SlideShare a Scribd company logo
1 of 24
Download to read offline
www.ajms.com 42
RESEARCH ARTICLE
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a
Multiplexer
E. L. Pankratov1,2
1
Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue,
Nizhny Novgorod 603950, Russia, 2
Department of Higher Mathematics, Nizhny Novgorod State Technical
University, Nizhny Novgorod 603950, Russia
Received: 20-12-2019; Revised: 07-01-2020; Accepted: 20-01-2020
ABSTRACT
In this paper, we introduce an approach to increase the density of field-effect transistors framework
a two-level current-mode logic gates in a multiplexer. Framework the approach we consider
manufacturing the inverter in heterostructure with the specific configuration. Several required areas of
the heterostructure should be doped by diffusion or ion implantation. After that, dopant and radiation
defects should by annealed framework optimized scheme. We also consider an approach to decrease the
value of mismatch-induced stress in the considered heterostructure. We introduce an analytical approach
to analyze mass and heat transport in heterostructures during the manufacturing of integrated circuits
with account mismatch-induced stress.
Key words: Increasing of element integration rate, optimization of manufacturing, two-level
current-mode logic
INTRODUCTION
In the present time, several actual problems of the solid-state electronics (such as increasing of
performance, reliability, and density of elements of integrated circuits: Diodes, field-effect, and
bipolar transistors) are intensively solving.[1-6]
To increase the performance of these devices, it is
attracted an interest determination of materials with higher values of charge carriers mobility.[7-
10]
One way to decrease dimensions of elements of integrated circuits is manufacturing them in
thin-film heterostructures.[3-5,11]
In this case, it is possible to use inhomogeneity of heterostructure
and necessary optimization of doping of electronic materials[12]
and the development of epitaxial
technology to improve these materials (including analysis of mismatch induced stress).[13-15]
Alternative approaches to increase dimensions of integrated circuits are using laser and microwave
types of annealing.[16-18]
Framework the paper, we introduce an approach to manufacture field-effect transistors. The approach
gives a possibility to decrease their dimensions with increasing their density framework two-level
current-mode logic gates in a multiplexer. We also consider the possibility to decrease mismatch-
induced stress to decrease the quantity of defects, generated due to the stress. In this paper, we consider a
heterostructure, which consists of a substrate and an epitaxial layer [Figure 1]. We also consider a buffer
layer between the substrate and the epitaxial layer. The epitaxial layer includes itself several sections,
which were manufactured using another materials. These sections have been doped by diffusion or ion
implantation to manufacture the required types of conductivity (p or n). These areas became sources,
drains, and gates.
Address for correspondence:
E. L. Pankratov
E-mail: elp2004@mail.ru
ISSN 2581-3463
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 43
[Figure 1]. After this doping, it is required annealing of dopant and/or radiation defects. Main aim of the
present paper is analysis of redistribution of dopant and radiation defects to determine conditions, which
correspond to the decreasing of elements of the considered voltage reference and at the same time to
increase their density. At the same time, we consider a possibility to decrease mismatch-induced stress.
METHOD OF SOLUTION
To solve our aim, we determine and analyzed the spatio-temporal distribution of the concentration of
dopant in the considered heterostructure. We determine the distribution by solving the second Fick’s law
in the following form.[1,20-23]
∂ ( )
∂
=
∂
∂
∂ ( )
∂





 +
∂
∂
∂ ( )
∂



C x y z t
t x
D
C x y z t
x y
D
C x y z t
y
, , , , , , , , , 


 +
∂
∂
∂ ( )
∂





 +
z
D
C x y z t
z
, , ,
( ) ( )
1
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
x kT

 
∂
Ω ∇ +
 
∂  
 
∫
( ) ( )
1
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
y kT

 
∂
Ω ∇ +
 
∂  
 
∫ (1)
+
( )





 +
( )




∂
∂
∂ µ
∂
∂
∂
∂ µ
∂
x
D
V kT
x y z t
x y
D
V kT
x y z t
y
C S C S
2 2
, , , , , ,


 +
( )






∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
C S 2 , , ,
with boundary and initial conditions
∂ ( )
∂
=
=
C x y z t
x x
, , ,
0
0,
∂ ( )
∂
=
=
C x y z t
x x Lx
, , ,
0,
∂ ( )
∂
=
=
C x y z t
y y
, , ,
0
0, C (x,y,z,0)=fC
(x,y,z),
∂ ( )
∂
=
=
C x y z t
y x Ly
, , ,
0,
∂ ( )
∂
=
=
C x y z t
z z
, , ,
0
0,
∂ ( )
∂
=
=
C x y z t
z x Lz
, , ,
0.
Here, C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; Ω is the atomic volume of
dopant; ∇s
is the symbol of surficial gradient; C x y z t d z
Lz
, , ,
( )
∫
0
is the surficial concentration of dopant on
interface between layers of heterostructure (in this situation we assume, that Z-axis is perpendicular to
Figure 1: (a) Structure of the considered logic gates[19]
(b) Heterostructure with a substrate, epitaxial layers, and buffer
layer (view from side)
b
a
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 44
interface between layers of heterostructure); μ1
(x,y,z,t) and μ2
(x,y,z,t) are the chemical potential due to the
presence of mismatch-induced stress and porosity of material; D and DS
are the coefficients of volumetric
and surficial diffusions. Values of dopant diffusions coefficients depend on properties of materials
of heterostructure, speed of heating and cooling of materials during annealing, and spatio-temporal
distribution of concentration of dopant. Dependences of dopant diffusions coefficients on parameters
could be approximated by the following relations.[24-26]
D D x y z T
C x y z t
P x y z T
V x y z t
C L
= ( ) +
( )
( )





 +
(
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
)
) +
( )
( )








V
V x y z t
V
* *
, , ,
ς2
2
2 ,
D D x y z T
C x y z t
P x y z T
V x y z
S S L S
= ( ) +
( )
( )





 +
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
t
t
V
V x y z t
V
( ) +
( )
( )








* *
, , ,
ς2
2
2 (2)
Here, DL
(x,y,z,T) and DLS
(x,y,z,T) are the spatial (due to accounting all layers of heterostructure) and
temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of
annealing; P(x,y,z,T) is the limit of solubility of dopant; parameter γ depends on properties of materials and
could be integer in the following interval γ ϵ;[1,3,24]
V(x,y,z,t) is the spatio-temporal distribution of concentration
ofradiationvacancies;V*istheequilibriumdistributionofvacancies.Concentrationdependenceofthedopant
diffusion coefficient has been described in details in Gotra.[24]
Spatio-temporal distributions of concentration
of point radiation defects have been determined by solving the following system of equations.[20-23,25,26]








I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, ,
( ) = ( )
( )





 + ,
,
, , ,
T
I x y z t
y
( )
( )





 +






z
D x y z T
I x y z t
z
k x y z T I x y z t
I I I
, , ,
, , ,
, , , , , ,
,
( )
( )





 − ( ) ( )
2
−
− ( ) ×
k x y z T
I V
, , , ,
( ) ( ) ( ) ( )
0
, , , , , , , , , , , ,
z
L
IS
S
D
I x y z t V x y z t x y z t I x y W t dW
x kT

 
∂
+ Ω ∇ +
 
∂  
 
∫
( ) ( )
( )
2
0
, , ,
, , , , , ,
z
L
I S
IS
S
D x y z t
D
x y z t I x y W t dW
y kT x V kT x


   
∂
∂ ∂
Ω ∇ + +
   
∂ ∂ ∂
   
 
∫
( ) ( )
2 2
, , , , , ,
I S I S
D D
x y z t x y z t
y V kT y z V kT z
 
   
∂ ∂
∂ ∂
+
   
∂ ∂ ∂ ∂
   
(3)








V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, ,
( ) = ( )
( )





 + ,
,
, , ,
T
V x y z t
y
( )
( )





 +






z
D x y z T
V x y z t
z
k x y z T V x y z t
V V V
, , ,
, , ,
, , , , , ,
,
( )
( )





 − ( ) ( )
2
−
− ( ) ×
k x y z T
I V
, , , ,
( ) ( ) ( ) ( )
0
, , , , , , , , , , , ,
z
L
VS
S
D
I x y z t V x y z t x y z t V x y W t dW
x kT
 
∂
× + Ω ∇ +
 
∂  
 
∫

( ) ( )
( )
2
0
, , ,
, , , , , ,
z
L
V S
VS
S
D x y z t
D
x y z t V x y W t dW
y kT x V kT x


   
∂
∂ ∂
Ω ∇ + +
   
∂ ∂ ∂
   
 
∫
( ) ( )
2 2
, , , , , ,
V S V S
D D
x y z t x y z t
y V kT y z V kT z
   
∂ ∂
∂ ∂
+
   
∂ ∂ ∂ ∂
   
 
with boundary and initial conditions
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 45


I x y z t
x x
, , ,
( ) =
=0
0,


I x y z t
x x Lx
, , ,
( ) =
=
0,


I x y z t
y y
, , ,
( ) =
=0
0,


I x y z t
y y Ly
, , ,
( ) =
=
0,


I x y z t
z z
, , ,
( ) =
=0
0,


I x y z t
z z Lz
, , ,
( ) =
=
0,


V x y z t
x x
, , ,
( ) =
=0
0,


V x y z t
x x Lx
, , ,
( ) =
=
0,


V x y z t
y y
, , ,
( ) =
=0
0(4)


V x y z t
y y Ly
, , ,
( ) =
=
0,


V x y z t
z z
, , ,
( ) =
=0
0,


V x y z t
z z Lz
, , ,
( ) =
=
0, I (x,y,z,0)= fI
(x,y,z), V (x,y,z,0)=fV
(x,y,z), ( )
1 1 1 2 2 2
1 1 1
2
, , , 1
n n n
l
V x V t y V t z V t t V
kT x y z

∞
 
+ + + = +
 
+ +
 
.
Here, I(x,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials; I* is the
equilibrium distribution of interstitials; DI
(x,y,z,T), DV
(x,y,z,T), DIS
(x,y, z,T), and DVS
(x,y,z,T) are the
coefficients of volumetric and surficial diffusions of interstitials and vacancies, respectively; terms
V2
(x,y,z,t) and I2
(x,y,z,t) correspond to generation of divacancies and diinterstitials, respectively
(e.g. Vinetskiy and Kholodar[26]
and appropriate references in this book); kI,V
(x,y,z,T), kI,I
(x,y,z,T), and
kV,V
(x,y,z,T) are the parameters of recombination of point radiation defects and generation of their
complexes; k is the Boltzmann constant; ω=a3
, a is the interatomic distance; l is the specific surface
energy. To account porosity of buffer layers, we assume, that porous are approximately cylindrical
with average values r x y
= +
1
2
1
2
and z1
before annealing.[23]
With time small pores decomposing on
vacancies. The vacancies absorbing by larger pores.[27]
With time large pores became larger due to
absorbing the vacancies and became more spherical.[27]
Distribution of concentration of vacancies in the
heterostructure, existing due to porosity, could be determined by summing on all pores, i.e.,
V x y z t V x i y j z k t
p
k
n
j
m
i
l
, , , , , ,
( ) = + + +
( )
=
=
=
∑
∑
∑ α β χ
0
0
0
, R x y z
= + +
2 2 2
.
Here, α,β, and χ are the average distances between centers of pores in directions x, y, and z; l, m, and n
are the quantity of pores inappropriate directions.
Spatio-temporal distributions of divacancies ΦV
(x,y,z,t) and di-interstitials ΦI
(x,y,z, t) could be determined
by solving the following system of equations.[25,26]








Φ Φ
Φ Φ
I I
x y z t
t x
D x y z T
x y z t
x y
D x
I I
, , ,
, , ,
, , ,
( ) = ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )





 +


Φ
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
I
I
I S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
( )
( )





 +
∂
∂
∇ (
1 )
) ( )








+
∫ΦI
L
x y W t dW
z
, , ,
0
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
I
L
S
S I I I
D
x y z t x y W t dW k x y z T I x y z t
y kT
Φ
 
∂
Ω ∇ Φ + +
 
∂  
 
∫

( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 46
k x y z T I x y z t
I , , , , , ,
( ) ( ) (5)








Φ Φ
Φ Φ
V V
x y z t
t x
D x y z T
x y z t
x y
D x
V V
, , ,
, , ,
, , ,
( ) = ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )





 +


Φ
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
V
V
V S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
( )
( )





 +
∂
∂
∇ (
1 )
) ( )








+
∫ΦV
L
x y W t dW
z
, , ,
0
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
V
L
S
S V V V
D
x y z t x y W t dW k x y z T V x y z t
y kT

Φ
 
∂
Ω ∇ Φ + +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
k x y z T V x y z t
V , , , , , ,
( ) ( )
with boundary and initial conditions


ΦI
x
x y z t
x
, , ,
( ) =
=0
0,


ΦI
x L
x y z t
x
x
, , ,
( ) =
=
0,


ΦI
y
x y z t
y
, , ,
( ) =
=0
0,


ΦI
y L
x y z t
y
y
, , ,
( ) =
=
0,


ΦI
z
x y z t
z
, , ,
( ) =
=0
0,


ΦI
z L
x y z t
z
z
, , ,
( ) =
=
0,


ΦV
x
x y z t
x
, , ,
( ) =
=0
0,


ΦV
x L
x y z t
x
x
, , ,
( ) =
=
0,


ΦV
y
x y z t
y
, , ,
( ) =
=0
0 (6)


ΦV
y L
x y z t
y
y
, , ,
( ) =
=
0,


ΦV
z
x y z t
z
, , ,
( ) =
=0
0,


ΦV
z L
x y z t
z
z
, , ,
( ) =
=
0,
ΦI
(x,y,z,0)=fΦI
(x,y,z), ΦV
(x,y,z,0)=fΦV
(x,y,z).
Here, DΦI
(x,y,z,T), DΦV
(x,y,z,T), DΦIS
(x,y,z,T), and DΦVS
(x,y,z,T) are the coefficients of volumetric and
surficial diffusions of complexes of radiation defects; kI
(x,y,z,T) and kV
(x,y,z,T) are the parameters of
decay of complexes of radiation defects.
Chemical potential μ1
in Eq.(1) could be determined by the following relation[20]
μ1
=E(z)Ωσij
[uij
(x,y,z,t)+uji
(x,y,z,t)]/2,(7)
where E(z) is the Young modulus, σij
is the stress tensor; u
u
x
u
x
ij
i
j
j
i
=
∂
∂
+
∂
∂






1
2
is the deformation tensor;
ui
and uj
are the components ux
(x,y,z,t), uy
(x,y,z,t), and uz
(x,y,z,t) of the displacement vector u x y z t
→
( )
, , , ;
xi
and xj
are the coordinate x, y, z. The eq. (3) could be transformed to the following form
( )
( ) ( ) ( ) ( )
, , , , , ,
, , , , , ,
1
, , ,
2
j j
i i
j i j i
u x y z t u x y z t
u x y z t u x y z t
x y z t
x x x x


   
∂ ∂
∂ ∂

= + + −
   

∂ ∂ ∂ ∂
   

   

Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 47
ε δ
σ δ
σ
ε β
0 0
1 2
3
ij
ij k
k
z
z
u x y z t
x
K z z T x y
+
( )
− ( )
∂ ( )
∂
−





 − ( ) ( )
, , ,
, ,
, ,
z t T E z
ij
( )−

 






( )
0
2
δ
Ω
where σ is Poisson coefficient; ε0
=(as
-aEL
)/aEL
is the mismatch parameter; as
and aEL
are lattice distances of the substrate and
the epitaxial layer; K is the modulus of uniform compression; β is the coefficient of thermal expansion; Tr
is the equilibrium
temperature, which coincides (for our case) with room temperature. Components of displacement vector could be obtained
by solution of the following equations.[21]
ρ
σ σ σ
z
u x y z t
t
x y z t
x
x y z t
y
x
x xx xy xz
( )
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
2
2
, , , , , , , , , ,
, , ,
y z t
z
( )
∂
ρ
σ σ σ
z
u x y z t
t
x y z t
x
x y z t
y
x
y yx yy yz
( )
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
2
2
, , , , , , , , , ,
, , ,
y z t
z
( )
∂
ρ
σ σ σ
z
u x y z t
t
x y z t
x
x y z t
y
x
z zx zy zz
( )
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
2
2
, , , , , , , , , ,
, , ,
y z t
z
( )
∂
where σ
σ
δ
ij
i
j
j
i
ij k
E z
z
u x y z t
x
u x y z t
x
u
=
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂
−
∂
2 1 3
, , , , , , x
x y z t
x
K z
k
ij
, , ,
( )
∂








+ ( ) ×
δ
∂ ( )
∂
− ( ) ( ) ( )−

 

u x y z t
x
z K z T x y z t T
k
k
r
, , ,
, , ,
 , ρ (z) is the density of materials of heterostructure, δij
Is the
Kronecker symbol. With account, the relation for σij
last system of the equation could be written as
ρ
σ
z
u x y z t
t
K z
E z
z
u x
x x
( )
∂ ( )
∂
= ( )+
( )
+ ( )

 











∂
2
2
2
5
6 1
, , , , y
y z t
x
K z
E z
z
, ,
( )
∂
+ ( )−
( )
+ ( )

 











×
2
3 1 σ
∂ ( )
∂ ∂
+
( )
+ ( )

 

∂ ( )
∂
+
∂
2 2
2
2
2 1
u x y z t
x y
E z
z
u x y z t
y
u x y
y y z
, , , , , , , ,

z
z t
z
K z
E z
z
,
( )
∂





 + ( )+
( )
+ ( )

 









×
2
3 1 
∂ ( )
∂ ∂
− ( ) ( )
∂ ( )
∂
2
u x y z t
x z
K z z
T x y z t
x
z , , , , , ,

ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u x
y y x
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
2
2 1
, , , , , , ,
, , , , , ,
y z t
x y
T x y z t
y
( )
∂ ∂





 −
∂ ( )
∂
×
K z z
z
E z
z
u x y z t
z
u x y z t
y
y z
( ) ( )+
∂
∂
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂


β
σ
2 1
, , , , , ,















+
∂ ( )
∂
×
2
2
u x y z t
y
y , , ,
5
12 1 6 1
E z
z
K z K z
E z
z
( )
+ ( )

 

+ ( )










+ ( )−
( )
+ ( )

 






 






∂ ( )
∂ ∂
+ ( )
∂ ( )
∂ ∂
2 2
u x y z t
y z
K z
u x y z t
x y
y y
, , , , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u x
z z z
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
2
2 1
, , , , , , ,
, , , , , ,
y z t
y
u x y z t
x z
x
( )
∂
+
∂ ( )
∂ ∂
+


 2
2
∂ ( )
∂ ∂


 +
∂
∂
( )
∂ ( )
∂
+
∂ ( )
∂
+
2
u x y z t
y z z
K z
u x y z t
x
u x y z t
y
y x y
, , , , , , , , , ∂
∂ ( )
∂
















+
u x y z t
z
x , , ,
1
6 1
6
∂
∂
( )
+ ( )
∂ ( )
∂
−
∂ ( )
∂
−
∂ ( )
z
E z
z
u x y z t
z
u x y z t
x
u x y z t
z x y

