SlideShare a Scribd company logo
1 of 12
Download to read offline
www.ajms.com 59
ISSN 2581-3463
RESEARCH ARTICLE
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP
Voltage Differencing Inverting Buffered Amplifier Manufactured
E. L. Pankratov1,2
1
Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue,
Nizhny Novgorod, 603950, Russia, 2
Department of Higher Mathematics, Nizhny Novgorod State Technical
University, 24 Minin Street, Nizhny Novgorod, 603950, Russia
Received: 30-05-2019; Revised: 28-06-2019; Accepted: 27-07-2019
ABSTRACT
Inthispaper,weintroduceanapproachtodecreasethedimensionsofCMOPvoltagedifferencinginverting
buffered amplifier based on field-effect heterotransistors by increasing density of elements. Dimensions
of the elements will be decreased due to manufacture heterostructure with a specific structure, doping of
required areas of the heterostructure by diffusion or ion implantation, and optimization of annealing of
dopant and/or radiation defects.
Key words: CMOP voltage differencing inverting buffered amplifier, increasing integration rate of
field-effect heterotransistors, optimization of manufacturing
INTRODUCTION
At present, density of the elements of integrated circuits and their performance intensively increases.
Simultaneously, with increasing of the density of the elements of an integrated circuit, their dimensions
decrease. One way to decrease dimensions of these elements of these integrated circuits is manufacturing
of these elements in thin-film heterostructures.[1-4]
An alternative approach to decrease the dimensions
of the elements of integrated circuits is using laser and microwave types annealing.[5-7]
Using these
types of annealing lead to generation inhomogeneous distribution of temperature. Due to Arrhenius law
the inhomogeneity of the diffusion coefficient and other parameters of process dimensions of elements
of integrated circuits decreases. The inhomogeneity gives us possibility to decrease dimensions of the
elements of integrated circuits. Changing of the properties of electronic materials could be obtained
using radiation processing of these materials.[8,9]
In this paper, we consider CMOP voltage differencing inverting buffered amplifier based on field-effect
transistorsdescribedinPushkar[Figure 1].[10]
Weassumethattheconsideredelementhasbeenmanufactured
in heterostructure from Figure 1. The heterostructure consists of a substrate and an epitaxial layer. The
epitaxial layer includes into itself several sections manufactured using another material. The sections have
been doped by diffusion or ion implantation to generation into these sections required type of conductivity
(n or p). Framework this paper, we analyzed redistribution of dopant during annealing of dopant and/or
radiation defects to formulate conditions for decreasing of dimensions of the considered amplifier.
Method of solution
We determine spatiotemporal distribution of the concentration of dopant by solving the following
boundary problem.
Address for correspondence:
E. L. Pankratov,
E-mail: elp2004@mail.ru
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 60


C x y z t
t
, , ,
( )
=
=
( )





 +
( )





 +











x
D
C x y z t
x y
D
C x y z t
y z
D
C
C C C
, , , , , , x
x y z t
z
, , ,
( )







(1)
with boundary and initial conditions
∂ ( )
∂
=
=
C x y z t
x x
, , ,
0
0,
∂ ( )
∂
=
=
C x y z t
x x Lx
, , ,
0,
∂ ( )
∂
=
=
C x y z t
y y
, , ,
0
0,(2)
∂ ( )
∂
=
=
C x y z t
y x Ly
, , ,
0,
∂ ( )
∂
=
=
C x y z t
z z
, , ,
0
0,
∂ ( )
∂
=
=
C x y z t
z x Lz
, , ,
0, C (x,y,z,0)=f (x,y,z).
Here, C(x,y,z,t) is the spatiotemporal distribution of the concentration of dopant; T is the temperature
of annealing; DС
is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends
on properties of materials and speed of heating and cooling of heterostructure (with account
Arrhenius law). Dependences of dopant diffusion coefficients could be approximated by the
following function.[9,11,12]
Figure 1: (a) Structure of considered amplifier. View from top. (b) Heterostructure with two layers and sections in the
epitaxial layer
a
b
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 61
D D x y z T
C x y z t
P x y z T
V x y z t
C L
= ( ) +
( )
( )





 +
(
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
)
)
+
( )
( )








V
V x y z t
V
* *
, , ,
ς2
2
2
,(3)
where DL
(x,y,z,T) is the spatial (due to existing several layers with different properties in heterostructure)
and temperature (due toArrhenius law) dependences of dopant diffusion coefficient; P(x,y,z,T) is the limit
of solubility of dopant; parameter g could be integer framework the following interval g∈[1,3,9]
; V(x,y,z,t)
is the spatiotemporal distribution of the concentration of radiation vacancies; V* is the equilibrium
distribution of the concentration of vacancies. Concentration dependence of dopant diffusion coefficient
has been discussed in details in Vinetskiy.[9]
It should be noted that using diffusion type of doping did not
lead to generation radiation defects and z1
= z2
= 0. We determine that spatiotemporal distributions of the
concentrations of point defects have been determined by solving the following system of equations.[11,12]
∂ ( )
∂
=
∂
∂
( )
∂ ( )
∂





 +
∂
∂
I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, , ,
,
, , ,
T
I x y z t
y
( )
∂ ( )
∂






+
∂
∂
( )
∂ ( )
∂





 − ( ) ( )
z
D x y z T
I x y z t
z
k x y z T I x y z t
I I V
, , ,
, , ,
, , , , , ,
, V
V x y z t
, , ,
( )
− ( ) ( )
k x y z T I x y z t
I I
, , , , , , ,
2
 (4)
∂ ( )
∂
=
∂
∂
( )
∂ ( )
∂





 +
∂
∂
V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, , ,
,
, , ,
T
V x y z t
y
( )
∂ ( )
∂






+
∂
∂
( )
∂ ( )
∂





 − ( ) ( )
z
D x y z T
V x y z t
z
k x y z T I x y z t
V I V
, , ,
, , ,
, , , , , ,
, V
V x y z t
, , ,
( )
− ( ) ( )
k x y z T V x y z t
V V
, , , , , , ,
2
with boundary and initial conditions
∂ ( )
∂
=
=
r x y z t
x x
, , ,
0
0,
∂ ( )
∂
=
=
r x y z t
x x Lx
, , ,
0,
∂ ( )
∂
=
=
r x y z t
y y
, , ,
0
0,
∂ ( )
∂
=
=
r x y z t
y y Ly
, , ,
0,
∂ ( )
∂
=
=
r x y z t
z z
, , ,
0
0,
∂ ( )
∂
=
=
r x y z t
z z Lz
, , ,
0, r (x,y,z,0)=fr
(x,y,z).(5)
Here, r =I,V; I (x,y,z,t) is the spatiotemporal distribution of the concentration of radiation interstitials;
Dr
(x,y,z,T) is the diffusion coefficients of radiation interstitials and vacancies; terms V2
(x,y,z,t) and
I2
(x,y,z,t) correspond to generation of divacancies and di-interstitials; kI,V
(x,y,z,T) is the parameter of
recombination of point radiation defects; kr,r
(x,y,z,T) is the parameter of generation of simplest complexes
of point radiation defects.
We determine spatiotemporal distributions of the concentrations of divacancies V
(x,y,z,t) and di-
interstitials I
(x,y,z,t) by solving the following system of equations.[11,12]








Φ Φ
Φ Φ
I I
x y z t
t x
D x y z T
x y z t
x y
D x
I I
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )








Φ
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 62
+ ( )
( )





 + ( )




z
D x y z T
x y z t
z
k x y z T I x y z
I
I
I I
Φ
Φ
, , ,
, , ,
, , , , , ,
,
2
t
t k x y z T I x y z t
I
( )− ( ) ( )
, , , , , , (6)








Φ Φ
Φ Φ
V V
x y z t
t x
D x y z T
x y z t
x y
D x
V V
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )








Φ
+ ( )
( )





