SlideShare a Scribd company logo
1 of 27
Download to read offline
www.ajms.com 15
ISSN 2581-3463
RESEARCH ARTICLE
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
E. L. Pankratov1,2
1
Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue,
Nizhny Novgorod, 603950, Russia, 2
Department of Higher Mathematics, Nizhny Novgorod State Technical
University, 24 Minin Street, Nizhny Novgorod, 603950, Russia
Received: 17-11-2019; Revised: 07-12-2019; Accepted: 10-01-2020
ABSTRACT
The paper describes an approach for increasing of density of field-effect heterotransistors in a sense-
amplifier based flip-flop. To illustrate the approach, we consider manufacturing of an amplifier of
power in a heterostructure with specific configuration. One shall dope some specific areas of the
heterostructure by diffusion or ion implantation. After that, it should be done optimized annealing
of radiation defects and/or dopant. We introduce an approach for decreasing of stress between
layers of heterostructure. Furthermore, it has been considered an analytical approach for prognosis
of heat and mass transport in heterostructures, which can be take into account mismatch-induced
stress.
Key words: Broadband power amplifier, increasing of element integration rate, optimization of
manufacturing
INTRODUCTION
Now some electrical problems (to increase performance of solid-state electronic devices, to increase
their reliability, and to increase density of integrated circuits elements: Transistors and diodes) are
solving.[1-6]
Increasing of performance could be obtained using materials, which have mobility of charge
carriers with higher values.[7-10]
Increasing of density of elements of integrated circuits could be obtained
by optimized manufacturing of their elements in heterostructures with thin epitaxial layers.[3-5,11-15]
In
this situation, dimensions of elements of integrated circuits will be decreased. Another approach to
decrease these dimensions is using microwave annealing and laser annealing of radiation defects and/
or dopants.[16-18]
In this paper, our aim is to formulate an approach to decrease dimensions of field-effect
heterotransistors framework a broadband amplifier of power [Figure 1] framework a heterostructure
with specific configuration (epitaxial layer/porous buffer layer/substrate and sections in the epitaxial
layer, and manufactured using another materials).
Method of solution
Now let us analyze distribution of concentration of dopant in space and time in heterostructure from
Figure 1. To determine the concentration, we solve the following second Fick’s law.[1,20-23]
( ) ( ) ( ) ( )
, , , , , , , , , , , ,
C x y z t C x y z t C x y z t C x y z t
D D D
t x x y y z z
     
∂ ∂ ∂ ∂
∂ ∂ ∂
= + + +
     
∂ ∂ ∂ ∂ ∂ ∂ ∂
     
Address for correspondence:
E. L. Pankratov,
E-mail: elp2004@mail.ru
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 16
( ) ( )
1
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
x kT

 
∂
Ω ∇ +
 
∂  
 
∫
( ) ( )
1
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
y kT

 
∂
Ω ∇ +
 
∂  
 
∫ (1)
( ) ( ) ( )
2 2 2
, , , , , , , , ,
C S C S C S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
     
  
     
     
+ +
     
      .
Conditions (initial and boundary) for this equation are following (these boundary conditions correspond
to absents of dopant flow through external boundary of heterostructure; and the initial condition
corresponds to distribution of dopant before starting of annealing).
Figure 1: (a) Scheme of the amplifier, which considered in this paper.[19]
(b) Considered heterostructure, which includes into
itself epitaxial layers, buffer layer, and substrate
b
a
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 17
( )
0
, , ,
0
x
C x y z t
x =
∂
=
∂
,
( )
, , ,
0
x
x L
C x y z t
x =
∂
=
∂
,
( )
0
, , ,
0
y
C x y z t
y =
∂
=
∂
, C(x,y,z,0)=fC
(x,y,z),
( )
, , ,
0
y
x L
C x y z t
y =
∂
=
∂
,
( )
0
, , ,
0
z
C x y z t
z =
∂
=
∂
,
( )
, , ,
0
z
x L
C x y z t
z =
∂
=
∂
(1a)
Function C(x,y,z,t) describes distribution of concentration of dopant in space and time; parameter W
mean volume of atom of dopant; symbol Ñs
mean surficial gradient operator; function ( )
0
, , ,
z
L
C x y z t d z
∫
describes dopant surficial concentration on interface between layers of heterostructure (we consider:
Z-axis is perpendicular to interface between heterostructure’s layers); functions m1
(x,y,z,t) and m2
(x,y,z,t)
describe distributions of chemical potentials in space and their dependences on temperature: m1
(x,y,z,t)
accounting mismatch-induced stress in layers of heterostructure, m2
(x,y,z,t) accounting porosity of
material; functions D(x,y,z,T) and DS
(x,y,z,T) describe distributions of coefficients of volumetric
and surficial diffusions in space and their dependences on temperature. We used recently described
approximations of dopant diffusions coefficients.[24-26]
( )
( )
( )
( ) ( )
( )
2
1 2 2
* *
, , , , , , , , ,
, , , 1 1
, , ,
C L
C x y z t V x y z t V x y z t
D D x y z T
P x y z T V V


  
 
 
 
= + + +
 
 
   
,
( )
( )
( )
( ) ( )
( )
2
1 2 2
* *
, , , , , , , , ,
, , , 1 1
, , ,
S S L S
C x y z t V x y z t V x y z t
D D x y z T
P x y z T V V


  
 
 
 
= + + +
 
 
   
(2)
Functions DL
(x,y,z,T) and DLS
(x,y,z,T) describe dependences of dopant diffusion coefficients on
coordinate and temperature; parameter T describes temperature of annealing; function P(x,y,z,T)
describes dependence of solubility of dopant on coordinate and temperature; value of parameter g will
be changed with changing of properties of materials and will be integer usually in the following interval
gÎ;[1,3,24]
function V(x,y,z,t) describes distribution of radiation vacancies concentration in space and time
with equilibrium distribution V*. Distributions of point radiation defects concentration in space and time
have been determined solutions of the following system of equations.[20-23,25,26]
( )
( )
( )
( )
( )
, , , , , , , , ,
, , , , , ,
I I
I x y z t I x y z t I x y z t
D x y z T D x y z T
t x x y y
  
 
    
   
= + +
   
   
( )
( )
( ) ( ) ( )
2
, ,
, , ,
, , , , , , , , , , , ,
I I I I V
I x y z t
D x y z T k x y z T I x y z t k x y z T
z z


 
 
− − ×
 
 
( ) ( ) ( ) ( )
0
, , , , , , , , , , , ,
z
L
IS
S
D
I x y z t V x y z t x y z t I x y W t dW
x kT

 
∂
+ Ω ∇ +
 
∂  
 
∫
( ) ( )
( )
2
0
, , ,
, , , , , ,
z
L
I S
IS
S
D x y z t
D
x y z t I x y W t dW
y kT x V kT x


   
∂
∂ ∂
Ω ∇ + +
   
∂ ∂ ∂
   
 
∫
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 18
( ) ( )
2 2
, , , , , ,
I S I S
D D
x y z t x y z t
y VkT y z VkT z
 
   
∂ ∂
∂ ∂
+
   
∂ ∂ ∂ ∂
   
(3)
( )
( )
( )
( )
( )
, , , , , , , , ,
, , , , , ,
V V
V x y z t V x y z t V x y z t
D x y z T D x y z T
t x x y y
  
 
    
   
= + +
   
   
( )
( )
( ) ( ) ( )
2
, ,
, , ,
, , , , , , , , , , , ,
V V V I V
V x y z t
D x y z T k x y z T V x y z t k x y z T
z z


 
 
− − ×
 
 
( ) ( ) ( ) ( )
0
, , , , , , , , , , , ,
z
L
VS
S
D
I x y z t V x y z t x y z t V x y W t dW
x kT

 
∂
+ Ω ∇ +
 
∂  
 
∫
( ) ( )
( )
2
0
, , ,
, , , , , ,
z
L
V S
VS
S
D x y z t
D
x y z t V x y W t dW
y kT x VkT x


   
∂
∂ ∂
Ω ∇ + +
   
∂ ∂ ∂
   
 
∫
( ) ( )
2 2
, , , , , ,
V S V S
D D
x y z t x y z t
y VkT y z VkT z
 
   
∂ ∂
∂ ∂
+
   
∂ ∂ ∂ ∂
   
Initial and boundary conditions for Eq. (3) could be written as
( )
0
, , ,
0
x
I x y z t
x

 =
= ,
( )
, , ,
0
x
x L
I x y z t
x

 =
= ,
( )
0
, , ,
0
y
I x y z t
y

 =
= ,
( )
, , ,
0
y
y L
I x y z t
y

 =
= ,
( )
0
, , ,
0
z
I x y z t
z

 =
= ,
( )
, , ,
0
z
z L
I x y z t
z

 =
= ,
( )
0
, , ,
0
x
V x y z t
x

 =
= ,
( )
, , ,
0
x
x L
V x y z t
x

 =
= ,
( )
0
, , ,
0
y
V x y z t
y

 =
= ,
(4)
( )
, , ,
0
y
y L
V x y z t
y

 =
= ,
( )
0
, , ,
0
z
V x y z t
z

 =
= ,
( )
, , ,
0
z
z L
V x y z t
z

 =
= , I(x,y,z,0)=
fI
(x,y,z), V(x,y,z,0)=fV
(x,y,z), ( )
1 1 1 2 2 2
1 1 1
2
, , , 1
n n n
V x V t y V t z V t t V
kT x y z

