ ++ + − −− −− −− − −−−−
  • 22. Mathematics For Engineering 22 Methods of Integration: (1) Integration by parts When u and v are differentiable functions then ( ) ( ) d uv udv vdu udv d uv vdu = += += += + = −= −= −= − and by integrate ( ) (1)udv d uv vdu= −= −= −= −∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ to apply this rule we refer to our problem by the integral u dv∫∫∫∫ and we must separate it into two parts one part being u and the other being dv and we find du and v by differentiation u and integrate dv . Note that It is very important how to chose the function to be integrated, and the function to be differentiated such that the integration on the right side in (1) is much easier to evaluate than the one on the left. Solved Examples: Example (1): Find x xe dx∫∫∫∫ Solution: If we chose x u e==== to be differentiated and dv xdx==== to be integrated 2 21 1 2 2 x x x xe dx x e x e dx∴ = −∴ = −∴ = −∴ = −∫ ∫∫ ∫∫ ∫∫ ∫ and its clear that the integration in the R.H.S is more difficult than the given integration then we use the partation as follows let then by substituting in the rule then x x x x x u x dv e dx du dx v e xe dx xe e dx = == == == = = == == == = = −= −= −= −∫ ∫∫ ∫∫ ∫∫ ∫ Note that : The integral in the right side x e dx∫∫∫∫ is simple than the integral x xe dx∫∫∫∫ Finally x x I xe e c= − += − += − += − + .
  • 23. Indefinite Integration 23 Example (2): Find: 2 lnx xdx∫∫∫∫ Solution: Consider the partition 2 lnu x dv x dx= == == == = Then 3 1 3 x du dx v x = == == == = Substitute in the rule we have: 3 3 3 3 3 21 1 ln ln ln 3 3 3 3 3 9 x x x x x I x dx x x dx x c x ∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +∫ ∫∫ ∫∫ ∫∫ ∫ Try to solve ln ,n nI x xdx n= ∈= ∈= ∈= ∈∫∫∫∫ Example (3): Find 1x x dx++++∫∫∫∫ Solution: Let 1u x dv xdx= = += = += = += = + 3 2 2 (1 ) 3 du dx v x∴ = = +∴ = = +∴ = = +∴ = = + by using partition rule ( )udv d uv vdu= −= −= −= −∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ 3 3 3 5 2 2 2 2 2 2 2 2 2 (1 ) (1 ) (1 ) ( )( )(1 ) 3 3 3 3 5 x x I x x dx x x c∴ = + − + = + − + +∴ = + − + = + − + +∴ = + − + = + − + +∴ = + − + = + − + +∫∫∫∫ (try with thenew partation what hapen) trytosolve 1 ( ) ,n u x dv xdx x ax b dx n = + == + == + == + = + ∈+ ∈+ ∈+ ∈∫∫∫∫ Example (4): Find sinx xdx∫∫∫∫ Solution: Let sinu x dv xdx= == == == = cosdu dx v x∴ = = −∴ = = −∴ = = −∴ = = − by using partition rule ( )udv d uv vdu= −= −= −= −∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ sin cos cos cos sinI x xdx x x xdx x x x c∴ = = − + = − + +∴ = = − + = − + +∴ = = − + = − + +∴ = = − + = − + +∫ ∫∫ ∫∫ ∫∫ ∫
  • 24. Mathematics For Engineering 24 (try with thepartation what hapen) try to solve is positive integer sin sinn n u x dv xdx I x xdx n = == == == = ==== ∫∫∫∫ Example (5): Find cosx x dx∫∫∫∫ Solution: let cos sin u x dv xdx du dx v x = == == == = ∴ = =∴ = =∴ = =∴ = = sin sin sin cosI x x xdx x x x c∴ = − = − +∴ = − = − +∴ = − = − +∴ = − = − +∫∫∫∫ trytosolve is positive integercosn nI x xdx n==== ∫∫∫∫ Example (6): Find 2 sinx xdx∫∫∫∫ Solution: 2 sin 2 cos let u x dv xdx du xdx v x = == == == = ∴ = = −∴ = = −∴ = = −∴ = = − by substituting in the rule 2 cos 2 cos (1) cos (5) cos cos sin I x x x xdx we can solve x xdx by parts as in example x x dx let u x dv xdx du dx v x ∴ = − +∴ = − +∴ = − +∴ = − + = == == == = ∴ = =∴ = =∴ = =∴ = = ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ from(2) in (1) sin sin sin cos (2)I x x x dx x x x∴ = − = −∴ = − = −∴ = − = −∴ = − = −∫∫∫∫ 2 2 2 cos 2 cos cos 2( sin cos ) cos 2 sin 2cos I x x x xdx x x x x x c x x x x x c ∴ = − + = − + − +∴ = − + = − + − +∴ = − + = − + − +∴ = − + = − + − + = − + − += − + − += − + − += − + − + ∫∫∫∫ Example (7): Find 2 cosx xdx∫∫∫∫ Solution: 2 cos 2 sin u x dv xdx du xdx v x = == == == = ∴ = =∴ = =∴ = =∴ = =
  • 25. Indefinite Integration 25 2 2 2 sin 2 sin sin 2( cos sin ) sin 2 cos 2sin I x x x x dx x x x x x c x x x x x c ∴ = − = − − + +∴ = − = − − + +∴ = − = − − + +∴ = − = − − + + = + − += + − += + − += + − + ∫∫∫∫ Example (8): Find 2 x x e dx∫∫∫∫ Solution: 2 2 2 2 2 2( ) x x x x x x x u x dv e dx du xdx v e I x e xe dx x e xe e c = == == == = ∴ = =∴ = =∴ = =∴ = = ∴ = − = + − +∴ = − = + − +∴ = − = + − +∴ = − = + − +∫∫∫∫ where is a positive integerm x mtryto solve I x e dx m==== ∫∫∫∫ Example (9): Find 1 sin xdx−−−− ∫∫∫∫ Solution: 1 2 sin 1 u x dv dx dx du let v x x −−−− = == == == = ∴ = =∴ = =∴ = =∴ = = −−−− 1 1 2 2 1 2 sin sin 21 1 xdx xdx I udv uv vdu x x x x x x − −− −− −− − = = − − = −= = − − = −= = − − = −= = − − = − − −− −− −− − ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ 1 1 2 2 1 2 1 sin sin .2 1 2 21 xdx x x x x x c x − −− −− −− −−−−− = + = + − += + = + − += + = + − += + = + − + −−−− ∫∫∫∫ try tosolve where is a positive integer1 sinx xdx m−−−− ∫∫∫∫ Example (10): Find 1 tan x dx−−−− ∫∫∫∫ Solution 1 2 tan 1 u x dv dx dx du let v x x −−−− = == == == = ∴ = =∴ = =∴ = =∴ = = ++++ 1 1 1 2 2 1 2 tan tan tan 21 1 xdx xdx udv xdx x x x x x x − − −− − −− − −− − − ∴ = = − = −∴ = = − = −∴ = = − = −∴ = = − = − + ++ ++ ++ + ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
  • 26. Mathematics For Engineering 26 1 21 tan ln(1 ) 2 x x x c−−−− = − + += − + += − + += − + + Example (11): Find sin , cosax ax I e bxdx J e bxdx= == == == =∫ ∫∫ ∫∫ ∫∫ ∫ Solution: These integrals are of importance in the theory of electric currents, if each integral is evaluated by parts, the other one is obtained. sin 1 cos ax ax let u e dv bxdx du ae dx v bx b = == == == = −−−− ∴ = =∴ = =∴ = =∴ = = (((( )))) where 1 1 sin cos cos cos cos cos (1) cos ax ax ax ax ax ax ax I e bxdx e bx bx ae dx b b e a bx e bxdx b b e a I bx J b b J e bxdx − −− −− −− −     = = −= = −= = −= = −           −−−− = += += += + −−−− ∴ = +∴ = +∴ = +∴ = + ==== ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ Similarly taking the second integral J let cos 1 sin 1 1 1 sin sin . sin sin 1 sin (2) ax ax ax ax ax ax ax u e dv bxdx du ae dx v bx b a J e bx bx ae dx e bx e bx dx b b b b a J e bx I b b = == == == = ∴ = =∴ = =∴ = =∴ = = ∴ = − = −∴ = − = −∴ = − = −∴ = − = − = −= −= −= − ∫ ∫∫ ∫∫ ∫∫ ∫ from (1),(2) we get 2 2 2 2 2 2 1 cos sin cos sin cos sin ax ax ax ax ax ax e a a e a a I bx e bx I bx e bx I b b b b b b b a e a I I bx e bx bb b − −− −− −− −     ∴ = + − = + −∴ = + − = + −∴ = + − = + −∴ = + − = + −          −−−− + = ++ = ++ = ++ = +