 + ( )




z
D x y z T
x y z t
z
k x y z T V x y z
V
V
V V
Φ
Φ
, , ,
, , ,
, , , , , ,
,
2
t
t k x y z T V x y z t
V
( )− ( ) ( )
, , , , , ,
with boundary and initial conditions
∂ ( )
∂
=
=
Φr x y z t
x x
, , ,
0
0,
∂ ( )
∂
=
=
Φr x y z t
x x Lx
, , ,
0,
∂ ( )
∂
=
=
Φr x y z t
y y
, , ,
0
0,
∂ ( )
∂
=
=
Φr x y z t
y y Ly
, , ,
0,
∂ ( )
∂
=
=
Φr x y z t
z z
, , ,
0
0,
∂ ( )
∂
=
=
Φr x y z t
z z Lz
, , ,
0, (7)
I
(x,y,z,0)=fI
(x,y,z), V
(x,y,z,0)=fV
(x,y,z).
Here, DFr
(x,y,z,T) is the diffusion coefficients of complexes of radiation defects; kr
(x,y,z,T) is the
parameters of decay of complexes of radiation defects.
We determine spatiotemporal distributions of the concentrations of dopant and radiation defects using the
method of averaging of function corrections[13]
with decreased quantity of iteration steps.[14]
Framework
the approach, we used solutions of Equations (1), (4), and (6) in linear form and with averaged values
of diffusion coefficients D0L
, D0I
, D0V
, D0FI
, and D0FV
as initial order approximations of the required
concentrations. The solutions could be written as
C x y z t
F
L L L L L L
F c x c y c z e t
C
x y z x y z
nC n n n nC
n
1
0
1
2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑ ,
I x y z t
F
L L L L L L
F c x c y c z e t
I
x y z x y z
nI n n n nI
n
1
0
1
2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑ ,
V x y z t
F
L L L L L L
F c x c y c z e t
C
x y z x y z
nC n n n nV
n
1
0
1
2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑ ,
Φ
Φ
Φ Φ
V
x y z x y z
n n n n n
n
x y z t
F
L L L L L L
F c x c y c z e t
V
V V
1
0 2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
=
∞
∑
1
,
where e t n D t
L L L
n
x y z
ρ ρ
π
( ) = − + +














exp 2 2
0 2 2 2
1 1 1
, F c u c v c v f u v w d wd v d u
n n n n
L
L
L z
y
x
r r
= ( ) ( ) ( ) ( )
∫
∫
∫ , ,
0
0
0
,
cn
(c) = cos (p n c/Lc
).
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 63
The second-order approximations and approximations with higher orders of the concentrations of
dopant and radiation defects, we determine framework standard iterative procedure.[13,14]
Framework
this procedure to calculate approximations with the n-order, one should replace the functions C(x,y,z,t),
I(x,y,z,t),V(x,y,z,t),I
(x,y,z,t),V
(x,y,z,t)intherightsidesoftheEquations(1),(4),and(6)onthefollowing
sums anr
+rn-1
(x,y,z, t). As an example, we present equations for the second-order approximations of the
considered concentrations.
∂
∂
∂
∂
ς ς
C x y z t
t x
V x y z t
V
V x y z t
V
2
1 2
2
2
1
, , , , , , , , ,
( )
= +
( )
+
( )
( )





∗ ∗




+
+ ( )

 

( )














1
2 1
ξ
α
γ
γ
C C x y z t
P x y z T
, , ,
, , ,
× ( )
( )

 + ( ) +
( )
D x y z T
C x y z t
x y
D x y z T
V x y z t
L L
, , ,
, , ,
, , ,
, , ,
∂
∂
∂
∂
ς
1
1
1
V
V
V x y z t
V
∗ ∗
+
( )
( )












ς2
2
2
, , ,
× +
+ ( )

 

( )










( )
1
2 1 1
ξ
α ∂
∂
γ
γ
C C x y z t
P x y z T
C x y z t
, , ,
, , ,
, , ,
y
y z
D x y z T
C x y z t
z
L




+ ( )
( )



∂
∂
∂
∂
, , ,
, , ,
1
× +
( )
+
( )
( )








+
+
∗ ∗
1 1
1 2
2
2
2 1
ς ς ξ
α
V x y z t
V
V x y z t
V
C x y z
C
, , , , , , , , ,
,
, , ,
t
P x y z T
( )

 

( )














γ
γ
(8)
( )
( )
( )
( )
( )
( )
( )
( ) ( )
( ) ( ) ( )
( )
2 1 1
1
2 1 2 1
2
, , 2 1
2
, , , , , , , , ,
, , , , , ,
, , ,
, , , , , , , , ,
, , , , , , , , ,
, , ,
   
+
   
   
 
   
+ − + +
     
 
 
× − +
 
=
I I
I I V
I V I I I
V
I x y z t I x y z t I x y z t
D x y z T D x y z T
t x x y y
I x y z t
D x y z T I x y z t V x y z t
z z
k x y z T k x y z T I x y z t
V x y z t
D
t x
  
 
    


a a
 
a
 
 
( )
( )
( )
( )
( )
( )
( ) ( )
( ) ( ) ( )
1 1
1
2 1 2 1
2
, , 2 1
, , , , , ,
, , , , , ,
, , ,
, , , , , , , , ,
, , , , , , , , ,









   
 +
   

   

  
   
+ − + +
      
 


 
× − +
 

V
V I V
I V V V V
V x y z t V x y z t
x y z T D x y z T
x y y
V x y z t
D x y z T I x y z t V x y z t
z z
k x y z T k x y z T V x y z t
 

  


a a
 
a
(9)
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( ) ( )
( )
( )
( )
2 1
1 1
,
2
2 1
, , , , , ,
, , , , , ,
, , , , , ,
, , , , , ,
, , , , , , , , ,
, , , , , ,
, , ,
Φ Φ
Φ
Φ
 
Φ Φ 
+
  

 
  
Φ Φ
× + +
  
  
× −
 
Φ Φ
+
 
 
I I
I
V
I I
I I
I I
I
V V
x y z t x y z t
D x y z T D x y z T
t x x y
x y z t x y z t
D x y z T k x y z T
y z z
I x y z t k x y z T I x y z t
x y z t x y z t
D x y z T
t x x
 
 
   
 

  
 

  
( )
( )
( )
( )
( )
( ) ( ) ( )
1 1
,
2
, , ,
, , , , , ,
, , , , , ,
, , , , , , , , ,
Φ
Φ












 

   
Φ Φ
× + +
   
  

× −

V
V
I V
V V
V
D x y z T
y
x y z t x y z t
D x y z T k x y z T
y z z
V x y z t k x y z T V x y z t


 

  
(10)
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 64
Integration of the left and right sides of Equations (8)–(10) gives us possibility to obtain relations
for the second-order approximations of the concentrations of dopant and radiation defects in final
form.
C x y z t
x
V x y z
V
V x y z
V
2 1 2
2
2
1
, , ,
, , , , , ,
( ) = +
( )
+
( )
( )








∗ ∗
∂
∂
ς
τ
ς
τ
1
1
2 1
0
+
+ ( )

 

( )














∫ ξ
α τ
γ
γ
C
t
C x y z
P x y z T
, , ,
, , ,
× ( )
( )

 + +
( )
+
∗
D x y z T
C x y z
x
d
y
V x y z
V
V x
L , , ,
, , , , , , ,
∂ τ
∂
τ
∂
∂
ς
τ
ς
1
1 2
2
1
y
y z
V
t
, ,τ
( )
( )











 ∗
∫ 2
0
× ( ) +
+ ( )

 

( )










D x y z T
C x y z
P x y z T
C
L
C
, , ,
, , ,
, , ,
1
2 1
ξ
α τ ∂
γ
γ
1
1
0
x y z
y
d
z
D x y z T
L
t
, , ,
, , ,
τ
∂
τ
∂
∂
( ) 



+ ( )