, , , , , , , , ,
∂
∂
−
∂ ( )
∂
















−
y
u x y z t
z
z , , ,
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 48
K z z
T x y z t
z
( ) ( )
∂ ( )
∂

, , ,
 (8)
Conditions for the system of Equation (8) could be written in the form
( )
0, , ,
0
u y z t
x
→
∂
=
∂
;
∂ ( )
∂
=
→
u L y z t
x
x , , ,
0;
∂ ( )
∂
=
→
u x z t
y
, , ,
0
0;
∂ ( )
∂
=
→
u x L z t
y
y
, , ,
0;
∂ ( )
∂
=
→
u x y t
z
, , ,
0
0;
∂ ( )
∂
=
→
u x y L t
z
z
, , ,
0; u x y z u
→ →
( ) =
, , ,0 0 ; u x y z u
→ →
∞
( ) =
, , , 0 .
Wedeterminespatio-temporaldistributionsofconcentrationsofdopantandradiationdefectsbysolvingthe
Equations (1), (3), and (5) framework standard method of averaging of function corrections.[28]
Previously,
we transform the Equations (1), (3), and (5) to the following form with account initial distributions of
the considered concentrations.
∂ ( )
∂
=
∂
∂
∂ ( )
∂





 +
∂
∂
∂ ( )
∂



C x y z t
t x
D
C x y z t
x y
D
C x y z t
y
, , , , , , , , , 


 +
∂
∂
∂ ( )
∂





 +
z
D
C x y z t
z
f x y z t
c
, , ,
( , , ) ( )

∂
∂
∂ µ
∂
∂
∂
∂ µ
∂
x
D
V kT
x y z t
x y
D
V kT
x y z t
y
C S C S
2 2
, , , , , ,
( )





 +
( )






 +
( )





 +
∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
C S 2 , , ,
( ) ( )
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
x kT

 
∂
Ω ∇ +
 
∂  
 
∫
( ) ( )
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
y kT

 
∂
Ω ∇
 
∂  
 
∫ 	  (1a)








I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, ,
( ) = ( )
( )





 + ,
,
, , ,
T
I x y z t
y
( )
( )





 +


∂
∂
∂
∂
µ
z
D x y z T
I x y z t
z x
D
kT
x y z t I x
I
IS
S
, , ,
, , ,
, , ,
( )
( )





 +
∂
∂
∇ ( )
Ω 1 ,
, , ,
y W t dW
Lz
( )








+
∫
0
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
L
IS
S I I
D
x y z t I x y W t dW k x y z T I x y z t
y kT

 
∂
Ω ∇ − −
 
∂  
 
∫
k x y z T I x y z t V x y z t f x y z t
I V I
, , , , , , , , , , , ,
( ) ( ) ( )+ ( ) ( )
 	 (3a)








V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, ,
( ) = ( )
( )





 + ,
,
, , ,
T
V x y z t
y
( )
( )





 +


∂
∂
∂
∂
µ
z
D x y z T
V x y z t
z x
D
kT
x y z t V x
V
VS
S
, , ,
, , ,
, , ,
( )
( )





 +
∂
∂
∇ ( )
Ω 1 ,
, , ,
y W t dW
Lz
( )








+
∫
0
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
L
IS
S V V
D
x y z t V x y W t dW k x y z T V x y z t
y kT

 
∂
Ω ∇ − −
 
∂  
∫
k x y z T I x y z t V x y z t f x y z t
I V V
, , , , , , , , , , , ,
( ) ( ) ( )+ ( ) ( )

Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 49








Φ Φ
Φ Φ
I I
x y z t
t x
D x y z T
x y z t
x y
D x
I I
, , ,
, , ,
, , ,
( ) = ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )





 +


Φ
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
I
I
I S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
( )
( )





 +
∂
∂
∇ (
1 )
) ( )








+
∫ΦI
L
x y W t dW
z
, , ,
0
( ) ( ) ( ) ( )
1
0
, , , , , , , , , , , ,
z
I
L
S
S I I
D
x y z t x y W t dW k x y z T I x y z t
y kT

Φ
 
∂
Ω ∇ Φ + +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
k x y z T I x y z t f x y z t
I I I
, , , , , , , , ,
( ) ( )+ ( ) ( )
2
Φ   (5a)








Φ Φ
Φ Φ
V V
x y z t
t x
D x y z T
x y z t
x y
D x
V V
, , ,
, , ,
, , ,
( ) = ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )





 +


Φ
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
V
V
V S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
( )
( )





 +
∂
∂
∇ (
1 )
) ( )








+
∫ΦV
L
x y W t dW
z
, , ,
0
( ) ( ) ( ) ( )
1
0
, , , , , , , , , , , ,
z
I
L
S
S I V
D
x y z t x y W t dW k x y z T I x y z t
y kT

Φ
 
∂
Ω ∇ Φ + +
 
∂  
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
k x y z T V x y z t f x y z t
V V V
, , , , , , , , ,
( ) ( )+ ( ) ( )
2
Φ  .
Farther, we replace concentrations of dopant and radiation defects in the right sides of Equations (1a),
(3a), and (5a) on their not yet known average values α1r
. In this situation, we obtain equations for the
first-order approximations of the required concentrations in the following form
∂ ( )
∂
=
∂
∂
∇ ( )





 +
∂
∂
C x y z t
t x
z
D
kT
x y z t
y
z
D
k
C
S
S C
S
1
1 1 1
, , ,
, , ,
α µ α
Ω Ω
T
T
x y z t
S
∇ ( )





 +
µ1 , , ,
f x y z t
x
D
V kT
x y z t
x y
D
V kT
x
C
C S C S
, ,
, , , ,
( ) ( )+
( )





 +
δ
∂
∂
∂ µ
∂
∂
∂
∂ µ
2 2 y
y z t
y
, ,
( )





 +
∂
∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
C S 2 , , ,
( )





 (1b)
∂
∂
α µ α
I x y z t
t
z
x
D
kT
x y z t
y
z
D
I
IS
S I
IS
1
1 1
, , ,
, , ,
( ) =
∂
∂
∇ ( )





 +
∂
∂
Ω Ω
k
kT
x y z t
S
∇ ( )





 +
µ , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I S I S I S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 50
f x y z t k x y z T k x y z T
I I I I I V I V
, , , , , , , ,
, ,
( ) ( )− ( )− ( )
δ α α α
1
2
1 1 (3b)
∂
∂
α µ α
V x y z t
t
z
x
D
kT
x y z t
y
z
D
V
VS
S V
V
1
1 1 1
, , ,
, , ,
( ) =
∂
∂
∇ ( )





 +
∂
∂
Ω Ω S
S
S
kT
x y z t
∇ ( )





 +
µ1 , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V S V S V S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
f x y z t k x y z T k x y z T
V V V V I V I V
, , , , , , , ,
, ,
( ) ( )− ( )− ( )
δ α α α
1
2
1 1
∂
∂
α µ α
Φ
Ω Ω
Φ
Φ
Φ
1
1 1 1
I S
S
x y z t
t
z
x
D
kT
x y z t z
I
I
I
, , ,
, , ,
( ) =
∂
∂
∇ ( )





 +
∂
∂
∂
∇ ( )





 +
y
D
kT
x y z t
I S
S
Φ
µ1 , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
f x y z t k x y z T I x y z t k x y z T I x y z
I I I I
Φ , , , , , , , , , , , , , ,
,
( ) ( )+ ( ) ( )+ ( )
 2
t
t
( ) (5b)
∂
∂
α µ α
Φ
Ω Ω
Φ
Φ
Φ
1
1 1 1
V S
S
x y z t
t
z
x
D
kT
x y z t z
V
V
V
, , ,
, , ,
( ) =
∂
∂
∇ ( )





 +
∂
∂
∂
∇ ( )





 +
y
D
kT
x y z t
V S
S
Φ
µ1 , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
f x y z t k x y z T V x y z t k x y z T V x y z
V V V V
Φ , , , , , , , , , , , , , ,
,
( ) ( )+ ( ) ( )+ ( )
 2
t
t
( ).
Integration of the left and right sides of the Equations (1b), (3b), and (5b) on time gives us possibility to
obtain relations for above approximation in the final form
C x y z t
x
D x y z T
z
kT
V x y z
V
V x y
C S L
1 1 1 2
2
1
, , , , , ,
, , , ,
*
( ) =
∂
∂
( ) +
( ) +
α ς
τ
ς
Ω
,
, ,
*
z
V
t
τ
( )
( )








×
∫ 2
0
∇ ( ) +
( )











+
∂
∂
S
S C
C S L
x y z
P x y z T
d
y
D x y
µ τ
ξ α
τ α
γ
γ
1
1
1
1
, , ,
, , ,
, ,
, ,
, , ,
z T
P x y z T
S C
t
( ) +
( )





 +
∫ 1 1
0
ξ αγ
γ
Ω∇ ( ) +
( ) +
( )
( )






S x y z
z
kT
V x y z
V
V x y z
V
µ τ ς
τ
ς
τ
1 1 2
2
2
1
, , ,
, , , , , ,
* *



+ ×
∫
d
x
D
V kT
C S
t
τ
∂
∂ 0
∂ µ τ
∂
τ
∂
∂
∂ µ τ
∂
τ
∂
∂
∂ µ
2 2
0
2
x y z
x
d
y
D
V kT
x y z
y
d
z
D
V kT
C S
t
C S
, , , , , ,
( ) +
( ) +
∫
x
x y z
z
d
t
, , ,τ
∂
τ
( ) +
∫
0
f x y z
C , ,
( ) (1c)
I x y z t z
x
D
kT
x y z d z
y
D
kT
I
IS
S
t
I
IS
1 1 1
0
1
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ α
Ω Ω S
S
t
x y z d
µ τ τ
1
0
, , ,
( ) +
∫
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 51
∂
∂
∂ ( )
∂
+
∂
∂
∂ ( )
∂
+
∫ ∫
x
D
V kT
x y z t
x
d
y
D
V kT
x y z t
y
d
I S
t
I S
t
µ
τ
µ
τ
2
0
2
0
, , , , , , ∂
∂
∂
∂ ( )
∂
+
∫
z
D
V kT
x y z t
z
d
I S
t
µ
τ
2
0
, , ,
f x y z k x y z T d k x y z T d
I I I I
t
I V I V
t
, , , , , , , ,
, ,
( )− ( ) − ( )
∫ ∫
α τ α α τ
1
2
0
1 1
0
 (3c)
V x y z t z
x
D
kT
x y z d z
y
D
kT
V
IS
S
t
V
IS
1 1 1
0
1
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ α
Ω Ω S
S
t
x y z d
µ τ τ
1
0
, , ,
( ) +
∫
∂
∂
∂ ( )
∂
+
∂
∂
∂ ( )
∂
+
∫ ∫
x
D
V kT
x y z t
x
d
y
D
V kT
x y z t
y
d
V S
t
V S
t
µ
τ
µ
τ
2
0
2
0
, , , , , , ∂
∂
∂
∂ ( )
∂
+
∫
z
D
V kT
x y z t
z
d
V S
t
µ
τ
2
0
, , ,
f x y z k x y z T d k x y z T d
V V V V
t
I V I V
t
, , , , , , , ,
, ,
( )− ( ) − ( )
∫ ∫
α τ α α τ
1
2
0
1 1
0
Φ Ω Ω
Φ
Φ Φ
1 1 1
0
I
S
S
t
S
x y z t z
x
D
kT
x y z d
x
D
kT
I
I I
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ S
S
t
x y z d
µ τ τ
1
0
, , ,
( ) ×
∫
α
µ τ
τ
1
2
0
Φ Φ
Φ Φ
I I
I I
z f x y z
x
D
V kT
x y z
x
d
y
D
V kT
S
t
S
+ ( )+
∂
∂
∂ ( )
∂
+
∂
∂
∂
∫
, ,
, , , µ
µ τ
τ
2
0
x y z
y
d
t
, , ,
( )
∂
+
∫
∂
∂
∂ ( )
∂
+ ( ) ( ) +
∫ ∫
z
D
V kT
x y z
z
d k x y z T I x y z d
I S
t
I
t
Φ µ τ
τ τ τ
2
0 0
, , ,
, , , , , ,
+ ( ) ( )
∫k x y z T I x y z d
I I
t
, , , , , , ,
2
0
   (5c)
Φ Ω Ω
Φ
Φ Φ
1 1 1
0
V
S
S
t
S
x y z t z
x
D
kT
x y z d
x
D
kT
V
V V
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ S
S
t
x y z d
µ τ τ
1
0
, , ,
( ) ×
∫
α
µ τ
τ
1
2
0
Φ Φ
Φ Φ
V V
V V
z f x y z
x
D
V kT
x y z
x
d
y
D
V kT
S
t
S
+ ( )+
∂
∂
∂ ( )
∂
+
∂
∂
∂
∫
, ,
, , , µ
µ τ
τ
2
0
x y z
y
d
t
, , ,
( )
∂
+
∫
∂
∂
∂ ( )
∂
+ ( ) ( ) +
∫ ∫
z
D
V kT
x y z
z
d k x y z T V x y z d
V S
t
V
t
Φ µ τ
τ τ τ
2
0 0
, , ,
, , , , , ,
k x y z T V x y z d
V V
t
, , , , , , ,
( ) ( )
∫
2
0
 
We determine the average values of the first-order approximations of concentrations of dopant and
radiation defects by the following standard relation.[28]
α ρ
ρ
1 1
0
0
0
0
1
= ( )
∫
∫
∫
∫
Θ
Θ
L L L
x y z t d z d yd xd t
x y z
L
L
L z
y
x
, , ,  (9)
Substitution of the relations Equations (1c), (3c), and (5c) into relation Equation (9) gives us the
possibility to obtain required average values in the following form
1
0
0
0
1
C
x y z
C
L
L
L
L L L
f x y z d z d yd x
z
y
x
= ( )
∫
∫
∫ , , ,
( )
2 2
3 1
3
1 2
4 4
4
4
x y z
I
a B L L L a
a A
B
a a

 
Θ + Θ
+
= − + −
 
 
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 52
−
+
a A
a
3
4
4
, 


1
00 1 0
0
0
1 00
1
V
IV I
I
L
L
L
I II x y z
S
f x y z d z d yd x S L L L
z
y
x
= ( ) − −
∫
∫
∫
Θ
Θ
, ,









,
where S t k x y z T I x y z t V x y z t d z d yd xd t
ij
i j
L
  
= −
( ) ( ) ( ) ( )
Θ , , , , , , , , , ,
1 1
0
z
z
y
x
L
L
∫
∫
∫
∫ 0
0
0
Θ
, a SII
4 00
= ×
S S S
IV II VV
00
2
00 00
−
( ), a S S S S S
IV II IV II VV
3 00 00 00
2
00 00
= + − , a f x y z d z d yd x
V
L
L
L z
y
x
2
0
0
0
= ( ) ×
∫
∫
∫ , ,
S S S L L L S S f x y z d z d yd x
IV IV IV x y z VV II I
Lz
00 00
2
00
2 2 2
00 00
0
2
+ + ( )
∫
Θ , ,
0
0
0
2 2 2
00
L
L
x y z VV
y
x
L L L S
∫
∫ − −
Θ
S f x y z d z d yd x
IV I
L
L
L z
y
x
00
2
0
0
0
, ,
( )
∫
∫
∫ , a S f x y z d z d yd x
IV I
L
L
L z
y
x
1 00
0
0
0
= ( )
∫
∫
∫ , , , a SVV
0 00
= ×
f x y z d z d yd x
I
L
L
L z
y
x
, ,
( )








∫
∫
∫ 0
0
0
2
, A y
a
a
a
a
= + −
8 4
2 3
2
4
2
2
4
Θ Θ , B
a
a
q p q
= + + − −
Θ 2
4
2 3
3
6
q p q
2 3
3
+ + , q
a
a
a L L L
a a
a
a
a
a
a
a
x y z
= −





 − −



Θ
Θ Θ Θ Θ
3
2
4
2 0
1 3
4
2 0
4
2 2
2 3
2
4
24
4
8
4



 −
Θ Θ
3
2
3
4
3
2 2 2
4
1
2
4
2
54 8
a
a
L L L
a
a
x y z
− , p
a a L L L a a
a
a
a
x y z
=
−
−
Θ
Θ Θ
2 0 4 1 3
4
2
2
4
4
12 18
,
1
1 20
0
0
1
Φ Φ
Θ Θ
I I
z
R
L L L
S
L L L L L L
f x y z d z d yd x
I
x y z
II
x y z x y z
L
L
= + + ( )
∫ , ,
y
y
x
L
∫
∫
0
1
1 20
0
0
1
Φ Φ
Θ Θ
V V
z
R
L L L
S
L L L L L L
f x y z d z d yd x
V
x y z
VV
x y z x y z
L
L
= + + ( )
∫ , ,
y
y
x
L
∫
∫
0
,
where R t k x y z T I x y z t d z d yd xd t
i I
i
L
L
L z
y
x
 = −
( ) ( ) ( )
∫
∫
∫
∫ Θ
Θ
, , , , , ,
1
0
0
0
0
.
We determine approximations of the second and higher orders of concentrations of dopant and radiation
defects framework standard iterative procedure of the method of averaging of function corrections.[28]
Framework this procedure to determine approximations of the n-th order of concentrations of dopant
and radiation defects, we replace the required concentrations in the Equations (1c), (3c), and (5c) on the
following sum αnρ
+ρn-1
(x,y,z,t). The replacement leads to the following transformation of the appropriate
equations
∂ ( )
∂
=
∂
∂
+
+ ( )

 

( )






C x y z t
t x
C x y z t
P x y z T
C
2 2 1
1
, , , , , ,
, , ,
ξ
α
γ
γ 




+
( ) +
( )
( )








×




1 1 2
2
2
ς ς
V x y z t
V
V x y z t
V
, , , , , ,
* *
D x y z T
C x y z t
x y
V x y z t
V
V x y z
L , , ,
, , , , , , , ,
*
( )
∂ ( )
∂


 +
∂
∂
+
( ) +
1
1 2
2
1  
,
, , , ,
*
t
V
C x y z t
y
( )
( )








∂ ( )
∂
×




2
1
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 53
D x y z T
C x y z t
P x y z T
L
C
, , ,
, , ,
, , ,
( ) +
+ ( )

 

( )













1
2 1
ξ
α
γ
γ


+
∂
∂
+
( ) +
( )
( )








×




z
V x y z t
V
V x y z t
V
1 1 2
2
2
ς ς
, , , , , ,
* *
D x y z T
C x y z t
z
C x y z t
P x y z T
L
C
, , ,
, , , , , ,
, , ,
( )
∂ ( )
∂
+
+ ( )

 

(
1 2 1
1 ξ
α
γ
γ
)
)














+ ( ) ( )+
f x y z t
C , , δ
∂
∂
∂ µ
∂
∂
∂
∂ µ
∂
x
D
V kT
x y z t
x y
D
V kT
x y z t
y
C S C S
2 2
, , , , , ,
( )





 +
( )






 +
( )