  • 27. Indefinite Integration 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (1 ) ( ) cos sin cos sin cos sin ax ax ax ax ax ax a a b e a I I bx e bx bb b b b e a I bx e bx bb a b b a e bx e bx c b a b a + −+ −+ −+ − + = = ++ = = ++ = = ++ = = +     −−−− ∴ = +∴ = +∴ = +∴ = +     ++++          −−−−     = + += + += + += + +     + −+ −+ −+ −     [[[[ ]]]] and from(2) 2 2 2 2 2 2 2 2 2 2 2 2 2 sin cos sin 1 1 sin sin cos 1 sin cos 1 1 sin cos co ax ax ax ax ax ax ax ax ax ax e I e bxdx b bx a bx c b a a a e a J e bx I e bx bx J b b b b b b ae a e bx bx J b b b a a a b ae J J J J e bx bx bb b b b J e = = − + += = − + += = − + += = − + + ++++     −−−− = − = − += − = − += − = − += − = − +              = + −= + −= + −= + −             ++++ + = + = = ++ = + = = ++ = + = = ++ = + = = +                                      ∴ =∴ =∴ =∴ = ∫∫∫∫ [[[[ ]]]]2 2 s sin cos ax e bxdx b bx a bx c b a = + += + += + += + + ++++ ∫∫∫∫ in the integrals sinh , coshax ax I e bxdx J e bxdx= == == == =∫ ∫∫ ∫∫ ∫∫ ∫ we use the diffination of the hyperbolic functions sinh , coshbx bx as a functions of x e then ( ) ( ) ( ) ( ) sinh , 2 2 cosh , 2 2 bx bx a b x a b x ax ax bx bx a b x a b x ax ax e e e e Ih e bxdx e dx dx e e e e Jh e bxdx e dx dx − + −− + −− + −− + − − + −− + −− + −− + −             − −− −− −− − = = == = == = == = =                                                   + ++ ++ ++ + = = == = == = == = =                                       ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ Example (12): Find 5 22 (1 ) dx I x ==== ++++ ∫∫∫∫
  • 28. Mathematics For Engineering 28 Solution: consider 5 2 5 2 3 2 3 2 2 2 2 2 (1 ) (1 ) (1 ) (1 ) dx I x dx x dx J x dx x −−−− −−−− = = += = += = += = + ++++ = = += = += = += = + ++++ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 3 2 5 2 3 2 5 2 3 2 5 2 3 2 3 2 5 2 3 2 3 2 5 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (1 ) 3 (1 ) (1 ) 3 (1 ) (1 ) 3 (1 1)(1 ) (1 ) 3 (1 ) (1 ) (1 ) 3 (1 ) (1 ) (1 ) 3 3 3 (1 u x dv dx du x x dx v x J x x x x dx x x x x dx x x x x dx x x x x dx x x J I I x −−−− −−−− − −− −− −− − − −− −− −− − − − −− − −− − −− − − − − − −− − − −− − − −− − − − = + == + == + == + = ∴ = − + =∴ = − + =∴ = − + =∴ = − + = = + + += + + += + + += + + + = + + + − += + + + − += + + + − += + + + − +     = + + + − += + + + − += + + + − += + + + − +          = + + + − + = + + −= + + + − + = + + −= + + + − + = + + −= + + + − + = + + −      ∴ =∴ =∴ =∴ = ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 3 22 ) 2x J−−−− + ++ ++ ++ + To solve consider with the partation 3 2 3 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 1 2 2 (1 ) 2 (1) 3 3 (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 1)(1 ) (1 ) (1 ) (1 ) x x I J dx dx J K x x u x dv dx du x x dx v x K x x x x dx x x x x dx x x x x −−−− −−−− − −− −− −− − −−−− −−−− − −− −− −− − −−−− ++++ = += += += + = == == == = + ++ ++ ++ + = + == + == + == + = = − + == − + == − + == − + = = + + + = + + + − += + + + = + + + − += + + + = + + + − += + + + = + + + − + = + + + − += + + + − += + + + − += + + + − + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ Substitute in(1) 1 2 1 2 1 2 3 2 1 2 3 2 2 2 2 2 2 (1 ) (1 ) (1 ) (1 ) 2 3 3 (1 ) dx x x K J x J x x c x x x x I c x −−−− −−−− −−−− −−−− = + + −= + + −= + + −= + + − = + = += + = += + = += + = + ++++ ++++ ∴ = + +∴ = + +∴ = + +∴ = + + ++++
  • 29. Indefinite Integration 29 Example (13): Find 3 sec x dx∫∫∫∫ Solution: 3 2 2 3 2 2 3 3 3 sec sec sec sec sec sec tan tan sec sec tan sec tan sec tan sec (sec 1) sec tan (sec sec ) sec tan (sec sec 2 sec sec tan sec sec tan x dx x xdx u x dv xdx du x xdx v x x dx x x x xdx x x x x dx x x x x dx x x xdx xdx x dx x x xdx x x ==== = == == == = = == == == = ∴ = − = − −∴ = − = − −∴ = − = − −∴ = − = − − = − − = − += − − = − += − − = − += − − = − + = + == + == + == + = ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 3 ln sec tan 1 1 sec sec tan ln sec tan 2 2 x x c x dx x x x x c + + ++ + ++ + ++ + + ∴ = + + +∴ = + + +∴ = + + +∴ = + + +∫∫∫∫ Example (14): Find 2 2 I x a dx= += += += +∫∫∫∫ Solution: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 (14) ( ) ( ) sinh 2 sinh 2 I x a dx let u x a dv dx xdx du v x x a x dx x a a dx I x a dx x x a x x a x a x a x a dx a dx x x a x a x a x x x a x a dx a a x x a dx x x a a a x x a dx x −−−− −−−− = + = + == + = + == + = + == + = + = = == == == = ++++ + −+ −+ −+ − = + = + − = + −= + = + − = + −= + = + − = + −= + = + − = + − + ++ ++ ++ + ++++ = + − += + − += + − += + − + + ++ ++ ++ + = + − + += + − + += + − + += + − + + ∴ + = + +∴ + = + +∴ + = + +∴ + = + + ∴ + =∴ + =∴ + =∴ + = ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 2 2 1 sinh 2 a x a c a −−−− + + ++ + ++ + ++ + +
  • 30. Mathematics For Engineering 30 Example (15): Find 2 2 I a x dx= −= −= −= −∫∫∫∫ Solution: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 ( ) ( ) sin 2 sin sin 2 2 let u a x dv dx xdx du v x a x x dx a x a dx I x a dx x a x x a x a x a x a x dx a dx x a x a x a x x x a x a x dx a a x a x dx x a x a a x a x a x dx a x a −−−− −−−− −−−− = − == − == − == − = −−−− = == == == = −−−− − − −− − −− − −− − − = + = − − = − −= + = − − = − −= + = − − = − −= + = − − = − − − −− −− −− − −−−− = − − += − − += − − += − − + − −− −− −− − = − − − += − − − += − − − += − − − + ∴ − = − +∴ − = − +∴ − = − +∴ − = − + ∴ − = − +∴ − = − +∴ − = − +∴ − = − + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ c++++ Exercise(3) Integrate the following function with respect to x : 2 3 2 3 4 2 3 2 1 1 1 1 2 (1) (i) sin (ii) sin3 (iii) sin (iv) cos (2) (i) ln (ii) ln (iii) ln (iv) ln (3) (i) (ii) (iii) (iv) sin (4) (i) cos (ii) sin (iii) tan (iv) cot (5) (i) sin (ii) sin cos ( n x x x x x x x x x x x x x x x x x x x x xe x e xe e x x x x x x x x x x −−−− − − − −− − − −− − − −− − − − 2 2 1 2 3 1 1 1 3 3 2 5 5 3 iii) sec (iv) sinh ln (6) (i) sin (ii) 4 (iii) (iv)sin sin3 (7) (i) cos (ii) sin (iii) tan (iv)sin (8) (i) sin cos (ii) cos (iii) sec (iv)cosec x x x x x x x x x x x x x x x x x x x x −−−− − − −− − −− − −− − − ++++