∫
× +
( )
+
( )
( )








+
+
∗ ∗
1 1
1 2
2
2
2 1
ς
τ
ς
τ
ξ
α
V x y z
V
V x y z
V
C x y z
C
, , , , , , , , ,
,
, , ,
, , ,
τ ∂ τ
∂
τ
γ
γ
( )

 

( )










( ) 



P x y z T
C x y z
z
d
1
+ ( )
f x y z
C , , (8a)
I x y z t
x
D x y z T
I x y z
x
d
y
D x
I
t
I
2
1
0
, , , , , ,
, , ,
( ) = ( )
( )





 +
∫
∂
∂
∂ τ
∂
τ
∂
∂
,
, , ,
y z T
t
( )


∫
0
×
( ) 

 + ( )
( )




∫
∂ τ
∂
τ
∂
∂
∂ τ
∂
τ
I x y z
y
d
z
D x y z T
I x y z
z
d
I
t
1 1
0
, , ,
, , ,
, , ,


 − ( )
∫k x y z T
I I
t
, , , ,
0
× + ( )

 
 + ( )− ( ) +
α τ τ α
2 1
2
2 1
I I I V I
I x y z d f x y z k x y z T I x y z
, , , , , , , , , ,
, ,
,τ
( )

 

∫
0
t
× + ( )

 

α τ τ
2 1
V V x y z d
, , , (9a)
V x y z t
x
D x y z T
V x y z
x
d
y
D x
V
t
V
2
1
0
, , , , , ,
, , ,
( ) = ( )
( )





 +
∫
∂
∂
∂ τ
∂
τ
∂
∂
,
, , ,
y z T
t
( )


∫
0
×
( ) 

 + ( )
( )




∫
∂ τ
∂
τ
∂
∂
∂ τ
∂
τ
V x y z
y
d
z
D x y z T
V x y z
z
d
V
t
1 1
0
, , ,
, , ,
, , ,


 − ( )
∫k x y z T
V V
t
, , , ,
0
× + ( )

 
 + ( )− ( ) +
α τ τ α
2 1
2
2 1
I V I V I
V x y z d f x y z k x y z T I x y z
, , , , , , , , , ,
, ,
,τ
( )

 

∫
0
t
× + ( )

 

α τ τ
2 1
V V x y z d
, , ,
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 65
Φ
Φ
Φ
I
I
t
x y z t
x
D x y z T
x y z
x
d
y
I
2
1
0
, , , , , ,
, , ,
( ) = ( )
( )





 +
∫
∂
∂
∂ τ
∂
τ
∂
∂
D
D x y z T
I
t
Φ , , ,
( )


∫
0
×
( ) 

 + ( )
( )

∫
∂ τ
∂
τ
∂
∂
∂ τ
∂
τ
Φ Φ
Φ
I I
t
x y z
y
d
z
D x y z T
x y z
z
d
I
1 1
0
, , ,
, , ,
, , ,





 + ( )
∫k x y z T
I I
t
, , , ,
0
× ( ) − ( ) ( ) + ( )
∫
I x y z d k x y z T I x y z d f x y z
I
t
I
2
0
, , , , , , , , , , ,
    Φ (10a)
Φ
Φ
Φ
V
V
t
x y z t
x
D x y z T
x y z
x
d
y
V
2
1
0
, , , , , ,
, , ,
( ) = ( )
( )





 +
∫
∂
∂
∂ τ
∂
τ
∂
∂
D
D x y z T
V
t
Φ , , ,
( )


∫
0
×
( ) 

 + ( )
( )

∫
∂ τ
∂
τ
∂
∂
∂ τ
∂
τ
Φ Φ
Φ
I V
t
x y z
y
d
z
D x y z T
x y z
z
d
V
1 1
0
, , ,
, , ,
, , ,





 + ( )
∫k x y z T
V V
t
, , , ,
0
× ( ) − ( ) ( ) + ( )
∫
V x y z d k x y z T V x y z d f x y z
V
t
V
2
0
, , , , , , , , , , ,
    Φ
We determine average values of the second-order approximations of the considered concentrations using
the following standard relations.[13,14]
α ρ ρ
ρ
2 2 1
0
0
0
1
= ( )− ( )

 

∫
∫
ΘL L L
x y z t x y z t d z d y d x d t
x y z
L
L
L z
y
x
, , , , , ,
∫
∫
∫
0
Θ
.(11)
Substitution of relations (8a)–(10a) into relation (11) gives us possibility to obtain relations for the
required average values a2r
a2
0
0
0
1
C
x y z
C
L
L
L
L L L
f x y z d z d y d x
z
y
x
= ( )
∫
∫
∫ , , ,(12)
a a a
2
00
01 10 2 00
2
00 2 10 20
1
2
1 4
I
II
IV II V IV II V IV II
A
A A A A A A
= + + +
( ) − − + A
AIV11
[
{
− ( )









−
+ +
∫
∫
∫
1 1
0
0
0
1
2
01
L L L
f x y z d z d y d x
A A
x y z
I
L
L
L
IV II
z
y
x
, , 1
10 2 00
00
2
+a V IV
II
A
A
(13a)
a2
4
3
2
4
3 1 3
4
1
2 4
4
4
V
B
B A
B y
B y B
A
B A
B
=
+
( ) − +
−





 −
+
,(13b)
where A
L L L
t k x y z T I x y z t V x y z t d z
abij
x y z
a b
i j
= −
( ) ( ) ( ) ( )
1
1 1
Θ
Θ , , , , , , , , , , d
d y d x d t
L
L
L z
y
x
0
0
0
0
∫
∫
∫
∫
Θ
,
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 66
B A A A A A
IV IV IV II VV
4 00
2
00
2
00
2
00 00
2
2
= − −
( ) , B A A A A A A A
IV IV IV IV IV II IV
3 00 00
2
01 00
3
00 10 00
2
= + +
− −
( ) + + +
( )−
4 2 2 1 2
00
2
00 00 01 00 00 01 10
A A A A A A A A A
IV II VV IV IV IV IV II II
I IV VV
A A
00 10 10 1
+ +
( )

 

− +
4 2
10 00 00
2
00 01 00
2
A A A A A A
IV II IV IV IV IV , B A A A A A A
IV IV II IV IV IV
2 00
2
01 10
2
00
2
01
2
00
1
= + +
( ) +
{ +
× + + −
( )−
2 4 4
00 00 00 01 00 10 10 00 00
A A A A A A A A A A
IV IV IV IV IV II IV II II IV1
11 20
1
− −




A
L L L
II
x y z
× ( )









+ +
∫
∫
∫ f x y z d z d y d x A A A A
I
L
L
L
IV IV IV
z
y
x
, ,
0
0
0
01 00 00
2 2 1 I
IV II II IV
A A A
01 10 00 10
2 1
+
( )− +
(


{
+ )
 + + +
( )+ ( )
A A A A
L L L
f x y z d z d y d x
VV IV IV II
x y z
V
Lz
10
2
01 01 10
0
2 1
2
, ,
∫
∫
∫
∫ − (



 0
0
00 20
2
L
L
II VV
y
x
A A
− )+ + +
( )
 + +
( )+
A A A A A A A A
IV IV IV II IV IV II IV
11 01 01 10 00 01 10 01
1 2 1 2 A
A A A
IV II IV
00 00 10
2 1
− + +
(


+ )
}
AVV10 , B A A A A A
L
f x y z d z d y d x
IV IV IV II IV
x
I
L
1 00 01 01 10
2
11
0
2 1 8
1
= + +
( ) − − ( )
, ,
z
z
y
x
L
L
∫
∫
∫



 0
0
× −




+ + + +
1
20 00 01 00 01
2
00 00 01
L L
A A A A A A A A A
y z
II IV IV II IV IV IV IV IV
V II IV II
A A A
00 10 10 00
4
−
( )
− ( ) + + +
∫
∫
∫
2
2
1
00
0
0
0
01 01
A
L L L
f x y z d z d y d x A A A
II
x y z
I
L
L
L
IV IV II
z
y
x
, , 1
10 00 20 11
2
( )− −
( )