 +
∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
C S 2 , , ,
( ) ( )
1 2
0
, , , , , ,
z
L
S
S C
D
x y z t C x y W t dW
x kT
 
 
∂  
Ω ∇  +  +
 
 
∂  
 
∫
Ω
∂
∂
∇ ( ) + ( )

 











∫
y
D
kT
x y z t C x y W t dW
S
S C
Lz
µ α
1 2
0
, , , , , ,  (1d)








I x y z t
t x
D x y z T
I x y z t
x y
D x y
I I
2 1
, , ,
, , ,
, , ,
,
( ) = ( )
( )





 + ,
, ,
, , ,
z T
I x y z t
y
( )
( )





 +


1
∂
∂
∂
∂
α
z
D x y z T
I x y z t
z
k x y z T I x y
I I I I
, , ,
, , ,
, , , , ,
,
( )
( )





 − ( ) +
1
1 1 z
z t k x y z T
I V
, , , ,
,
( )

 
 − ( ) ×
2
α α µ α
1 1 1 1 2
I V S I
I x y z t V x y z t
x
x y z t
+ ( )

 
 + ( )

 
 +
∂
∂
∇ ( )
, , , , , , , , ,
Ω +
+ ( )

 
 ×





∫ I x y W t dW
Lz
1
0
, , ,
D
kT y
D
kT
x y z t I x y W t dW
IS IS
S I
Lz



+
∂
∂
∇ ( ) + ( )

 




∫
Ω µ α
, , , , , ,
2 1
0








+
∂
∂
∂ ( )
∂
×
∫
x
x y z t
x
t
µ2
0
, , ,
D
V kT
d
y
D
V kT
x y z t
y
d
z
D
V kT
x y z t
I S I S
t
I S
τ
µ
τ
µ
+
∂
∂
∂ ( )
∂
+
∂
∂
∂ (
∫
2
0
2
, , , , , , )
)
∂
∫ z
d
t
τ
0
(3d)








V x y z t
t x
D x y z T
V x y z t
x y
D x y
V V
2 1
, , ,
, , ,
, , ,
,
( ) = ( )
( )





 + ,
, ,
, , ,
z T
V x y z t
y
( )
( )





 +


1
∂
∂
∂
∂
α
z
D x y z T
V x y z t
z
k x y z T V x y
V V V V
, , ,
, , ,
, , , , ,
,
( )
( )





 − ( ) +
1
1 1 z
z t k x y z T
I V
, , , ,
,
( )

 
 − ( ) ×
2
α α µ α
1 1 1 1 2
I V S V
I x y z t V x y z t
x
x y z t
+ ( )

 
 + ( )

 
 +
∂
∂
∇ ( )
, , , , , , , , ,
Ω +
+ ( )

 
 ×





∫ V x y W t dW
Lz
1
0
, , ,
D
kT y
D
kT
x y z t V x y W t dW
VS VS
S V
Lz



+
∂
∂
∇ ( ) + ( )

 




∫
Ω µ α
, , , , , ,
2 1
0








+
∂
∂
∂ ( )
∂
×
∫
x
x y z t
x
t
µ2
0
, , ,
D
V kT
d
y
D
V kT
x y z t
y
d
z
D
V kT
x y z t
V S V S
t
V S
τ
µ
τ
µ
+
∂
∂
∂ ( )
∂
+
∂
∂
∂ (
∫
2
0
2
, , , , , , )
)
∂
∫ z
d
t
τ
0








Φ Φ
Φ Φ
2 1
I I
x y z t
t x
D x y z T
x y z t
x y
D
I
, , ,
, , ,
, , ,
( ) = ( )
( )





 + I
I
x y z T
x y z t
y
I
, , ,
, , ,
( )
( )





 +


Φ1
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 54
Ω Φ
Φ
Φ
∂
∂
∇ ( ) + ( )













∫
x
D
kT
x y z t x y W t dW
I
I
z
S
S I
L
µ α
, , , , , ,
2 1
0 

+ ( ) ( )+
k x y z T I x y z t
I I
, , , , , , ,
2
Ω Φ
Φ
Φ
∂
∂
∇ ( ) + ( )













∫
y
D
kT
x y z t x y W t dW
I
I
z
S
S I
L
µ α
, , , , , ,
2 1
0 

+ ( ) ( )+
k x y z T I x y z t
I , , , , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
∂
∂
∂
∂
δ
z
D x y z T
x y z t
z
f x y z t
I I
I
Φ Φ
Φ
, , ,
, , ,
, ,
( )
( )





 + ( ) ( )
1
 (5d)








Φ Φ
Φ Φ
2 1
V V
x y z t
t x
D x y z T
x y z t
x y
D
V
, , ,
, , ,
, , ,
( ) = ( )
( )





 + V
V
x y z T
x y z t
y
V
, , ,
, , ,
( )
( )





 +


Φ1
Ω Φ
Φ
Φ
∂
∂
∇ ( ) + ( )













∫
x
D
kT
x y z t x y W t dW
V
V
z
S
S V
L
µ α
, , , , , ,
2 1
0 

+ ( ) ( )+
k x y z T V x y z t
V V
, , , , , , ,
2
Ω Φ
Φ
Φ
∂
∂
∇ ( ) + ( )













∫
y
D
kT
x y z t x y W t dW
V
V
z
S
S V
L
µ α
, , , , , ,
2 1
0 

+ ( ) ( )+
k x y z T V x y z t
V , , , , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
∂
∂
∂
∂
δ
z
D x y z T
x y z t
z
f x y z t
V V
V
Φ Φ
Φ
, , ,
, , ,
, ,
( )
( )





 + ( ) ( )
1
.
Integration of the left and the right sides of Equations (1d), (3d), and (5d) gives us possibility to obtain
relations for the required concentrations in the final form
C x y z t
x
C x y z
P x y z T
C
2
2 1
1
, , ,
, , ,
, , ,
( ) =
∂
∂
+
+ ( )

 

( )









ξ
α τ
γ
γ


+
( ) +
( )
( )








×
∫ 1 1 2
2
2
0
ς
τ
ς
τ
V x y z
V
V x y z
V
t
, , , , , ,
* *
D x y z T
C x y z
x
d
y
D x y z T
V x y z
V
L L
, , ,
, , ,
, , ,
, , ,
*
( )
∂ ( )
∂
+
∂
∂
( ) +
( )
1
1
1
τ
τ ς
τ
+
+
( )
( )








×
∫ ς
τ
2
2
2
0
V x y z
V
t
, , ,
*
∂ ( )
∂
+
+ ( )

 

( )










C x y z
y
C x y z t
P x y z T
C
1 2 1
1
, , , , , ,
, , ,
τ
ξ
α
γ
γ
+
+
∂
∂
+
( ) +
( )
( )








×
∫
z
V x y z
V
V x y z
V
t
1 1 2
2
2
0
ς
τ
ς
τ
, , , , , ,
* *
D x y z T
C x y z
z
C x y z
P x y z T
L
C
, , ,
, , , , , ,
, , ,
( )
∂ ( )
∂
+
+ ( )

 

(
1 2 1
1
τ
ξ
α τ
γ
γ
)
)










+ ( )+
d f x y z
C
τ , ,
Ω
∂
∂
∇ ( ) + ( )

 
 +
∂
∂
∇
∫
∫
x
D
kT
x y z C x y W dW d
y
x
S
S C
L
t
S
z
µ τ α τ τ µ
, , , , , ,
2 1
0
0
,
, , ,
y z
t
τ
( ) ×
∫
0
Ω
D
kT
C x y W dW d
x
D
V kT
x y z t
x
S
C
L
C S
z
α τ τ
∂
∂
∂ µ
∂
2 1
0
2
+ ( )

 
 +
( )


∫ , , ,
, , ,




 +
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 55
∂
∂
∂ µ
∂
∂
∂
∂ µ
∂
y
D
V kT
x y z t
y z
D
V kT
x y z t
z
C S C S
2 2
, , , , , ,
( )





 +
( )






 (1e)
I x y z t
x
D x y z T
I x y z
x
d
y
D x y z T
I
t
I
2
1
0
, , , , , ,
, , ,
, , ,
( ) = ( )
( ) +
∫
∂
∂
∂ τ
∂
τ
∂
∂
(
( )
( ) +
∫
∂ τ
∂
τ
I x y z
y
d
t
1
0
, , ,
∂
∂
∂ τ
∂
τ α
z
D x y z T
I x y z
z
d k x y z T I x y z
I
t
I I I
, , ,
, , ,
, , , , ,
,
( )
( ) − ( ) +
∫
1
0
2 1 ,
,τ τ
( )

 
 −
∫
2
0
d
t
k x y z T I x y z V x y z d
I V I V
t
, , , , , , , , , ,
( ) + ( )

 
 + ( )

 
 +
∂
∫ α τ α τ τ
2 1 2 1
0
∂
∂
∇ ( )×
∫
x
x y z
S
t
µ τ
, , ,
0
Ω
D
kT
I x y W dW d
y
x y z I x y
IS
I
L
S I
z
α τ τ µ τ α
2 1
0
2 1
+ ( )

 
 +
∂
∂
∇ ( ) +
∫ , , , , , , , ,
, ,
W
L
t z
τ
( )

 
 ×
∫
∫ 0
0
Ω
D
kT
d W d
x
D
V kT
x y z t
x y
D
V kT
x y z
IS I S I S
τ
∂
∂
∂ µ
∂
∂
∂
∂ µ
+
( )





 +
2 2
, , , , , ,
,t
y
( )





 +
∂
∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
f x y z
I S
I
2 , , ,
, ,
( )





 + ( )(3e)
V x y z t
x
D x y z T
V x y z
x
d
y
D x y z T
V
t
V
2
1
0
, , , , , ,
, , ,
, , ,
( ) = ( )
( ) +
∫
∂
∂
∂ τ
∂
τ
∂
∂
(
( )
( ) +
∫
∂ τ
∂
τ
V x y z
y
d
t
1
0
, , ,
∂
∂
∂ τ
∂
τ α
z
D x y z T
V x y z
z
d k x y z T V x y z
V
t
V V V
, , ,
, , ,
, , , , ,
,
( )
( ) − ( ) +
∫
1
0
2 1 ,
,τ τ
( )

 
 −
∫
2
0
d
t
k x y z T I x y z V x y z d
I V I V
t
, , , , , , , , , ,
( ) + ( )

 
 + ( )

 
 +
∂
∫ α τ α τ τ
2 1 2 1
0
∂
∂
∇ ( ) ×
∫
x
x y z
S
t
µ τ
, , ,
0
Ω
D
kT
V x y W dW d
y
x y z V x y
VS
V
L
S V
z
α τ τ µ τ α
2 1
0
2 1
+ ( )

 
 +
∂
∂
∇ ( ) +
∫ , , , , , , , ,
, ,
W
L
t z
τ
( )

 
 ×
∫
∫ 0
0
Ω
D
kT
d W d
x
D
V kT
x y z t
x y
D
V kT
x y z
VS V S V S
τ
∂
∂
∂ µ
∂
∂
∂
∂ µ
+
( )





 +
2 2
, , , , , ,
,t
y
( )





 +
∂
∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
f x y z
V S
V
2 , , ,
, ,
( )





 + ( )
Φ
Φ Φ
Φ
2
1
0
1
I
I
t
I
x y z t
x
D x y z T
x y z
x
d
y
x
I
, , , , , ,
, , , ,
( ) = ( )
( ) +
∫
∂
∂
∂ τ
∂
τ
∂
∂
∂ y
y z
y
t
, ,τ
∂
( ) ×
∫
0
D x y z T d
z
D x y z T
x y z
z
d
x
I I
I
t
S
Φ Φ
Φ
Ω
, , , , , ,
, , ,
( ) + ( )
( ) +
∂
∂
∇
∫
τ
∂
∂
∂ τ
∂
τ µ
1
0
x
x y z
t
, , ,τ
( ) ×
∫
0
D
kT
x y W dW d
y
D
kT
x y
I
I
z
I
I
S
I
L
S
I
Φ
Φ
Φ
Φ
Φ Ω Φ
α τ τ α
2 1
0
2 1
+ ( )



 +
∂
∂
+
∫ , , , , ,W
W dW
L
t z
,τ
( )



 ×
∫
∫ 0
0
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 56
∇ ( ) + ( ) ( ) +
∂
∂
∂
∫
S I I
t
S
x y z d k x y z T I x y z d
x
D
V kT
I
µ τ τ τ τ
µ
, , , , , , , , ,
,
2
0
2
Φ x
x y z
x
d
t
, , ,τ
τ
( )
∂
+
∫
0
∂
∂
∂ ( )
∂
+
∂
∂
∂ ( )
∂
∫
y
D
V kT
x y z
y
d
z
D
V kT
x y z
z
d
I I
S
t
S
t
Φ Φ
µ τ
τ
µ τ
τ
2
0
2
0
, , , , , ,
∫
∫ + ( )+
f x y z
I
Φ , ,
k x y z T I x y z d
I
t
, , , , , ,
( ) ( )
∫  
0
 (5e)
Φ
Φ Φ
Φ
2
1
0
1
V
V
t
V
x y z t
x
D x y z T
x y z
x
d
y
x
V
, , , , , ,
, , , ,
( ) = ( )
( ) +
∫
∂
∂
∂ τ
∂
τ
∂
∂
∂ y
y z
y
t
, ,τ
∂
( ) ×
∫
0
D x y z T d
z
D x y z T
x y z
z
d
x
V V
V
t
S
Φ Φ
Φ
Ω
, , , , , ,
, , ,
( ) + ( )
( ) +
∂
∂
∇
∫
τ
∂
∂
∂ τ
∂
τ µ
1
0
x
x y z
t
, , ,τ
( ) ×
∫
0
D
kT
x y W dW d
y
D
kT
x y
V
V
z
V
V
S
V
L
S
V
Φ
Φ
Φ
Φ
Φ Ω Φ
α τ τ α
2 1
0
2 1
+ ( )



 +
∂
∂
+
∫ , , , , ,W
W dW
L
t z
,τ
( )



 ×
∫
∫ 0
0
∇ ( ) + ( ) ( ) +
∂
∂
∂
∫
S V V
t
S
x y z d k x y z T V x y z d
x
D
V kT
V
µ τ τ τ τ
µ
, , , , , , , , ,
,
2
0
2
Φ x
x y z
x
d
t
, , ,τ
τ
( )
∂
+
∫
0
∂
∂
∂ ( )
∂
+
∂
∂
∂ ( )
∂
∫
y
D
V kT
x y z
y
d
z
D
V kT
x y z
z
d
V V
S
t
S
t
Φ Φ
µ τ
τ
µ τ
τ
2
0
2
0
, , , , , ,
∫
∫ + ( )+
f x y z
V
Φ , ,
k x y z T V x y z d
V
t
, , , , , ,
( ) ( )
∫  
0
.
Average values of the second-order approximations of required approximations using the following
standard relation.[28]
α ρ ρ
ρ
2 2 1
0
0
0
1
= ( )− ( )

 

∫
∫
ΘL L L
x y z t x y z t d z d yd xd t
x y z
L
L
L z
y
x
, , , , , ,
∫
∫
∫
0
Θ
 (10)
Substitution of the relations Equations (1e), (3e), and (5e) into relation Equation (10) gives us the
possibility to obtain relations for required average values α2ρ
.
α2C
=0, α2ΦI
=0, α2ΦV
=0, 2
3
2
4
2
3
2
1
4
3
4
4
4
4
V
x y z
b E
b
F
a F L L L b
b
b E
b
=
+
( ) − +
+





 −
+
Θ Θ
,

 
2
2
2
00 2 01 10 02 11
0
2
I
V V VV V VV IV x y z V V IV
IV
C S S S L L L S S
S
=
− − + +
( ) − −
Θ
1
1 2 00
+ V IV
S
,
where b
L L L
S S
L L L
S S
x y z
IV V V
x y z
VV II
4 00
2
00 00
2
00
1 1
= −
Θ Θ
, b
S S
L L L
S S
II VV
x y z
VV IV
3
00 00
01 10
2
= − + +
(
Θ
Θ
Θ
Θ
L L L
S S
L L L
S S S L L L
S
x y z
IV VV
x y z
IV II IV x y z
IV
)+ + + +
( )+
00 00
01 10 01
2 0
00
2
01 10
2
ΘL L L
S S
x y z
VV IV
+ +
(
Θ
Θ
L L L
S S
L L L
x y z
IV IV
x y z
)− 00
2
10
3 3 3 3
, b
S S
L L L
S S C S S L L
II VV
x y z
VV IV V IV VV x y
2
00 00
02 11 10 01
2
= + +
( )− − + ×
(
Θ
Θ
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 57
L
S S
L L L
L L L S S
S
L L L
S
z
IV VV
x y z
x y z II IV
IV
x y z
) + + +
( )+
2 01 00
10 01
00
2
Θ
Θ
Θ
I
IV II IV x y
S S L L
01 10 01
2 2
+ + + ×
( Θ
L S L L L S
S
L L L
C S S
C
z VV x y z IV
IV
x y z
V VV IV
I
) + +
( )− − −
( )+
2 01 10
00
2
02 11
Θ
Θ
S
S
L L L
S
L L L
IV
x y z
IV
x y z
00
2
2 2 2 2
10
2
Θ Θ
− ×
S S
IV IV
00 01, b S
S S C
L L L
S S L L L
S
II
IV VV V
x y z
VV IV x y z
IV
1 00
11 02
01 10
01
2
=
+ +
+ +
( )+
Θ
Θ
ΘL
L L L
L L
x y z
x y
Θ ×
(
L S S S S LL L
S S
L L L
S
z II IV VV IV y z
IV IV
x y z
+ + ) + +
( )− −
2 2
10 01 01 10
10 01
2
Θ
Θ
I
IV
x y z
IV II
L L L
S S
00
01 10
3 2
Θ
+ +
(
ΘL L L C S S C S S
x y z V VV IV I IV IV
) − −
( )+
02 11 00 01
2 , b
S
L L L
S S
S
L L L
II
x y z
IV VV
IV
x y z
0
00
00 02
2 01
= +
( ) − ×
Θ
1
2 2
10 01 02 11 01
2
01
Θ
ΘL L L S S C S S C S S
C
x y z II IV V VV IV I IV IV
V
+ +
( ) − −
( )+ −
−
− −
×
S S
L L L
VV IV
x y z
02 11
Θ
ΘL L L S S
x y z II IV
+ +
( )
2 10 01 ,C
L L L
S
S
L L L
S S
L L L
S
I
I V
x y z
IV
I II
x y z
II II
x y z
= + − −
  
1 1
00
1
2
00 20 20
Θ Θ Θ
I
IV
x y z
L L L
11
Θ
,
C S S S S
V I V IV V VV VV IV
= + − −
  
1 1 00 1
2
00 02 11, E y
a
a
a
a
= + −
8 4
2 3
2
4
2
2
4
Θ Θ , F
a
a
= +
Θ 2
4
6
r s r r s r
2 3
3 2 3
3
+ − − + + , r
b
b
b L L L
bb
b
b
b
b
b
x y z
= −