  • 31. Indefinite Integration 31 Reduction Formula A Reduction Formula succeeds if ultimately it produces an integral which can be evaluated. We use the partition of integration to prove the following reduction formulas: 1 m m m-2 1 1 If I sin I sin cos I(1) then show thatm m m x dx x x m m −−−−− −− −− −− − = = += = += = += = +∫∫∫∫ proof: 1 1 m 1 2 1 2 2 m 1 2 2 1 I sin sin (sin ) sin ( cos ) sin ( cos ) ( 1)sin (cos ) , cos I sin cos ( 1) sin (cos ) sin cos ( 1) sin (1 sin ) sin cos ( 1) sin m m m m m m m m m m m x dx x xdx x d x let u x dv d x du m x x dx v x x x m x x dx x x m x x dx x x m − −− −− −− − −−−− −−−− − −− −− −− − − −− −− −− − −−−− = = = −= = = −= = = −= = = − = = −= = −= = −= = − ∴ = − = −∴ = − = −∴ = − = −∴ = − = − = − + −= − + −= − + −= − + − = − + − −= − + − −= − + − −= − + − − = − + −= − + −= − + −= − + − ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ (((( )))) 2 1 m 2 m 1 m 2 1 m 2 ( 1) sin I sin cos ( 1) ( 1)I 1 ( 1) I sin cos ( 1) 1 ( 1) I sin cos m m m m m m m xdx m xdx x x m I m m x x m I m x x I m m −−−− −−−− −−−− −−−− −−−− −−−− −−−− − −− −− −− − = − + − − −= − + − − −= − + − − −= − + − − − ∴ + − = − + −∴ + − = − + −∴ + − = − + −∴ + − = − + − − −− −− −− − = += += += + ∫∫∫∫ similarly we can prove that 1 m m m-2 1 1 If I cos I cos sin I(2) then show thatm m m x dx x x m m −−−− −−−− = = += = += = += = +∫∫∫∫ [[[[ ]]]] [[[[ ]]]] m m m-1 m m m-1 m m m-1 1 If I I I 1 If I I I ln ln If I log I log I (3) then show that (4) then show that (5) then show that m ax m ax m x m x m m m x e dx x e a a m x a dx x a a a x dx x x m = = −= = −= = −= = − = = −= = −= = −= = − = = −= = −= = −= = − ∫∫∫∫ ∫∫∫∫ ∫∫∫∫
  • 32. Mathematics For Engineering 32 m 1 m m-22 1 m m m-2 2 m m m-2 If I sin ( 1) I cos sin I tan If I tan I I 1 sec tan 2 If I sec I I 1 1 (6) then show that (7) then show that (8) then show that m m m m m m m x ax dx x m m m ax x ax a aa x dx m x x m dx m m −−−− −−−− −−−− ==== − −− −− −− − = + −= + −= + −= + − = = −= = −= = −= = − −−−− −−−− = = += = += = += = + − −− −− −− − ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ m 2 m m-2 n n If I cosec cosec cot 2 I I 1 1 If I cos , sin I sin . cos (9) then show that (10) show that m m n n n n n n n n x dx x x m m m x bx dx J x bx dx x bx nJ J x bx n I −−−− ==== − −− −− −− − = += += += + − −− −− −− − = == == == = = − = −= − = −= − = −= − = − ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ Exercise(4) If if and prove that find Find the reduction formula connecting given that Show that 1 1 4 4 , 2, 2 , cosh sinh sinh , cosh , sin sin cos , sin (1) (2) (3) n n n n n n n n n n m n m m m n m n n n n n I x x dx J x x dx I x x n J J x x n I I J I and I I x x dx I x dx J x dx n − −− −− −− − − +− +− +− + = == == == = = − = −= − = −= − = −= − = − ==== = == == == = ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ provethat Find thereducionformulafor are positive integer. 1 2 1 2 2 2 sin cos ( 1) . cos sin ( 1) . 1-1sin sin( 1) sin sin 1 , , (4) (5) n n n n n n n m I x x n I nJ x x n J n nx n x dx x nx n x x dx m n −−−− −−−− −−−− −−−− = + −= + −= + −= + − = − + −= − + −= − + −= − + − + =+ =+ =+ =∫∫∫∫     ++++     ∫∫∫∫
  • 33. Indefinite Integration 33 find find find find Findthereducionformulafor Findthereducionformulafor 4cos cos 3sin sin 3sin sin 3cos cos sinh cosh tanh (6) (7) (8) (9) (10) (11) (12) (13 ax n axxdx xdx ax n axxdx e xdx n x dx x x dx n x dx x x dx n n nx dx x dx x dx e e e x x ∫∫∫∫ ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ cosech sech Show thatIf coth 2(2 3) ( 2)sin 1 2 1 2 2 2 2( cos ) ( 1)( ) ( 1)( ) ( cos ) ) (14) (15) (16) n n n x dx n n a n I n Im x n nIn na b x n a b n a b xdx xdx dx a b x I ∫∫∫∫ − −− −− −− −− −− −− −− −= + −= + −= + −= + − −−−−+ − − − −+ − − − −+ − − − −+ − − − − ∫ ∫∫ ∫∫ ∫∫ ∫ ==== ∫∫∫∫ ++++
  • 34. Mathematics For Engineering 34 Trigonometric Integrals The following identities are employed to find the Trigonometric Integrals [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] 2 2 2 2 2 2 2 2 2 2 (1) sin cos 1 (2)tan 1 sec (3)1 cot csc 1 (4) sin 1 cos2 2 1 (5) cos 1 cos2 2 (6) sin2 2sin cos (7) 1 cos2 2sin (8)1 cos2 2cos 1 (9) sin cos sin( ) sin( ) 2 1 (10) sin sin cos( ) cos( ) 2 ( x x x x x x x x x x x x x x x x x x y x y x y x y x y x y + =+ =+ =+ = + =+ =+ =+ = + =+ =+ =+ = = −= −= −= − = += += += + ==== − =− =− =− = + =+ =+ =+ = = − + += − + += − + += − + + = − − += − − += − − += − − + [[[[ ]]]] 1 11) cos cos cos( ) cos( ) 2 x y x y x y= − + += − + += − + += − + + (1)Integrals in the form sinm x dx∫∫∫∫ if m is odd positive integer 1 sin sin (sin )m m x dx x xdx−−−− ====∫ ∫∫ ∫∫ ∫∫ ∫ and use 1 1 2 2sin (1 cos ) m m x x −−−− −−−− = −= −= −= − and take cos siny x dy xdx==== ⇒⇒⇒⇒ = −= −= −= − if m is even odd positive integer use [[[[ ]]]] [[[[ ]]]]2 21 1 sin 1 cos2 ,cos 1 cos2 2 2 x x x x= − = += − = += − = += − = +