A A A
II VV IV
+ + +
( )
 + +
( )− + +
A A A A A A A A
IV IV II IV IV II IV VV
01 01 10 00 01 10 10 10
1 2 1 2 1
1 2
00 01 00
( ) +

 

A A A
II IV IV ,
B A A A
L L L
f x y z d z d y d x A
II IV II
x y z
I
L
L
L
I
z
y
x
0 00 01
2
20
0
0
0
4
1
= + ( ) −
∫
∫
∫ , , V
V IV IV II
A A A
11 01
2
01 10








+ +
(
+ ) − ( ) + + +
∫
∫
∫
1
2
1
2 00
0
0
0
01 01
A
L L L
f x y z d z d y d x A A
II
x y z
V
L
L
L
IV IV
z
y
x
, , A
A A A A
II II VV IV
10 00 20 11
2
( )− −
( )




+ + +
( )

A A A
IV IV II
01 01 10
2
1 , y q p q q p q
B
= + − − + + +
2 3
3 2 3
3 2
6
, q B B B
= −
( )
2 8
1 3 0
× + +
−
( )−
B B B B B B
2 2
3
0 2 3
2
1
2
48 216
4
8
, p B B B B
= −
( )−

 

3 2 8 2 72
1 3 0 2
2
, A y B B
= + −
8 4
3
2
2 ,
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 67
a2 20
0
0
1
Φ
Θ
Θ
I
z
A
L L L
t k x y z T I x y z t d z d y d xd t
II
x y z
I
L
= − −
( ) ( ) ( )
∫ , , , , , ,
L
L
L y
x
∫
∫
∫ +
0
0
Θ
+ ( )
∫
∫
∫
1
0
0
0
L L L
f x y z d z d y d x
x y z
I
L
L
L z
y
x
Φ , , (14)
a2 20
0
0
1
Φ
Θ
Θ
V
z
A
L L L
t k x y z T V x y z t d z d y d xd t
VV
x y z
V
L
= − −
( ) ( ) ( )
∫ , , , , , ,
L
L
L y
x
∫
∫
∫ 0
0
Θ
+ ( )
∫
∫
∫
1
0
0
0
L L L
f x y z d z d y d x
x y z
V
L
L
L z
y
x
Φ , , .
The considered substitution gives us possibility to obtain the equation for parameter a2C
. Solution of the
equation depends on value of parameter g. Analysis of spatiotemporal distributions of concentrations
of dopant and radiation defects has been done using their second-order approximations framework the
method of averaged of function corrections with decreased quantity of iterative steps. The second-order
approximation is usually enough good approximation to make qualitative analysis and obtain some
quantitative results. Results of analytical calculation have been checked by comparison with results of
numerical simulation.
DISCUSSION
In this section, we analyzed the spatiotemporal distribution of the concentration of dopant in the
considered heterostructure during annealing. Figure 2 shows spatial distributions of concentrations of
dopants infused [Figure 2a] or implanted [Figure 2b] in epitaxial layer. Value of annealing time is equal
for all distributions framework every Figure 2a and b. Increasing of the number of curves corresponds
to increasing of difference between values of dopant diffusion coefficients in layers of heterostructure.
Figure 2: (a) Distributions of the concentration of infused dopant in heterostructure from Figures 1 and 2 in direction,
which is perpendicular to interface between epitaxial layer substrate. Increasing of the number of curve corresponds
to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under condition
when the value of dopant diffusion coefficient in epitaxial layer is larger the than value of dopant diffusion coefficient in
substrate. (b) Distributions of the concentration of implanted dopant in heterostructure from Figures 1 and 2 in direction,
which is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 correspond to annealing time Q
= 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 2 and 4 correspond to annealing time Q = 0.0057(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 1 and 2
correspond to homogeneous sample. Curves 3 and 4 correspond to heterostructure under condition when the value of
dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate
a b
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 68
The figures show that the presence of interface between layers of heterostructure gives us possibility to
increase absolute value of gradient of the concentration of dopant in direction, which is perpendicular
to the interface. We obtain increasing of absolute value of the gradient in neighborhood of the interface.
Due to the increasing, one can obtain decreasing dimensions of transistors, which have been used in the
amplifier. At the same time, with increasing of the gradient homogeneity of the concentration of dopant
in enriched area increases.
To choose annealing time, it should be accounted decreasing of absolute value of gradient of concentration
of dopant in neighborhood of interface between substrate and epitaxial layer with increasing of annealing
time. Decreasing of the value of annealing time leads to decreasing of homogeneity of the concentration
of dopant in enriched area (Figure 3a for diffusion doping of materials and Figure 3b for ion doping
Figure 3: (a) Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of
dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing of the number of curve
corresponds to increasing of annealing time. (b) Spatial distributions of dopant in heterostructure after ion implantation.
Curve 1 is idealized distribution of dopant. Curves 2–4 are real distributions of dopant for different values of annealing
time. Increasing of the number of curve corresponds to increasing of annealing time
a b
Figure 4: (a) Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by
minimization of mean squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time
on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure.
Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L=1/2 and x = g = 0. Curve
3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L =1/2 and e = g = 0. Curve 4 is
the dependence of dimensionless optimal annealing time on value of parameter g for a/L=1/2 and e = x = 0. (b) Dependences
of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean
squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and
x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence
of dimensionless optimal annealing time on value of parameter e for a/L=1/2 and x = g = 0. Curve 3 is the dependence of
dimensionless optimal annealing time on value of parameter x for a/L =1/2 and e = g = 0. Curve 4 is the dependence of
dimensionless optimal annealing time on value of parameter g for a/L=1/2 and e = x = 0
a b
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 69
of materials). Let us determine, compromise value of annealing time framework recently introduced
criteria.[15-20]
Framework the criteria, we approximate real distributions of the concentration of dopant
by ideal rectangle distribution y (x,y,z). Farther, we determine compromise value of annealing time by
minimization of the mean squared error.
U
L L L
C x y z x y z d z d y d x
x y z
L
L
L z
y
x
= ( )− ( )

 