∞
 
+ + + = +
 
+ +
 

Function I(x,y,z,t) describes distribution of concentration of radiation interstitials (equilibrium
distribution I*) in space and time; functions DI
(x,y,z,T), DV
(x,y,z,T), DIS
(x,y,z,T), and DVS
(x,y,z,T)
describe dependences of volumetric and surficial diffusions coefficients of vacancies and interstitials
on coordinates and temperature; terms I2
(x,y,z,t) and V2
(x,y,z,t) describe generation di-interstitials
and divacancies (e.g., Vinetskiy and Kholodar’[26]
and appropriate references in this book); functions
kI,V
(x,y,z,T), kI,I
(x,y,z,T), and kV,V
(x,y,z,T) describe analogous dependences of parameters of recombination
of point radiation defects and generation of their simplest complexes; parameter k corresponds to
Boltzmann constant; parameter w is equal to a3
, where a describes interatomic distance; parameter 
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 19
describes specific surface energy. To take into account the porosity of buffer layers we assume, that
porous are approximately cylindrical with average values 2 2
1 1
r x y
= + and z1
before annealing.[23]
With
time small pores will decompose on vacancies. These vacancies will be absorbed by larger pores.[27]
With the time volume of large pores decreasing due to absorbing these vacancies and became more
spherical.[27]
Distribution of concentration of vacancies in heterostructure, existing due to porosity, could
be determined by summing on all pores, i.e.,
( ) ( )
0 0 0
, , , , , ,
l m n
p
i j k
V x y z t V x i y j z k t
  
= = =
= + + +
∑∑∑ , 2 2 2
R x y z
= + +
Parameters a, b, and c describe average distances between centers of pores in directions x, y, and z,
respectively, parameters l, m, and n are the quantities of pores in appropriate directions.
Distributions of di-interstitials FI
(x,y,z,t) and divacancies FV
(x,y,z,t) in space and time have been
calculated as solutions of the system of equations, which were presented below.[25,26]
( )
( )
( )
( )
( )
, , , , , , , , ,
, , , , , ,
I I
I I I
x y z t x y z t x y z t
D x y z T D x y z T
t x x y y
  
 
    
Φ Φ
   
Φ Φ Φ
= + +
   
   
( )
( )
( ) ( )
1
0
, , ,
, , , , , , , , ,
z
I
I
L
S
I
S I
D
x y z t
D x y z T x y z t x y W t dW
z z x kT



 
Φ
Φ
 
 
Φ ∂
+ Ω ∇ Φ +
 
 
∂  
   
∫
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
I
L
S
S I I I
D
x y z t x y W t dW k x y z T I x y z t
y kT

Φ
 
∂
Ω ∇ Φ + +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V k T z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( ) ( )
, , , , , ,
I
k x y z T I x y z t (5)
( )
( )
( )
( )
( )
, , , , , , , , ,
, , , , , ,
V V
V V V
x y z t x y z t x y z t
D x y z T D x y z T
t x x y y
  
 
    
Φ Φ
   
Φ Φ Φ
= + +
   
   
( )
( )
( ) ( )
1
0
, , ,
, , , , , , , , ,
z
V
V
L
S
V
S V
D
x y z t
D x y z T x y z t x y W t dW
z z x kT



 
Φ
Φ
 
 
Φ ∂
+ Ω ∇ Φ +
 
 
∂  
   
∫
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
V
L
S
S V V V
D
x y z t x y W t dW k x y z T V x y z t
y kT

Φ
 
∂
Ω ∇ Φ + +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( ) ( )
, , , , , ,
V
k x y z T V x y z t .
Initial and boundary conditions for above equations takes the form
( )
0
, , ,
0
I
x
x y z t
x

 =
Φ
= ,
( )
, , ,
0
x
x L
I x y z t
x

 =
= ,
( )
0
, , ,
0
y
I x y z t
y

 =
= ,
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 20
( )
, , ,
0
I
y Ly
x y z t
y

 =
Φ
= ,
( )
0
, , ,
0
I
z
x y z t
z

 =
Φ
= ,
( )
, , ,
0
z
I
z L
x y z t
z

 =
Φ
= ,
( )
0
, , ,
0
V
x
x y z t
x

 =
Φ
= ,
( )
, , ,
0
x
V
x L
x y z t
x

 =
Φ
= ,
( )
0
, , ,
0
V
y
x y z t
y

 =
Φ
= ,
 (6)
( )
, , ,
0
y
V
y L
x y z t
y

 =
Φ
= , ( )
0
, , ,
0
V
z
x y z t
z

 =
Φ
= ,
( )
, , ,
0
z
V
z L
x y z t
z

 =
Φ
= ,
FI
(x,y,z,0)=fFI
(x,y,z), FV
(x,y,z,0)=fFV
(x,y,z).
Functions DFIS
(x,y,z,T), DFVS
(x,y,z,T), DFI
(x,y,z,T), and DFV
(x,y,z,T) describe dependences of surficial
and volumetric diffusions of complexes of radiation defects on coordinate ant temperature; functions
kI
(x,y,z,T) and kV
(x,y,z,T) describe analogous dependences of parameters of decay of the above complexes.
We determined chemical potential m1
by the following relation.[20]
m1
=E(z)Wsij
[uij
(x,y,z,t)+uji
(x,y,z,t)]/2.(7)
Function E(z) describes spatial dependences of Young modulus; value sij
describes tensor of stress; value
1
2
j
i
ij
j i
u
u
u
x x
 
∂
∂
= +
 
∂ ∂
 
describes tensor of deformation; values ui
, and uj
describe the displacement vector
( )
, , ,
u x y z t

components ux
(x,y,z,t), uy
(x,y,z,t), and uz
(x,y,z,t); xi
, xj
are the coordinate x, y, z. The Eq. (3)
could be transform to the following form
( )
( ) ( ) ( ) ( )
, , , , , ,
, , , , , ,
1
, , ,
2
j j
i i
j i j i
u x y z t u x y z t
u x y z t u x y z t
x y z t
x x x x


   
∂ ∂
∂ ∂

= + + −
   

∂ ∂ ∂ ∂
   

   

( )
( )
( )
( ) ( ) ( ) ( )
0 0 0
, , ,
3 , , ,
1 2 2
ij k
ij ij
k
z u x y z t
K z z T x y z t T E z
z x
 
    


 
∂ Ω

 
+ − − − 
   
− ∂ 
  
.
Value s describes value of coefficient of Poisson; value e0
= (as
-aEL
)/aEL
describes value of mismatch
parameter, where parameters as
, aEL
describes value of lattice distances in the considered substrate and
the epitaxial layer, respectively; parameter K describes value of the uniform compression modulus;
parameter b describes value of thermal expansion coefficient; parameter Tr
describes value of equilibrium
temperature, which we consider as room temperature. We consider components of displacement vector
as solutions of the following equations.[21]
( )
( ) ( ) ( ) ( )
2
2
, , ,
, , , , , , , , ,
xy
x xx xz
x y z t
u x y z t x y z t x y z t
z
t x y z

 

∂
∂ ∂ ∂
= + +
∂ ∂ ∂ ∂
( )
( ) ( ) ( ) ( )
2
2
, , , , , , , , , , , ,
y yx yy yz
u x y z t x y z t x y z t x y z t
z
t x y z
  

∂ ∂ ∂ ∂
= + +
∂ ∂ ∂ ∂
( )
( ) ( ) ( ) ( )
2
2
, , ,
, , , , , , , , ,
zy
z zx zz
x y z t
u x y z t x y z t x y z t
z
t x y z

 

∂
∂ ∂ ∂
= + +
∂ ∂ ∂ ∂
.
Here
( )
( )
( ) ( ) ( )
( )
, , ,
, , , , , ,
3
2 1
j ij
i k
ij ij
j i k
u x y z t
E z u x y z t u x y z t
K z
x x x
z

 

 
∂
∂ ∂
= + − + ×
 
∂ ∂ ∂
 
+  
   
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 21
( )
( ) ( ) ( )
, , ,
, , ,
k
r
k
u x y z t
z K z T x y z t T
x

∂
 
− −
 
∂
, where function r(z) describes the density of materials of
heterostructure and parameter, dij
describes symbol of Kronecker. Accounting of the relation for sij
in the
last system of the equation leads to the following relation
( )
( )
( )
( )
( )
( )
( )
( )
( )
2 2
2 2
, , , 5 , , ,
6 1 3 1
x x
u x y z t E z u x y z t E z
z K z K z
t x
z z

 
   
∂ ∂
   
= + + − ×
   
∂ ∂
   
+ +
   
   
   
( ) ( )
( )
( ) ( )
( )
( )
( )
2 2 2
2 2
, , , , , , , , ,
2 1 3 1
y y z
u x y z t u x y z t
E z u x y z t E z
K z
x y y z
z z
 
 
 
∂ ∂ ∂
+ + + + ×
 
 
∂ ∂ ∂ ∂
   
+ +
   
   
   
( )
( ) ( )
( )
2
, , , , , ,
z
u x y z t T x y z t
K z z
x z x

∂ ∂
−
∂ ∂ ∂
( )
( ) ( )
( )
( ) ( ) ( )
2 2 2
2 2
, , , , , , , , , , , ,
2 1
y y x
u x y z t u x y z t
E z u x y z t T x y z t
z
t x x y y
z


 
∂ ∂ ∂ ∂
= + − ×
 
∂ ∂ ∂ ∂ ∂
 
+  
   
( ) ( )
( )
( )
( ) ( ) ( )
2
2
, , , , , ,
, , ,
2 1
y y
z
u x y z t u x y z t
E z u x y z t
K z z
z z y y
z


 
 
∂ ∂
∂
∂  
+ + + ×
 
 
∂ ∂ ∂ ∂
 
+
 
 
 
 
(8)
( )
( )
( ) ( )
( )
( )
( )
( )
( )
2 2
, , , , , ,
5
12 1 6 1
y y
u x y z t u x y z t
E z E z
K z K z K z
y z x y
z z
 
    ∂ ∂
   
+ + − +
   
∂ ∂ ∂ ∂
   
+ +
   
   
   
( )
( ) ( )
( )
( ) ( ) ( )
2 2 2 2
2 2 2
, , , , , , , , , , , ,
2 1
z z z x
u x y z t E z u x y z t u x y z t u x y z t
z
t x y x z
z



∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
 
+ 
 
( )
( )
( ) ( ) ( )
2
, , , , , ,
, , , , , ,
y y
x x
u x y z t u x y z t
u x y z t u x y z t
K z
y z z x y z
 