  • 35. Indefinite Integration 35 Also we can use the following reduction formula 1 m m-2 1 1 I sin sin cos Im m m xdx x x m m −−−−− −− −− −− − = = += = += = += = +∫∫∫∫ Example (1): Find 3 sin xdx∫∫∫∫ Solution: 3 2 2 3 2 3 3 sin sin (sin ) (1 cos )(sin ) cos sin 1 1 sin (1 ) cos cos 3 3 xdx x xdx x xdx let y x dy xdx xdx y dy y y x x c = = −= = −= = −= = − = = −= = −= = −= = −              ∴ = − − = − − = − − +∴ = − − = − − = − − +∴ = − − = − − = − − +∴ = − − = − − = − − +                          ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ Example (2): Find 5 sin xdx∫∫∫∫ Solution: 5 4 2 2 5 2 2 2 2 3 2 3 sin sin (sin ) (1 cos ) (sin ) cos sin 1 sin (1 ) (1 2 ) 3 1 cos cos cos 3 xdx x xdx x xdx let y x dy xdx xdx y dy y y dy y y y x x x c = = −= = −= = −= = − = = −= = −= = −= = −      ∴ = − − = − − + = − − +∴ = − − = − − + = − − +∴ = − − = − − + = − − +∴ = − − = − − + = − − +               = − − + += − − + += − − + += − − + +          ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ Example (3): Find 4 sin xdx∫∫∫∫ Solution: 4 2 2 2 2 1 (3) sin sin sin (1 cos2 ) 4 1 1 1 1 2cos2 cos 2 1 2cos2 (1 cos4 ) 4 4 2 1 3 1 1 3 1 2cos2 cos4 sin2 sin4 4 2 2 4 2 8 xdx x xdx x dx x x dx x x dx x x x dx x x c = = −= = −= = −= = −         = − + = − + −= − + = − + −= − + = − + −= − + = − + −                           = − − = − − += − − = − − += − − = − − += − − = − − +                          ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫
  • 36. Mathematics For Engineering 36 (2)Integrals in the form cosm x dx∫∫∫∫ (i) if m is odd positive integer 1 cos cos (cos )m m x dx x xdx−−−− ====∫ ∫∫ ∫∫ ∫∫ ∫ and use 1 1 2 2cos (1 sin ) m m x x −−−− −−−− = −= −= −= − and take sin cosy x dy xdx==== ⇒⇒⇒⇒ ==== (ii)if m is even odd positive integer use [[[[ ]]]] [[[[ ]]]]2 21 1 sin 1 cos2 ,cos 1 cos2 2 2 x x x x= − = += − = += − = += − = + (iii) we can use the successive formula. 1 m m-2 1 1 I cos cos sin Im m m xdx x x m m −−−− −−−− = = += = += = += = +∫∫∫∫ Example (4): Find 3 cos xdx∫∫∫∫ Solution: 3 2 2 3 2 3 3 cos cos (cos ) (1 sin )(cos ) sin cos 1 1 cos (1 ) sin sin 3 3 xdx x xdx x xdx let y x dy xdx xdx y d y y y c x c = = −= = −= = −= = − = == == == =              ∴ = − = − + = − +∴ = − = − + = − +∴ = − = − + = − +∴ = − = − + = − +                          ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ Example (5): Find 5 cos xdx∫∫∫∫ Solution: 5 4 2 2 5 2 2 2 2 3 2 3 cos cos (cos ) (1 sin ) (cos ) sin cos cos (1 ) (1 2 ) 1 1 sin sin sin 3 3 xdx x xdx x xdx let y x dy xdx xdx y dy y y dy y y y x x x c = = −= = −= = −= = − = == == == = ∴ = − = − +∴ = − = − +∴ = − = − +∴ = − = − +              = − + = − + += − + = − + += − + = − + += − + = − + +                          ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ Example (6): Find 4 cos xdx∫∫∫∫ Solution: 4 2 2 21 cos cos cos (1 cos2 ) 4 x dx x x dx x dx= = += = += = += = +∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
  • 37. Indefinite Integration 37 21 1 1 1 2cos2 cos 2 1 2cos2 (1 cos4 ) 4 4 2 1 3 1 1 3 1 2cos2 cos4 sin2 sin4 4 2 2 4 2 8 x x dx x x dx x x x dx x x c         = + + = + + += + + = + + += + + = + + += + + = + + +                           = + + = + + += + + = + + += + + = + + += + + = + + +                          ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ (3)Integrals in the form tanm x dx∫∫∫∫ (i) if m is odd positive integer then m-1 is even 1 2 ( 1) 2 tan tan (tan ) (sec 1) (tan ) sec sec tan m m m x dx x xdx x x dx put y x dy x xdx − −− −− −− − = = −= = −= = −= = − = → == → == → == → = ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ (ii)if m is even odd positive integer use 2 2 2 2 2 tan tan (sec 1) tan sec tanm m m m x dx x x dx x xdx xdx− − −− − −− − −− − − = − = −= − = −= − = −= − = −∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ (reduction formula) Example (7): Find 5 tan xdx∫∫∫∫ Solution: 5 3 2 3 2 3 2 3 3 2 2 3 2 2 4 2 2 tan , sec tan tan (tan ) tan (sec 1) tan sec tan tan sec tan (sec 1) tan sec (tan sec tan ) 1 1 tan tan ln sec 4 2 let y x dy xdx xdx x x dx x x dx x xdx xdx x xdx x x dx x xdx x x x dx x x x c = == == == = = = −= = −= = −= = − = −= −= −= − = − −= − −= − −= − − = − −= − −= − −= − − = − + += − + += − + += − + + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ Example (8):Find 6 tan xdx∫∫∫∫ Solution: 6 4 2 4 2 tan tan (tan ) tan (sec 1)x dx x x dx x x dx= = −= = −= = −= = −∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
  • 38. Mathematics For Engineering 38 4 2 4 4 2 2 2 4 2 2 2 2 4 2 2 2 2 4 2 2 2 2 5 3 tan sec tan tan sec tan (sec 1) tan sec tan sec tan tan sec tan sec (sec 1) tan sec tan sec sec 1 1 tan tan tan 5 3 x x dx x dx x x dx x dx x x dx x x dx x dx x x dx x x dx x dx x x dx x x dx x dx dx x x x x c = −= −= −= − = − −= − −= − −= − − = − += − += − += − + = − + −= − + −= − + −= − + − = − + −= − + −= − + −= − + − = − + − += − + − += − + − += − + − + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ In general we use the reduction formula 1 m m m-2 tan If I tan Then I I ( 1) m m axdx a m −−−− = = −= = −= = −= = − −−−− ∫∫∫∫ (4)Integrals in the form: cotm x dx∫∫∫∫ (i) if m is odd positive integer then m-1 is even 1 2 1 2 cot cot (cot ) (cosec 1) (cot ) cosec cosec cot m m m x dx x xdx x x dx put y x dy x xdx − −− −− −− − = = −= = −= = −= = − = → = −= → = −= → = −= → = − ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ (ii)if m is even odd positive integer use integration by parts 2 2 2 2 2 cot cot (cosec 1) cot cosec cot m m m m x dx x x dx x xdx xdx −−−− − −− −− −− − = −= −= −= − = −= −= −= − ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ In general we can use the reduction formula 1 m m m-2 cot If I cot Then I I ( 1) m m axdx a m −−−− = = − −= = − −= = − −= = − − −−−− ∫∫∫∫ Example (9): Find 4 cot 3xdx∫∫∫∫ Solution: 4 2 2 2 2 2 2 2 cot 3 cot 3 (cot 3 ) cot 3 (cosec 3 1) cot 3 cosec 3 cot 3 x dx x x dx x x dx x x dx x dx = = −= = −= = −= = − = −= −= −= − ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫
  • 39. Indefinite Integration 39 2 2 2 2 2 2 3 cot 3 cosec 3 (cosec 3 1) cot 3 cosec 3 cosec 3 1 1 cot 3 cot 3 9 3 x x dx x dx x x dx x dx dx x x x c = − −= − −= − −= − − = − += − += − += − + = + + += + + += + + += + + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ (5)Integrals in the form: secm x dx∫∫∫∫ (i) if m is odd positive integer then m-1 is even 1 2 ( 1) 2 sec sec (sec ) (tan 1) (sec ) sec sec tan m m m x dx x xdx x x dx put y x dy x xdx − −− −− −− − = = −= = −= = −= = − = → == → == → == → = ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ (ii)if m is even odd positive integer use 2 2 2 ( 2)/ 2 sec sec (sec ) tan sec (tan 1) m m m x dx x xdx put y x and x x −−−− −−−− ==== = = += = += = += = + ∫ ∫∫ ∫∫ ∫∫ ∫ to get the reduction formula 2 m m-2 sec tan 2 I sec I 1 1 m m x m dx m m −−−− −−−− = = += = += = += = + − −− −− −− − ∫∫∫∫ Example (10): Find 4 sec 2xdx∫∫∫∫ Solution: 4 2 2 2 2 2 2 2 3 (10) sec 2 sec 2 (sec 2 ) sec 2 (1 tan 2 ) 1 1 sec 2 sec 2 tan 2 tan2 tan 2 2 6 xdx x x dx x x dx x dx x xdx x x c = = += = += = += = + = + = + += + = + += + = + += + = + + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ (6)Integrals in the form: cosecm x dx∫∫∫∫ (i) if m is odd positive integer then m-1 is even
  • 40. Mathematics For Engineering 40 1 2 ( 1) 2 cosec cosec (cosec ) (cot 1) (cosec ) cosec cosec cot m m m x dx x xdx x x dx put y x dy x xdx − −− −− −− − = = += = += = += = + = → = −= → = −= → = −= → = − ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ (ii)if m is even odd positive integer use 2 2 2 2/ 2 cosec cosec (cosec ) cot cosec (cot 1) m m m x dx x xdx put y x and x x −−−− −−−− ==== = = += = += = += = + ∫ ∫∫ ∫∫ ∫∫ ∫ to get the reduction formula Example (11): Find 6 cosec axdx∫∫∫∫ Solution: 6 4 2 2 2 2 2 4 2 2 2 2 4 2 3 5 (11) cosec cosec (cosec ) (1 cot ) (cosec ) (1 2cot cot )(cosec ) (cosec 2cot cosec cot cosec ) 1 2 1 cot cot cot 3 5 axdx ax ax dx ax ax dx ax ax ax dx ax ax ax ax ax dx ax ax ax c a a a = = += = += = += = + = + += + += + += + + = + += + += + += + + −−−− = − − += − − += − − += − − + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ ∫∫∫∫ (7)Integrals in the form cos sinm n x x dx∫∫∫∫ , , are positive integersm n If m is an odd 1 cos sin cos sin (cos ) and put sinm n m n x x dx x x xdx y x−−−− = == == == =∫ ∫∫ ∫∫ ∫∫ ∫ If n is an odd 1 cos sin cos sin (sin ) andput cosm n m n x x dx x x xdx y x−−−− = == == == =∫ ∫∫ ∫∫ ∫∫ ∫ if m and n are both an even we use [[[[ ]]]] [[[[ ]]]]2 21 1 sin 1 cos2 ,cos 1 cos2 2 2 x x x x= − = += − = += − = += − = + Example (12): Find 2 2 sin cosx xdx∫∫∫∫ Solution: (((( )))) 2 22 2 1 (12) sin cos sin cos sin2 2 x x dx x x dx x dx      = == == == =           ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
  • 41. Indefinite Integration 41 21 1 1 1 1 sin 2 (1 cos4 ) ( sin4 ) 4 4 2 8 4 x dx x dx x x c= = − = − += = − = − += = − = − += = − = − +∫ ∫∫ ∫∫ ∫∫ ∫ Example (13): Find 3 4 sin cosax axdx∫∫∫∫ Solution: 3 4 2 4 2 4 4 6 4 6 5 7 (13) sin cos sin cos (sin ) (1 cos )cos (sin ) (cos cos )(sin ) (cos sin cos sin ) 1 1 cos cos 5 7 ax axdx ax ax axdx ax ax axdx ax ax axdx ax axdx ax axdx ax ax c a a ==== = −= −= −= − = −= −= −= − = −= −= −= − −−−− = + += + += + += + + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ Example (14): Find 4 2 sin cosax ax dx∫∫∫∫ Solution: [[[[ ]]]] 2 4 2 2 2 2 2 1 1 (14) sin cos (1 cos2 ) (1 cos2 ) 2 2 1 (1 cos2 )(1 cos2 )(1 cos2 ) 8 1 (1 cos2 )(1 cos 2 ) 8 1 (1 cos2 )sin 2 8 1 sin 2 cos2 sin 2 8 1 1 (1 cos4 8 2 ax ax dx ax ax dx ax ax ax dx ax ax dx ax ax dx ax dx ax ax dx              = − += − += − += − +                          = − − += − − += − − += − − +     = − −= − −= − −= − −          = −= −= −= −          = −= −= −= −      = −= −= −= − ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 2 3 3 ) cos2 sin 2 1 1 1 1 1 ( . cos4 ) . sin 2 8 2 4 3 2 1 1 1 ( sin4 sin 2 ) 16 64 48 ax dx ax ax dx x ax ax c a a x ax ax c a a      −−−−               = − − += − − += − − += − − +          = − − += − − += − − += − − + ∫ ∫∫ ∫∫ ∫∫ ∫
  • 42. Mathematics For Engineering 42 The reduction formula for cos sinm n x x dx∫∫∫∫ Case (1): if m and n are positive integer: 1 1 1 2 1 2 2 2 2 2 2 sin .cos sin .( 1).cos .( sin ) cos .( 1)sin (cos ) ( 1)sin .cos ( 1)cos sin ( 1)sin .cos sin ( 1)cos sin ( 1)sin .cos (1 cos ) ( 1)cos sin m n m n n m m n n m m n n m m n n m d x x dx x n x x x m x x n x x m x x n x x x m x x n x x x m x + −+ −+ −+ − + − −+ − −+ − −+ − − + −+ −+ −+ − −−−− −−−−           = − − + += − − + += − − + += − − + + = − − + += − − + += − − + += − − + + = − − + += − − + += − − + += − − + + = − − − + += − − − + += − − − + += − − − + + 2 ( 1)sin .cos ( )cos sinm n n m x n x x m n x x−−−− = − − + += − − + += − − + += − − + + by integrating both sides w.r.to x we have are positive integers 1 1 2 ,( 2) , 1 1 , ,( 2) sin .cos ( 1)sin .cos ( )cos sin ( 1) ( ) 1 ( 1) cos sin sin .cos ( ) ( ) , m n m n n m m n m n m n m n m n m n x x n x x dx m n x x dx n I m n I n I x x dx x x I m n m n m n + −+ −+ −+ − −−−− −−−− + −+ −+ −+ − −−−−           = − − + += − − + += − − + += − − + + = − − + += − − + += − − + += − − + + −−−− = = −= = −= = −= = − + ++ ++ ++ +∴∴∴∴ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ Example(15): 4 6 5 5 4,6 4,4 5 5 5 3 4,2 5 5 5 3 5 4,0 4 4 1 1 sin cos sin cos 10 2 1 1 1 3 sin cos sin cos 10 2 8 8 1 1 1 3 1 1 sin cos sin cos sin cos 10 2 8 8 6 6 3 1 1 sin sin2 sin4 8 4 23 I x x dx x x I x x x x I x x x x x x I I x dx x x x = = −= = −= = −= = −      = − −= − −= − −= − −                   = − − −= − − −= − − −= − − −                  = = − += = − += = − += = − + ∫∫∫∫ ∫∫∫∫