∫
∫
∫
1
0
0
0
, , , , ,
Θ y .(8)
Dependences of optimal annealing time are presented in Figure 4 for diffusion and ion types of doping,
respectively. It should be noted that it is necessary to anneal radiation defects after ion implantation. One
could find spreading of the concentration of distribution of dopant during this annealing. In the ideal
case, distribution of dopant achieves appropriate interfaces between materials of heterostructure during
annealing of radiation defects. If dopant did not achieve any interfaces during annealing of radiation
defects, it is practicably to additionally anneal the dopant. In this situation, optimal value of additional
annealing time of implanted dopant is smaller than annealing time of infused dopant. At the same time,
ion type of doping gives us possibility to decrease mismatch-induced stress in heterostructure.[21]
CONCLUSION
In this paper, we model redistribution of infused and implanted dopants during manufacture CMOP
voltage differencing inverting buffered amplifier based on field-effect heterotransistors. Several
recommendations to optimize manufacture the heterotransistors have been formulated. Analytical
approach to model diffusion and ion types of doping with account concurrent changing of parameters
in space and time has been introduced. At the same time, the approach gives us possibility to take into
account nonlinearity of doping processes.
REFERENCES
1.	 Volovich G. Modern chips UM3Ch class D manufactured by firm MPS. Mod Electron 2006;2:10.
2.	 Kerentsev A, Lanin V. Design and technological features of MOSFETs. Power Electron 2008;1:34.
3.	 AgeevAO, BelyaevAE, Boltovets NS, Ivanov VN, Konakova RV, KudrikYY, et al.Au-TiB x -n-6H-SiC Schottky barrier
diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors 2009;43:897.
4.	 Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. Investigation of
technological processes of manufacturing of the bipolar power highvoltage transistors with a grid of inclusions in the
collector region. Semiconductors 2001;35:1013.
5.	 Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the
maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111.
6.	 Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2005;98:94901.
7.	 Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in
semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836.
8.	 Kozlivsky VV. Modification of Semiconductors by Proton Beams. Sant-Peterburg: Nauka; 2003.
9.	 Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979.
10.	 Pushkar KL, Singh G, Goel RK. CMOS VDIBAs-Based Single-Resistance-Controlled Voltage-Mode Sinusoidal
Oscillator. Circuits Syst 2017;8:14-22.
11.	 Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991.
12.	 Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289.
13.	 Sokolov YD. About the definition of dynamic forces in the mine lifting. Appl Mech 1955;1:23.
14.	 Pankratov EL. Dynamics of δ-dopant redistribution during heterostructure growth. Eur Phys J B 2007;57:251-56.
15.	 Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusioncoefficient nonuniformity.
Russ Microelectron 2007;36:33.
16.	 Pankratov EL. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for
production an implanted-junction rectifiers. Int J Nanosci 2008;7:187.
17.	 Pankratov EL. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser
annealing. J Comput Theor Nanosci 2010;7:289.
18.	 Pankratov EL, Bulaeva EA. Application of native inhomogeneities to increase compactness of vertical field-effect
transistors. J Comput Theor Nanosci 2013;10:888.
Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier
AJMS/Jul-Sep-2019/Vol 3/Issue 3 70
19.	 Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of
optimization. Int J Micro-Nano Scale Transp 2014;4:17-31.
20.	 Pankratov EL, Bulaeva EA. Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing.
Int J Nanosci 2012;11:1250028.
21.	 Pankratov EL, Bulaeva EA. Decreasing of mechanical stress in a semiconductor heterostructure by radiation processing.
J Comput Theor Nanosci 2014;11:91.

More Related Content

What's hot

An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitBRNSS Publication Hub
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ijoejournal
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...BRNSS Publication Hub
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...Alexander Decker
 
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...BRNSS Publication Hub
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...YogeshIJTSRD
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...jedt_journal
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...IOSR Journals
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...antjjournal
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 

What's hot (18)

An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 

Similar to On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP Voltage Differencing Inverting Buffered Amplifier Manufactured

On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ijfcstjournal
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 

Similar to On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP Voltage Differencing Inverting Buffered Amplifier Manufactured (20)

3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
4_AJMS_223_19_RA.pdf
4_AJMS_223_19_RA.pdf4_AJMS_223_19_RA.pdf
4_AJMS_223_19_RA.pdf
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...BRNSS Publication Hub
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHSBRNSS Publication Hub
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRABRNSS Publication Hub
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERSBRNSS Publication Hub
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationBRNSS Publication Hub
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...BRNSS Publication Hub
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseBRNSS Publication Hub
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...BRNSS Publication Hub
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...BRNSS Publication Hub
 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
 

Recently uploaded

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 

Recently uploaded (20)

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 

On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP Voltage Differencing Inverting Buffered Amplifier Manufactured