  
∂ ∂
∂ ∂
∂  
+ + + +
  
 
∂ ∂ ∂ ∂ ∂ ∂
  
 
  
( )
( )
( ) ( ) ( ) ( )
, , ,
, , , , , , , , ,
1
6
6 1
y
z x z
u x y z t
E z u x y z t u x y z t u x y z t
z z z x y z

 
 
∂
∂ ∂ ∂
∂  
− − − −
 
 
∂ + ∂ ∂ ∂ ∂
 
 
 
( ) ( )
( )
, , ,
T x y z t
K z z
z

∂
∂
.
Conditions for the above equations take the form
( )
0, , ,
0
u y z t
x
∂
=
∂

;
( )
, , ,
0
x
u L y z t
x
∂
=
∂

;
( )
,0, ,
0
u x z t
y
∂
=
∂

;
( )
, , ,
0
y
u x L z t
y
∂
=
∂

;
( )
, ,0,
0
u x y t
z
∂
=
∂

;
( )
, , ,
0
z
u x y L t
z
∂
=
∂

; ( ) 0
, , ,0
u x y z u
=
 
; ( ) 0
, , ,
u x y z u
∞ =
 
.
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 22
We calculate dopant and radiation defects concentration distribution in space and time by the solution
of the Eqs. (1), (3), and (5) using the standard method of averaging of function corrections.[28]
First of
all, we transform the Eqs. (1), (3), and (5) to the following form with accounting initial conditions of the
above concentrations
( ) ( ) ( ) ( )
, , , , , , , , , , , ,
C x y z t C x y z t C x y z t C x y z t
D D D
t x x y y z z
     
∂ ∂ ∂ ∂
∂ ∂ ∂
= + + +
     
∂ ∂ ∂ ∂ ∂ ∂ ∂
     
(1a)
( ) ( )
2 2
, , , , , ,
( , , ) ( )
C S C S
c
D D
x y z t x y z t
f x y z t
y V kT y z V kT z
   
 

   
   
+ + + +
   
   
( )
( ) ( )
2
0
, , ,
, , , , , ,
z
L
C S S
S
D x y z t D
x y z t C x y W t dW
z V kT z x kT
 


 
 
  ∂
+ Ω ∇ +
 
 
∂  
   
∫
( ) ( )
0
, , , , , ,
z
L
S
S
D
x y z t C x y z t dW
y kT

 
∂
Ω ∇
 
∂  
 
∫
( )
( )
( )
( )
( )
, , , , , , , , ,
, , , , , ,
I I
I x y z t I x y z t I x y z t
D x y z T D x y z T
t x x y y
  
 
    
   
= + +
   
   
( )
( )
( ) ( )
1
0
, , ,
, , , , , , , , ,
z
L
IS
I S
I x y z t D
D x y z T x y z t I x y W t dW
z z x kT



 
 
  ∂
+ Ω ∇ +
 
 
∂  
   
∫
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
L
IS
S I I
D
x y z t I x y W t dW k x y z T I x y z t
y kT

 
∂
Ω ∇ − −
 
∂  
 
∫
( ) ( ) ( ) ( ) ( )
, , , , , , , , , , , ,
I V I
k x y z T I x y z t V x y z t f x y z t

+ (3a)
( )
( )
( )
( )
( )
, , , , , , , , ,
, , , , , ,
V V
V x y z t V x y z t V x y z t
D x y z T D x y z T
t x x y y
  
 
    
   
= + +
   
   
( )
( )
( ) ( )
1
0
, , ,
, , , , , , , , ,
z
L
VS
V S
V x y z t D
D x y z T x y z t V x y W t dW
z z x kT



 
 
  ∂
+ Ω ∇ +
 
 
∂  
   
∫
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
L
IS
S V V
D
x y z t I x y W t dW k x y z T I x y z t
y kT

 
∂
Ω ∇ − −
 
∂  
 
∫
( ) ( ) ( ) ( ) ( )
, , , , , , , , , , , ,
I V V
k x y z T I x y z t V x y z t f x y z t

+
( )
( )
( )
( )
( )
, , , , , , , , ,
, , , , , ,
I I
I I I
x y z t x y z t x y z t
D x y z T D x y z T
t x x y y
  
 
    
Φ Φ
   
Φ Φ Φ
= + +
   
   
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 23
( )
( )
( ) ( )
1
0
, , ,
, , , , , , , , ,
z
I
I
L
S
I
S I
D
x y z t
D x y z T x y z t x y W t dW
z z x kT



 
Φ
Φ
 
 
Φ ∂
+ Ω ∇ Φ +
 
 
∂  
   
∫
( ) ( ) ( ) ( )
1
0
, , , , , , , , , , , ,
z
I
L
S
S I I
D
x y z t x y W t dW k x y z T I x y z t
y kT

Φ
 
∂
Ω ∇ Φ + +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( ) ( ) ( ) ( )
2
, , , , , , , , ,
I
I I
k x y z T I x y z t f x y z t

Φ
+ (5a)
( )
( )
( )
( )
( )
, , , , , , , , ,
, , , , , ,
V V
V V V
x y z t x y z t x y z t
D x y z T D x y z T
t x x y y
  
 
    
Φ Φ
   
Φ Φ Φ
= + +
   
   
( )
( )
( ) ( )
1
0
, , ,
, , , , , , , , ,
z
V
V
L
S
V
S V
D
x y z t
D x y z T x y z t x y W t dW
z z x kT



 
Φ
Φ
 
 
Φ ∂
+ Ω ∇ Φ +
 
 
∂  
   
∫
( ) ( ) ( ) ( )
1
0
, , , , , , , , , , , ,
z
I
L
S
S I V
D
x y z t x y W t dW k x y z T V x y z t
y kT

Φ
 
∂
Ω ∇ Φ + +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( ) ( ) ( ) ( )
2
, , , , , , , , ,
V
V V
k x y z T V x y z t f x y z t

Φ
+
.
Now we consider not yet known average values a1r
instead of radiation defects and dopant concentrations
in right sides of Eqs. (1a), (3a), and (5a). The replacement gives a possibility to obtain equations for the
first-order approximations of the required concentrations in the following form
( )
( ) ( )
1
1 1 1 1
, , ,
, , , , , ,
S S
C S C S
C x y z t D D
z x y z t z x y z t
t x kT y kT
   
∂    
∂ ∂
=
Ω ∇ + Ω ∇ +
   
∂ ∂ ∂
   
( ) ( )
( ) ( )
2 2
, , , , , ,
, ,
C S C S
C
D D
x y z t x y z t
f x y z t
x V kT x y V kT y
   
 

   
   
+ + +
   
   
( )
2 , , ,
C S
D x y z t
z V kT z
 

 
 
 
 
(1b)
( )
( ) ( )
1
1 1
, , ,
, , , , , ,
IS IS
I S I S
I x y z t D D
z x y z t z x y z t
t x kT y kT

   

   
∂ ∂
=
Ω ∇ + Ω ∇ +
   
∂ ∂
   
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I S I S I S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 24
( ) ( ) ( ) ( )
2
1 , 1 1 ,
, , , , , , , ,
I I I I I V I V
f x y z t k x y z T k x y z T
   
− − (3b)
( )
( ) ( )
1
1 1 1 1
, , ,
, , , , , ,
VS VS
V S V S
V x y z t D D
z x y z t z x y z t
t x kT y kT

   

   
∂ ∂
=
Ω ∇ + Ω ∇ +
   
∂ ∂
   
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V S V S V S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( ) ( ) ( ) ( )
2
1 , 1 1 ,
, , , , , , , ,
V V V V I V I V
f x y z t k x y z T k x y z T
   
− −
( )
( ) ( )
1
1 1 1 1
, , ,
, , , , , ,
I I
I I
S S
I
S S
D D
x y z t
z x y z t z x y z t
t x kT y kT

   

Φ Φ
Φ Φ
   
Φ ∂ ∂
=
Ω ∇ + Ω ∇ +
   
∂ ∂
   
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( ) ( ) ( ) ( ) ( ) ( )
2
,
, , , , , , , , , , , , , ,
I I I I
f x y z t k x y z T I x y z t k x y z T I x y z t

Φ + + (5b)
( )
( ) ( )
1
1 1 1 1
, , ,
, , , , , ,
V V
V V
S S
V
S S
D D
x y z t
z x y z t z x y z t
t x kT y kT

   

Φ Φ
Φ Φ
Φ    
∂ ∂
=
Ω ∇ + Ω ∇ +
   
∂ ∂
   
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( ) ( ) ( ) ( ) ( ) ( )
2
,
, , , , , , , , , , , , , ,
V V V V
f x y z t k x y z T V x y z t k x y z T V x y z t

Φ + +
.
Integration of the left and right sides of the Eqs. (1b), (3b), and (5b) on time gives us the possibility to
obtain relations for above approximation in this form
( ) ( )
( ) ( )
( )
2
1 1 1 2 2
* *
0
, , , , , ,
, , , , , , 1
t
C S L
V x y z V x y z
z
C x y z t D x y z T
x kT V V
 
  
 
∂  
=
Ω + + ×
∂  
 
∫
( )
( )
( )
( )
1 1
1 1
0
, , , 1 , , , 1
, , , , , ,
t
S C S C
S C S L
x y z d D x y z T
P x y z T y P x y z T
 
 
   
   

   
∂

∇ + + + +

   
∂

   

∫
( )
( ) ( )
( )
2
1 1 2 2
* *
0
, , , , , ,
, , , 1
t
C S
S
D
V x y z V x y z
z
x y z d
kT V x V kT
V
  
    

 
 
Ω∇ + + + ×
 
 
∫
( ) ( ) ( )
2 2 2
0 0
, , , , , , , , ,
t t
C S C S
D D
x y z x y z x y z
d d d
x y V kT y z V kT z
        
 
  
    
+ + +
∫ ∫
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 25
( )
, ,
C
f x y z (1c)
( ) ( ) ( )
1 1 1 1 1
0 0
, , , , , , , , ,
t t
IS IS
I S I S
D D
I x y z t z x y z d z x y z d
x kT y kT
       