 − − ×
Θ
Θ
Θ Θ
3
2
4
2 0
1 3
4
3
2
3
4
3 0
2
4
2
24
4
54 8
4
8
2
2 3
2
4
2 2 2
4
1
2
4
2
Θ Θ
Θ
b
b
b
L L L
b
b
x y z
−





 − , s
b b L L L bb
b
b
b
x y z
=
−
−
Θ
Θ Θ
2 0 4 1 3
4
2
2
4
4
12 18
.
Farther, we determine solutions of Equation (8), i.e., 
components of the displacement vector. To
determine the first-order approximations of the considered components framework method of averaging
of function corrections, we replace the required functions in the right sides of the equations by their not
yet known average values ai. The substitution leads to the following result
ρ β
z
u x y z t
t
K z z
T x y z t
x
x
( )
∂ ( )
∂
= − ( ) ( )
∂ ( )
∂
2
1
2
, , , , , ,
,  z
u x y z t
t
y
( )
∂ ( )
∂
=
2
1
2
, , ,
− ( ) ( )
∂ ( )
∂
K z z
T x y z t
y

, , ,
, ρ β
z
u x y z t
t
K z z
T x y z t
z
z
( )
∂ ( )
∂
= − ( ) ( )
∂ ( )
∂
2
1
2
, , , , , ,
.
Integration of the left and the right sides of the above relations on time t leads to the following result
u x y z t u K z
z
z x
T x y z d d
x x
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( ) −
∫
∫
β
ρ
τ τ ϑ
ϑ
K z
z
z x
T x y z d d
( )
( )
( )
∂
∂
( )
∫
∫
∞
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
,
u x y z t u K z
z
z y
T x y z d d
y y
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( ) −
∫
∫
β
ρ
τ τ ϑ
ϑ
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 58
K z
z
z y
T x y z d d
( )
( )
( )
∂
∂
( )
∫
∫
∞
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
,
u x y z t u K z
z
z z
T x y z d d
z z
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( ) −
∫
∫
β
ρ
τ τ ϑ
ϑ
K z
z
z z
T x y z d d
( )
( )
( )
∂
∂
( )
∫
∫
∞
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
.
Approximations of the second and higher orders of components of displacement vector could be
determined using standard replacement of the required components on the following sums αi
+ui
(x,y,z,t).[28]
The replacement leads to the following result
ρ
σ
z
u x y z t
t
K z
E z
z
u
x
( )
∂ ( )
∂
= ( )+
( )
+ ( )

 











×
∂
2
2
2
2
1
5
6 1
, , , x
x y
x y z t
x
K z
E z
z
u x y z t
, , , , , ,
( )
∂
+ ( )−
( )
+ ( )

 











∂ (
2
2
1
3 1 σ
)
)
∂ ∂
+
x y
E z
z
u x y z t
y
u x y z t
z
y z
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂





 −
∂
2 1
2
1
2
2
1
2

, , , , , , T
T x y z t
x
, , ,
( )
∂
×
K z z K z
E z
z
u x y z t
x z
z
( ) ( )+ ( )+
( )
+ ( )

 











∂ ( )
∂ ∂
β
σ
3 1
2
1 , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u
y y
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
1
2
2
2 1
, , , , , , 1
1x x y z t
x y
T x y z t
y
, , , , , ,
( )
∂ ∂





 −
∂ ( )
∂
×
K z z
z
E z
z
u x y z t
z
u x y z t
y
y z
( ) ( )+
∂
∂
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂
β
σ
2 1
1 1
, , , , , ,

















+
∂ ( )
∂
×
2
1
2
u x y z t
y
y , , ,
5
12 1 6 1
E z
z
K z K z
E z
z
( )
+ ( )

 

+ ( )










+ ( )−
( )
+ ( )

 






 






∂ ( )
∂ ∂
+ ( )
∂ ( )
∂ ∂
2
1
2
1
u x y z t
y z
K z
u x y z t
x y
y y
, , , , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u
z z
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
1
2
2
2 1
, , , , , , 1
1
2
2
1
z x
x y z t
y
u x y z t
x z
, , , , , ,
( )
∂
+
∂ ( )
∂ ∂
+



∂ ( )
∂ ∂


 +
∂
∂
( )
∂ ( )
∂
+
∂ ( )
2
1 1 1
u x y z t
y z z
K z
u x y z t
x
u x y z t
y x y
, , , , , , , , ,
∂
∂
+
∂ ( )
∂
















+
y
u x y z t
z
x
1 , , ,
E z
z z
u x y z t
z
u x y z t
x
u x y
z x y
( )
+ ( )

 

∂
∂
∂ ( )
∂
−
∂ ( )
∂
−
∂
6 1
6 1 1 1

, , , , , , , ,
, , , , ,
z t
y
u x y z t
z
z
( )
∂
−
∂ ( )
∂





 −
1
∂ ( )
∂
−
∂ ( )
∂
−
∂ ( )
∂








(
u x y z t
x
u x y z t
y
u x y z t
z
E z
x y z
1 1 1
, , , , , , , , , )
)
+ ( )
− ( ) ( )
∂ ( )
∂
1 σ
β
z
K z z
T x y z t
z
, , ,
.
Integration of the left and right sides of the above relations on time t leads to the following result
u x y z t
z
K z
E z
z x
u x
x x
2
2
2 1
1 5
6 1
, , ,
( ) =
( )
( )+
( )
+ ( )

 











∂
∂
ρ σ
,
, , ,
y z d d
z
K z
t
τ τ ϑ
ρ
ϑ
( ) +
( )
( )−



∫
∫ 0
0
1
E z
z x y
u x y z d d
E z
z
y
t
( )
+ ( )

 






∂
∂ ∂
( ) +
( )
( )
∫
∫
3 1 2
2
1
0
0
σ
τ τ ϑ
ρ
ϑ
, , ,
∂
∂
∂
( ) +


 ∫
∫
2
2 1
0
0
y
u x y z d d
y
t
, , ,τ τ ϑ
ϑ
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 59
∂
∂
( )



+ ( )
+
( )
∂
∂ ∂
∫
∫
2
2 1
0
0
2
1
1
1
1
z
u x y z d d
z z x z
u x y z
z
t
z
, , , , , ,
τ τ ϑ
σ ρ
ϑ
τ
τ τ ϑ
ϑ
( ) ( )+



∫
∫ d d K z
t
0
0
E z
z
K z
z
z x
T x y z d d
t
( )
+ ( )

 






− ( )
( )
( )
∂
∂
( ) −
∂
∫
∫
3 1 0
0
σ
β
ρ
τ τ ϑ
ϑ
, , ,
2
2
2 1
0
0
∂
( ) ×
∫
∫
∞
x
u x y z d d
x , , ,τ τ ϑ
ϑ
1 5
6 1 3 1
ρ σ σ
z
K z
E z
z
K z
E z
z
( )
( )+
( )
+ ( )

 











− ( )−
( )
+ ( )

 












∂
∂ ∂
( ) ×
∫
∫
∞
2
1
0
0
x y
u x y z d d
y , , ,τ τ ϑ
ϑ
1
2 1
2
2 1
0
0
2
2
ρ ρ σ
τ τ ϑ
ϑ
z
E z
z z y
u x y z d d
z
y
( )
−
( )
( ) + ( )

 

∂
∂
( ) +
∂
∂
∫
∫
∞
, , , u
u x y z d d
z
1
0
0
, , ,τ τ ϑ
ϑ
( )





 −
∫
∫
∞
1
3 1
2
1
0
ρ σ
τ τ ϑ
z
K z
E z
z x z
u x y z d d
z
( )
( )+
( )
+ ( )

 











∂
∂ ∂
( )
, , ,
ϑ
ϑ
β
ρ
∫
∫
∞
+ + ( )
( )
( )
×
0
0
u K z
z
z
x
×
∂
∂
( )
∫
∫
∞
x
T x y z d d
, , ,τ τ ϑ
ϑ
0
0
u x y z t
E z
z z x
u x y z d d
y x
t
2
2
2 1
0
0
2 1
, , , , , ,
( ) =
( )
( ) + ( )

 

∂
∂
( )
∫
ρ σ
τ τ ϑ
ϑ
∫
∫ ∫
∫
+
∂
∂ ∂
( )





 ×
2
1
0
0
x y
u x y z d d
x
t
, , ,τ τ ϑ
ϑ
1
1
1 5
12 1
2
1
0
0
+ ( )
+
( )
( )
∂
∂ ∂
( ) +
( )
( )
∫
∫
σ ρ
τ τ ϑ
ρ
ϑ
z
K z
z x y
u x y z d d
z
E z
y
t
, , ,
+
+ ( )

 

+ ( )










×
σ z
K z
∂
∂
( ) +
( )
∂
∂
( )
+ ( )
∂
∂
∫
∫
2
2 1
0
0
1
1
2 1
y
u x y z d d
z z
E z
z z
u x y z
x
t
y
, , , , ,
τ τ ϑ
ρ σ
ϑ
,
,τ τ ϑ
ϑ
( ) +








∫
∫ d d
t
0
0
∂
∂
( )








− ( )
( )
( )
( )
∫
∫
y
u x y z d d K z
z
z
T x y z d
z
t
1
0
0
, , , , , ,
τ τ ϑ
β
ρ
τ τ
ϑ
d
d
E z
z
t
ϑ
σ
ϑ
0
0
6 1
∫
∫ −
( )
+ ( )

 

−





K z
z y z
u x y z d d
E z
z x
u x
y
t
x
( )} ( )
∂
∂ ∂
( ) −
( )
( )
∂
∂
∫
∫
1
2
2
1
0
0
2
2 1
ρ
τ τ ϑ
ρ
ϑ
, , , , y
y z d d
, ,τ τ ϑ
ϑ
( ) +


 ∫
∫
∞
0
0
∂
∂ ∂
( )



+ ( )
− ( )
( )
( )
∫
∫
∞
2
1
0
0
1
1
x y
u x y z d d
z
K z
z
z
T x y z
x , , , , , ,
τ τ ϑ
σ
β
ρ
ϑ
τ
τ τ ϑ
ρ
ϑ
( ) −
( )
( )
×
∫
∫
∞
d d
K z
z
0
0
∂
∂ ∂
( ) −
( )
∂
∂
( )
∫
∫ ∫
∞
2
1
0
0
2
2 1
0
1
x y
u x y z d d
z y
u x y z d d
y x
, , , , , ,
τ τ ϑ
ρ
τ τ ϑ
ϑ ϑ
0
0
5
12 1
∞
∫
( )
+ ( )

 

+





E z
z
σ
K z
z
E z
z z
u x y z d d
y
u x y z
y z
( )}−
∂
∂
( )
+ ( )
∂
∂
( ) +
∂
∂
∫
∫
∞
1
1
0
0
1
σ
τ τ ϑ τ
ϑ
, , , , , ,
(
( )
















×
∫
∫
∞
d d
τ ϑ
ϑ
0
0
1
2
1
6 1
2
1
ρ ρ σ
τ
z z
K z
E z
z y z
u x y z
y
( )
−
( )
( )−
( )
+ ( )

 











∂
∂ ∂
, , ,
(
( ) +
∫
∫
∞
d d u y
τ ϑ
ϑ
0
0
0
u x y z t
E z
z x
u x y z d d
z z
, , , , , ,
( ) =
( )
+ ( )

 

∂
∂
( ) +
∂
∂
∫
∫
∞
2 1
2
2 1
0
0
2
σ
τ τ ϑ
ϑ
y
y
u x y z d d
z
2 1
0
0
, , ,τ τ ϑ
ϑ
( ) +


 ∫
∫
∞
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 60
∂
∂ ∂
( ) +
∂
∂ ∂
( )

∫
∫ ∫
∫
∞ ∞
2
1
0
0
2
1
0
0
x z
u x y z d d
y z
u x y z d d
x y
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ



( )
+
( )
×
1 1
ρ ρ
z z
∂
∂
( )
∂
∂
( ) +
∂
∂
( )
∫
∫ ∫
∫
∞ ∞
z
K z
x
u x y z d d
y
u x y z d d
x x
1
0
0
1
0
0
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ
+
+








∂
∂
( )








+
( )
∂
∂
( )
+ ( )
∂
∂
∫
∫
∞
z
u x y z d d
z z
E z
z z
u
x
1
0
0
1
6 1
6
, , ,τ τ ϑ
ρ σ
ϑ
1
1
0
0
z x y z d d
, , ,τ τ ϑ
ϑ
( ) −








∫
∫
∞
∂
∂
( ) −
∂
∂
( ) −
∂
∂
∫
∫ ∫
∫
∞ ∞
x
u x y z d d
y
u x y z d d
z
u
x y z
1
0
0
1
0
0
1
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ
x
x y z d d
, , ,τ τ ϑ
ϑ
( )








−
∫
∫
∞
0
0
K z
z
z z
T x y z d d u z
( )
( )
( )
∂
∂
( ) +
∫
∫
∞
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
0 .
Framework this paper, we determine the concentration of dopant, concentrations of radiation defects,
and components of displacement vector using the second-order approximation framework method of
averaging of function corrections. This approximation is usually enough good approximation to make
qualitative analysis and to obtain some quantitative results. All obtained results have been checked by
comparison with the results of numerical simulations.
DISCUSSION
In this section, we analyzed the dynamics of redistributions of dopant and radiation defects during
annealing and under the influence of mismatch-induced stress and modification of porosity. Typical
distributions of concentrations of infused dopant in heterostructures.
Increasing of number of the curve corresponds to increasing of annealing time is presented on
Figures 2 and 3 for diffusion and ion types of doping, respectively. These distributions have
been calculated for the case, when the value of dopant diffusion coefficient in doped area is
larger than in the nearest areas. The figures show that inhomogeneity of heterostructure gives us
the possibility to increase the compactness of concentrations of dopants and at the same time to
Figure 2: Distributions of concentration of infused dopant in heterostructure from Figure 1 in direction, which is
perpendicular to the interface between epitaxial layer substrate. Increasing of number of the curve corresponds to increasing
of difference between values of the dopant diffusion coefficient in layers of heterostructure under condition, when value of
dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 61
increase the homogeneity of dopant distribution in doped part of the epitaxial layer. However,
framework this approach of manufacturing of bipolar transistor is necessary to optimize annealing
of dopant and/or radiation defects. Reason for, this optimization is the following. If annealing
time is small, the dopant did not achieve any interfaces between materials of the heterostructure.
In this situation, one cannot find any modifications of the distribution of the concentration of
dopant. If annealing time is large, the distribution of concentration of dopant is too homogenous.
We optimize the annealing time framework recently introduces approach.[29-37]
Framework this
criterion, we approximate real distribution of concentration of dopant by step-wise function
[Figure 4 and 5]. Farther, we determine optimal values of annealing time by minimization of the
following mean-squared error
U
L L L
C x y z x y z d z d yd x
x y z
L
L
L z
y
x
= ( )− ( )

 

∫
∫
∫
1
0
0
0
, , , , ,
Θ   (11)
Figure 3: Distributions of concentration of implanted dopant in heterostructure from Figure 1 in direction, which
is perpendicular to the interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing time
Θ=0.0048(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 2 and 4 correspond to annealing time Θ=0.0057(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 1 and 2
correspond to the homogenous sample. Curves 3 and 4 correspond to heterostructure under condition, when the value of
dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate
Figure 4: Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is the idealized distribution of
dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing of number of the curve
corresponds to increasing of annealing time
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 62
where Ψ (x,y,z) is the approximation function. Dependences of optimal values of annealing time on
parameters are presented on Figures 6 and 7 for diffusion and ion types of doping, respectively. It
should be noted that it is necessary to anneal radiation defects after ion implantation. One could find the
spreading of concentration of distribution of dopant during this annealing. In the ideal case distribution
of dopant achieves appropriate interfaces between materials of heterostructure during annealing of
radiation defects. If dopant did not achieve any interfaces during annealing of radiation defects, it is
practicably to additionally anneal the dopant. In this situation, the optimal value of additional annealing
time of implanted dopant is smaller than annealing time of infused dopant.
Farther, we analyzed the influence of relaxation of mechanical stress on the distribution of dopant in
doped areas of the heterostructure. Under the following conditions ε0
0, one can find compression
of distribution of concentration of dopant near the interface between materials of the heterostructure.
Figure 5: Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of
dopant. Curves 2-4 are real distributions of dopant for different values of annealing time
Figure 6: Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by
minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing
time on the relation a/L and ξ=γ=0 for equal to each other values of the dopant diffusion coefficient in all parts of the
heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2
and ξ=γ=0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and
ε=γ=0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 63
Contrary (at ε0
0) one can find the spreading of distribution of concentration of dopant in this area. This
changing of distribution of concentration of dopant could be at least partially compensated using laser
annealing.[37]
This type of annealing gives us the possibility to accelerate the diffusion of dopant and
another processes in the annealed area due to inhomogeneous distribution of temperature and Arrhenius
law. Accounting relaxation of mismatch-induced stress in heterostructure could lead to the changing of
optimal values of annealing time. At the same time, modification of porosity gives us the possibility to
decrease the value of mechanical stress. On the one hand, mismatch-induced stress could be used to
increase the density of elements of integrated circuits. On the other hand, it could lead to generation
dislocations of the discrepancy. Figures 8 and 9 show distributions of the concentration of vacancies
in porous materials and component of the displacement vector, which is perpendicular to the interface
between layers of heterostructure.
Figure 7: Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained
by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal
annealing time on the relation a/L and ξ=γ=0 for equal to each other values of the dopant diffusion coefficient in all parts of
the heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2
and ξ=γ=0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and
ε=γ=0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0
Figure 8: Normalized dependences of component uz
of displacement vector on coordinate z for nonporous (curve 1) and
porous (curve 2) epitaxial layers
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 64
CONCLUSION
In this paper, we model redistribution of infused and implanted dopants with account relaxation mismatch-
induced stress during manufacturing field-effect heterotransistors framework two-level current-mode
logic gates in a multiplexer. We formulate recommendations for the optimization of annealing to
decrease dimensions of transistors and to increase their density. We formulate recommendations to
decrease mismatch-induced stress. Analytical approach to model diffusion and ion types of doping with
account concurrent changing of parameters in space and time has been introduced. At the same time, the
approach gives us the possibility to take into account the nonlinearity of considered processes.
REFERENCES
1.	 Lachin VI, Savelov NS. Electronics. Rostov-on-Don: Phoenix; 2001.
2.	 Polishscuk A. Modern models of integrated operating amplifier. Mod Electron 2004;12:8-11.
3.	 Volovich G. Modern chips UM3Ch class D manufactured by firm MPS. Mod Electron 2006;2:10-7.
4.	 Kerentsev A, Lanin V. Constructive-technological features of MOSFET-transistors. Power Electron 2008;1:34.
5.	 Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudrik YY, et al. Sachenko. Semiconductors
2009;43:897-903.
6.	 Tsai JH, Chiu SY, Lour WS, Guo DF.   High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor.
Semiconductors 2009;43:939-42.
7.	 Alexandrov OV, Zakhar’AO ZZ, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers
after annealing of dysprosium and holmium implanted silicon. Semiconductors 1998;32:1029-32.
8.	 Ermolovich IB, Milenin VV, Red’RA RR, Red’SM RR. Specific features of recombination processes in CdTe films
produced in different temperature conditions of growth and subsequent annealing. Semiconductors 2009;43:1016-20.
9.	 Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via
band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett 2013;102:53901-5.
10.	 Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO. Shallow acceptor complexes in p-type ZnO.
Appl Phys Lett 2013;102:152114-8.
11.	Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. Investigation of
technological processes of manufacturing of the bipolar power highvoltage transistors with a grid of inclusions in the
collector region. Semiconductors 2001;35:1013-7.
12.	 Pankratov EL, Bulaeva EA. Optimal criteria to estimate temporal characteristics of diffusion process in a media with
inhomogenous and nonstationary parameters. Rev Theor Sci 2013;1:58-82.
13.	 Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial growth of zinc oxide by the method of atomic layer deposition on
SiC/Si substrates. Phys Solid State 2016;58:1448-52.
14.	 Trukhanov EM, Kolesnikov AV, Loshkarev ID. Long++range stresses generated by misfit dislocations in epitaxial films.
Russ Microelectron 2015;44:552-8.
Figure 9: Normalized dependences of vacancy concentrations on coordinate z in unstressed (curve 1) and stressed (curve 2)
epitaxial layers
Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer
AJMS/Jan-Mar-2020/Vol 4/Issue 1 65
15.	 Pankratov EL, Bulaeva EA. About some ways to decrease quantity of defects in materials for solid state electronic
devices and diagnostics of their realization. Rev Theor Sci 2015;3:365-98.
16.	 Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the
maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4.
17.	 Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901-5.
18.	Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in
semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836-43.
19.	 Jang I, Kim J, Kim S. Accurate delay models of CMOS CML circuits for design optimization. Analog Integr Circuits Sig
Process 2015;82:297-307.
20.	 Zhang YW, Bower AF. Numerical simulations of island formation in a coherent strained epitaxial thin film system.
J Mech Phys Solids 1999;47:2273-97.
21.	 Landau LD, Lefshits EM. Theory of elasticity. In: Theoretical Physics. Vol. 7. Moscow: Physmatlit; 2001.
22.	 Kitayama M, Narushima T, Carter WC, Cannon RM, Glaeser AM. The Wulff shape of alumina: I, modeling the kinetics
of morphological evolution. J Am Ceram Soc 2000;83:2531-61. Kitayama M, Narushima T, Glaeser AM. The Wulff
shape of alumina: II, experimental measurements of pore shape evolution rates. J Am Ceram Soc 2000;83:2572-83.
23.	 Cheremskoy PG, Slesov VV, Betekhtin VI. Pore in Solid Bodies. Moscow: Energoatomizdat; 1990.
24.	 Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991.
25.	 Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289-388.
26.	 Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979.
27.	Mynbaeva MG, Mokhov EN, Lavrent’AA LL, Mynbaev KD. High-temperature diffusion doping of porous silicon
carbide. Tech Phys Lett 2008;34:13.
28.	 Sokolov YD. About determination of dynamical forces in mine’s hoisting ropes. Appl Mech 1955;1:23-35.
29.	 PankratovEL.Dopantdiffusiondynamicsandoptimaldiffusiontimeasinfluencedbydiffusion-coefficientnonuniformity.
Russ Microelectron 2007;36:33-9.
30.	 Pankratov EL. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for
production an implanted-junction rectifiers. Int J Nanosci 2008;7:187-97.
31.	 Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical
approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci
2013;1:58-82.
32.	 Pankratov EL, Bulaeva EA. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using
overlayers. Int J Micro Nano Scale Transp 2012;3:119-30.
33.	 Pankratov EL, Bulaeva EA. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. Int J
Mod Phys B 2015;29:1550023.
34.	 Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational
amplifier to increase their integration rate. Influence mismatch-induced stress. J Comp Theor Nanosci 2017;14:4885-99.
35.	 Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater
Sci Semicond Process 2015;34:260-8.
36.	 Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. Int J Micro Nano
Scale Transp 2014;4:17-31.
37.	Pankratov EL, Bulaeva EA. An analytical approach for analysis and optimization of formation of field-effect
heterotransistors. Multidiscip Mod Mater Struct 2016;12:578.