  • 1. www.ajms.com 59 ISSN 2581-3463 RESEARCH ARTICLE On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP Voltage Differencing Inverting Buffered Amplifier Manufactured E. L. Pankratov1,2 1 Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 2 Department of Higher Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia Received: 30-05-2019; Revised: 28-06-2019; Accepted: 27-07-2019 ABSTRACT Inthispaper,weintroduceanapproachtodecreasethedimensionsofCMOPvoltagedifferencinginverting buffered amplifier based on field-effect heterotransistors by increasing density of elements. Dimensions of the elements will be decreased due to manufacture heterostructure with a specific structure, doping of required areas of the heterostructure by diffusion or ion implantation, and optimization of annealing of dopant and/or radiation defects. Key words: CMOP voltage differencing inverting buffered amplifier, increasing integration rate of field-effect heterotransistors, optimization of manufacturing INTRODUCTION At present, density of the elements of integrated circuits and their performance intensively increases. Simultaneously, with increasing of the density of the elements of an integrated circuit, their dimensions decrease. One way to decrease dimensions of these elements of these integrated circuits is manufacturing of these elements in thin-film heterostructures.[1-4] An alternative approach to decrease the dimensions of the elements of integrated circuits is using laser and microwave types annealing.[5-7] Using these types of annealing lead to generation inhomogeneous distribution of temperature. Due to Arrhenius law the inhomogeneity of the diffusion coefficient and other parameters of process dimensions of elements of integrated circuits decreases. The inhomogeneity gives us possibility to decrease dimensions of the elements of integrated circuits. Changing of the properties of electronic materials could be obtained using radiation processing of these materials.[8,9] In this paper, we consider CMOP voltage differencing inverting buffered amplifier based on field-effect transistorsdescribedinPushkar[Figure 1].[10] Weassumethattheconsideredelementhasbeenmanufactured in heterostructure from Figure 1. The heterostructure consists of a substrate and an epitaxial layer. The epitaxial layer includes into itself several sections manufactured using another material. The sections have been doped by diffusion or ion implantation to generation into these sections required type of conductivity (n or p). Framework this paper, we analyzed redistribution of dopant during annealing of dopant and/or radiation defects to formulate conditions for decreasing of dimensions of the considered amplifier. Method of solution We determine spatiotemporal distribution of the concentration of dopant by solving the following boundary problem. Address for correspondence: E. L. Pankratov, E-mail: elp2004@mail.ru
  • 2. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 60   C x y z t t , , , ( ) = = ( )       + ( )       +            x D C x y z t x y D C x y z t y z D C C C C , , , , , , x x y z t z , , , ( )        (1) with boundary and initial conditions ∂ ( ) ∂ = = C x y z t x x , , , 0 0, ∂ ( ) ∂ = = C x y z t x x Lx , , , 0, ∂ ( ) ∂ = = C x y z t y y , , , 0 0,(2) ∂ ( ) ∂ = = C x y z t y x Ly , , , 0, ∂ ( ) ∂ = = C x y z t z z , , , 0 0, ∂ ( ) ∂ = = C x y z t z x Lz , , , 0, C (x,y,z,0)=f (x,y,z). Here, C(x,y,z,t) is the spatiotemporal distribution of the concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends on properties of materials and speed of heating and cooling of heterostructure (with account Arrhenius law). Dependences of dopant diffusion coefficients could be approximated by the following function.[9,11,12] Figure 1: (a) Structure of considered amplifier. View from top. (b) Heterostructure with two layers and sections in the epitaxial layer a b
  • 3. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 61 D D x y z T C x y z t P x y z T V x y z t C L = ( ) + ( ) ( )       + ( , , , , , , , , , , , , 1 1 1 ξ ς γ γ ) ) + ( ) ( )         V V x y z t V * * , , , ς2 2 2 ,(3) where DL (x,y,z,T) is the spatial (due to existing several layers with different properties in heterostructure) and temperature (due toArrhenius law) dependences of dopant diffusion coefficient; P(x,y,z,T) is the limit of solubility of dopant; parameter g could be integer framework the following interval g∈[1,3,9] ; V(x,y,z,t) is the spatiotemporal distribution of the concentration of radiation vacancies; V* is the equilibrium distribution of the concentration of vacancies. Concentration dependence of dopant diffusion coefficient has been discussed in details in Vinetskiy.[9] It should be noted that using diffusion type of doping did not lead to generation radiation defects and z1 = z2 = 0. We determine that spatiotemporal distributions of the concentrations of point defects have been determined by solving the following system of equations.[11,12] ∂ ( ) ∂ = ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , , , , , , T I x y z t y ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ ( ) ∂       − ( ) ( ) z D x y z T I x y z t z k x y z T I x y z t I I V , , , , , , , , , , , , , V V x y z t , , , ( ) − ( ) ( ) k x y z T I x y z t I I , , , , , , , 2 (4) ∂ ( ) ∂ = ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , , , , , , T V x y z t y ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ ( ) ∂       − ( ) ( ) z D x y z T V x y z t z k x y z T I x y z t V I V , , , , , , , , , , , , , V V x y z t , , , ( ) − ( ) ( ) k x y z T V x y z t V V , , , , , , , 2 with boundary and initial conditions ∂ ( ) ∂ = = r x y z t x x , , , 0 0, ∂ ( ) ∂ = = r x y z t x x Lx , , , 0, ∂ ( ) ∂ = = r x y z t y y , , , 0 0, ∂ ( ) ∂ = = r x y z t y y Ly , , , 0, ∂ ( ) ∂ = = r x y z t z z , , , 0 0, ∂ ( ) ∂ = = r x y z t z z Lz , , , 0, r (x,y,z,0)=fr (x,y,z).(5) Here, r =I,V; I (x,y,z,t) is the spatiotemporal distribution of the concentration of radiation interstitials; Dr (x,y,z,T) is the diffusion coefficients of radiation interstitials and vacancies; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation of divacancies and di-interstitials; kI,V (x,y,z,T) is the parameter of recombination of point radiation defects; kr,r (x,y,z,T) is the parameter of generation of simplest complexes of point radiation defects. We determine spatiotemporal distributions of the concentrations of divacancies V (x,y,z,t) and di- interstitials I (x,y,z,t) by solving the following system of equations.[11,12]         Φ Φ Φ Φ I I x y z t t x D x y z T x y z t x y D x I I , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )         Φ
  • 4. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 62 + ( ) ( )       + ( )     z D x y z T x y z t z k x y z T I x y z I I I I Φ Φ , , , , , , , , , , , , , 2 t t k x y z T I x y z t I ( )− ( ) ( ) , , , , , , (6)         Φ Φ Φ Φ V V x y z t t x D x y z T x y z t x y D x V V , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )         Φ + ( ) ( )       + ( )     z D x y z T x y z t z k x y z T V x y z V V V V Φ Φ , , , , , , , , , , , , , 2 t t k x y z T V x y z t V ( )− ( ) ( ) , , , , , , with boundary and initial conditions ∂ ( ) ∂ = = Φr x y z t x x , , , 0 0, ∂ ( ) ∂ = = Φr x y z t x x Lx , , , 0, ∂ ( ) ∂ = = Φr x y z t y y , , , 0 0, ∂ ( ) ∂ = = Φr x y z t y y Ly , , , 0, ∂ ( ) ∂ = = Φr x y z t z z , , , 0 0, ∂ ( ) ∂ = = Φr x y z t z z Lz , , , 0, (7) I (x,y,z,0)=fI (x,y,z), V (x,y,z,0)=fV (x,y,z). Here, DFr (x,y,z,T) is the diffusion coefficients of complexes of radiation defects; kr (x,y,z,T) is the parameters of decay of complexes of radiation defects. We determine spatiotemporal distributions of the concentrations of dopant and radiation defects using the method of averaging of function corrections[13] with decreased quantity of iteration steps.[14] Framework the approach, we used solutions of Equations (1), (4), and (6) in linear form and with averaged values of diffusion coefficients D0L , D0I , D0V , D0FI , and D0FV as initial order approximations of the required concentrations. The solutions could be written as C x y z t F L L L L L L F c x c y c z e t C x y z x y z nC n n n nC n 1 0 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ , I x y z t F L L L L L L F c x c y c z e t I x y z x y z nI n n n nI n 1 0 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ , V x y z t F L L L L L L F c x c y c z e t C x y z x y z nC n n n nV n 1 0 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ , Φ Φ Φ Φ V x y z x y z n n n n n n x y z t F L L L L L L F c x c y c z e t V V V 1 0 2 , , , ( ) = + ( ) ( ) ( ) ( ) = = ∞ ∑ 1 , where e t n D t L L L n x y z ρ ρ π ( ) = − + +               exp 2 2 0 2 2 2 1 1 1 , F c u c v c v f u v w d wd v d u n n n n L L L z y x r r = ( ) ( ) ( ) ( ) ∫ ∫ ∫ , , 0 0 0 , cn (c) = cos (p n c/Lc ).