∂ ∂
= Ω ∇ + Ω ∇ +
∂ ∂
∫ ∫
( ) ( ) ( )
2 2 2
0 0 0
, , , , , , , , ,
t t t
I S I S I S
D D D
x y z t x y z t x y z t
d d d
x V kT x y V kT y z V kT z
  
  
∂ ∂ ∂
∂ ∂ ∂
+ + +
∂ ∂ ∂ ∂ ∂ ∂
∫ ∫ ∫
( ) ( ) ( )
2
1 , 1 1 ,
0 0
, , , , , , , ,
t t
I I I I I V I V
f x y z k x y z T d k x y z T d
    
− −
∫ ∫ (3c)
( ) ( ) ( )
1 1 1 1 1
0 0
, , , , , , , , ,
t t
IS IS
V S V S
D D
V x y z t z x y z d z x y z d
x kT y kT
       
∂ ∂
= Ω ∇ + Ω ∇ +
∂ ∂
∫ ∫
( ) ( ) ( )
2 2 2
0 0 0
, , , , , , , , ,
t t t
V S V S V S
D D D
x y z t x y z t x y z t
d d d
x V kT x y V kT y z V kT z
  
  
∂ ∂ ∂
∂ ∂ ∂
+ + +
∂ ∂ ∂ ∂ ∂ ∂
∫ ∫ ∫
( ) ( ) ( )
2
1 , 1 1 ,
0 0
, , , , , , , ,
t t
V V V V I V I V
f x y z k x y z T d k x y z T d
    
− −
∫ ∫
( ) ( ) ( )
1 1 1 1
0 0
, , , , , , , , ,
I I
I
t t
S S
I S S
D D
x y z t z x y z d x y z d
x kT x kT
      
Φ Φ
Φ
∂ ∂
Φ = Ω ∇ +Ω ∇ ×
∂ ∂
∫ ∫
( )
( ) ( )
2 2
1
0 0
, , , , , ,
, , I I
I I
t t
S S
D D
x y z x y z
z f x y z d d
x V kT x y V kT y
   
  
Φ Φ
Φ Φ
∂ ∂
∂ ∂
+ + + +
∂ ∂ ∂ ∂
∫ ∫ (5c)
( )
( ) ( )
2
0 0
, , ,
, , , , , ,
I
t t
S
I
D x y z
d k x y z T I x y z d
z V kT z
 
  
Φ ∂
∂
+ +
∂ ∂
∫ ∫
( ) ( )
2
,
0
, , , , , ,
t
I I
k x y z T I x y z d
 
∫
( ) ( ) ( )
1 1 1 1
0 0
, , , , , , , , ,
V V
V
t t
S S
V S S
D D
x y z t z x y z d x y z d
x kT x kT
      
Φ Φ
Φ
∂ ∂
Φ = Ω ∇ +Ω ∇ ×
∂ ∂
∫ ∫
( )
( ) ( )
2 2
1
0 0
, , , , , ,
, , V V
V V
t t
S S
D D
x y z x y z
z f x y z d d
x V kT x y V kT y
   
  
Φ Φ
Φ Φ
∂ ∂
∂ ∂
+ + + +
∂ ∂ ∂ ∂
∫ ∫
( )
( ) ( )
2
0 0
, , ,
, , , , , ,
V
t t
S
V
D x y z
d k x y z T V x y z d
z V kT z
 
  
Φ ∂
∂
+ +
∂ ∂
∫ ∫
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 26
( ) ( )
2
,
0
, , , , , ,
t
V V
k x y z T V x y z d
 
∫ .
Followingstandardrelationgivesapossibilitytocalculateaveragevaluesofthefirst-orderapproximations
of dopant and radiation defects concentrations.[28]
( )
1 1
0 0 0 0
1
, , ,
y
x z
L
L L
x y z
x y z t d z d y d xd t
L L L

 
Θ
=
Θ ∫ ∫ ∫ ∫ (9)
Substitution of the above first-order approximations into relation Eqs. (9) leads to the following results
( )
1
0 0 0
1
, ,
y
x z
L
L L
C C
x y z
f x y z d z d y d x
L L L
 = ∫ ∫ ∫ ,
( )2 2
3 1
3
1 2
4 4
4
4
x y z
I
a B L L L a
a A
B
a a

 
Θ + Θ
+
= − + −
 
 
3
4
4
a A
a
+
− ,
( )
1 1 00
00 1 0 0 0
1
, ,
y
x z
L
L L
V I I II x y z
IV I
f x y z d z d y d x S L L L
S
 

 
Θ
− − Θ
 
 
 
∫ ∫ ∫ .
Here ( ) ( ) ( ) ( )
, 1 1
0 0 0 0
, , , , , , , , ,
y
x z
L
L L
i j
ij
S t k x y z T I x y z t V x y z t d z d y d xd t
  
Θ
= Θ −
∫ ∫ ∫ ∫ , 4 00
II
a S
= ×
( )
2
00 00 00
IV II VV
S S S
−
,
2
3 00 00 00 00 00
IV II IV II VV
a S S S S S
= + − , ( )
2
0 0 0
, ,
y
x z
L
L L
V
a f x y z d z d y d x
= ×
∫ ∫ ∫
( )
2 2 2 2 2 2 2
00 00 00 00 00 00
0 0 0
2 , ,
y
x z
L
L L
IV IV IV x y z VV II I x y z VV
S S S L L L S S f x y z d z d y d x L L L S
+ Θ + − Θ −
∫ ∫ ∫
( )
2
00
0 0 0
, ,
y
x z
L
L L
IV I
S f x y z d z d y d x
∫ ∫ ∫ , ( )
1 00
0 0 0
, ,
y
x z
L
L L
IV I
a S f x y z d z d y d x
= ∫ ∫ ∫ , 0 00
VV
a S
= ×
( )
2
0 0 0
, ,
y
x z
L
L L
I
f x y z d z d y d x
 
 
 
 
∫ ∫ ∫ ,
2
2 3 2
2
4 4
8 4
a a
A y
a a
= + Θ − Θ , 2 3
2 3
4
6
a
B q p q
a
Θ
= + + − −
2 3
3
q p q
+ +
,
2
3 3 3
2 2
1 3 0 3
2 2
0 2
2 2 3
4 4 4 4 4
4 4
24 8 54
x y z
a a a a
a a
q a L L L a
a a a a a
   
Θ Θ
= − Θ − Θ Θ − Θ − −
   
   
4 2
2 2 2 1
2
4
8
x y z
a
L L L
a
Θ , 0 4 1 3
2 2
2
4 4
4
12 18
x y z
a a L L L a a a
p
a a
− Θ Θ
=
Θ − ,
( )
20
1
1
0 0 0
1
, ,
y
x z
I I
L
L L
II
I
x y z x y z x y z
S
R
f x y z d z d y d x
L L L L L L L L L
 Φ Φ
= + +
Θ Θ ∫ ∫ ∫
( )
20
1
1
0 0 0
1
, ,
y
x z
V V
L
L L
VV
V
x y z x y z x y z
S
R
f x y z d z d y d x
L L L L L L L L L
 Φ Φ
= + +
Θ Θ ∫ ∫ ∫ .
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 27
Here ( ) ( ) ( )
1
0 0 0 0
, , , , , ,
y
x z
L
L L
i
i I
R t k x y z T I x y z t d z d y d xd t

Θ
= Θ −
∫ ∫ ∫ ∫ .
Now, we calculate approximations with the second and higher (n-th) orders of considered concentrations
using the method of averaging of function corrections in the classical form.[28]
The considered procedure
leads to the replacement of considered concentrations on the right sides of Eqs. (1c), (3c), and (5c) on the
following sum anr
+rn−1
(x,y,z,t). In this situation, one can obtain the following equations for the second-
order approximations of the above concentrations
( ) ( )
( )
( ) ( )
( )
2
2 1
2
1 2 2
* *
, , ,
, , , , , , , , ,
1 1
, , ,
C C x y z t
C x y z t V x y z t V x y z t
t x P x y z T V V



  
  
 
 
+
∂ ∂  
   

= + + + ×
 
∂ ∂  
 
   
( )
( ) ( ) ( )
( )
( )
2
1 1
1 2 2
* *
, , , , , , , , , , , ,
, , , 1
L
C x y z t V x y z t V x y z t C x y z t
D x y z T
x y V y
V
 
  

∂ ∂
∂  

× + + + ×

∂ ∂ ∂
 
 
  
( )
( )
( )
( ) ( )
( )
2
2 1
1 2 2
* *
, , , , , , , , ,
, , , 1 1
, , ,
C
L
C x y z t V x y z t V x y z t
D x y z T
P x y z T z V V



  

  
 
 
+ ∂
 
   


+ + + + ×
 
∂  
 
  
   
( )
( ) ( )
( )
( ) ( )
2 1
1
, , ,
, , ,
, , , 1 , ,
, , ,
C
L C
C x y z t
C x y z t
D x y z T f x y z t
z P x y z T



 

 
 
+
∂  
  
+ + +
 
∂ 
 
 
( ) ( ) ( )
2 2 2
, , , , , , , , ,
C S C S C S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
     
  
     
     
+ + +
     
     
( ) ( )
1 2
0
, , , , , ,
z
L
S
S C
D
x y z t C x y W t dW
x kT
 
 
∂  
 
Ω ∇ + +
 
 
∂  
 
∫
( ) ( )
1 2
0
, , , , , ,
z
L
S
S C
D
x y z t C x y W t dW
y kT
 
 
∂  
 
Ω ∇ +
 
 
∂  
 
∫ (1d)
( )
( )
( )
( )
( )
2 1 1
, , , , , , , , ,
, , , , , ,
I I
I x y z t I x y z t I x y z t
D x y z T D x y z T
t x x y y
  
 
    
   
= + +
   
   
( )
( )
( ) ( ) ( )
2
1
, 1 1 ,
, , ,
, , , , , , , , , , , ,
I I I I I V
I x y z t
D x y z T k x y z T I x y z t k x y z T
z z