More Related Content

What's hot

AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTHON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTHZac Darcy
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ijoejournal
 
The numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximationThe numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximationeSAT Journals
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...eSAT Journals
 
Paper id 71201914
Paper id 71201914Paper id 71201914
Paper id 71201914IJRAT
 
On vertical integration framework
On vertical integration frameworkOn vertical integration framework
On vertical integration frameworkijaceeejournal
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationAlexander Litvinenko
 
Codes from the cyclic group of order three
Codes from the cyclic group of order threeCodes from the cyclic group of order three
Codes from the cyclic group of order threeEditor Jacotech
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableAlexander Decker
 
Compfuncdiff
CompfuncdiffCompfuncdiff
Compfuncdiffdianenz
 

What's hot (17)

AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTHON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
 
The numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximationThe numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximation
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
A Numerical Solution for Sine Gordon Type System
A Numerical Solution for Sine Gordon Type SystemA Numerical Solution for Sine Gordon Type System
A Numerical Solution for Sine Gordon Type System
 
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
 
Paper id 71201914
Paper id 71201914Paper id 71201914
Paper id 71201914
 
Sub1567
Sub1567Sub1567
Sub1567
 
On vertical integration framework
On vertical integration frameworkOn vertical integration framework
On vertical integration framework
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
 
Codes from the cyclic group of order three
Codes from the cyclic group of order threeCodes from the cyclic group of order three
Codes from the cyclic group of order three
 
Maths ms
Maths msMaths ms
Maths ms
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
Compfuncdiff
CompfuncdiffCompfuncdiff
Compfuncdiff
 

Similar to On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a Multiplexer

On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...antjjournal
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...BRNSSPublicationHubI
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitBRNSS Publication Hub
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...BRNSS Publication Hub
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 

Similar to On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a Multiplexer (20)

On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...BRNSS Publication Hub
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHSBRNSS Publication Hub
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRABRNSS Publication Hub
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERSBRNSS Publication Hub
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationBRNSS Publication Hub
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...BRNSS Publication Hub
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseBRNSS Publication Hub
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...BRNSS Publication Hub
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...BRNSS Publication Hub
 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
 

Recently uploaded

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 

Recently uploaded (20)