  • 5. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 63 The second-order approximations and approximations with higher orders of the concentrations of dopant and radiation defects, we determine framework standard iterative procedure.[13,14] Framework this procedure to calculate approximations with the n-order, one should replace the functions C(x,y,z,t), I(x,y,z,t),V(x,y,z,t),I (x,y,z,t),V (x,y,z,t)intherightsidesoftheEquations(1),(4),and(6)onthefollowing sums anr +rn-1 (x,y,z, t). As an example, we present equations for the second-order approximations of the considered concentrations. ∂ ∂ ∂ ∂ ς ς C x y z t t x V x y z t V V x y z t V 2 1 2 2 2 1 , , , , , , , , , ( ) = + ( ) + ( ) ( )      ∗ ∗     + + ( )     ( )               1 2 1 ξ α γ γ C C x y z t P x y z T , , , , , , × ( ) ( )   + ( ) + ( ) D x y z T C x y z t x y D x y z T V x y z t L L , , , , , , , , , , , , ∂ ∂ ∂ ∂ ς 1 1 1 V V V x y z t V ∗ ∗ + ( ) ( )             ς2 2 2 , , , × + + ( )     ( )           ( ) 1 2 1 1 ξ α ∂ ∂ γ γ C C x y z t P x y z T C x y z t , , , , , , , , , y y z D x y z T C x y z t z L     + ( ) ( )    ∂ ∂ ∂ ∂ , , , , , , 1 × + ( ) + ( ) ( )         + + ∗ ∗ 1 1 1 2 2 2 2 1 ς ς ξ α V x y z t V V x y z t V C x y z C , , , , , , , , , , , , , t P x y z T ( )     ( )               γ γ (8) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 1 2 1 2 1 2 , , 2 1 2 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,     +               + − + +           × − +   = I I I I V I V I I I V I x y z t I x y z t I x y z t D x y z T D x y z T t x x y y I x y z t D x y z T I x y z t V x y z t z z k x y z T k x y z T I x y z t V x y z t D t x             a a   a     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 2 1 2 1 2 , , 2 1 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,               +                  + − + +              × − +    V V I V I V V V V V x y z t V x y z t x y z T D x y z T x y y V x y z t D x y z T I x y z t V x y z t z z k x y z T k x y z T V x y z t         a a   a (9) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 1 , 2 2 1 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Φ Φ Φ Φ   Φ Φ  +          Φ Φ × + +       × −   Φ Φ +     I I I V I I I I I I I V V x y z t x y z t D x y z T D x y z T t x x y x y z t x y z t D x y z T k x y z T y z z I x y z t k x y z T I x y z t x y z t x y z t D x y z T t x x                     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 , 2 , , , , , , , , , , , , , , , , , , , , , , , , Φ Φ                    Φ Φ × + +         × −  V V I V V V V D x y z T y x y z t x y z t D x y z T k x y z T y z z V x y z t k x y z T V x y z t         (10)
  • 6. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 64 Integration of the left and right sides of Equations (8)–(10) gives us possibility to obtain relations for the second-order approximations of the concentrations of dopant and radiation defects in final form. C x y z t x V x y z V V x y z V 2 1 2 2 2 1 , , , , , , , , , ( ) = + ( ) + ( ) ( )         ∗ ∗ ∂ ∂ ς τ ς τ 1 1 2 1 0 + + ( )     ( )               ∫ ξ α τ γ γ C t C x y z P x y z T , , , , , , × ( ) ( )   + + ( ) + ∗ D x y z T C x y z x d y V x y z V V x L , , , , , , , , , , ∂ τ ∂ τ ∂ ∂ ς τ ς 1 1 2 2 1 y y z V t , ,τ ( ) ( )             ∗ ∫ 2 0 × ( ) + + ( )     ( )           D x y z T C x y z P x y z T C L C , , , , , , , , , 1 2 1 ξ α τ ∂ γ γ 1 1 0 x y z y d z D x y z T L t , , , , , , τ ∂ τ ∂ ∂ ( )     + ( )   ∫ × + ( ) + ( ) ( )         + + ∗ ∗ 1 1 1 2 2 2 2 1 ς τ ς τ ξ α V x y z V V x y z V C x y z C , , , , , , , , , , , , , , , , τ ∂ τ ∂ τ γ γ ( )     ( )           ( )     P x y z T C x y z z d 1 + ( ) f x y z C , , (8a) I x y z t x D x y z T I x y z x d y D x I t I 2 1 0 , , , , , , , , , ( ) = ( ) ( )       + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ , , , , y z T t ( )   ∫ 0 × ( )    + ( ) ( )     ∫ ∂ τ ∂ τ ∂ ∂ ∂ τ ∂ τ I x y z y d z D x y z T I x y z z d I t 1 1 0 , , , , , , , , ,    − ( ) ∫k x y z T I I t , , , , 0 × + ( )     + ( )− ( ) + α τ τ α 2 1 2 2 1 I I I V I I x y z d f x y z k x y z T I x y z , , , , , , , , , , , , ,τ ( )     ∫ 0 t × + ( )     α τ τ 2 1 V V x y z d , , , (9a) V x y z t x D x y z T V x y z x d y D x V t V 2 1 0 , , , , , , , , , ( ) = ( ) ( )       + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ , , , , y z T t ( )   ∫ 0 × ( )    + ( ) ( )     ∫ ∂ τ ∂ τ ∂ ∂ ∂ τ ∂ τ V x y z y d z D x y z T V x y z z d V t 1 1 0 , , , , , , , , ,    − ( ) ∫k x y z T V V t , , , , 0 × + ( )     + ( )− ( ) + α τ τ α 2 1 2 2 1 I V I V I V x y z d f x y z k x y z T I x y z , , , , , , , , , , , , ,τ ( )     ∫ 0 t × + ( )     α τ τ 2 1 V V x y z d , , ,
  • 7. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 65 Φ Φ Φ I I t x y z t x D x y z T x y z x d y I 2 1 0 , , , , , , , , , ( ) = ( ) ( )       + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ D D x y z T I t Φ , , , ( )   ∫ 0 × ( )    + ( ) ( )  ∫ ∂ τ ∂ τ ∂ ∂ ∂ τ ∂ τ Φ Φ Φ I I t x y z y d z D x y z T x y z z d I 1 1 0 , , , , , , , , ,       + ( ) ∫k x y z T I I t , , , , 0 × ( ) − ( ) ( ) + ( ) ∫ I x y z d k x y z T I x y z d f x y z I t I 2 0 , , , , , , , , , , ,     Φ (10a) Φ Φ Φ V V t x y z t x D x y z T x y z x d y V 2 1 0 , , , , , , , , , ( ) = ( ) ( )       + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ D D x y z T V t Φ , , , ( )   ∫ 0 × ( )    + ( ) ( )  ∫ ∂ τ ∂ τ ∂ ∂ ∂ τ ∂ τ Φ Φ Φ I V t x y z y d z D x y z T x y z z d V 1 1 0 , , , , , , , , ,       + ( ) ∫k x y z T V V t , , , , 0 × ( ) − ( ) ( ) + ( ) ∫ V x y z d k x y z T V x y z d f x y z V t V 2 0 , , , , , , , , , , ,     Φ We determine average values of the second-order approximations of the considered concentrations using the following standard relations.[13,14] α ρ ρ ρ 2 2 1 0 0 0 1 = ( )− ( )     ∫ ∫ ΘL L L x y z t x y z t d z d y d x d t x y z L L L z y x , , , , , , ∫ ∫ ∫ 0 Θ .(11) Substitution of relations (8a)–(10a) into relation (11) gives us possibility to obtain relations for the required average values a2r a2 0 0 0 1 C x y z C L L L L L L f x y z d z d y d x z y x = ( ) ∫ ∫ ∫ , , ,(12) a a a 2 00 01 10 2 00 2 00 2 10 20 1 2 1 4 I II IV II V IV II V IV II A A A A A A A = + + + ( ) − − + A AIV11 [ { − ( )          − + + ∫ ∫ ∫ 1 1 0 0 0 1 2 01 L L L f x y z d z d y d x A A x y z I L L L IV II z y x , , 1 10 2 00 00 2 +a V IV II A A (13a) a2 4 3 2 4 3 1 3 4 1 2 4 4 4 V B B A B y B y B A B A B = + ( ) − + −       − + ,(13b) where A L L L t k x y z T I x y z t V x y z t d z abij x y z a b i j = − ( ) ( ) ( ) ( ) 1 1 1 Θ Θ , , , , , , , , , , d d y d x d t L L L z y x 0 0 0 0 ∫ ∫ ∫ ∫ Θ ,
  • 8. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 66 B A A A A A IV IV IV II VV 4 00 2 00 2 00 2 00 00 2 2 = − − ( ) , B A A A A A A A IV IV IV IV IV II IV 3 00 00 2 01 00 3 00 10 00 2 = + + − − ( ) + + + ( )− 4 2 2 1 2 00 2 00 00 01 00 00 01 10 A A A A A A A A A IV II VV IV IV IV IV II II I IV VV A A 00 10 10 1 + + ( )     − + 4 2 10 00 00 2 00 01 00 2 A A A A A A IV II IV IV IV IV , B A A A A A A IV IV II IV IV IV 2 00 2 01 10 2 00 2 01 2 00 1 = + + ( ) + { + × + + − ( )− 2 4 4 00 00 00 01 00 10 10 00 00 A A A A A A A A A A IV IV IV IV IV II IV II II IV1 11 20 1 − −     A L L L II x y z × ( )          + + ∫ ∫ ∫ f x y z d z d y d x A A A A I L L L IV IV IV z y x , , 0 0 0 01 00 00 2 2 1 I IV II II IV A A A 01 10 00 10 2 1 + ( )− + (   { + )  + + + ( )+ ( ) A A A A L L L f x y z d z d y d x VV IV IV II x y z V Lz 10 2 01 01 10 0 2 1 2 , , ∫ ∫ ∫ ∫ − (     0 0 00 20 2 L L II VV y x A A − )+ + + ( )  + + ( )+ A A A A A A A A IV IV IV II IV IV II IV 11 01 01 10 00 01 10 01 1 2 1 2 A A A A IV II IV 00 00 10 2 1 − + + (   + ) } AVV10 , B A A A A A L f x y z d z d y d x IV IV IV II IV x I L 1 00 01 01 10 2 11 0 2 1 8 1 = + + ( ) − − ( ) , , z z y x L L ∫ ∫ ∫     0 0 × −     + + + + 1 20 00 01 00 01 2 00 00 01 L L A A A A A A A A A y z II IV IV II IV IV IV IV IV V II IV II A A A 00 10 10 00 4 − ( ) − ( ) + + + ∫ ∫ ∫ 2 2 1 00 0 0 0 01 01 A L L L f x y z d z d y d x A A A II x y z I L L L IV IV II z y x , , 1 10 00 20 11 2 ( )− − ( )     A A A II VV IV + + + ( )  + + ( )− + + A A A A A A A A IV IV II IV IV II IV VV 01 01 10 00 01 10 10 10 1 2 1 2 1 1 2 00 01 00 ( ) +     A A A II IV IV , B A A A L L L f x y z d z d y d x A II IV II x y z I L L L I z y x 0 00 01 2 20 0 0 0 4 1 = + ( ) − ∫ ∫ ∫ , , V V IV IV II A A A 11 01 2 01 10         + + ( + ) − ( ) + + + ∫ ∫ ∫ 1 2 1 2 00 0 0 0 01 01 A L L L f x y z d z d y d x A A II x y z V L L L IV IV z y x , , A A A A A II II VV IV 10 00 20 11 2 ( )− − ( )     + + + ( )  A A A IV IV II 01 01 10 2 1 , y q p q q p q B = + − − + + + 2 3 3 2 3 3 2 6 , q B B B = − ( ) 2 8 1 3 0 × + + − ( )− B B B B B B 2 2 3 0 2 3 2 1 2 48 216 4 8 , p B B B B = − ( )−     3 2 8 2 72 1 3 0 2 2 , A y B B = + − 8 4 3 2 2 ,