 
 
 
− + − ×
   
 
( ) ( ) ( ) ( )
1 1 1 1 2 1
0
, , , , , , , , , , , ,
z
L
I V S I
I x y z t V x y z t x y z t I x y W t dW
x
   

∂ 
     
+ + + Ω ∇ + ×

     
∂ 

∫
( ) ( )
( )
2
2 1
0 0
, , ,
, , , , , ,
z
L t
IS IS
S I
x y z t
D D
x y z t I x y W t dW
kT y kT x x

 
  ∂
 ∂ ∂
 
 
+ Ω ∇ + + ×
  
 
∂ ∂ ∂
  
 
∫ ∫
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 28
( ) ( )
2 2
0 0
, , , , , ,
t t
I S I S I S
D D D
x y z t x y z t
d d d
V kT y V kT y z V kT z
 
  
∂ ∂
∂ ∂
+ +
∂ ∂ ∂ ∂
∫ ∫ (3d)
( )
( )
( )
( )
( )
2 1 1
, , , , , , , , ,
, , , , , ,
V V
V x y z t V x y z t V x y z t
D x y z T D x y z T
t x x y y
  
 
    
   
= + +
   
   
( )
( )
( ) ( ) ( )
2
1
, 1 1 ,
, , ,
, , , , , , , , , , , ,
V V V V I V
V x y z t
D x y z T k x y z T V x y z t k x y z T
z z



 
 
 
− + − ×
   
 
( ) ( ) ( ) ( )
1 1 1 1 2 1
0
, , , , , , , , , , , ,
z
L
I V S V
I x y z t V x y z t x y z t V x y W t dW
x
   

∂ 
     
+ + + Ω ∇ + ×

     
∂ 

∫
( ) ( )
( )
2
2 1
0 0
, , ,
, , , , , ,
z
L t
VS VS
S V
x y z t
D D
x y z t V x y W t dW
kT y kT x x

 
  ∂
 ∂ ∂
 
 
+ Ω ∇ + + ×
  
 
∂ ∂ ∂
  
 
∫ ∫
( ) ( )
2 2
0 0
, , , , , ,
t t
V S V S V S
D D D
x y z t x y z t
d d d
V kT y V kT y z V kT z
 
  
∂ ∂
∂ ∂
+ +
∂ ∂ ∂ ∂
∫ ∫
( )
( )
( )
( )
( )
2 1 1
, , , , , , , , ,
, , , , , ,
I I
I I I
x y z t x y z t x y z t
D x y z T D x y z T
t x x y y
  
 
    
Φ Φ
   
Φ Φ Φ
= + +
   
   
( ) ( ) ( ) ( )
2
2 1 ,
0
, , , , , , , , , , , ,
z
I
I
L
S
S I I I
D
x y z t x y W t dW k x y z T I x y z t
x kT
 
Φ
Φ
 
∂  
 
Ω ∇ + Φ + +
 
 
∂  
 
∫
( ) ( ) ( ) ( )
2 1
0
, , , , , , , , , , , ,
z
I
I
L
S
S I I
D
x y z t x y W t dW k x y z T I x y z t
y kT
 
Φ
Φ
 
∂  
 
Ω ∇ + Φ + +
 
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( )
( )
( ) ( )
1 , , ,
, , , , ,
I I
I x y z t
D x y z T f x y z t
z z



 
Φ Φ
 
Φ
+
 
 
(5d)
( )
( )
( )
( )
( )
2 1 1
, , , , , , , , ,
, , , , , ,
V V
V V V
x y z t x y z t x y z t
D x y z T D x y z T
t x x y y
  
 
    
Φ Φ
   
Φ Φ Φ
= + +
   
   
( ) ( ) ( ) ( )
2
2 1 ,
0
, , , , , , , , , , , ,
z
V
V
L
S
S V V V
D
x y z t x y W t dW k x y z T V x y z t
x kT
 
Φ
Φ
 
∂  
 
Ω ∇ + Φ + +
 
 
∂  
 
∫
( ) ( ) ( ) ( )
2 1
0
, , , , , , , , , , , ,
z
V
V
L
S
S V V
D
x y z t x y W t dW k x y z T V x y z t
y kT
 
Φ
Φ
 
∂  
 
Ω ∇ + Φ + +
 
 
∂  
 
∫
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 29
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
( )
( )
( ) ( )
1 , , ,
, , , , ,
V V
V x y z t
D x y z T f x y z t
z z



 
Φ Φ
 
Φ
+
 
 
.
The above equations could be solved by the integration of both sides of the above equations on time.
After this integration one can be obtained
( )
( )
( )
( ) ( )
( )
2
2 1
2 1 2 2
* *
0
, , , , , , , , ,
, , , 1 1
, , ,
t
C C x y z V x y z V x y z
C x y z t
x P x y z T V V


   
  
 
 
 
+
∂  
   
= + + + ×
 
∂  
 
   
∫
( )
( )
( )
( ) ( )
( )
2
1
1 2 2
* *
0
, , , , , , , , ,
, , , , , , 1
t
L L
C x y z V x y z V x y z
D x y z T d D x y z T
x y V V
  
  
 
∂ ∂  
+ + + ×
∂ ∂  
 
∫
( ) ( )
( )
( ) ( )
( )
2
2 1
1
1 2 2
* *
0
, , ,
, , , , , , , , ,
1 1
, , ,
t
C C x y z t
C x y z V x y z V x y z
y P x y z T z V V



  
  
 
 
 
+
∂ ∂
 
   
+ + + + ×
 
∂ ∂  
 
   
∫
( )
( ) ( )
( )
( )
2 1
1
, , ,
, , ,
, , , 1 , ,
, , ,
C
L C
C x y z
C x y z
D x y z T d f x y z
z P x y z T


 

 
 
 
+
∂  
 
+ + +
 
∂  
 
( ) ( ) ( )
2 1
0 0 0
, , , , , , , , ,
z
L
t t
S
S C S
D
x y z C x y W dW d x y z
x kT y
      
∂ ∂
 
Ω ∇ + + ∇ ×
 
∂ ∂
∫ ∫ ∫
( )
( )
2
2 1
0
, , ,
, , ,
z
L
C S
S
C
D x y z t
D
C x y W dW d
kT x V kT x
 

  
 
 
 
Ω + + +
 
 
 
∫
( ) ( )
2 2
, , , , , ,
C S C S
D D
x y z t x y z t
y V kT y z V kT z
   
 
   
   
+
   
   (1e)
( ) ( )
( )
( )
( )
1 1
2
0 0
, , , , , ,
, , , , , , , , ,
t t
I I
I x y z I x y z
I x y z t D x y z T d D x y z T d
x x y y
   
 
 
   
= + +
∫ ∫
( )
( )
( ) ( )
2
1
, 2 1
0 0
, , ,
, , , , , , , , ,
t t
I I I I
I x y z
D x y z T d k x y z T I x y z d
z z
 

   
 
 
− + −
 
∫ ∫
( ) ( ) ( ) ( )
, 2 1 2 1
0 0
, , , , , , , , , , , ,
t t
I V I V S
k x y z T I x y z V x y z d x y z
x
      
∂
   
+ + + ∇ ×
    ∂
∫ ∫
( ) ( ) ( )
2 1 2 1
0 0 0
, , , , , , , , ,
z z
L L
t
IS
I S I
D
I x y W dW d x y z I x y W
kT y
      
∂
   
Ω + + ∇ + ×
   
∂
∫ ∫ ∫
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 30
( ) ( )
2 2
, , , , , ,
I S I S
IS
D D
x y z t x y z t
D
d W d
k T x V kT x y V kT y
   
 

   
   
Ω + + +
   
   
( )
( )
2 , , ,
, ,
I S
I
D x y z t
f x y z
z V kT z
 

 
 
+
 
 
(3e)
( ) ( )
( )
( )
( )
1 1
2
0 0
, , , , , ,
, , , , , , , , ,
t t
V V
V x y z V x y z
V x y z t D x y z T d D x y z T d
x x y y
   
 
 
   
= + +
∫ ∫
( )
( )
( ) ( )
2
1
, 2 1
0 0
, , ,
, , , , , , , , ,
t t
V V V V
V x y z
D x y z T d k x y z T V x y z d
z z
 

   
 
 
− + −
 
∫ ∫
( ) ( ) ( ) ( )
, 2 1 2 1
0 0
, , , , , , , , , , , ,
t t
I V I V S
k x y z T I x y z V x y z d x y z
x
      
∂
   
+ + + ∇ ×
    ∂
∫ ∫
( ) ( ) ( )
2 1 2 1
0 0 0
, , , , , , , , ,
z z
L L
t
VS
V S V
D
V x y W dW d x y z V x y W
kT y
      
∂
   
Ω + + ∇ + ×
   
∂
∫ ∫ ∫
( ) ( )
2 2
, , , , , ,
V S V S
VS
D D
x y z t x y z t
D
d W d
kT x V kT x y V kT y
   
 

   
   
Ω + + +
   
   
( )
( )
2 , , ,
, ,
V S
V
D x y z t
f x y z
z V kT z
 

 
 
+
 
 
( ) ( )
( ) ( )
1 1
2
0 0
, , , , , ,
, , , , , ,
I
t t
I I
I
x y z x y z
x y z t D x y z T d
x x y y
   
 

   
Φ
Φ Φ
Φ + ×
∫ ∫
( ) ( )
( )
( )
1
0 0
, , ,
, , , , , , , , ,
I I
t t
I
S
x y z
D x y z T d D x y z T d x y z
z z x
 

   
 
Φ Φ
Φ ∂
+ + Ω ∇ ×
∂
∫ ∫
( ) ( )
2 1 2 1
0 0 0
, , , , , ,
z z
I I
I I
L L
t
S S
I I
D D
x y W dW d x y W dW
kT y kT
    
Φ Φ
Φ Φ
∂
   
+ Φ + Ω + Φ ×
   
∂
∫ ∫ ∫
( ) ( ) ( )
( )
2
2
,
0 0
, , ,
, , , , , , , , , I
t t
S
S I I
D x y z
x y z d k x y z T I x y z d d
x V kT x
 
