The Divergence Theorem and Electrical Fields © Frits F.M. de Mul
Gauss’ Law for  E- field (1) Goal of this integral expression : to calculate  E  from  Q  or    provided symmetry present !!!!! QUESTION: does an inverse expression, to  locally  calculate   (xyz)  from  E (xyz),  exist  ?? volume  V;  surface  A dA   ┴ surface  A dA dA Gauss’ Law: E E E -field arbitrary
Gauss’ Law for  E- field (2) volume element  dV  has sides  dx, dy  and  dz Question: calculate local   - distribution   from  E -field volume  V surface  A E dA Gauss’ Law: dV to look locally:   observe local volume element  dV  at  (xyz) X Y Z
The  E -flux through  dV  (1) d     through  dV = d     through left & right sides  + d     through top &  bottom sides  + d     through front & back sides E Point  P  in  dV  at  x,y,z. Y dy dz dx dV X Z P
The  E -flux through  dV  (2) Calculate  d     through  right  side: d   =  E.dA  = E y  .dxdz  at ( x,y+dy /2, z ) Calculate  d     through  left  side: d   =  E.dA  = - E y  .dxdz  at ( x,y - dy /2, z ) dV X Y Z dy dz dx E P Point  P  in  dV  at  x,y,z.
The  E -flux through  dV  (3) Net flux  d     through  left - right  side of  dV  : Point  P  in  dV  at  x,y,z. P y y+ 1/2  dy y- 1/2  dy d   = E y  .dxdz  at ( x,y + dy /2, z ) - E y  .dxdz  at ( x,y - dy /2, z ) E y E y  = f (y)
The  E -flux through  dV  (4) Net flux  d    : left/right: analogously: top/bottom: and front/back: dV X Z dy dz dx E P Y
The  E -flux through  dV  (5) Net flux  d    through  dV : DEFINITION   DIVERGENCE   div   : dV X Z dy dz dx E P Y
Local expression for Gauss’ Law enclosed charge in  dV  :    dV Gauss’ Law  in local form: where  E  and    are  f  (x,y,z) volume  V surface  A E dA dV element  dV  :
From “local” to “integral” summation over all elements: volume  V surface  A E dA dV element  dV  : all “internal”  d  E ’s cancel  d  E ’s at surface  A  remain only !
How to use the laws ? Integral expression: from    to  E,  but in symmetrical situations only ! div  E  (x,y,z) =   (x,y,z) /    Differential (local) expression: from  E  (x,y,z)  to   (x,y,z) . volume  V surface  A E dA
Physical meaning of  div Divergence = local “micro”-flux per unit of volume [m 3 ] volume  V surface  A E dA
“ Gauss” in general in accordance with general relation  for a vector  X  : the end volume  V surface  A E dA

Divergence theorem

  • 1.
    The Divergence Theoremand Electrical Fields © Frits F.M. de Mul
  • 2.
    Gauss’ Law for E- field (1) Goal of this integral expression : to calculate E from  Q or   provided symmetry present !!!!! QUESTION: does an inverse expression, to locally calculate  (xyz) from E (xyz), exist ?? volume V; surface A dA ┴ surface A dA dA Gauss’ Law: E E E -field arbitrary
  • 3.
    Gauss’ Law for E- field (2) volume element dV has sides dx, dy and dz Question: calculate local  - distribution from E -field volume V surface A E dA Gauss’ Law: dV to look locally: observe local volume element dV at (xyz) X Y Z
  • 4.
    The E-flux through dV (1) d   through dV = d   through left & right sides + d   through top & bottom sides + d   through front & back sides E Point P in dV at x,y,z. Y dy dz dx dV X Z P
  • 5.
    The E-flux through dV (2) Calculate d   through right side: d   = E.dA = E y .dxdz at ( x,y+dy /2, z ) Calculate d   through left side: d   = E.dA = - E y .dxdz at ( x,y - dy /2, z ) dV X Y Z dy dz dx E P Point P in dV at x,y,z.
  • 6.
    The E-flux through dV (3) Net flux d   through left - right side of dV : Point P in dV at x,y,z. P y y+ 1/2 dy y- 1/2 dy d   = E y .dxdz at ( x,y + dy /2, z ) - E y .dxdz at ( x,y - dy /2, z ) E y E y = f (y)
  • 7.
    The E-flux through dV (4) Net flux d   : left/right: analogously: top/bottom: and front/back: dV X Z dy dz dx E P Y
  • 8.
    The E-flux through dV (5) Net flux d   through dV : DEFINITION DIVERGENCE div : dV X Z dy dz dx E P Y
  • 9.
    Local expression forGauss’ Law enclosed charge in dV :   dV Gauss’ Law in local form: where E and  are f (x,y,z) volume V surface A E dA dV element dV :
  • 10.
    From “local” to“integral” summation over all elements: volume V surface A E dA dV element dV : all “internal” d  E ’s cancel d  E ’s at surface A remain only !
  • 11.
    How to usethe laws ? Integral expression: from   to E, but in symmetrical situations only ! div E (x,y,z) =  (x,y,z) /   Differential (local) expression: from E (x,y,z) to  (x,y,z) . volume V surface A E dA
  • 12.
    Physical meaning of div Divergence = local “micro”-flux per unit of volume [m 3 ] volume V surface A E dA
  • 13.
    “ Gauss” ingeneral in accordance with general relation for a vector X : the end volume V surface A E dA