  • 9. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 67 a2 20 0 0 1 Φ Θ Θ I z A L L L t k x y z T I x y z t d z d y d xd t II x y z I L = − − ( ) ( ) ( ) ∫ , , , , , , L L L y x ∫ ∫ ∫ + 0 0 Θ + ( ) ∫ ∫ ∫ 1 0 0 0 L L L f x y z d z d y d x x y z I L L L z y x Φ , , (14) a2 20 0 0 1 Φ Θ Θ V z A L L L t k x y z T V x y z t d z d y d xd t VV x y z V L = − − ( ) ( ) ( ) ∫ , , , , , , L L L y x ∫ ∫ ∫ 0 0 Θ + ( ) ∫ ∫ ∫ 1 0 0 0 L L L f x y z d z d y d x x y z V L L L z y x Φ , , . The considered substitution gives us possibility to obtain the equation for parameter a2C . Solution of the equation depends on value of parameter g. Analysis of spatiotemporal distributions of concentrations of dopant and radiation defects has been done using their second-order approximations framework the method of averaged of function corrections with decreased quantity of iterative steps. The second-order approximation is usually enough good approximation to make qualitative analysis and obtain some quantitative results. Results of analytical calculation have been checked by comparison with results of numerical simulation. DISCUSSION In this section, we analyzed the spatiotemporal distribution of the concentration of dopant in the considered heterostructure during annealing. Figure 2 shows spatial distributions of concentrations of dopants infused [Figure 2a] or implanted [Figure 2b] in epitaxial layer. Value of annealing time is equal for all distributions framework every Figure 2a and b. Increasing of the number of curves corresponds to increasing of difference between values of dopant diffusion coefficients in layers of heterostructure. Figure 2: (a) Distributions of the concentration of infused dopant in heterostructure from Figures 1 and 2 in direction, which is perpendicular to interface between epitaxial layer substrate. Increasing of the number of curve corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under condition when the value of dopant diffusion coefficient in epitaxial layer is larger the than value of dopant diffusion coefficient in substrate. (b) Distributions of the concentration of implanted dopant in heterostructure from Figures 1 and 2 in direction, which is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 correspond to annealing time Q = 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 2 and 4 correspond to annealing time Q = 0.0057(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 1 and 2 correspond to homogeneous sample. Curves 3 and 4 correspond to heterostructure under condition when the value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate a b
  • 10. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 68 The figures show that the presence of interface between layers of heterostructure gives us possibility to increase absolute value of gradient of the concentration of dopant in direction, which is perpendicular to the interface. We obtain increasing of absolute value of the gradient in neighborhood of the interface. Due to the increasing, one can obtain decreasing dimensions of transistors, which have been used in the amplifier. At the same time, with increasing of the gradient homogeneity of the concentration of dopant in enriched area increases. To choose annealing time, it should be accounted decreasing of absolute value of gradient of concentration of dopant in neighborhood of interface between substrate and epitaxial layer with increasing of annealing time. Decreasing of the value of annealing time leads to decreasing of homogeneity of the concentration of dopant in enriched area (Figure 3a for diffusion doping of materials and Figure 3b for ion doping Figure 3: (a) Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing of the number of curve corresponds to increasing of annealing time. (b) Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of dopant. Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of the number of curve corresponds to increasing of annealing time a b Figure 4: (a) Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of mean squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L=1/2 and x = g = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L =1/2 and e = g = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter g for a/L=1/2 and e = x = 0. (b) Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L=1/2 and x = g = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L =1/2 and e = g = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter g for a/L=1/2 and e = x = 0 a b
  • 11. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 69 of materials). Let us determine, compromise value of annealing time framework recently introduced criteria.[15-20] Framework the criteria, we approximate real distributions of the concentration of dopant by ideal rectangle distribution y (x,y,z). Farther, we determine compromise value of annealing time by minimization of the mean squared error. U L L L C x y z x y z d z d y d x x y z L L L z y x = ( )− ( )     ∫ ∫ ∫ 1 0 0 0 , , , , , Θ y .(8) Dependences of optimal annealing time are presented in Figure 4 for diffusion and ion types of doping, respectively. It should be noted that it is necessary to anneal radiation defects after ion implantation. One could find spreading of the concentration of distribution of dopant during this annealing. In the ideal case, distribution of dopant achieves appropriate interfaces between materials of heterostructure during annealing of radiation defects. If dopant did not achieve any interfaces during annealing of radiation defects, it is practicably to additionally anneal the dopant. In this situation, optimal value of additional annealing time of implanted dopant is smaller than annealing time of infused dopant. At the same time, ion type of doping gives us possibility to decrease mismatch-induced stress in heterostructure.[21] CONCLUSION In this paper, we model redistribution of infused and implanted dopants during manufacture CMOP voltage differencing inverting buffered amplifier based on field-effect heterotransistors. Several recommendations to optimize manufacture the heterotransistors have been formulated. Analytical approach to model diffusion and ion types of doping with account concurrent changing of parameters in space and time has been introduced. At the same time, the approach gives us possibility to take into account nonlinearity of doping processes. REFERENCES 1. Volovich G. Modern chips UM3Ch class D manufactured by firm MPS. Mod Electron 2006;2:10. 2. Kerentsev A, Lanin V. Design and technological features of MOSFETs. Power Electron 2008;1:34. 3. AgeevAO, BelyaevAE, Boltovets NS, Ivanov VN, Konakova RV, KudrikYY, et al.Au-TiB x -n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors 2009;43:897. 4. Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. Investigation of technological processes of manufacturing of the bipolar power highvoltage transistors with a grid of inclusions in the collector region. Semiconductors 2001;35:1013. 5. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111. 6. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2005;98:94901. 7. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836. 8. Kozlivsky VV. Modification of Semiconductors by Proton Beams. Sant-Peterburg: Nauka; 2003. 9. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 10. Pushkar KL, Singh G, Goel RK. CMOS VDIBAs-Based Single-Resistance-Controlled Voltage-Mode Sinusoidal Oscillator. Circuits Syst 2017;8:14-22. 11. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 12. Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289. 13. Sokolov YD. About the definition of dynamic forces in the mine lifting. Appl Mech 1955;1:23. 14. Pankratov EL. Dynamics of δ-dopant redistribution during heterostructure growth. Eur Phys J B 2007;57:251-56. 15. Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusioncoefficient nonuniformity. Russ Microelectron 2007;36:33. 16. Pankratov EL. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int J Nanosci 2008;7:187. 17. Pankratov EL. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J Comput Theor Nanosci 2010;7:289. 18. Pankratov EL, Bulaeva EA. Application of native inhomogeneities to increase compactness of vertical field-effect transistors. J Comput Theor Nanosci 2013;10:888.
  • 12. Pankratov: On decreasing of dimensions of field-effect heterotransistors in an amplifier AJMS/Jul-Sep-2019/Vol 3/Issue 3 70 19. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization. Int J Micro-Nano Scale Transp 2014;4:17-31. 20. Pankratov EL, Bulaeva EA. Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing. Int J Nanosci 2012;11:1250028. 21. Pankratov EL, Bulaeva EA. Decreasing of mechanical stress in a semiconductor heterostructure by radiation processing. J Comput Theor Nanosci 2014;11:91.