     
Φ ∂
∂
∇ + + +
∂ ∂
∫ ∫
( ) ( )
( )
2 2
0 0
, , , , , ,
, ,
I I
I
t t
S S
D D
x y z x y z
d d f x y z
y V kT y z V kT z
   
 
Φ Φ
Φ
∂ ∂
∂ ∂
+ + +
∂ ∂ ∂ ∂
∫ ∫
( ) ( )
0
, , , , , ,
t
I
k x y z T I x y z d
 
∫ (5e)
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 31
( ) ( )
( ) ( )
1 1
2
0 0
, , , , , ,
, , , , , ,
V
t t
V V
V
x y z x y z
x y z t D x y z T d
x x y y
   
 

   
Φ
Φ Φ
Φ + ×
∫ ∫
( ) ( )
( )
( )
1
0 0
, , ,
, , , , , , , , ,
V V
t t
V
S
x y z
D x y z T d D x y z T d x y z
z z x
 

   
 
Φ Φ
Φ ∂
+ + Ω ∇ ×
∂
∫ ∫
( ) ( )
2 1 2 1
0 0 0
, , , , , ,
z z
V V
V V
L L
t
S S
V V
D D
x y W dW d x y W dW
kT y kT
    
Φ Φ
Φ Φ
∂
   
+ Φ + Ω + Φ ×
   
∂
∫ ∫ ∫
( ) ( ) ( )
( )
2
2
,
0 0
, , ,
, , , , , , , , , V
t t
S
S V V
D x y z
x y z d k x y z T V x y z d d
x V kT x
 
     
Φ ∂
∂
∇ + + +
∂ ∂
∫ ∫
( ) ( )
( )
2 2
0 0
, , , , , ,
, ,
V V
V
t t
S S
D D
x y z x y z
d d f x y z
y V kT y z V kT z
   
 
Φ Φ
Φ
∂ ∂
∂ ∂
+ + +
∂ ∂ ∂ ∂
∫ ∫
( ) ( )
0
, , , , , ,
t
V
k x y z T V x y z d
 
∫ .
The next standard relation gives a possibility to calculate average values of the second-order
approximations of the above concentrations.[28]
( ) ( )
2 2 1
0 0 0 0
1
, , , , , ,
y
x z
L
L L
x y z
x y z t x y z t d z d y d xd t
L L L

  
Θ
 
−
 
Θ ∫ ∫ ∫ ∫ (10)
Substitution of the second-order approximations of the considered concentrations into relation Eqs. (10)
gives a possibility to obtain relations for required average values a2r
a2C
=0, a2FI
=0, a2FV
=0,
( )2 2
3 1
3 3
2 2
4 4 4
4
4 4
x y z
V
a F L L L b
b E b E
F
b b b

 
Θ + Θ
+ +
= − + −
 
 
,
( )
2
2 00 2 01 10 02 11
2
01 2 00
2
V V VV V VV IV x y z V V IV
I
IV V IV
C S S S L L L S S
S S
 


− − + + Θ − −
=
+
.
Here
2 2
4 00 00 00 00
1 1
IV V V VV II
x y z x y z
b S S S S
L L L L L L
−
Θ Θ
, (
00 00
3 01 10
2
II VV
VV IV
x y z
S S
b S S
L L L
=
− + +
Θ
) ( ) (
2
00 00 00
01 10 01 01 10
2 2
IV VV IV
x y z IV II IV x y z VV IV
x y z x y z
S S S
L L L S S S L L L S S
L L L L L L
Θ + + + + Θ + + +
Θ Θ
)
2
00 10
3 3 3 3
IV IV
x y z
x y z
S S
L L L
L L L
Θ −
Θ
, ( ) (
00 00
2 02 11 10 01
2
II VV
VV IV V IV VV x y
x y z
S S
b S S C S S L L
L L L
= + + − − + Θ ×
Θ
) ( ) (
2 01 00 00
10 01 01 10 01
2 2 2
IV VV IV
z x y z II IV IV II IV x y
x y z x y z
S S S
L L L L S S S S S L L
L L L L L L
+ Θ + + + + + + Θ ×
Θ Θ
)( ) ( )
2 2
00 00 10
01 10 02 11 2 2 2 2
2
2 IV I IV IV
z VV x y z IV V VV IV
x y z x y z x y z
S C S S
L S L L L S C S S
L L L L L L L L L
+ Θ + − − − + − ×
Θ Θ Θ
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 32
00 01
IV IV
S S , ( ) (
11 02 01
1 00 01 10
2
IV VV V IV
II VV IV x y z x y
x y z x y z
S S C S
b S S S L L L L L
L L L L L L
+ +
+ + Θ + Θ ×
Θ Θ
)( ) (
2
10 01 00
10 01 01 10 01 10
2 2 3 2
IV IV IV
z II IV VV IV y z IV II
x y z x y z
S S S
L S S S S LL L S S
L L L L L L
+ + + + Θ − − + +
Θ Θ
)( )
02 11 00 01
2
x y z V VV IV I IV IV
L L L C S S C S S
Θ − − + , ( )2
00 01
0 00 02
II IV
IV VV
x y z x y z
S S
b S S
L L L L L L
= + − ×
Θ
( )( ) 2 02 11
10 01 02 11 01 01
1
2 2 V VV IV
x y z II IV V VV IV I IV IV
x y z
C S S
L L L S S C S S C S S
L L L
− −
Θ + + − − + − ×
Θ Θ
( )( )
( )
2
10 01 02 11 01
02 11
01 10 01
1
2 2
2 ,
x y z II IV V VV IV I IV
V VV IV
IV x y z II IV
x y z
L L L S S C S S C S
C S S
S L L L S S
L L L
Θ + + − − + −
Θ
− −
× Θ + +
Θ
2
1 1 1 00 20 20 11
00
I V I II II II IV
I IV
x y z x y z x y z x y z
S S S S
C S
L L L L L L L L L L L L
  
= + − −
Θ Θ Θ Θ ,
2
1 1 00 1 00 02 11
V I V IV V VV VV IV
C S S S S
  
= + − − ,
2
2 3 2
2
4 4
8 4
a a
E y
a a
= + Θ − Θ , 2
4
6
a
F
a
Θ
= +
3 3
2 3 2 3
r s r r s r
+ − − + + ,
3 3 3 2
1 3
2 2
0 0
2 3 2
4 4 4 4
4
24 54 8
x y z
b b
b b
r b L L L b
b b b b
 
Θ Θ Θ
= − Θ − − ×
 
 
2 4 2
2 2 2 2
3 1
2 2
4 4
4
8
x y z
b b
b L L L
b b
  Θ
Θ − Θ −
 
 
, 0 4 1 3
2 2
2
4 4
4
12 18
x y z
b b L L L b b b
s
b b
− Θ Θ
=
Θ − .
Now, we calculate solutions of Eqs. (8) by the same method of averaging function corrections. Equations
for the first-order approximations of the considered components could be written as
( )
( )
( ) ( )
( )
2
1
2
, , , , , ,
x
u x y z t T x y z t
z K z z
t x
 
∂ ∂
= −
∂ ∂
, ( )
( )
2
1
2
, , ,
y
u x y z t
z
t

∂
=
∂
( ) ( )
( )
, , ,
T x y z t
K z z
y

∂
−
∂
, ( )
( )
( ) ( )
( )
2
1
2
, , , , , ,
z
u x y z t T x y z t
z K z z
t z
 
∂ ∂
= −
∂ ∂
.
The solution of the above equations could be obtained by integration both their sides. Result of this
integration takes the form
( ) ( )
( )
( )
( )
1 0
0 0
, , , , , ,
t
x x
z
u x y z t u K z T x y z d d
z x


  

∂
=
+ −
∂ ∫∫
( )
( )
( )
( )
0 0
, , ,
z
K z T x y z d d
z x


  

∞
∂
∂ ∫∫ ,
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 33
( ) ( )
( )
( )
( )
1 0
0 0
, , , , , ,
t
y y
z
u x y z t u K z T x y z d d
z y


  

∂
=
+ −
∂ ∫∫
( )
( )
( )
( )
0 0
, , ,
z
K z T x y z d d
z y


  

∞
∂
∂ ∫∫ ,
( ) ( )
( )
( )
( )
1 0
0 0
, , , , , ,
t
z z
z
u x y z t u K z T x y z d d
z z


  

∂
=
+ −
∂ ∫∫
( )
( )
( )
( )
0 0
, , ,
z
K z T x y z d d
z z


  

∞
∂
∂ ∫∫ .
Equations for the second-order approximations of displacement vector components could be obtained
framework standard procedure of the method of averaging of function corrections[28]
and could be
written as
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
2
2 2
1
2 1
2 2
, , ,
, , , 5 , , ,
6 1 3 1
y
x x
u x y z t
u x y z t E z u x y z t E z
z K z K z
t x x y
z z

 
    ∂
∂ ∂
   
= + + − +
   
∂ ∂ ∂ ∂
   
+ +
   
   
   
( ) ( )
( )
( ) ( ) ( )
2 2 2
1 1 1
2 2
, , , , , , , , , , , ,
2 1
y y z
u x y z t u x y z t
E z u x y z t T x y z t
x y y z x
z

 
∂ ∂ ∂ ∂
+ + − ×
 
∂ ∂ ∂ ∂ ∂
 
+  
   
( ) ( ) ( )
( )
( )
( )
2
1 , , ,
3 1
z
E z u x y z t
K z z K z
x z
z


  ∂
 
+ +
 
∂ ∂
 
+
 
 
 
( )
( ) ( )
( )
( ) ( ) ( )
2 2 2
2 1 1
2 2
, , , , , , , , , , , ,
2 1
y y x
u x y z t u x y z t
E z u x y z t T x y z t
z
t x x y y
z