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 

On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a Multiplexer

  • 1. www.ajms.com 42 RESEARCH ARTICLE On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a Multiplexer E. L. Pankratov1,2 1 Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia, 2 Department of Higher Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod 603950, Russia Received: 20-12-2019; Revised: 07-01-2020; Accepted: 20-01-2020 ABSTRACT In this paper, we introduce an approach to increase the density of field-effect transistors framework a two-level current-mode logic gates in a multiplexer. Framework the approach we consider manufacturing the inverter in heterostructure with the specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion implantation. After that, dopant and radiation defects should by annealed framework optimized scheme. We also consider an approach to decrease the value of mismatch-induced stress in the considered heterostructure. We introduce an analytical approach to analyze mass and heat transport in heterostructures during the manufacturing of integrated circuits with account mismatch-induced stress. Key words: Increasing of element integration rate, optimization of manufacturing, two-level current-mode logic INTRODUCTION In the present time, several actual problems of the solid-state electronics (such as increasing of performance, reliability, and density of elements of integrated circuits: Diodes, field-effect, and bipolar transistors) are intensively solving.[1-6] To increase the performance of these devices, it is attracted an interest determination of materials with higher values of charge carriers mobility.[7- 10] One way to decrease dimensions of elements of integrated circuits is manufacturing them in thin-film heterostructures.[3-5,11] In this case, it is possible to use inhomogeneity of heterostructure and necessary optimization of doping of electronic materials[12] and the development of epitaxial technology to improve these materials (including analysis of mismatch induced stress).[13-15] Alternative approaches to increase dimensions of integrated circuits are using laser and microwave types of annealing.[16-18] Framework the paper, we introduce an approach to manufacture field-effect transistors. The approach gives a possibility to decrease their dimensions with increasing their density framework two-level current-mode logic gates in a multiplexer. We also consider the possibility to decrease mismatch- induced stress to decrease the quantity of defects, generated due to the stress. In this paper, we consider a heterostructure, which consists of a substrate and an epitaxial layer [Figure 1]. We also consider a buffer layer between the substrate and the epitaxial layer. The epitaxial layer includes itself several sections, which were manufactured using another materials. These sections have been doped by diffusion or ion implantation to manufacture the required types of conductivity (p or n). These areas became sources, drains, and gates. Address for correspondence: E. L. Pankratov E-mail: elp2004@mail.ru ISSN 2581-3463
  • 2. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 43 [Figure 1]. After this doping, it is required annealing of dopant and/or radiation defects. Main aim of the present paper is analysis of redistribution of dopant and radiation defects to determine conditions, which correspond to the decreasing of elements of the considered voltage reference and at the same time to increase their density. At the same time, we consider a possibility to decrease mismatch-induced stress. METHOD OF SOLUTION To solve our aim, we determine and analyzed the spatio-temporal distribution of the concentration of dopant in the considered heterostructure. We determine the distribution by solving the second Fick’s law in the following form.[1,20-23] ∂ ( ) ∂ = ∂ ∂ ∂ ( ) ∂       + ∂ ∂ ∂ ( ) ∂    C x y z t t x D C x y z t x y D C x y z t y , , , , , , , , ,     + ∂ ∂ ∂ ( ) ∂       + z D C x y z t z , , , ( ) ( ) 1 0 , , , , , , z L S S D x y z t C x y W t dW x kT    ∂ Ω ∇ +   ∂     ∫ ( ) ( ) 1 0 , , , , , , z L S S D x y z t C x y W t dW y kT    ∂ Ω ∇ +   ∂     ∫ (1) + ( )       + ( )     ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ ∂ x D V kT x y z t x y D V kT x y z t y C S C S 2 2 , , , , , ,    + ( )       ∂ ∂ ∂ µ ∂ z D V kT x y z t z C S 2 , , , with boundary and initial conditions ∂ ( ) ∂ = = C x y z t x x , , , 0 0, ∂ ( ) ∂ = = C x y z t x x Lx , , , 0, ∂ ( ) ∂ = = C x y z t y y , , , 0 0, C (x,y,z,0)=fC (x,y,z), ∂ ( ) ∂ = = C x y z t y x Ly , , , 0, ∂ ( ) ∂ = = C x y z t z z , , , 0 0, ∂ ( ) ∂ = = C x y z t z x Lz , , , 0. Here, C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; Ω is the atomic volume of dopant; ∇s is the symbol of surficial gradient; C x y z t d z Lz , , , ( ) ∫ 0 is the surficial concentration of dopant on interface between layers of heterostructure (in this situation we assume, that Z-axis is perpendicular to Figure 1: (a) Structure of the considered logic gates[19] (b) Heterostructure with a substrate, epitaxial layers, and buffer layer (view from side) b a
  • 3. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 44 interface between layers of heterostructure); μ1 (x,y,z,t) and μ2 (x,y,z,t) are the chemical potential due to the presence of mismatch-induced stress and porosity of material; D and DS are the coefficients of volumetric and surficial diffusions. Values of dopant diffusions coefficients depend on properties of materials of heterostructure, speed of heating and cooling of materials during annealing, and spatio-temporal distribution of concentration of dopant. Dependences of dopant diffusions coefficients on parameters could be approximated by the following relations.[24-26] D D x y z T C x y z t P x y z T V x y z t C L = ( ) + ( ) ( )       + ( , , , , , , , , , , , , 1 1 1 ξ ς γ γ ) ) + ( ) ( )         V V x y z t V * * , , , ς2 2 2 , D D x y z T C x y z t P x y z T V x y z S S L S = ( ) + ( ) ( )       + , , , , , , , , , , , , 1 1 1 ξ ς γ γ t t V V x y z t V ( ) + ( ) ( )         * * , , , ς2 2 2 (2) Here, DL (x,y,z,T) and DLS (x,y,z,T) are the spatial (due to accounting all layers of heterostructure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of annealing; P(x,y,z,T) is the limit of solubility of dopant; parameter γ depends on properties of materials and could be integer in the following interval γ ϵ;[1,3,24] V(x,y,z,t) is the spatio-temporal distribution of concentration ofradiationvacancies;V*istheequilibriumdistributionofvacancies.Concentrationdependenceofthedopant diffusion coefficient has been described in details in Gotra.[24] Spatio-temporal distributions of concentration of point radiation defects have been determined by solving the following system of equations.[20-23,25,26]         I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T I x y z t y ( ) ( )       +       z D x y z T I x y z t z k x y z T I x y z t I I I , , , , , , , , , , , , , ( ) ( )       − ( ) ( ) 2 − − ( ) × k x y z T I V , , , , ( ) ( ) ( ) ( ) 0 , , , , , , , , , , , , z L IS S D I x y z t V x y z t x y z t I x y W t dW x kT    ∂ + Ω ∇ +   ∂     ∫ ( ) ( ) ( ) 2 0 , , , , , , , , , z L I S IS S D x y z t D x y z t I x y W t dW y kT x V kT x       ∂ ∂ ∂ Ω ∇ + +     ∂ ∂ ∂       ∫ ( ) ( ) 2 2 , , , , , , I S I S D D x y z t x y z t y V kT y z V kT z       ∂ ∂ ∂ ∂ +     ∂ ∂ ∂ ∂     (3)         V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T V x y z t y ( ) ( )       +       z D x y z T V x y z t z k x y z T V x y z t V V V , , , , , , , , , , , , , ( ) ( )       − ( ) ( ) 2 − − ( ) × k x y z T I V , , , , ( ) ( ) ( ) ( ) 0 , , , , , , , , , , , , z L VS S D I x y z t V x y z t x y z t V x y W t dW x kT   ∂ × + Ω ∇ +   ∂     ∫  ( ) ( ) ( ) 2 0 , , , , , , , , , z L V S VS S D x y z t D x y z t V x y W t dW y kT x V kT x       ∂ ∂ ∂ Ω ∇ + +     ∂ ∂ ∂       ∫ ( ) ( ) 2 2 , , , , , , V S V S D D x y z t x y z t y V kT y z V kT z     ∂ ∂ ∂ ∂ +     ∂ ∂ ∂ ∂       with boundary and initial conditions
  • 4. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 45   I x y z t x x , , , ( ) = =0 0,   I x y z t x x Lx , , , ( ) = = 0,   I x y z t y y , , , ( ) = =0 0,   I x y z t y y Ly , , , ( ) = = 0,   I x y z t z z , , , ( ) = =0 0,   I x y z t z z Lz , , , ( ) = = 0,   V x y z t x x , , , ( ) = =0 0,   V x y z t x x Lx , , , ( ) = = 0,   V x y z t y y , , , ( ) = =0 0(4)   V x y z t y y Ly , , , ( ) = = 0,   V x y z t z z , , , ( ) = =0 0,   V x y z t z z Lz , , , ( ) = = 0, I (x,y,z,0)= fI (x,y,z), V (x,y,z,0)=fV (x,y,z), ( ) 1 1 1 2 2 2 1 1 1 2 , , , 1 n n n l V x V t y V t z V t t V kT x y z  ∞   + + + = +   + +   . Here, I(x,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials; I* is the equilibrium distribution of interstitials; DI (x,y,z,T), DV (x,y,z,T), DIS (x,y, z,T), and DVS (x,y,z,T) are the coefficients of volumetric and surficial diffusions of interstitials and vacancies, respectively; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation of divacancies and diinterstitials, respectively (e.g. Vinetskiy and Kholodar[26] and appropriate references in this book); kI,V (x,y,z,T), kI,I (x,y,z,T), and kV,V (x,y,z,T) are the parameters of recombination of point radiation defects and generation of their complexes; k is the Boltzmann constant; ω=a3 , a is the interatomic distance; l is the specific surface energy. To account porosity of buffer layers, we assume, that porous are approximately cylindrical with average values r x y = + 1 2 1 2 and z1 before annealing.[23] With time small pores decomposing on vacancies. The vacancies absorbing by larger pores.[27] With time large pores became larger due to absorbing the vacancies and became more spherical.[27] Distribution of concentration of vacancies in the heterostructure, existing due to porosity, could be determined by summing on all pores, i.e., V x y z t V x i y j z k t p k n j m i l , , , , , , ( ) = + + + ( ) = = = ∑ ∑ ∑ α β χ 0 0 0 , R x y z = + + 2 2 2 . Here, α,β, and χ are the average distances between centers of pores in directions x, y, and z; l, m, and n are the quantity of pores inappropriate directions. Spatio-temporal distributions of divacancies ΦV (x,y,z,t) and di-interstitials ΦI (x,y,z, t) could be determined by solving the following system of equations.[25,26]         Φ Φ Φ Φ I I x y z t t x D x y z T x y z t x y D x I I , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )       +   Φ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t I I I S S Φ Φ Φ Ω , , , , , , , , , ( ) ( )       + ∂ ∂ ∇ ( 1 ) ) ( )         + ∫ΦI L x y W t dW z , , , 0 ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z I L S S I I I D x y z t x y W t dW k x y z T I x y z t y kT Φ   ∂ Ω ∇ Φ + +   ∂     ∫  ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂      
  • 5. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 46 k x y z T I x y z t I , , , , , , ( ) ( ) (5)         Φ Φ Φ Φ V V x y z t t x D x y z T x y z t x y D x V V , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )       +   Φ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t V V V S S Φ Φ Φ Ω , , , , , , , , , ( ) ( )       + ∂ ∂ ∇ ( 1 ) ) ( )         + ∫ΦV L x y W t dW z , , , 0 ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z V L S S V V V D x y z t x y W t dW k x y z T V x y z t y kT  Φ   ∂ Ω ∇ Φ + +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       k x y z T V x y z t V , , , , , , ( ) ( ) with boundary and initial conditions   ΦI x x y z t x , , , ( ) = =0 0,   ΦI x L x y z t x x , , , ( ) = = 0,   ΦI y x y z t y , , , ( ) = =0 0,   ΦI y L x y z t y y , , , ( ) = = 0,   ΦI z x y z t z , , , ( ) = =0 0,   ΦI z L x y z t z z , , , ( ) = = 0,   ΦV x x y z t x , , , ( ) = =0 0,   ΦV x L x y z t x x , , , ( ) = = 0,   ΦV y x y z t y , , , ( ) = =0 0 (6)   ΦV y L x y z t y y , , , ( ) = = 0,   ΦV z x y z t z , , , ( ) = =0 0,   ΦV z L x y z t z z , , , ( ) = = 0, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). Here, DΦI (x,y,z,T), DΦV (x,y,z,T), DΦIS (x,y,z,T), and DΦVS (x,y,z,T) are the coefficients of volumetric and surficial diffusions of complexes of radiation defects; kI (x,y,z,T) and kV (x,y,z,T) are the parameters of decay of complexes of radiation defects. Chemical potential μ1 in Eq.(1) could be determined by the following relation[20] μ1 =E(z)Ωσij [uij (x,y,z,t)+uji (x,y,z,t)]/2,(7) where E(z) is the Young modulus, σij is the stress tensor; u u x u x ij i j j i = ∂ ∂ + ∂ ∂       1 2 is the deformation tensor; ui and uj are the components ux (x,y,z,t), uy (x,y,z,t), and uz (x,y,z,t) of the displacement vector u x y z t → ( ) , , , ; xi and xj are the coordinate x, y, z. The eq. (3) could be transformed to the following form ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , 1 , , , 2 j j i i j i j i u x y z t u x y z t u x y z t u x y z t x y z t x x x x       ∂ ∂ ∂ ∂  = + + −      ∂ ∂ ∂ ∂          
  • 6. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 47 ε δ σ δ σ ε β 0 0 1 2 3 ij ij k k z z u x y z t x K z z T x y + ( ) − ( ) ∂ ( ) ∂ −       − ( ) ( ) , , , , , , , z t T E z ij ( )−          ( ) 0 2 δ Ω where σ is Poisson coefficient; ε0 =(as -aEL )/aEL is the mismatch parameter; as and aEL are lattice distances of the substrate and the epitaxial layer; K is the modulus of uniform compression; β is the coefficient of thermal expansion; Tr is the equilibrium temperature, which coincides (for our case) with room temperature. Components of displacement vector could be obtained by solution of the following equations.[21] ρ σ σ σ z u x y z t t x y z t x x y z t y x x xx xy xz ( ) ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ 2 2 , , , , , , , , , , , , , y z t z ( ) ∂ ρ σ σ σ z u x y z t t x y z t x x y z t y x y yx yy yz ( ) ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ 2 2 , , , , , , , , , , , , , y z t z ( ) ∂ ρ σ σ σ z u x y z t t x y z t x x y z t y x z zx zy zz ( ) ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ 2 2 , , , , , , , , , , , , , y z t z ( ) ∂ where σ σ δ ij i j j i ij k E z z u x y z t x u x y z t x u = ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂ − ∂ 2 1 3 , , , , , , x x y z t x K z k ij , , , ( ) ∂         + ( ) × δ ∂ ( ) ∂ − ( ) ( ) ( )−     u x y z t x z K z T x y z t T k k r , , , , , ,  , ρ (z) is the density of materials of heterostructure, δij Is the Kronecker symbol. With account, the relation for σij last system of the equation could be written as ρ σ z u x y z t t K z E z z u x x x ( ) ∂ ( ) ∂ = ( )+ ( ) + ( )               ∂ 2 2 2 5 6 1 , , , , y y z t x K z E z z , , ( ) ∂ + ( )− ( ) + ( )               × 2 3 1 σ ∂ ( ) ∂ ∂ + ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 1 u x y z t x y E z z u x y z t y u x y y y z , , , , , , , ,  z z t z K z E z z , ( ) ∂       + ( )+ ( ) + ( )             × 2 3 1  ∂ ( ) ∂ ∂ − ( ) ( ) ∂ ( ) ∂ 2 u x y z t x z K z z T x y z t x z , , , , , ,  ρ σ z u x y z t t E z z u x y z t x u x y y x ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 2 1 , , , , , , , , , , , , , y z t x y T x y z t y ( ) ∂ ∂       − ∂ ( ) ∂ × K z z z E z z u x y z t z u x y z t y y z ( ) ( )+ ∂ ∂ ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂   β σ 2 1 , , , , , ,                + ∂ ( ) ∂ × 2 2 u x y z t y y , , , 5 12 1 6 1 E z z K z K z E z z ( ) + ( )     + ( )           + ( )− ( ) + ( )                  ∂ ( ) ∂ ∂ + ( ) ∂ ( ) ∂ ∂ 2 2 u x y z t y z K z u x y z t x y y y , , , , , , ρ σ z u x y z t t E z z u x y z t x u x z z z ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 2 1 , , , , , , , , , , , , , y z t y u x y z t x z x ( ) ∂ + ∂ ( ) ∂ ∂ +    2 2 ∂ ( ) ∂ ∂    + ∂ ∂ ( ) ∂ ( ) ∂ + ∂ ( ) ∂ + 2 u x y z t y z z K z u x y z t x u x y z t y y x y , , , , , , , , , ∂ ∂ ( ) ∂                 + u x y z t z x , , , 1 6 1 6 ∂ ∂ ( ) + ( ) ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ ( ) z E z z u x y z t z u x y z t x u x y z t z x y  , , , , , , , , , ∂ ∂ − ∂ ( ) ∂                 − y u x y z t z z , , ,
  • 7. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 48 K z z T x y z t z ( ) ( ) ∂ ( ) ∂  , , , (8) Conditions for the system of Equation (8) could be written in the form ( ) 0, , , 0 u y z t x → ∂ = ∂ ; ∂ ( ) ∂ = → u L y z t x x , , , 0; ∂ ( ) ∂ = → u x z t y , , , 0 0; ∂ ( ) ∂ = → u x L z t y y , , , 0; ∂ ( ) ∂ = → u x y t z , , , 0 0; ∂ ( ) ∂ = → u x y L t z z , , , 0; u x y z u → → ( ) = , , ,0 0 ; u x y z u → → ∞ ( ) = , , , 0 . Wedeterminespatio-temporaldistributionsofconcentrationsofdopantandradiationdefectsbysolvingthe Equations (1), (3), and (5) framework standard method of averaging of function corrections.[28] Previously, we transform the Equations (1), (3), and (5) to the following form with account initial distributions of the considered concentrations. ∂ ( ) ∂ = ∂ ∂ ∂ ( ) ∂       + ∂ ∂ ∂ ( ) ∂    C x y z t t x D C x y z t x y D C x y z t y , , , , , , , , ,     + ∂ ∂ ∂ ( ) ∂       + z D C x y z t z f x y z t c , , , ( , , ) ( )  ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ ∂ x D V kT x y z t x y D V kT x y z t y C S C S 2 2 , , , , , , ( )       + ( )        + ( )       + ∂ ∂ ∂ µ ∂ z D V kT x y z t z C S 2 , , , ( ) ( ) 0 , , , , , , z L S S D x y z t C x y W t dW x kT    ∂ Ω ∇ +   ∂     ∫ ( ) ( ) 0 , , , , , , z L S S D x y z t C x y W t dW y kT    ∂ Ω ∇   ∂     ∫   (1a)         I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T I x y z t y ( ) ( )       +   ∂ ∂ ∂ ∂ µ z D x y z T I x y z t z x D kT x y z t I x I IS S , , , , , , , , , ( ) ( )       + ∂ ∂ ∇ ( ) Ω 1 , , , , y W t dW Lz ( )         + ∫ 0 ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z L IS S I I D x y z t I x y W t dW k x y z T I x y z t y kT    ∂ Ω ∇ − −   ∂     ∫ k x y z T I x y z t V x y z t f x y z t I V I , , , , , , , , , , , , ( ) ( ) ( )+ ( ) ( )  (3a)         V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T V x y z t y ( ) ( )       +   ∂ ∂ ∂ ∂ µ z D x y z T V x y z t z x D kT x y z t V x V VS S , , , , , , , , , ( ) ( )       + ∂ ∂ ∇ ( ) Ω 1 , , , , y W t dW Lz ( )         + ∫ 0 ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z L IS S V V D x y z t V x y W t dW k x y z T V x y z t y kT    ∂ Ω ∇ − −   ∂   ∫ k x y z T I x y z t V x y z t f x y z t I V V , , , , , , , , , , , , ( ) ( ) ( )+ ( ) ( ) 