  • 43. Indefinite Integration 43 5 5 4,6 5 3 5 5 5 5 3 5 1 sin cos 10 1 1 3 1 1 3 1 1 sin cos sin cos sin2 sin4 2 8 8 6 6 8 4 23 1 1 3 3 sin cos sin cos sin cos 10 16 32 256 1 3 sin2 sin4 128 1204 I x x x x x x x x x x x x x x x x x x ∴ =∴ =∴ =∴ =              − − − − +− − − − +− − − − +− − − − +                          = − + −= − + −= − + −= − + − + −+ −+ −+ − Case (2): if m and n are negative integers : 1 1 1 1 2 2 2 2 2 sin .cos sin .( 1).cos .( sin ) cos .( 1)sin (cos ) ( 1)sin .cos ( 1)sin cos ( 1)sin .cos ( 1)sin cos (1 sin ) ( 1)sin .cos ( 1)sin cos ( 1) m n m n n m m n m n m n m n m n m n d x x dx x n x x x m x x n x x m x x n x x m x x x n x x m x x m + ++ ++ ++ + + ++ ++ ++ + + ++ ++ ++ + ++++ ++++           = + − + += + − + += + − + += + − + + = − − + += − − + += − − + += − − + + = − − + + −= − − + + −= − − + + −= − − + + − = − − + + − += − − + + − += − − + + − += − − + + − + 2 2 sin cos ( 2)sin .cos ( 1)sin cos m n m n m n x x m n x x m x x ++++ ++++ = − + + + += − + + + += − + + + += − + + + + by integrating both sides w.r.to x we have are negative integars 1 1 2 1 1 ( 2), , 1 1 , ( 2), sin .cos ( 2)sin .cos ( 1) sin cos sin .cos ( 2) ( 1) 1 ( 2) sin cos sin .cos ( 1) ( 1) , m n m n m n m n m n m n m n m n m n m n x x m n x x dx m x x dx x x m n I m I m n I x x dx x x I m m m n + − ++ − ++ − ++ − + + −+ −+ −+ − ++++ + ++ ++ ++ + ++++      = − + + + += − + + + += − + + + += − + + + +      = − + + + += − + + + += − + + + += − + + + + + ++ ++ ++ + = = += = += = += = + + ++ ++ ++ +∴∴∴∴ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ Example(16):
  • 44. Mathematics For Engineering 44 3 2 4, 3 ( 2, 3)4 3 ( 2, 3)3 2 1 5 sin cos 3 3sin cos 1 5 33sin cos dx I x x I x x I x x − −− −− −− − − − − −− − − −− − − −− − − − − −− −− −− − −−−− = = += = += = += = + −−−− = += += += + ∫∫∫∫ 1 2 2, 3 0, 3 0, 32 3 2 2 0, 3 3 2 3 0, 3 2, 3 1 (sin ) cos 3 3 sin cos sec sec sec sec tan sec tan cos sec tan sec (1 sec ) sec tan sec sec 1 1 sec tan ln sec tan 2 2 1 sin I x x I I x x dx I xdx x xdx x x x x dx x x x x x dx x x xdx x dx I x x x x I − −− −− −− − − − − −− − − −− − − −− − − − −−−− −−−− − −− −− −− − −−−− = − + = += − + = += − + = += − + = + = = = = −= = = = −= = = = −= = = = − = − + = − −= − + = − −= − + = − −= − + = − − = −= −= −= − −−−− ∴ =∴ =∴ =∴ = ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ 2 ( 4, 3) 3 2 2 3 3 sec tan ln sec tan 2 2cos 1 5 5 5 sec tan ln sec tan 3 33sin cos 3sin cos x x x x x x I x x x x c x x x x − −− −− −− − + −+ −+ −+ − −−−− ∴ = − + − +∴ = − + − +∴ = − + − +∴ = − + − + Case (3): if m is positive and n is negative integers: 1 1 1 1 2 2 2 sin .cos sin .( 1).cos .( sin ) cos .( 1)sin (cos ) ( 1)sin .cos ( 1)sin cos m n m n n m m n m n d x x dx x n x x x m x x n x x m x x − +− +− +− + − + −− + −− + −− + − − +− +− +− +           = + − + −= + − + −= + − + −= + − + − = − + + −= − + + −= − + + −= − + + − by integrating both sides w.r.to x we have is positive and is negative integars 1 1 2 2 , ( 2),( 2) 1 1 , ( 1),( 2 sin .cos ( 1) sin .cos ( 1) sin cos ( 1) ( 1) 1 ( 1) cos sin sin .cos ( 1) ( 1) m n m n m n m n m n m n m n m n m n x x n x x dx m x x dx n I m I m I x x dx x x I n n m n − +− +− +− + − +− +− +− + − +− +− +− + − +− +− +− + − =− =− =− =           = − + + −= − + + −= − + + −= − + + − = − + + −= − + + −= − + + −= − + + − − −− −− −− − = = += = += = += = + + ++ ++ ++ +∴∴∴∴ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫
  • 45. Indefinite Integration 45 Example(17): 6 5 5 7 (6, 8) (4, 6) (4, 6)8 7 3 3 5 (4, 6) (2, 4) (2, 4)5 3 (2, 4) (0, 2) (0, 2)3 (0, 2) 2 sin 1 5 1 sin 5 sin cos 7 7 7 7cos cos 1 3 sin 3 sin (cos ) 5 5 55cos 1 1 sin 1 sin (cos ) 3 3 33cos cos x dx x I x x I I x x x I x x I I x x I x x I I x dx I x −−−− − − −− − −− − −− − − −−−− − − −− − −− − −− − − −−−− − − −− − −− − −− − − −−−− = = − + = −= = − + = −= = − + = −= = − + = − − −− −− −− − −−−− = + = −= + = −= + = −= + = − − −− −− −− − −−−− = + = −= + = −= + = −= + = − − −− −− −− − ==== ∫∫∫∫ 2 3 (2, 4) (4, 6)3 5 3 6 5 3 (6, 8)8 7 5 3 sec tan sin 1 sin sin 1 tan , tan 3 53cos 5cos 5cos sin 1 sin sin sin 1 tan 7 7cos cos 7cos 7cos x dx x x x x I x I x x x x x dx x x x I x x x x x − −− −− −− − −−−− = == == == = ∴ = − = − +∴ = − = − +∴ = − = − +∴ = − = − + −−−− = = − + −= = − + −= = − + −= = − + − ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ we can solve this example without reduction formulas 6 6 2 7 8 sin 1 tan sec tan 7cos x dx x xdx x c x = = += = += = += = +∫ ∫∫ ∫∫ ∫∫ ∫ Case (4): if m is negative and n is positive integers: 1 1 1 2 1 2 2 sin .cos sin .( 1).cos .( sin ) cos .( 1)sin cos ( 1)sin .cos ( 1)sin cos m n m n n m m n m n d x x dx x n x x x m x x n x x m x x + −+ −+ −+ − + − −+ − −+ − −+ − − + −+ −+ −+ −           = − − + += − − + += − − + += − − + + = − − + += − − + += − − + += − − + + by integrating both sides w.r.to x we have is negative and is positive integars 1 1 2 2 ( 2),( 2) , 1 1 , ( 2),( 2) sin .cos ( 1) sin .cos ( 1) sin cos ( 1) ( 1) 1 ( 1) cos sin sin .cos ( 1) ( 1) m n m n m n m n m n m n m n m n m n x x n x x dx m x x dx n I m I n I x x dx x x I m m m n + − + −+ − + −+ − + −+ − + − + −+ −+ −+ − + −+ −+ −+ − + −+ −+ −+ −      = − − + += − − + += − − + += − − + +      = − − + += − − + += − − + += − − + + −−−− = = += = += = += = + + ++ ++ ++ +∴∴∴∴ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫
  • 46. Mathematics For Engineering 46 Example(18): 4 3 3 5 ( 6,4) ( 4,2) ( 4,2)6 5 3 ( 4,2) ( 2,0) ( 2,0)3 2 ( 2,0) 2 ( 4,2) 3 4 ( 6,46 cos 1 3 cos 3 cos sin 5 5 5sin 5sin 1 1 cos 1 cos sin 3 3 33sin csec cot sin cos 1 cot 33sin cos sin x dx x I x x I I x x x I x x I I x dx I x dx x x x I x x dx I x −−−− − − −− − −− − −− − − −−−− − − −− − −− − −− − − −−−− −−−− −−−− −−−− = = − − = −= = − − = −= = − − = −= = − − = − −−−− = + = −= + = −= + = −= + = − − −− −− −− − = = = −= = = −= = = −= = = − −−−− ∴ = +∴ = +∴ = +∴ = + ==== ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 3 ) 5 3 cos cos 1 cot 55sin 5sin x x c x x −−−− = + − += + − += + − += + − +∫∫∫∫ we can solve this example without reduction formulas 4 4 2 5 6 cos 1 cot cosec cot 5sin x dx x x dx x c x −−−− = = += = += = += = +∫ ∫∫ ∫∫ ∫∫ ∫ (8)Integrals in the form sec tanm n x x dx∫∫∫∫ , , are positive integersm n If n is an odd and m either an even or odd 1 1 sec tan sec tan (sec tan ) andput sec m n m n x x dx x x x xdx y x − −− −− −− − ==== ==== ∫ ∫∫ ∫∫ ∫∫ ∫ If m is an even ,n either an even or odd 2 2 sec tan sec tan (sec ) andput tanm n m n x x dx x x xdx y x−−−− = == == == =∫ ∫∫ ∫∫ ∫∫ ∫ Example (19): Find 4 3 sec 3 tan 3x x dx∫∫∫∫ Solution: 4 3 3 2 2 3 2 2 5 3 2 sec 3 tan 3 tan 3 sec 3 (sec 3 ) tan 3 (tan 3 1)(sec 3 ) (tan 3 tan 3 )(sec 3 ) x x dx x x x dx x x x dx x x x dx ==== = −= −= −= − = −= −= −= − ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫
  • 47. Indefinite Integration 47 5 3 6 4 6 4 tan3 3sec3 1 1 1 1 1 1 1 ( ) tan 3 tan 3 3 3 6 4 3 6 4 put y x dy x dx I y y dy y y x x c = ∴ == ∴ == ∴ == ∴ =              ∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +                          ∫∫∫∫ Example (20): Find 3 2 sec tanx x dx∫∫∫∫ Solution: 3 2 3 2 5 3 5 3 5 3 2 3 5 3 3 3 3 2 3 3 2 3 (16) sec tan sec (sec 1) (sec sec ) (1) sec sec sec sec tan sec tan tan (3sec tan ) sec tan 3 sec tan sec tan 3 sec (sec 1) sec tan 3 ( x x dx x x dx x x dx I I I let I x dx x x dx x d x x x x x x dx x x x x dx x x x x dx x x = − = −= − = −= − = −= − = − ∴ = −∴ = −∴ = −∴ = − = = == = == = == = = = −= −= −= − = − = − −= − = − −= − = − −= − = − − = −= −= −= − ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 5 3 3 5 3 3 2 3 2 2 3 sec sec ) 1 sec tan (2) 4 sec sec sec sec tan sec tan tan (sec tan ) sec tan sec tan sec tan sec (sec 1) sec tan (sec sec ) 1 sec tan ln sec tan 2 x x dx I x x I and I x dx x x dx x d x x x x x x dx x x x x dx x x x x dx x x x x dx x x x −−−−     ∴ = +∴ = +∴ = +∴ = +      = = == = == = == = = = − = −= − = −= − = −= − = − = − − = − −= − − = − −= − − = − −= − − = − − = + += + += + += + + ∫∫∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ (3)x         (((( )))) (((( )))) 3 3 3 3 3 3 3 1 1 (1),(2) (3) sec tan sec tan 3 4 4 1 3 sec tan sec tan ln sec tan 4 2 1 3 sec tan sec tan ln sec tan 4 8 from and I x x I I x x I x x x x x x x x x x x x c             = + − = −= + − = −= + − = −= + − = −                   = − + += − + += − + += − + +               = − + + += − + + += − + + += − + + +         
  • 48. Mathematics For Engineering 48 Example (21): Find 3 3 sec tanax ax dx∫∫∫∫ Solution: 3 3 2 2 2 2 4 2 4 2 5 3 5 3 (17) sec tan sec tan (sec tan ) sec (sec 1)(sec tan ) (sec sec )(sec tan ) sec sec tan 1 1 1 1 1 1 1 ( ) sec sec 5 3 5 3 ax ax dx ax ax ax ax dx ax ax ax ax dx ax ax ax ax dx put y ax dy a ax ax I y y dy y y ax ax c a a a ==== = −= −= −= − = −= −= −= − = ∴ == ∴ == ∴ == ∴ =              ∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +∴ = − = − = − +                          ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ (9)Integrals in the form cosec cotm n x x dx∫∫∫∫ , , are positive integersm n If n is an odd and m either an even or odd 1 1 cosec cot cosec cot (cosec cot ) andput cosec m n m n x x dx x x x xdx y x − −− −− −− − ==== ==== ∫ ∫∫ ∫∫ ∫∫ ∫ If m is an even ,n either an even or odd 2 2 cosec cot cosec cot (cosec ) andput cot m n m n x x dx x x xdx y x −−−− ==== ==== ∫ ∫∫ ∫∫ ∫∫ ∫ Example (22): Find 3 3 cot cosecax ax dx∫∫∫∫ Solution: 3 3 2 2 2 2 2 4 3 3 2 4 3 5 cot cosec cot cosec (cosec cot ) (1 cosec ) cosec (cosec cot ) (cosec cosec ) (cosec cot ) cosec cosec cot 1 1 cot cosec ( ) 3 5 1 ax ax dx ax ax ax ax dx ax ax ax ax dx ax ax ax ax dx if y ax dy a ax axdx ax ax dx y y dy y y a a ==== = −= −= −= − = −= −= −= − = = −= = −= = −= = − ∴ = − − = − +∴ = − − = − +∴ = − − = − +∴ = − − = − + = −= −= −= − ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 3 51 cosec cosec 3 5 ax ax c a a + ++ ++ ++ +
  • 49. Indefinite Integration 49 Example (23): Find 3 4 cot cosecax ax dx∫∫∫∫ Solution: 3 4 3 2 2 3 2 2 3 5 2 2 3 4 3 5 4 6 4 (19) cot cosec cot cosec (cosec ) cot (1 cot )(cosec ) (cot cot )(cosec ) cot cosec 1 1 1 1 cot cosec ( y ) y 4 6 1 1 cot co 4 6 ax ax dx ax ax ax dx ax ax ax dx ax ax ax dx if y ax dy a ax dx ax ax dx y dy y a a ax a a ==== = += += += + = += += += + = = −= = −= = −= = − − −− −− −− −      ∴ = + = +∴ = + = +∴ = + = +∴ = + = +          −−−− = −= −= −= − ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 6 4 4 t try to solve cot cosec ax c ax ax dx ++++ ∫∫∫∫ As similar we can integrate the following sinh , cosh , tanh cosech , sech , coth sinh cosh sech tanh cosech coth n n n n n n n m n m n m xdx xdx xdx x xdx xdx x xdx x xdx x xdx ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫
  • 50. Mathematics For Engineering 50 Exercise(5) Find 3 2 4 4 2 5 3 2 3 3 4 10 2 5 5 (1) sinh (2) sin 4 (3) cot cosec (4) sin cos (5) sinh cosh (6) sin cos (7) sin2 cos4 (8) cos (9) cos (10) sin cos (11) cosh(2 )cosh(3 ) (12) cos sin (13) sin3 cos5 n x dx x dx x x dx x x dx x x dx x x dx x x dx x dx x dx x x dx x x dx xdx x ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 3 5 3 2 3 3 4 3 5 3 4 2 4 3 5 2 4 2 3 3 (14) sin cos (15) sin cos (16) sin5 cos cos (17) (18) tan sin (19) tan sec (20) tan sec (21) tan sec (22) cot cosec (23) cot cosec (24) cot cosec (25) cot x dx x x dx x x dx x x dx x dx x dx x x x dx x x dx x x dx x x dx x x dx x x dx x ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ 4 3 3 5 5 6 5 5 5 4 4 5 3 2 4 3 4 cosec (26) cot cosec (27) sec (28) cosec (29) sec (30) cot (31) coth (32) cosech (33) coth (34) cosech (35) coth cosech (36) coth cosech (37) coth cosech (3 x dx x x dx x dx x dx x dx x dx x dx x dx x dx x dx x x dx x x dx x x dx ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫∫ 4 3 2 4 8) coth cosech (39) coth cosech x x dx x x dx ∫∫∫∫ ∫∫∫∫
  • 51. Indefinite Integration 51 Trigonometric Substitutions: An Integrand which contains one of the form 2 2 2 2 2 2 2 2 2 , ,a b x a b x b x a− + −− + −− + −− + − may be transformed into another simple integrals contains trigonometric functions of new variable. The substituting according the following rules: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 For sin , sin cos ( sin ) 1 sin cos (i) a a a a b x put x x dx d b bb a a b x a b a a b θ θ θ θθ θ θ θθ θ θ θθ θ θ θ θ θ θθ θ θθ θ θθ θ θ − = = =− = = =− = = =− = = = ∴ − = − = − =∴ − = − = − =∴ − = − = − =∴ − = − = − = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 For tan , tan sec ( tan ) 1 tan sec (ii) a a a a b x put x x dx d b bb a a b x a b a a b θ θ θ θθ θ θ θθ θ θ θθ θ θ θ θ θ θθ θ θθ θ θθ θ θ + = = =+ = = =+ = = =+ = = = ∴ + = + = + =∴ + = + = + =∴ + = + = + =∴ + = + = + = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 For sec , sec sec tan ( sec ) sec 1 tan (iii) a a a b x a put x x dx d b bb a b x a b a a a b θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ θ θ θθ θ θθ θ θθ θ θ − = = =− = = =− = = =− = = = ∴ − = − = − =∴ − = − = − =∴ − = − = − =∴ − = − = − = 2 2 2 2 2 2 2 2 (iv)For , tan sin cos 2 2 sin 2sin cos , 2 2 1 1 cos cos sin , 2 2 1 1 1 1 sec (1 tan ) (1 ) 2 2 2 2 2 dx dx x put u a b x a b x x x u x u x x u x u x x du dx dx u dx ==== ± ±± ±± ±± ± ∴ = =∴ = =∴ = =∴ = = ++++ −−−− = − == − == − == − = ++++ = = + = += = + = += = + = += = + = + ∫ ∫∫ ∫∫ ∫∫ ∫