 
∂ ∂ ∂ ∂
= + − ×
 
∂ ∂ ∂ ∂ ∂
 
+  
   
( ) ( )
( )
( )
( ) ( ) ( )
2
1 1
1
2
, , , , , ,
, , ,
2 1
y y
z
u x y z t u x y z t
E z u x y z t
K z z
z z y y
z


 
 
∂ ∂
∂
∂  
+ + + ×
 
 
∂ ∂ ∂ ∂
 
+
 
 
 
 
( )
( )
( ) ( )
( )
( )
( )
( )
( )
2 2
1 1
, , , , , ,
5
12 1 6 1
y y
u x y z t u x y z t
E z E z
K z K z K z
y z x y
z z
 
    ∂ ∂
   
+ + − +
   
∂ ∂ ∂ ∂
   
+ +
   
   
   
( )
( ) ( )
( )
( ) ( ) ( )
2 2 2 2
2 1 1 1
2 2 2
, , , , , , , , , , , ,
2 1
z z z x
u x y z t E z u x y z t u x y z t u x y z t
z
t x y x z
z



∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
 
+ 
 
( )
( )
( ) ( ) ( )
2
1 1
1 1
, , , , , ,
, , , , , ,
y y
x x
u x y z t u x y z t
u x y z t u x y z t
K z
y z z x y z
 
  
∂ ∂
∂ ∂
∂  
+ + + +
  
 
∂ ∂ ∂ ∂ ∂ ∂
  
 
  
( )
( )
( ) ( ) ( ) ( )
1
1 1 1
, , ,
, , , , , , , , ,
6
6 1
y
z x z
u x y z t
E z u x y z t u x y z t u x y z t
z z x y z
z

 
∂
∂ ∂ ∂
∂
− − − −
 
∂ ∂ ∂ ∂ ∂
 
+  
 
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 34
( ) ( ) ( ) ( )
( )
( ) ( )
( )
1
1 1
, , ,
, , , , , , , , ,
1
y
x z
u x y z t
u x y z t u x y z t E z T x y z t
K z z
x y z z z




∂
∂ ∂ ∂

− − −


∂ ∂ ∂ + ∂


.
Integration of the left and right sides of the above relations on time t leads to the following result
( )
( )
( )
( )
( )
( )
( )
( )
2
2 1
2
0 0
5
1 1
, , , , , ,
6 1
t
x x
E z
u x y z t K z u x y z d d K z
z x z
z

  
 

  
∂
 
= + + −
  
∂
 
+
  
 
 
∫∫
( )
( )
( )
( )
( )
( )
2 2
1 1
2
0 0 0 0
, , , , , ,
2
3 1
t t
y y
E z E z
u x y z d d u x y z d d
x y z y
z
 
     


 
∂ ∂

+ +
 
∂ ∂ ∂
 
+  
 
∫∫ ∫∫
( )
( ) ( )
( ) ( )
2 2
1 1
2
0 0 0 0
1 1
, , , , , ,
1
t t
z z
u x y z d d u x y z d d K z
z z z x z
 
     
 
 
∂ ∂
+ +


∂ + ∂ ∂ 

∫∫ ∫∫
( )
( )
( )
( )
( )
( ) ( )
2
1
2
0 0 0 0
, , , , , ,
3 1
t
x
E z z
K z T x y z d d u x y z d d
z x x
z
 

     


∞
 ∂ ∂

− − ×

∂ ∂
 
+ 
 
∫∫ ∫∫
( )
( )
( )
( )
( )
( )
( )
( )
2
1
0 0
5
1
, , ,
6 1 3 1
y
E z E z
K z K z u x y z d d
z x y
z z

  
  
∞
    ∂
   
+ − − ×
   
∂ ∂
   
+ +
   
   
   
∫∫
( )
( )
( ) ( )
( ) ( )
2 2
1 1
2 2
0 0 0 0
1
, , , , , ,
2 1
y z
E z
u x y z d d u x y z d d
z y z
z z
 
     
  
∞ ∞
 
∂ ∂
− + −
 
∂ ∂
 
+  
 
∫∫ ∫∫
( )
( )
( )
( )
( ) ( )
( )
( )
2
1 0
0 0
1
, , ,
3 1
z x
E z z
K z u x y z d d u K z
z x z z
z


  
 

∞
  ∂
 
+ + + ×
 
∂ ∂
 
+
 
 
 
∫∫
( )
0 0
, , ,
T x y z d d
x

  
∞
∂
∂ ∫∫
( )
( )
( ) ( )
( ) ( )
2 2
2 1 1
2
0 0 0 0
, , , , , , , , ,
2 1
t t
y x x
E z
u x y z t u x y z d d u x y z d d
x x y
z z
 
     
 
 
∂ ∂
= + +
 
∂ ∂ ∂
 
+  
 
∫∫ ∫∫
( )
( )
( )
( )
( )
( )
( )
( )
2
1
0 0
5
1 1
, , ,
1 12 1
t
y
K z E z
u x y z d d K z
z z x y z z

  
   
 
∂  
+ + + ×
 
+ ∂ ∂  
+
 
 
 
∫∫
( )
( )
( )
( )
( )
2
1 1
2
0 0 0 0
1
, , , , , ,
2 1
t t
x y
E z
u x y z d d u x y z d d
y z z z z
 
     
 
 
∂ ∂ ∂

+ +
 
∂ ∂ + ∂
 

∫∫ ∫∫
( ) ( )
( )
( )
( )
( )
( )
1
0 0 0 0
, , , , , ,
6 1
t t
z
z E z
u x y z d d K z T x y z d d
y z z
 

     
 



∂  
− − −
 

∂  
+
 
  
 
∫∫ ∫∫
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 35
}
( )
( )
( )
( )
( )
2 2
1 1
2
0 0 0 0
1
( ) , , , , , ,
2
t
y x
E z
K z u x y z d d u x y z d d
z y z z x
 
     
 
∞

∂ ∂
− − +

∂ ∂ ∂

∫∫ ∫∫
( )
( )
( )
( )
( )
( )
( )
( )
2
1
0 0 0 0
1
, , , , , ,
1
x
z K z
u x y z d d K z T x y z d d
x y z z z
 

     
  
∞ ∞

∂
− − ×

∂ ∂ +

∫∫ ∫∫
( )
( )
( )
( )
( )
2 2
1 1
2
0 0 0 0
5
1
, , , , , ,
12 1
y x
E z
u x y z d d u x y z d d
x y z y z
 
     
 
∞ ∞ 
∂ ∂ 
− +

∂ ∂ ∂  
+
  

∫∫ ∫∫
( )}
( )
( )
( ) ( )
1 1
0 0 0 0
, , , , , ,
1
y z
E z
K z u x y z d d u x y z d d
z z z y
 
     

∞ ∞
 
 
∂ ∂ ∂
 
− + ×
 
 
∂ + ∂ ∂
 
 
 
∫∫ ∫∫
( ) ( )
( )
( )
( )
( )
2
1 0
0 0
1 1
, , ,
2 6 1
y y
E z
K z u x y z d d u
z z y z
z

  
  
∞
  ∂
 
− − +
 
∂ ∂
 
+
 
 
 
∫∫
( )
( )
( )
( ) ( )
2 2
1 1
2 2
0 0 0 0
, , , , , , , , ,
2 1
z z z
E z
u x y z t u x y z d d u x y z d d
x y
z
 
     

∞ ∞
 ∂ ∂
= + +

∂ ∂
 
+ 
 
∫∫ ∫∫
( ) ( )
( ) ( )
2 2
1 1
0 0 0 0
1 1
, , , , , ,
x y
u x y z d d u x y z d d
x z y z z z
 
     
 
∞ ∞

∂ ∂
+ + ×

∂ ∂ ∂ ∂ 
∫∫ ∫∫
( ) ( ) ( )
1 1
0 0 0 0
, , , , , ,
x x
K z u x y z d d u x y z d d
z x y
 
     
∞ ∞
 
∂ ∂ ∂

+ +
 
∂ ∂ ∂
 

∫∫ ∫∫
( )
( )
( )
( )
( )
1 1
0 0 0 0
1
, , , 6 , , ,
6 1
x z
E z
u x y z d d u x y z d d
z z z z z
 
     
 
∞ ∞
 
 
∂ ∂ ∂
 
+ −
 
 
∂ ∂ + ∂
 
 
 
∫∫ ∫∫
( ) ( ) ( )
1 1 1
0 0 0 0 0 0
, , , , , , , , ,
x y z
u x y z d d u x y z d d u x y z d d
x y z
  
        
∞ ∞ ∞


∂ ∂ ∂ 
− − −


∂ ∂ ∂ 

∫∫ ∫∫ ∫∫
( )
( )
( )
( ) 0
0 0
, , , z
z
K z T x y z d d u
z z


  

∞
∂
+
∂ ∫∫ .
In this paper, we calculate distributions of concentration of dopant and radiation defects in space and
time using the second-order approximation framework method of averaging of function corrections.
We also calculate distributions of components of displacement vector in space and time framework the
same approximation. Usually, the second-order approximation is enough good approximation to obtain
some quantitative results and to make the qualitative analysis. All obtained results have been checked by
comparison with the results of numerical simulations.
DISCUSSION
Now, we will be analyzing the redistributions of radiation defects and dopant during annealing. In
this situation, we take into account the influence of modification of porosity and mismatch-induced
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 36
stress on the redistribution of radiation defects and dopant. We present several spatial distributions
of concentrations of dopant in heterostructures, as shown in Figures 2 and 3. Figure 2 corresponds to
the diffusion type of doping. Figure 3 corresponds to ion type of doping. All distributions of dopant
correspond to the larger value of dopant diffusion coefficient in comparison with the nearest areas. One
can find that inhomogeneity of heterostructure leads to increasing homogeneity of dopant in the doped
area of the epitaxial layer. However, it should be noted that optimization of annealing of dopant and/or
radiation defects required to obtain a compromise between increasing of homogeneity of distribution of
concentration of dopant in the required area and increasing.
Figure 2: Spatial distributions of infused dopant concentration in the considered heterostructure in the perpendicular direction
to interface between epitaxial layer and substrate. The larger number of curves corresponds to the larger difference between
values of dopant diffusion coefficient in the heterostructure. Value of dopant diffusion coefficient in the substrate is smaller,
than the value of dopant diffusion coefficient in the epitaxial layer
Figure 3: Spatial distributions of implanted dopant concentration in the considered heterostructure in the perpendicular
direction to interface between epitaxial layer and substrate. Curves 1 and 3 were calculated for time of annealing
Q = 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 2 and 4 were calculated for time of annealing Q = 0.0057(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 1 and 2
were calculated for homogenous samples. Curves 3 and 4 were calculated for heterostructure for the case, when the diffusion
coefficient of dopant in the substrate is smaller than the diffusion coefficient of dopant in the epitaxial layer
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 37
( ) ( )
0 0 0
1
, , , , ,
y
x z
L
L L
x y z
U C x y z x y z d z d y d x
L L L