  • 8. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 49         Φ Φ Φ Φ I I x y z t t x D x y z T x y z t x y D x I I , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )       +   Φ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t I I I S S Φ Φ Φ Ω , , , , , , , , , ( ) ( )       + ∂ ∂ ∇ ( 1 ) ) ( )         + ∫ΦI L x y W t dW z , , , 0 ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I L S S I I D x y z t x y W t dW k x y z T I x y z t y kT  Φ   ∂ Ω ∇ Φ + +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       k x y z T I x y z t f x y z t I I I , , , , , , , , , ( ) ( )+ ( ) ( ) 2 Φ  (5a)         Φ Φ Φ Φ V V x y z t t x D x y z T x y z t x y D x V V , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )       +   Φ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t V V V S S Φ Φ Φ Ω , , , , , , , , , ( ) ( )       + ∂ ∂ ∇ ( 1 ) ) ( )         + ∫ΦV L x y W t dW z , , , 0 ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I L S S I V D x y z t x y W t dW k x y z T I x y z t y kT  Φ   ∂ Ω ∇ Φ + +   ∂   ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       k x y z T V x y z t f x y z t V V V , , , , , , , , , ( ) ( )+ ( ) ( ) 2 Φ  . Farther, we replace concentrations of dopant and radiation defects in the right sides of Equations (1a), (3a), and (5a) on their not yet known average values α1r . In this situation, we obtain equations for the first-order approximations of the required concentrations in the following form ∂ ( ) ∂ = ∂ ∂ ∇ ( )       + ∂ ∂ C x y z t t x z D kT x y z t y z D k C S S C S 1 1 1 1 , , , , , , α µ α Ω Ω T T x y z t S ∇ ( )       + µ1 , , , f x y z t x D V kT x y z t x y D V kT x C C S C S , , , , , , ( ) ( )+ ( )       + δ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ 2 2 y y z t y , , ( )       + ∂ ∂ ∂ ∂ µ ∂ z D V kT x y z t z C S 2 , , , ( )       (1b) ∂ ∂ α µ α I x y z t t z x D kT x y z t y z D I IS S I IS 1 1 1 , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ Ω Ω k kT x y z t S ∇ ( )       + µ , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , I S I S I S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z          ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂      
  • 9. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 50 f x y z t k x y z T k x y z T I I I I I V I V , , , , , , , , , , ( ) ( )− ( )− ( ) δ α α α 1 2 1 1 (3b) ∂ ∂ α µ α V x y z t t z x D kT x y z t y z D V VS S V V 1 1 1 1 , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ Ω Ω S S S kT x y z t ∇ ( )       + µ1 , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , V S V S V S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z          ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       f x y z t k x y z T k x y z T V V V V I V I V , , , , , , , , , , ( ) ( )− ( )− ( ) δ α α α 1 2 1 1 ∂ ∂ α µ α Φ Ω Ω Φ Φ Φ 1 1 1 1 I S S x y z t t z x D kT x y z t z I I I , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ ∂ ∇ ( )       + y D kT x y z t I S S Φ µ1 , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       f x y z t k x y z T I x y z t k x y z T I x y z I I I I Φ , , , , , , , , , , , , , , , ( ) ( )+ ( ) ( )+ ( )  2 t t ( ) (5b) ∂ ∂ α µ α Φ Ω Ω Φ Φ Φ 1 1 1 1 V S S x y z t t z x D kT x y z t z V V V , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ ∂ ∇ ( )       + y D kT x y z t V S S Φ µ1 , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       f x y z t k x y z T V x y z t k x y z T V x y z V V V V Φ , , , , , , , , , , , , , , , ( ) ( )+ ( ) ( )+ ( )  2 t t ( ). Integration of the left and right sides of the Equations (1b), (3b), and (5b) on time gives us possibility to obtain relations for above approximation in the final form C x y z t x D x y z T z kT V x y z V V x y C S L 1 1 1 2 2 1 , , , , , , , , , , * ( ) = ∂ ∂ ( ) + ( ) + α ς τ ς Ω , , , * z V t τ ( ) ( )         × ∫ 2 0 ∇ ( ) + ( )            + ∂ ∂ S S C C S L x y z P x y z T d y D x y µ τ ξ α τ α γ γ 1 1 1 1 , , , , , , , , , , , , , z T P x y z T S C t ( ) + ( )       + ∫ 1 1 0 ξ αγ γ Ω∇ ( ) + ( ) + ( ) ( )       S x y z z kT V x y z V V x y z V µ τ ς τ ς τ 1 1 2 2 2 1 , , , , , , , , , * *    + × ∫ d x D V kT C S t τ ∂ ∂ 0 ∂ µ τ ∂ τ ∂ ∂ ∂ µ τ ∂ τ ∂ ∂ ∂ µ 2 2 0 2 x y z x d y D V kT x y z y d z D V kT C S t C S , , , , , , ( ) + ( ) + ∫ x x y z z d t , , ,τ ∂ τ ( ) + ∫ 0 f x y z C , , ( ) (1c) I x y z t z x D kT x y z d z y D kT I IS S t I IS 1 1 1 0 1 , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ α Ω Ω S S t x y z d µ τ τ 1 0 , , , ( ) + ∫
  • 10. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 51 ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ) ∂ + ∫ ∫ x D V kT x y z t x d y D V kT x y z t y d I S t I S t µ τ µ τ 2 0 2 0 , , , , , , ∂ ∂ ∂ ∂ ( ) ∂ + ∫ z D V kT x y z t z d I S t µ τ 2 0 , , , f x y z k x y z T d k x y z T d I I I I t I V I V t , , , , , , , , , , ( )− ( ) − ( ) ∫ ∫ α τ α α τ 1 2 0 1 1 0 (3c) V x y z t z x D kT x y z d z y D kT V IS S t V IS 1 1 1 0 1 , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ α Ω Ω S S t x y z d µ τ τ 1 0 , , , ( ) + ∫ ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ) ∂ + ∫ ∫ x D V kT x y z t x d y D V kT x y z t y d V S t V S t µ τ µ τ 2 0 2 0 , , , , , , ∂ ∂ ∂ ∂ ( ) ∂ + ∫ z D V kT x y z t z d V S t µ τ 2 0 , , , f x y z k x y z T d k x y z T d V V V V t I V I V t , , , , , , , , , , ( )− ( ) − ( ) ∫ ∫ α τ α α τ 1 2 0 1 1 0 Φ Ω Ω Φ Φ Φ 1 1 1 0 I S S t S x y z t z x D kT x y z d x D kT I I I , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ S S t x y z d µ τ τ 1 0 , , , ( ) × ∫ α µ τ τ 1 2 0 Φ Φ Φ Φ I I I I z f x y z x D V kT x y z x d y D V kT S t S + ( )+ ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ∫ , , , , , µ µ τ τ 2 0 x y z y d t , , , ( ) ∂ + ∫ ∂ ∂ ∂ ( ) ∂ + ( ) ( ) + ∫ ∫ z D V kT x y z z d k x y z T I x y z d I S t I t Φ µ τ τ τ τ 2 0 0 , , , , , , , , , + ( ) ( ) ∫k x y z T I x y z d I I t , , , , , , , 2 0   (5c) Φ Ω Ω Φ Φ Φ 1 1 1 0 V S S t S x y z t z x D kT x y z d x D kT V V V , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ S S t x y z d µ τ τ 1 0 , , , ( ) × ∫ α µ τ τ 1 2 0 Φ Φ Φ Φ V V V V z f x y z x D V kT x y z x d y D V kT S t S + ( )+ ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ∫ , , , , , µ µ τ τ 2 0 x y z y d t , , , ( ) ∂ + ∫ ∂ ∂ ∂ ( ) ∂ + ( ) ( ) + ∫ ∫ z D V kT x y z z d k x y z T V x y z d V S t V t Φ µ τ τ τ τ 2 0 0 , , , , , , , , , k x y z T V x y z d V V t , , , , , , , ( ) ( ) ∫ 2 0   We determine the average values of the first-order approximations of concentrations of dopant and radiation defects by the following standard relation.[28] α ρ ρ 1 1 0 0 0 0 1 = ( ) ∫ ∫ ∫ ∫ Θ Θ L L L x y z t d z d yd xd t x y z L L L z y x , , , (9) Substitution of the relations Equations (1c), (3c), and (5c) into relation Equation (9) gives us the possibility to obtain required average values in the following form 1 0 0 0 1 C x y z C L L L L L L f x y z d z d yd x z y x = ( ) ∫ ∫ ∫ , , , ( ) 2 2 3 1 3 1 2 4 4 4 4 x y z I a B L L L a a A B a a    Θ + Θ + = − + −    
  • 11. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 52 − + a A a 3 4 4 ,    1 00 1 0 0 0 1 00 1 V IV I I L L L I II x y z S f x y z d z d yd x S L L L z y x = ( ) − − ∫ ∫ ∫ Θ Θ , ,          , where S t k x y z T I x y z t V x y z t d z d yd xd t ij i j L    = − ( ) ( ) ( ) ( ) Θ , , , , , , , , , , 1 1 0 z z y x L L ∫ ∫ ∫ ∫ 0 0 0 Θ , a SII 4 00 = × S S S IV II VV 00 2 00 00 − ( ), a S S S S S IV II IV II VV 3 00 00 00 2 00 00 = + − , a f x y z d z d yd x V L L L z y x 2 0 0 0 = ( ) × ∫ ∫ ∫ , , S S S L L L S S f x y z d z d yd x IV IV IV x y z VV II I Lz 00 00 2 00 2 2 2 00 00 0 2 + + ( ) ∫ Θ , , 0 0 0 2 2 2 00 L L x y z VV y x L L L S ∫ ∫ − − Θ S f x y z d z d yd x IV I L L L z y x 00 2 0 0 0 , , ( ) ∫ ∫ ∫ , a S f x y z d z d yd x IV I L L L z y x 1 00 0 0 0 = ( ) ∫ ∫ ∫ , , , a SVV 0 00 = × f x y z d z d yd x I L L L z y x , , ( )         ∫ ∫ ∫ 0 0 0 2 , A y a a a a = + − 8 4 2 3 2 4 2 2 4 Θ Θ , B a a q p q = + + − − Θ 2 4 2 3 3 6 q p q 2 3 3 + + , q a a a L L L a a a a a a a a x y z = −       − −    Θ Θ Θ Θ Θ 3 2 4 2 0 1 3 4 2 0 4 2 2 2 3 2 4 24 4 8 4     − Θ Θ 3 2 3 4 3 2 2 2 4 1 2 4 2 54 8 a a L L L a a x y z − , p a a L L L a a a a a x y z = − − Θ Θ Θ 2 0 4 1 3 4 2 2 4 4 12 18 , 1 1 20 0 0 1 Φ Φ Θ Θ I I z R L L L S L L L L L L f x y z d z d yd x I x y z II x y z x y z L L = + + ( ) ∫ , , y y x L ∫ ∫ 0 1 1 20 0 0 1 Φ Φ Θ Θ V V z R L L L S L L L L L L f x y z d z d yd x V x y z VV x y z x y z L L = + + ( ) ∫ , , y y x L ∫ ∫ 0 , where R t k x y z T I x y z t d z d yd xd t i I i L L L z y x  = − ( ) ( ) ( ) ∫ ∫ ∫ ∫ Θ Θ , , , , , , 1 0 0 0 0 . We determine approximations of the second and higher orders of concentrations of dopant and radiation defects framework standard iterative procedure of the method of averaging of function corrections.[28] Framework this procedure to determine approximations of the n-th order of concentrations of dopant and radiation defects, we replace the required concentrations in the Equations (1c), (3c), and (5c) on the following sum αnρ +ρn-1 (x,y,z,t). The replacement leads to the following transformation of the appropriate equations ∂ ( ) ∂ = ∂ ∂ + + ( )     ( )       C x y z t t x C x y z t P x y z T C 2 2 1 1 , , , , , , , , , ξ α γ γ      + ( ) + ( ) ( )         ×     1 1 2 2 2 ς ς V x y z t V V x y z t V , , , , , , * * D x y z T C x y z t x y V x y z t V V x y z L , , , , , , , , , , , * ( ) ∂ ( ) ∂    + ∂ ∂ + ( ) + 1 1 2 2 1   , , , , , * t V C x y z t y ( ) ( )         ∂ ( ) ∂ ×     2 1
  • 12. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 53 D x y z T C x y z t P x y z T L C , , , , , , , , , ( ) + + ( )     ( )              1 2 1 ξ α γ γ   + ∂ ∂ + ( ) + ( ) ( )         ×     z V x y z t V V x y z t V 1 1 2 2 2 ς ς , , , , , , * * D x y z T C x y z t z C x y z t P x y z T L C , , , , , , , , , , , , ( ) ∂ ( ) ∂ + + ( )     ( 1 2 1 1 ξ α γ γ ) )               + ( ) ( )+ f x y z t C , , δ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ ∂ x D V kT x y z t x y D V kT x y z t y C S C S 2 2 , , , , , , ( )       + ( )        + ( )       + ∂ ∂ ∂ µ ∂ z D V kT x y z t z C S 2 , , , ( ) ( ) 1 2 0 , , , , , , z L S S C D x y z t C x y W t dW x kT     ∂   Ω ∇  +  +     ∂     ∫ Ω ∂ ∂ ∇ ( ) + ( )               ∫ y D kT x y z t C x y W t dW S S C Lz µ α 1 2 0 , , , , , , (1d)         I x y z t t x D x y z T I x y z t x y D x y I I 2 1 , , , , , , , , , , ( ) = ( ) ( )       + , , , , , , z T I x y z t y ( ) ( )       +   1 ∂ ∂ ∂ ∂ α z D x y z T I x y z t z k x y z T I x y I I I I , , , , , , , , , , , , ( ) ( )       − ( ) + 1 1 1 z z t k x y z T I V , , , , , ( )     − ( ) × 2 α α µ α 1 1 1 1 2 I V S I I x y z t V x y z t x x y z t + ( )     + ( )     + ∂ ∂ ∇ ( ) , , , , , , , , , Ω + + ( )     ×      ∫ I x y W t dW Lz 1 0 , , , D kT y D kT x y z t I x y W t dW IS IS S I Lz    + ∂ ∂ ∇ ( ) + ( )        ∫ Ω µ α , , , , , , 2 1 0         + ∂ ∂ ∂ ( ) ∂ × ∫ x x y z t x t µ2 0 , , , D V kT d y D V kT x y z t y d z D V kT x y z t I S I S t I S τ µ τ µ + ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ∫ 2 0 2 , , , , , , ) ) ∂ ∫ z d t τ 0 (3d)         V x y z t t x D x y z T V x y z t x y D x y V V 2 1 , , , , , , , , , , ( ) = ( ) ( )       + , , , , , , z T V x y z t y ( ) ( )       +   1 ∂ ∂ ∂ ∂ α z D x y z T V x y z t z k x y z T V x y V V V V , , , , , , , , , , , , ( ) ( )       − ( ) + 1 1 1 z z t k x y z T I V , , , , , ( )     − ( ) × 2 α α µ α 1 1 1 1 2 I V S V I x y z t V x y z t x x y z t + ( )     + ( )     + ∂ ∂ ∇ ( ) , , , , , , , , , Ω + + ( )     ×      ∫ V x y W t dW Lz 1 0 , , , D kT y D kT x y z t V x y W t dW VS VS S V Lz    + ∂ ∂ ∇ ( ) + ( )        ∫ Ω µ α , , , , , , 2 1 0         + ∂ ∂ ∂ ( ) ∂ × ∫ x x y z t x t µ2 0 , , , D V kT d y D V kT x y z t y d z D V kT x y z t V S V S t V S τ µ τ µ + ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ∫ 2 0 2 , , , , , , ) ) ∂ ∫ z d t τ 0         Φ Φ Φ Φ 2 1 I I x y z t t x D x y z T x y z t x y D I , , , , , , , , , ( ) = ( ) ( )       + I I x y z T x y z t y I , , , , , , ( ) ( )       +   Φ1
  • 13. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 54 Ω Φ Φ Φ ∂ ∂ ∇ ( ) + ( )              ∫ x D kT x y z t x y W t dW I I z S S I L µ α , , , , , , 2 1 0   + ( ) ( )+ k x y z T I x y z t I I , , , , , , , 2 Ω Φ Φ Φ ∂ ∂ ∇ ( ) + ( )              ∫ y D kT x y z t x y W t dW I I z S S I L µ α , , , , , , 2 1 0   + ( ) ( )+ k x y z T I x y z t I , , , , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ∂ ∂ ∂ ∂ δ z D x y z T x y z t z f x y z t I I I Φ Φ Φ , , , , , , , , ( ) ( )       + ( ) ( ) 1 (5d)         Φ Φ Φ Φ 2 1 V V x y z t t x D x y z T x y z t x y D V , , , , , , , , , ( ) = ( ) ( )       + V V x y z T x y z t y V , , , , , , ( ) ( )       +   Φ1 Ω Φ Φ Φ ∂ ∂ ∇ ( ) + ( )              ∫ x D kT x y z t x y W t dW V V z S S V L µ α , , , , , , 2 1 0   + ( ) ( )+ k x y z T V x y z t V V , , , , , , , 2 Ω Φ Φ Φ ∂ ∂ ∇ ( ) + ( )              ∫ y D kT x y z t x y W t dW V V z S S V L µ α , , , , , , 2 1 0   + ( ) ( )+ k x y z T V x y z t V , , , , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ∂ ∂ ∂ ∂ δ z D x y z T x y z t z f x y z t V V V Φ Φ Φ , , , , , , , , ( ) ( )       + ( ) ( ) 1 . Integration of the left and the right sides of Equations (1d), (3d), and (5d) gives us possibility to obtain relations for the required concentrations in the final form C x y z t x C x y z P x y z T C 2 2 1 1 , , , , , , , , , ( ) = ∂ ∂ + + ( )     ( )          ξ α τ γ γ   + ( ) + ( ) ( )         × ∫ 1 1 2 2 2 0 ς τ ς τ V x y z V V x y z V t , , , , , , * * D x y z T C x y z x d y D x y z T V x y z V L L , , , , , , , , , , , , * ( ) ∂ ( ) ∂ + ∂ ∂ ( ) + ( ) 1 1 1 τ τ ς τ + + ( ) ( )         × ∫ ς τ 2 2 2 0 V x y z V t , , , * ∂ ( ) ∂ + + ( )     ( )           C x y z y C x y z t P x y z T C 1 2 1 1 , , , , , , , , , τ ξ α γ γ + + ∂ ∂ + ( ) + ( ) ( )         × ∫ z V x y z V V x y z V t 1 1 2 2 2 0 ς τ ς τ , , , , , , * * D x y z T C x y z z C x y z P x y z T L C , , , , , , , , , , , , ( ) ∂ ( ) ∂ + + ( )     ( 1 2 1 1 τ ξ α τ γ γ ) )           + ( )+ d f x y z C τ , , Ω ∂ ∂ ∇ ( ) + ( )     + ∂ ∂ ∇ ∫ ∫ x D kT x y z C x y W dW d y x S S C L t S z µ τ α τ τ µ , , , , , , 2 1 0 0 , , , , y z t τ ( ) × ∫ 0 Ω D kT C x y W dW d x D V kT x y z t x S C L C S z α τ τ ∂ ∂ ∂ µ ∂ 2 1 0 2 + ( )     + ( )   ∫ , , , , , ,      +
  • 14. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 55 ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ ∂ y D V kT x y z t y z D V kT x y z t z C S C S 2 2 , , , , , , ( )       + ( )        (1e) I x y z t x D x y z T I x y z x d y D x y z T I t I 2 1 0 , , , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ( ( ) ( ) + ∫ ∂ τ ∂ τ I x y z y d t 1 0 , , , ∂ ∂ ∂ τ ∂ τ α z D x y z T I x y z z d k x y z T I x y z I t I I I , , , , , , , , , , , , ( ) ( ) − ( ) + ∫ 1 0 2 1 , ,τ τ ( )     − ∫ 2 0 d t k x y z T I x y z V x y z d I V I V t , , , , , , , , , , ( ) + ( )     + ( )     + ∂ ∫ α τ α τ τ 2 1 2 1 0 ∂ ∂ ∇ ( )× ∫ x x y z S t µ τ , , , 0 Ω D kT I x y W dW d y x y z I x y IS I L S I z α τ τ µ τ α 2 1 0 2 1 + ( )     + ∂ ∂ ∇ ( ) + ∫ , , , , , , , , , , W L t z τ ( )     × ∫ ∫ 0 0 Ω D kT d W d x D V kT x y z t x y D V kT x y z IS I S I S τ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ + ( )       + 2 2 , , , , , , ,t y ( )       + ∂ ∂ ∂ ∂ µ ∂ z D V kT x y z t z f x y z I S I 2 , , , , , ( )       + ( )(3e) V x y z t x D x y z T V x y z x d y D x y z T V t V 2 1 0 , , , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ( ( ) ( ) + ∫ ∂ τ ∂ τ V x y z y d t 1 0 , , , ∂ ∂ ∂ τ ∂ τ α z D x y z T V x y z z d k x y z T V x y z V t V V V , , , , , , , , , , , , ( ) ( ) − ( ) + ∫ 1 0 2 1 , ,τ τ ( )     − ∫ 2 0 d t k x y z T I x y z V x y z d I V I V t , , , , , , , , , , ( ) + ( )     + ( )     + ∂ ∫ α τ α τ τ 2 1 2 1 0 ∂ ∂ ∇ ( ) × ∫ x x y z S t µ τ , , , 0 Ω D kT V x y W dW d y x y z V x y VS V L S V z α τ τ µ τ α 2 1 0 2 1 + ( )     + ∂ ∂ ∇ ( ) + ∫ , , , , , , , , , , W L t z τ ( )     × ∫ ∫ 0 0 Ω D kT d W d x D V kT x y z t x y D V kT x y z VS V S V S τ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ + ( )       + 2 2 , , , , , , ,t y ( )       + ∂ ∂ ∂ ∂ µ ∂ z D V kT x y z t z f x y z V S V 2 , , , , , ( )       + ( ) Φ Φ Φ Φ 2 1 0 1 I I t I x y z t x D x y z T x y z x d y x I , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ y y z y t , ,τ ∂ ( ) × ∫ 0 D x y z T d z D x y z T x y z z d x I I I t S Φ Φ Φ Ω , , , , , , , , , ( ) + ( ) ( ) + ∂ ∂ ∇ ∫ τ ∂ ∂ ∂ τ ∂ τ µ 1 0 x x y z t , , ,τ ( ) × ∫ 0 D kT x y W dW d y D kT x y I I z I I S I L S I Φ Φ Φ Φ Φ Ω Φ α τ τ α 2 1 0 2 1 + ( )     + ∂ ∂ + ∫ , , , , ,W W dW L t z ,τ ( )     × ∫ ∫ 0 0
  • 15. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 56 ∇ ( ) + ( ) ( ) + ∂ ∂ ∂ ∫ S I I t S x y z d k x y z T I x y z d x D V kT I µ τ τ τ τ µ , , , , , , , , , , 2 0 2 Φ x x y z x d t , , ,τ τ ( ) ∂ + ∫ 0 ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ) ∂ ∫ y D V kT x y z y d z D V kT x y z z d I I S t S t Φ Φ µ τ τ µ τ τ 2 0 2 0 , , , , , , ∫ ∫ + ( )+ f x y z I Φ , , k x y z T I x y z d I t , , , , , , ( ) ( ) ∫   0 (5e) Φ Φ Φ Φ 2 1 0 1 V V t V x y z t x D x y z T x y z x d y x V , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ y y z y t , ,τ ∂ ( ) × ∫ 0 D x y z T d z D x y z T x y z z d x V V V t S Φ Φ Φ Ω , , , , , , , , , ( ) + ( ) ( ) + ∂ ∂ ∇ ∫ τ ∂ ∂ ∂ τ ∂ τ µ 1 0 x x y z t , , ,τ ( ) × ∫ 0 D kT x y W dW d y D kT x y V V z V V S V L S V Φ Φ Φ Φ Φ Ω Φ α τ τ α 2 1 0 2 1 + ( )     + ∂ ∂ + ∫ , , , , ,W W dW L t z ,τ ( )     × ∫ ∫ 0 0 ∇ ( ) + ( ) ( ) + ∂ ∂ ∂ ∫ S V V t S x y z d k x y z T V x y z d x D V kT V µ τ τ τ τ µ , , , , , , , , , , 2 0 2 Φ x x y z x d t , , ,τ τ ( ) ∂ + ∫ 0 ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ) ∂ ∫ y D V kT x y z y d z D V kT x y z z d V V S t S t Φ Φ µ τ τ µ τ τ 2 0 2 0 , , , , , , ∫ ∫ + ( )+ f x y z V Φ , , k x y z T V x y z d V t , , , , , , ( ) ( ) ∫   0 . Average values of the second-order approximations of required approximations using the following standard relation.[28] α ρ ρ ρ 2 2 1 0 0 0 1 = ( )− ( )     ∫ ∫ ΘL L L x y z t x y z t d z d yd xd t x y z L L L z y x , , , , , , ∫ ∫ ∫ 0 Θ (10) Substitution of the relations Equations (1e), (3e), and (5e) into relation Equation (10) gives us the possibility to obtain relations for required average values α2ρ . α2C =0, α2ΦI =0, α2ΦV =0, 2 3 2 4 2 3 2 1 4 3 4 4 4 4 V x y z b E b F a F L L L b b b E b = + ( ) − + +       − + Θ Θ ,    2 2 2 00 2 01 10 02 11 0 2 I V V VV V VV IV x y z V V IV IV C S S S L L L S S S = − − + + ( ) − − Θ 1 1 2 00 + V IV S , where b L L L S S L L L S S x y z IV V V x y z VV II 4 00 2 00 00 2 00 1 1 = − Θ Θ , b S S L L L S S II VV x y z VV IV 3 00 00 01 10 2 = − + + ( Θ Θ Θ Θ L L L S S L L L S S S L L L S x y z IV VV x y z IV II IV x y z IV )+ + + + ( )+ 00 00 01 10 01 2 0 00 2 01 10 2 ΘL L L S S x y z VV IV + + ( Θ Θ L L L S S L L L x y z IV IV x y z )− 00 2 10 3 3 3 3 , b S S L L L S S C S S L L II VV x y z VV IV V IV VV x y 2 00 00 02 11 10 01 2 = + + ( )− − + × ( Θ Θ
  • 16. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 57 L S S L L L L L L S S S L L L S z IV VV x y z x y z II IV IV x y z ) + + + ( )+ 2 01 00 10 01 00 2 Θ Θ Θ I IV II IV x y S S L L 01 10 01 2 2 + + + × ( Θ L S L L L S S L L L C S S C z VV x y z IV IV x y z V VV IV I ) + + ( )− − − ( )+ 2 01 10 00 2 02 11 Θ Θ S S L L L S L L L IV x y z IV x y z 00 2 2 2 2 2 10 2 Θ Θ − × S S IV IV 00 01, b S S S C L L L S S L L L S II IV VV V x y z VV IV x y z IV 1 00 11 02 01 10 01 2 = + + + + ( )+ Θ Θ ΘL L L L L L x y z x y Θ × ( L S S S S LL L S S L L L S z II IV VV IV y z IV IV x y z + + ) + + ( )− − 2 2 10 01 01 10 10 01 2 Θ Θ I IV x y z IV II L L L S S 00 01 10 3 2 Θ + + ( ΘL L L C S S C S S x y z V VV IV I IV IV ) − − ( )+ 02 11 00 01 2 , b S L L L S S S L L L II x y z IV VV IV x y z 0 00 00 02 2 01 = + ( ) − × Θ 1 2 2 10 01 02 11 01 2 01 Θ ΘL L L S S C S S C S S C x y z II IV V VV IV I IV IV V + + ( ) − − ( )+ − − − − × S S L L L VV IV x y z 02 11 Θ ΘL L L S S x y z II IV + + ( ) 2 10 01 ,C L L L S S L L L S S L L L S I I V x y z IV I II x y z II II x y z = + − −    1 1 00 1 2 00 20 20 Θ Θ Θ I IV x y z L L L 11 Θ , C S S S S V I V IV V VV VV IV = + − −    1 1 00 1 2 00 02 11, E y a a a a = + − 8 4 2 3 2 4 2 2 4 Θ Θ , F a a = + Θ 2 4 6 r s r r s r 2 3 3 2 3 3 + − − + + , r b b b L L L bb b b b b b x y z = −       − − × Θ Θ Θ Θ 3 2 4 2 0 1 3 4 3 2 3 4 3 0 2 4 2 24 4 54 8 4 8 2 2 3 2 4 2 2 2 4 1 2 4 2 Θ Θ Θ b b b L L L b b x y z −       − , s b b L L L bb b b b x y z = − − Θ Θ Θ 2 0 4 1 3 4 2 2 4 4 12 18 . Farther, we determine solutions of Equation (8), i.e.,  components of the displacement vector. To determine the first-order approximations of the considered components framework method of averaging of function corrections, we replace the required functions in the right sides of the equations by their not yet known average values ai. The substitution leads to the following result ρ β z u x y z t t K z z T x y z t x x ( ) ∂ ( ) ∂ = − ( ) ( ) ∂ ( ) ∂ 2 1 2 , , , , , , ,  z u x y z t t y ( ) ∂ ( ) ∂ = 2 1 2 , , , − ( ) ( ) ∂ ( ) ∂ K z z T x y z t y  , , , , ρ β z u x y z t t K z z T x y z t z z ( ) ∂ ( ) ∂ = − ( ) ( ) ∂ ( ) ∂ 2 1 2 , , , , , , . Integration of the left and the right sides of the above relations on time t leads to the following result u x y z t u K z z z x T x y z d d x x t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) − ∫ ∫ β ρ τ τ ϑ ϑ K z z z x T x y z d d ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ β ρ τ τ ϑ ϑ , , , 0 0 , u x y z t u K z z z y T x y z d d y y t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) − ∫ ∫ β ρ τ τ ϑ ϑ