  • 52. Mathematics For Engineering 52 2 2 2 2 2 2 1 , sin , cos 1 1 1 du u u dx x x u u u −−−− ∴ = = =∴ = = =∴ = = =∴ = = = + + ++ + ++ + ++ + + 2 2 2 2 2 2 2 2 2 2 2 2 (v)For , tanh sinh cosh 2 2 sinh 2sinh cosh , 2 2 1 1 cosh cosh sinh , 2 2 1 1 1 1 sech (1 tanh ) (1 ) 2 2 2 2 2 2 2 1 , sinh , cosh 1 1 1 dx dx x put u a b x a b x x x u x u x x u x u x x du dx dx u dx du u u dx x x u u u ==== ± ±± ±± ±± ± ∴ = =∴ = =∴ = =∴ = = −−−− ++++ = + == + == + == + = −−−− = = − = −= = − = −= = − = −= = − = − ++++ ∴ = = =∴ = = =∴ = = =∴ = = = − − −− − −− − −− − − ∫ ∫∫ ∫∫ ∫∫ ∫ Example(1): Find 2 2 4 x dx x −−−− ∫∫∫∫ Solution: (((( )))) 2 2 2 2 2 2 3 2 2 2 2 2 2sec 2sec tan , 1 4 4sec 4 2tan , tan sec 1 4 2 4sec (2sec tan ) 4sec 2tan4 2sec tan 2ln sec tan 1 1 1 2. . 4 2ln 4 4 2ln 4 2 2 2 4 2 2 4 put x dx d x x x dx d d x x x x x x x x x c θ θ θ θθ θ θ θθ θ θ θθ θ θ θ θ θ θ θθ θ θ θθ θ θ θθ θ θ θ θ θ θ θθ θ θ θθ θ θ θθ θ θ θ θ θθ θθ θθ θ θθθθ θ θ θ θθ θ θ θθ θ θ θθ θ θ θ = ∴ == ∴ == ∴ == ∴ = − = − = = − = −− = − = = − = −− = − = = − = −− = − = = − = − ∴ = =∴ = =∴ = =∴ = = −−−− = + += + += + += + +              = − + + − = − + + − += − + + − = − + + − += − + + − = − + + − += − + + − = − + + − +                          ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
  • 53. Indefinite Integration 53 Example(2): Find 2 9 xdx x−−−− ∫∫∫∫ Solution: [[[[ ]]]] (((( )))) 2 2 2 2 2 2 2 2 1 1 2 3sin 3cos , 9 9 (3sin ) 3 1 sin 3cos 9sin 3cos 1 9 sin 9 1 cos2 3cos 29 9 1 9 1 sin2 2sin cos 2 2 2 2 9 9 9 sin sin 9 2 3 3 3 2 3 2 let x dx d x x dx d d d x x x x x x x c− −− −− −− − ==== ⇒⇒⇒⇒ = − = − = − == − = − = − == − = − = − == − = − = − = ∴ = = == −∴ = = == −∴ = = == −∴ = = == − −−−−              = − = −= − = −= − = −= − = −                              −−−−     = − = − − += − = − − += − = − − += − = − − +           ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ θ θ θ θ θ θθ θ θ θ θ θθ θ θ θ θ θθ θ θ θ θ θ θ θ θθ θ θθ θ θθ θ θ θ θ θ θθ θ θ θθ θ θ θθ θ θ θ θθθθ θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ Example(3): Find 2 9 4 dx x x++++ ∫∫∫∫ Solution: 2 2 2 2 2 2 put 2 3tan 2 3sec 9 4 9 9tan 3sec (3/ 2)sec 1 sec 1 cos (3/ 2)tan 3sec 3 tan 3 cos sin9 4 1 1 cosec ln cosec cot (1) 3 3 2 3 9 4 2 3tan tan ,cot , cosec 3 2 2 1 ln cosec 3 x dx d x dx d d d x x d x x x x x I ==== ⇒⇒⇒⇒ ==== + = + =+ = + =+ = + =+ = + = ∴ = = =∴ = = =∴ = = =∴ = = = ++++ = = −= = −= = −= = − ++++ ==== ⇒⇒⇒⇒ = = == = == = == = = ∴ =∴ =∴ =∴ = ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫∫∫ Q θ θ θθ θ θθ θ θθ θ θ θ θθ θθ θθ θ θ θ θ θ θ θθ θ θ θ θ θθ θ θ θ θ θθ θ θ θ θ θ θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ θ θ θ θθ θ θ θθ θ θ θθ θ θ θ θ θ θ θθ θ θ θθ θ θ θθ θ θ θ θθθθ 2 1 9 4 3 cot ln 3 2 2 x c x x ++++ − = − +− = − +− = − +− = − +θθθθ Example(3): Find 5 4cos dx x++++∫∫∫∫ Solution:
  • 54. Mathematics For Engineering 54 (((( )))) (((( )))) 2 2 2 2 2 2 2 2 2 2 1 1 2 tan 2 1 cos cos sin , 2 2 1 2 1 2 2 5 4cos 1 5(1 ) 4(1 ) (1 ) 5 4 1 tan 2 2 2 2tan tan 3 3 3 39 x put u x x u x u du dx u dx du du x u u u u u x du u c u − −− −− −− − ==== −−−− ∴ = − =∴ = − =∴ = − =∴ = − = ++++ ==== ++++ = == == == = ++++     −−−− + + −+ + −+ + −+ + − + ++ ++ ++ +        ++++               = = = += = = += = = += = = +     ++++           ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫∫ Example(3): Find 12 13sin dx x++++∫∫∫∫ Solution: 2 2 2 2 2 2 2 2 2 tan sin 2sin cos , 2 2 2 1 1 2 2 12 13sin 2 12(1 ) 13(2 )1 12 13 1 2 (2 3)(3 2)12 12 26 6 13 6 2 1 1 1 ln 2 3 15 2 3 5 3 2 15 1 x x x u du put u x dx u u dx du du x u u uu u du du du u uu u u u du du u u u = ∴ = = == ∴ = = == ∴ = = == ∴ = = = + ++ ++ ++ + = == == == = ++++             + ++ ++ ++ +    + ++ ++ ++ +              ++++     = = == = == = == = = + ++ ++ ++ +            + + + ++ + + ++ + + ++ + + +              − −− −− −− − = + = + += + = + += + = + += + = + + + ++ ++ ++ + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ln 3 2 5 1 1 ln 2tan 3 ln 3tan 2 15 2 15 2 u x x c ++++ −−−− = + + + += + + + += + + + += + + + +
  • 55. Indefinite Integration 55 Exercise(6) Prove that 2 3/ 2 2 2 2 2 2 2 22 2 2 2 2 2 2 1 2 2 3/ 2 2 2 2 2 2 2 2 2 2 1 (1) (4 ) 4 4 25 5 25 (2) 5ln 25 1 (3) (4) 4 4 2ln( 4) 2 (5) sin ( ) ( ) (6) 4 4 2ln( 4) 2 (7) x dx c x x x x dx x c x c a x dx c a xx a x x x dx x x x c x x x dx c aa x a x x x dx x x x c x a dx x a x −−−− = += += += + −−−− −−−− − − −− − −− − −− − − = + − += + − += + − += + − + −−−− = − += − += − += − + −−−− + = + + + + ++ = + + + + ++ = + + + + ++ = + + + + + = − += − += − += − + − −− −− −− − − = − + + − +− = − + + − +− = − + + − +− = − + + − + ++++ = += += += + ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 2 2 2 2 2 2 2 5/ 2 2 3/ 2 2 2 3/ 2 2 2 2 2 2 2 ln 2 (8) (4 ) 12(4 ) (9) ( ) ( ) 9 (10) 99 a x a a c x a a x dx x c x x dx x c a x a a x dx x c xx x + −+ −+ −+ − + ++ ++ ++ + + ++ ++ ++ + = += += += + − −− −− −− − = += += += + ++++ ++++ −−−− = − += − += − += − + −−−− ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ 2 2 2 2 2 2 2 2 2 2 5/ 2 2 2 3/ 2 1 (11) 16 8ln 16 216 1 (12) ( ) ( ) 5 3 x dx x x x x c x a x a x dx a x a x c     = − + + − += − + + − += − + + − += − + + − +         −−−− − = − − − +− = − − − +− = − − − +− = − − − + ∫∫∫∫ ∫∫∫∫