  • 17. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 58 K z z z y T x y z d d ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ β ρ τ τ ϑ ϑ , , , 0 0 , u x y z t u K z z z z T x y z d d z z t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) − ∫ ∫ β ρ τ τ ϑ ϑ K z z z z T x y z d d ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ β ρ τ τ ϑ ϑ , , , 0 0 . Approximations of the second and higher orders of components of displacement vector could be determined using standard replacement of the required components on the following sums αi +ui (x,y,z,t).[28] The replacement leads to the following result ρ σ z u x y z t t K z E z z u x ( ) ∂ ( ) ∂ = ( )+ ( ) + ( )               × ∂ 2 2 2 2 1 5 6 1 , , , x x y x y z t x K z E z z u x y z t , , , , , , ( ) ∂ + ( )− ( ) + ( )               ∂ ( 2 2 1 3 1 σ ) ) ∂ ∂ + x y E z z u x y z t y u x y z t z y z ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂       − ∂ 2 1 2 1 2 2 1 2  , , , , , , T T x y z t x , , , ( ) ∂ × K z z K z E z z u x y z t x z z ( ) ( )+ ( )+ ( ) + ( )               ∂ ( ) ∂ ∂ β σ 3 1 2 1 , , , ρ σ z u x y z t t E z z u x y z t x u y y ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 1 2 2 2 1 , , , , , , 1 1x x y z t x y T x y z t y , , , , , , ( ) ∂ ∂       − ∂ ( ) ∂ × K z z z E z z u x y z t z u x y z t y y z ( ) ( )+ ∂ ∂ ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂ β σ 2 1 1 1 , , , , , ,                  + ∂ ( ) ∂ × 2 1 2 u x y z t y y , , , 5 12 1 6 1 E z z K z K z E z z ( ) + ( )     + ( )           + ( )− ( ) + ( )                  ∂ ( ) ∂ ∂ + ( ) ∂ ( ) ∂ ∂ 2 1 2 1 u x y z t y z K z u x y z t x y y y , , , , , , ρ σ z u x y z t t E z z u x y z t x u z z ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 1 2 2 2 1 , , , , , , 1 1 2 2 1 z x x y z t y u x y z t x z , , , , , , ( ) ∂ + ∂ ( ) ∂ ∂ +    ∂ ( ) ∂ ∂    + ∂ ∂ ( ) ∂ ( ) ∂ + ∂ ( ) 2 1 1 1 u x y z t y z z K z u x y z t x u x y z t y x y , , , , , , , , , ∂ ∂ + ∂ ( ) ∂                 + y u x y z t z x 1 , , , E z z z u x y z t z u x y z t x u x y z x y ( ) + ( )     ∂ ∂ ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ 6 1 6 1 1 1  , , , , , , , , , , , , , z t y u x y z t z z ( ) ∂ − ∂ ( ) ∂       − 1 ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ ( ) ∂         ( u x y z t x u x y z t y u x y z t z E z x y z 1 1 1 , , , , , , , , , ) ) + ( ) − ( ) ( ) ∂ ( ) ∂ 1 σ β z K z z T x y z t z , , , . Integration of the left and right sides of the above relations on time t leads to the following result u x y z t z K z E z z x u x x x 2 2 2 1 1 5 6 1 , , , ( ) = ( ) ( )+ ( ) + ( )               ∂ ∂ ρ σ , , , , y z d d z K z t τ τ ϑ ρ ϑ ( ) + ( ) ( )−    ∫ ∫ 0 0 1 E z z x y u x y z d d E z z y t ( ) + ( )          ∂ ∂ ∂ ( ) + ( ) ( ) ∫ ∫ 3 1 2 2 1 0 0 σ τ τ ϑ ρ ϑ , , , ∂ ∂ ∂ ( ) +    ∫ ∫ 2 2 1 0 0 y u x y z d d y t , , ,τ τ ϑ ϑ
  • 18. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 59 ∂ ∂ ( )    + ( ) + ( ) ∂ ∂ ∂ ∫ ∫ 2 2 1 0 0 2 1 1 1 1 z u x y z d d z z x z u x y z z t z , , , , , , τ τ ϑ σ ρ ϑ τ τ τ ϑ ϑ ( ) ( )+    ∫ ∫ d d K z t 0 0 E z z K z z z x T x y z d d t ( ) + ( )          − ( ) ( ) ( ) ∂ ∂ ( ) − ∂ ∫ ∫ 3 1 0 0 σ β ρ τ τ ϑ ϑ , , , 2 2 2 1 0 0 ∂ ( ) × ∫ ∫ ∞ x u x y z d d x , , ,τ τ ϑ ϑ 1 5 6 1 3 1 ρ σ σ z K z E z z K z E z z ( ) ( )+ ( ) + ( )               − ( )− ( ) + ( )                ∂ ∂ ∂ ( ) × ∫ ∫ ∞ 2 1 0 0 x y u x y z d d y , , ,τ τ ϑ ϑ 1 2 1 2 2 1 0 0 2 2 ρ ρ σ τ τ ϑ ϑ z E z z z y u x y z d d z y ( ) − ( ) ( ) + ( )     ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ , , , u u x y z d d z 1 0 0 , , ,τ τ ϑ ϑ ( )       − ∫ ∫ ∞ 1 3 1 2 1 0 ρ σ τ τ ϑ z K z E z z x z u x y z d d z ( ) ( )+ ( ) + ( )               ∂ ∂ ∂ ( ) , , , ϑ ϑ β ρ ∫ ∫ ∞ + + ( ) ( ) ( ) × 0 0 u K z z z x × ∂ ∂ ( ) ∫ ∫ ∞ x T x y z d d , , ,τ τ ϑ ϑ 0 0 u x y z t E z z z x u x y z d d y x t 2 2 2 1 0 0 2 1 , , , , , , ( ) = ( ) ( ) + ( )     ∂ ∂ ( ) ∫ ρ σ τ τ ϑ ϑ ∫ ∫ ∫ ∫ + ∂ ∂ ∂ ( )       × 2 1 0 0 x y u x y z d d x t , , ,τ τ ϑ ϑ 1 1 1 5 12 1 2 1 0 0 + ( ) + ( ) ( ) ∂ ∂ ∂ ( ) + ( ) ( ) ∫ ∫ σ ρ τ τ ϑ ρ ϑ z K z z x y u x y z d d z E z y t , , , + + ( )     + ( )           × σ z K z ∂ ∂ ( ) + ( ) ∂ ∂ ( ) + ( ) ∂ ∂ ∫ ∫ 2 2 1 0 0 1 1 2 1 y u x y z d d z z E z z z u x y z x t y , , , , , τ τ ϑ ρ σ ϑ , ,τ τ ϑ ϑ ( ) +         ∫ ∫ d d t 0 0 ∂ ∂ ( )         − ( ) ( ) ( ) ( ) ∫ ∫ y u x y z d d K z z z T x y z d z t 1 0 0 , , , , , , τ τ ϑ β ρ τ τ ϑ d d E z z t ϑ σ ϑ 0 0 6 1 ∫ ∫ − ( ) + ( )     −      K z z y z u x y z d d E z z x u x y t x ( )} ( ) ∂ ∂ ∂ ( ) − ( ) ( ) ∂ ∂ ∫ ∫ 1 2 2 1 0 0 2 2 1 ρ τ τ ϑ ρ ϑ , , , , y y z d d , ,τ τ ϑ ϑ ( ) +    ∫ ∫ ∞ 0 0 ∂ ∂ ∂ ( )    + ( ) − ( ) ( ) ( ) ∫ ∫ ∞ 2 1 0 0 1 1 x y u x y z d d z K z z z T x y z x , , , , , , τ τ ϑ σ β ρ ϑ τ τ τ ϑ ρ ϑ ( ) − ( ) ( ) × ∫ ∫ ∞ d d K z z 0 0 ∂ ∂ ∂ ( ) − ( ) ∂ ∂ ( ) ∫ ∫ ∫ ∞ 2 1 0 0 2 2 1 0 1 x y u x y z d d z y u x y z d d y x , , , , , , τ τ ϑ ρ τ τ ϑ ϑ ϑ 0 0 5 12 1 ∞ ∫ ( ) + ( )     +      E z z σ K z z E z z z u x y z d d y u x y z y z ( )}− ∂ ∂ ( ) + ( ) ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ 1 1 0 0 1 σ τ τ ϑ τ ϑ , , , , , , ( ( )                 × ∫ ∫ ∞ d d τ ϑ ϑ 0 0 1 2 1 6 1 2 1 ρ ρ σ τ z z K z E z z y z u x y z y ( ) − ( ) ( )− ( ) + ( )               ∂ ∂ ∂ , , , ( ( ) + ∫ ∫ ∞ d d u y τ ϑ ϑ 0 0 0 u x y z t E z z x u x y z d d z z , , , , , , ( ) = ( ) + ( )     ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ 2 1 2 2 1 0 0 2 σ τ τ ϑ ϑ y y u x y z d d z 2 1 0 0 , , ,τ τ ϑ ϑ ( ) +    ∫ ∫ ∞
  • 19. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 60 ∂ ∂ ∂ ( ) + ∂ ∂ ∂ ( )  ∫ ∫ ∫ ∫ ∞ ∞ 2 1 0 0 2 1 0 0 x z u x y z d d y z u x y z d d x y , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ    ( ) + ( ) × 1 1 ρ ρ z z ∂ ∂ ( ) ∂ ∂ ( ) + ∂ ∂ ( ) ∫ ∫ ∫ ∫ ∞ ∞ z K z x u x y z d d y u x y z d d x x 1 0 0 1 0 0 , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ + +         ∂ ∂ ( )         + ( ) ∂ ∂ ( ) + ( ) ∂ ∂ ∫ ∫ ∞ z u x y z d d z z E z z z u x 1 0 0 1 6 1 6 , , ,τ τ ϑ ρ σ ϑ 1 1 0 0 z x y z d d , , ,τ τ ϑ ϑ ( ) −         ∫ ∫ ∞ ∂ ∂ ( ) − ∂ ∂ ( ) − ∂ ∂ ∫ ∫ ∫ ∫ ∞ ∞ x u x y z d d y u x y z d d z u x y z 1 0 0 1 0 0 1 , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ x x y z d d , , ,τ τ ϑ ϑ ( )         − ∫ ∫ ∞ 0 0 K z z z z T x y z d d u z ( ) ( ) ( ) ∂ ∂ ( ) + ∫ ∫ ∞ β ρ τ τ ϑ ϑ , , , 0 0 0 . Framework this paper, we determine the concentration of dopant, concentrations of radiation defects, and components of displacement vector using the second-order approximation framework method of averaging of function corrections. This approximation is usually enough good approximation to make qualitative analysis and to obtain some quantitative results. All obtained results have been checked by comparison with the results of numerical simulations. DISCUSSION In this section, we analyzed the dynamics of redistributions of dopant and radiation defects during annealing and under the influence of mismatch-induced stress and modification of porosity. Typical distributions of concentrations of infused dopant in heterostructures. Increasing of number of the curve corresponds to increasing of annealing time is presented on Figures 2 and 3 for diffusion and ion types of doping, respectively. These distributions have been calculated for the case, when the value of dopant diffusion coefficient in doped area is larger than in the nearest areas. The figures show that inhomogeneity of heterostructure gives us the possibility to increase the compactness of concentrations of dopants and at the same time to Figure 2: Distributions of concentration of infused dopant in heterostructure from Figure 1 in direction, which is perpendicular to the interface between epitaxial layer substrate. Increasing of number of the curve corresponds to increasing of difference between values of the dopant diffusion coefficient in layers of heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate
  • 20. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 61 increase the homogeneity of dopant distribution in doped part of the epitaxial layer. However, framework this approach of manufacturing of bipolar transistor is necessary to optimize annealing of dopant and/or radiation defects. Reason for, this optimization is the following. If annealing time is small, the dopant did not achieve any interfaces between materials of the heterostructure. In this situation, one cannot find any modifications of the distribution of the concentration of dopant. If annealing time is large, the distribution of concentration of dopant is too homogenous. We optimize the annealing time framework recently introduces approach.[29-37] Framework this criterion, we approximate real distribution of concentration of dopant by step-wise function [Figure 4 and 5]. Farther, we determine optimal values of annealing time by minimization of the following mean-squared error U L L L C x y z x y z d z d yd x x y z L L L z y x = ( )− ( )     ∫ ∫ ∫ 1 0 0 0 , , , , , Θ  (11) Figure 3: Distributions of concentration of implanted dopant in heterostructure from Figure 1 in direction, which is perpendicular to the interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing time Θ=0.0048(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 2 and 4 correspond to annealing time Θ=0.0057(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 1 and 2 correspond to the homogenous sample. Curves 3 and 4 correspond to heterostructure under condition, when the value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate Figure 4: Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is the idealized distribution of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing of number of the curve corresponds to increasing of annealing time
  • 21. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 62 where Ψ (x,y,z) is the approximation function. Dependences of optimal values of annealing time on parameters are presented on Figures 6 and 7 for diffusion and ion types of doping, respectively. It should be noted that it is necessary to anneal radiation defects after ion implantation. One could find the spreading of concentration of distribution of dopant during this annealing. In the ideal case distribution of dopant achieves appropriate interfaces between materials of heterostructure during annealing of radiation defects. If dopant did not achieve any interfaces during annealing of radiation defects, it is practicably to additionally anneal the dopant. In this situation, the optimal value of additional annealing time of implanted dopant is smaller than annealing time of infused dopant. Farther, we analyzed the influence of relaxation of mechanical stress on the distribution of dopant in doped areas of the heterostructure. Under the following conditions ε0 0, one can find compression of distribution of concentration of dopant near the interface between materials of the heterostructure. Figure 5: Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time Figure 6: Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ=γ=0 for equal to each other values of the dopant diffusion coefficient in all parts of the heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and ε=γ=0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0
  • 22. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 63 Contrary (at ε0 0) one can find the spreading of distribution of concentration of dopant in this area. This changing of distribution of concentration of dopant could be at least partially compensated using laser annealing.[37] This type of annealing gives us the possibility to accelerate the diffusion of dopant and another processes in the annealed area due to inhomogeneous distribution of temperature and Arrhenius law. Accounting relaxation of mismatch-induced stress in heterostructure could lead to the changing of optimal values of annealing time. At the same time, modification of porosity gives us the possibility to decrease the value of mechanical stress. On the one hand, mismatch-induced stress could be used to increase the density of elements of integrated circuits. On the other hand, it could lead to generation dislocations of the discrepancy. Figures 8 and 9 show distributions of the concentration of vacancies in porous materials and component of the displacement vector, which is perpendicular to the interface between layers of heterostructure. Figure 7: Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ=γ=0 for equal to each other values of the dopant diffusion coefficient in all parts of the heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and ε=γ=0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0 Figure 8: Normalized dependences of component uz of displacement vector on coordinate z for nonporous (curve 1) and porous (curve 2) epitaxial layers
  • 23. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 64 CONCLUSION In this paper, we model redistribution of infused and implanted dopants with account relaxation mismatch- induced stress during manufacturing field-effect heterotransistors framework two-level current-mode logic gates in a multiplexer. We formulate recommendations for the optimization of annealing to decrease dimensions of transistors and to increase their density. We formulate recommendations to decrease mismatch-induced stress. Analytical approach to model diffusion and ion types of doping with account concurrent changing of parameters in space and time has been introduced. At the same time, the approach gives us the possibility to take into account the nonlinearity of considered processes. REFERENCES 1. Lachin VI, Savelov NS. Electronics. Rostov-on-Don: Phoenix; 2001. 2. Polishscuk A. Modern models of integrated operating amplifier. Mod Electron 2004;12:8-11. 3. Volovich G. Modern chips UM3Ch class D manufactured by firm MPS. Mod Electron 2006;2:10-7. 4. Kerentsev A, Lanin V. Constructive-technological features of MOSFET-transistors. Power Electron 2008;1:34. 5. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudrik YY, et al. Sachenko. Semiconductors 2009;43:897-903. 6. Tsai JH, Chiu SY, Lour WS, Guo DF.   High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors 2009;43:939-42. 7. Alexandrov OV, Zakhar’AO ZZ, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconductors 1998;32:1029-32. 8. Ermolovich IB, Milenin VV, Red’RA RR, Red’SM RR. Specific features of recombination processes in CdTe films produced in different temperature conditions of growth and subsequent annealing. Semiconductors 2009;43:1016-20. 9. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett 2013;102:53901-5. 10. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 2013;102:152114-8. 11. Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. Investigation of technological processes of manufacturing of the bipolar power highvoltage transistors with a grid of inclusions in the collector region. Semiconductors 2001;35:1013-7. 12. Pankratov EL, Bulaeva EA. Optimal criteria to estimate temporal characteristics of diffusion process in a media with inhomogenous and nonstationary parameters. Rev Theor Sci 2013;1:58-82. 13. Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates. Phys Solid State 2016;58:1448-52. 14. Trukhanov EM, Kolesnikov AV, Loshkarev ID. Long++range stresses generated by misfit dislocations in epitaxial films. Russ Microelectron 2015;44:552-8. Figure 9: Normalized dependences of vacancy concentrations on coordinate z in unstressed (curve 1) and stressed (curve 2) epitaxial layers
  • 24. Pankratov: On optimization of manufacturing of a two-level current-mode logic gates in a multiplexer AJMS/Jan-Mar-2020/Vol 4/Issue 1 65 15. Pankratov EL, Bulaeva EA. About some ways to decrease quantity of defects in materials for solid state electronic devices and diagnostics of their realization. Rev Theor Sci 2015;3:365-98. 16. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4. 17. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901-5. 18. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836-43. 19. Jang I, Kim J, Kim S. Accurate delay models of CMOS CML circuits for design optimization. Analog Integr Circuits Sig Process 2015;82:297-307. 20. Zhang YW, Bower AF. Numerical simulations of island formation in a coherent strained epitaxial thin film system. J Mech Phys Solids 1999;47:2273-97. 21. Landau LD, Lefshits EM. Theory of elasticity. In: Theoretical Physics. Vol. 7. Moscow: Physmatlit; 2001. 22. Kitayama M, Narushima T, Carter WC, Cannon RM, Glaeser AM. The Wulff shape of alumina: I, modeling the kinetics of morphological evolution. J Am Ceram Soc 2000;83:2531-61. Kitayama M, Narushima T, Glaeser AM. The Wulff shape of alumina: II, experimental measurements of pore shape evolution rates. J Am Ceram Soc 2000;83:2572-83. 23. Cheremskoy PG, Slesov VV, Betekhtin VI. Pore in Solid Bodies. Moscow: Energoatomizdat; 1990. 24. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 25. Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289-388. 26. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 27. Mynbaeva MG, Mokhov EN, Lavrent’AA LL, Mynbaev KD. High-temperature diffusion doping of porous silicon carbide. Tech Phys Lett 2008;34:13. 28. Sokolov YD. About determination of dynamical forces in mine’s hoisting ropes. Appl Mech 1955;1:23-35. 29. PankratovEL.Dopantdiffusiondynamicsandoptimaldiffusiontimeasinfluencedbydiffusion-coefficientnonuniformity. Russ Microelectron 2007;36:33-9. 30. Pankratov EL. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int J Nanosci 2008;7:187-97. 31. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58-82. 32. Pankratov EL, Bulaeva EA. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using overlayers. Int J Micro Nano Scale Transp 2012;3:119-30. 33. Pankratov EL, Bulaeva EA. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. Int J Mod Phys B 2015;29:1550023. 34. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. J Comp Theor Nanosci 2017;14:4885-99. 35. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater Sci Semicond Process 2015;34:260-8. 36. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. Int J Micro Nano Scale Transp 2014;4:17-31. 37. Pankratov EL, Bulaeva EA. An analytical approach for analysis and optimization of formation of field-effect heterotransistors. Multidiscip Mod Mater Struct 2016;12:578.