 
Θ −
 
∫ ∫ ∫
(15)
to determine the compromise value of annealing time. Here, y(x,y,z) is the considered step-wise
approximation function [Figure 5]. Figures 6 (for diffusion type of doping) and 7 (for ion type of doping)
show optimal annealing times as functions of several parameters. It is known that anneal radiation defects
after ion implantation should be done. Spatial distributions of dopant will spread during this annealing.
Figure 4: Spatial distributions of concentration of the infused dopant in the considered heterostructure. Curve 1 shows
idealized dopant distribution (step-wise function). Curves 2–4 show real dopant distributions at the different continuance of
annealing. The larger value of the number of curves mean larger value of continuance of annealing
Figure 5: Spatial distributions of concentration of the implanted dopant in the considered heterostructure. Curve 1 shows
idealized dopant distribution (step-wise function). Curves 2–4 show real dopant distributions at the different continuance
of annealing. Larger value of the number of the curve means larger value of continuance of annealing sharpness of this
distribution after this area. To obtain this compromise, we used recently introduced criterion.[29-37]
To use this criterion, one
shall approximate real spatial distribution of dopant concentration by required step-wise function (Figure 4 for diffusion type
of doping and 5 for ion type of doping). After that, one shall minimize the mean-squared error
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 38
The dopant should achieve the required interface between layers of heterostructure during the annealing.
If dopant cannot achieve during the radiation defects annealing, it is attracted an interest additional
annealing of the dopant. In this situation, one can find the smaller value of implanted dopant annealing
time in comparison with annealing time of infused dopant.
Now, we consider the influence of variation of miss-match induced stress on the dopant concentration
distribution in the considered heterostructure.At e0
0, a compression of dopant concentration distribution
could be found near the interface between layers of the heterostructure. On the other hand (at e0
0), the
spreading of the distribution could be found. The variation of distribution could be partially decreased
by laser annealing[37]
due to the acceleration of dopant diffusion during this procedure. Mismatch-
Figure 6: Dimensionless optimal annealing time of infused dopant as functions of several parameters. Curve 1 describes
dependence of the annealing time on a/L at x = g = 0 in homogenous material. Curve 2 describes dependence of the annealing
time on e at a/L=1/2 and x = g = 0. Curve 3 describes dependence of the annealing time on x at a/L =1/2 and e = g = 0. Curve
4 describes dependence of the annealing time on g at a/L=1/2 and e = x = 0
Figure 7: Dimensionless optimal annealing time of infused dopant as functions of several parameters. Curve 1 describes
dependence of the annealing time on a/L at x = g = 0 in homogenous material. Curve 2 describes dependence of the annealing
time on e at a/L=1/2 and x = g = 0. Curve 3 describes dependence of the annealing time on x at a/L =1/2 and e = g = 0. Curve
4 describes dependence of the annealing time on g at a/L=1/2 and e = x = 0
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 39
induced stress in heterostructure leads to changing of value of optimal annealing time. At the same time,
modification of porosity leads to decrease the value of mechanical stress. On the one hand, mismatch-
induced stress could be used to increase the density of elements of integrated circuits. At the same time,
the stress could leads to generation dislocations of the discrepancy. Figures 8 and 9 show vacancies
concentration distributions in porous materials and component of the displacement vector, which are
perpendicular to the interface between layers of the heterostructure.
CONCLUSION
We analyzed the redistribution of implanted and infused dopants in a heterostructure with porous layer
to manufacturing field-effect heterotransistors framework in a sense-amplifier based flip-flop. We also
Figure 8: Dependences of the normalized component of displacement vector on coordinate, which is perpendicular to the
interface between layers of the heterostructure. Curve 1 corresponds to nonporous material. Curve 2 corresponds to porous
material
Figure 9: Dependences of normalized vacancy concentrations on coordinate, which is perpendicular to the interface between
layers of the heterostructure. Curve 1 corresponds to nonporous material. Curve 2 corresponds to porous material
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 40
analyzed the influence of relaxation mismatch-induced stress on the above redistribution. We obtain
several recommendations to optimize annealing for decreasing dimensions of transistors and to increase
their density framework integrated circuits. We also formulate conditions for decreasing mismatch-
induced stress. An analytical approach to solve considered boundary problems with account nonlinearity
of processes and changing of parameters in space and time has been introduced.
REFERENCES
1. Lachin VI, Savelov NS. Electronics. Rostov-on-Don: Phoenix; 2001.
2. Polishscuk A. Anadigm programmable analog ICs: The entire spectrum of analog electronics on a single chip. Mod
Electron 2004;12:8-11.
3. Volovich G. Modern chips UM3Ch class D manufactured by firm MPS. Mod Electron 2006;2:10-7.
4. Kerentsev A, Lanin V. Power Electronics; 2008. p. 34.
5. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Sachenko AV. Au-TiBx-n-6H-SiC Schottky barrier
diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors 2009;43:897-903.
6. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor.
Semiconductors 2009;43:971-4.
7. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers upon
annealing of dysprosium and holmium-implanted silicon. Semiconductors 1998;32:1029-32.
8. Ermolovich IB, Milenin VV, Red’ko RA, Red’ko SM. Specific features of recombination processes in CdTe films
produced in different temperature conditions of growth and subsequent annealing. Semiconductors 2009;43:1016-20.
9. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Band alignment of SnS/Zn(O,S) heterojunctions
in SnS thin film solar cells. Appl Phys Lett 2013;102:53901-5.
10. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF., Rowe JE., Everitt HO, et al. Shallow acceptor complexes in
p-type ZnO. Appl Phys Lett 2013;102:152114-8.
11. Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. Analysis of technological
processses of manufacturing of high-power bipolar transistors. Semiconductors 2001;35:1013-7.
12. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical
approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci
2013;1:58-82.
13. Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial growth of zinc oxide by the method of atomic layer deposition on
SiC/Si substrates. Phys Solid State 2016;58:1448-52.
14. Trukhanov EM, Kolesnikov AV, Loshkarev ID. Long-range stresses generated by misfit dislocations in epitaxial films.
Russ Microelectron 2015;44:552-8.
15. Pankratov EL, Bulaeva EA. On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model
physical processes in reactors for epitaxy from gas phase during growth films. Rev Theor Sci 2015;3:365-98.
16. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the
maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4.
17. HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901-5.
18. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in
semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836-43.
19. Chen B, Shen L, Liu S, Zheng Y, Gao J. A broadband, high isolation millimeter-wave CMOS power amplifier using a
transformer and transmission line matching topology. Analog Integr Circuits Signal Process 2014;81:537-47.
20. ZhangYW, BowerAF. Numerical simulation of islands formation in a coherent strained epitaxial thin film system..J Mech
Phys Solids 1999;47:2273-97.
21. Landau LD, Lefshits EM. Theory of elasticity. In: Theoretical Physics. Ch. 7. Moscow: Fizmatlit; 2001.
22. Kitayama M, Narushima T, Carter WC, Cannon RM, Glaeser AM. The Wulff shape of alumina: I, modeling the kinetics
of morphological evolution. J Am Ceram Soc 2000;83:2561.
23. Cheremskoy PG, Slesov VV, Betekhtin VI. Pore in Solid Bodies. Moscow: Energoatomizdat; 1990.
24. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991.
25. Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289-388.
26. Vinetskiy VL, Kholodar’ GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979.
27. Mynbaeva MG, Mokhov EN, Lavrent’ev AA, Mynbaev KD. High-temperature diffusion doping of porous silicon
carbide. Tech Phys Lett 2008;34:13.
28. Sokolov YD. About the definition of dynamic forces in the mine lifting. Appl Mech 1955;1:23-35.
29. PankratovEL.Dopantdiffusiondynamicsandoptimaldiffusiontimeasinfluencedbydiffusion-coefficientnonuniformity.
Russ Microelectron 2007;36:33-9.
30. Pankratov EL. Redistribution of dopant during annealing of radia-tive defects in a multilayer structure by laser scans for
production an implanted-junction rectifiers. Int J Nanosci 2008;7:187-97.
Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop
AJMS/Jan-Mar-2020/Vol 4/Issue 1 41
31. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n junctions and bipolar transistors. Analytical
approaches to model technological approaches and ways of optimization of distribution of dopants. Rev Theor Sci
2013;1:58-82.
32. Pankratov EL, Bulaeva EA. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using
overlayers. Int J Micro-Nano Scale Transp 2012;3:119-30.
33. Pankratov EL, Bulaeva EA. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. Int J
Mod Phys B 2015;29:1550023.
34. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an
operational amplifier to increase their integration rate. influence mismatch-induced stress. J Comput Theor Nanosci
2017;14:4885-99.
35. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater
Sci Semicond Process 2015;34:260-8.
36. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of
optimization. Int J Micro-Nano Scale Transp 2014;4:17-31.
37. Pankratov EL. Increasing of the sharpness of p-n-junctions by laser pulses. Nano 2011;6:31-40.

More Related Content

Similar to 3_AJMS_222_19.pdf

On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitBRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...BRNSS Publication Hub
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...BRNSS Publication Hub
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...BRNSSPublicationHubI
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...antjjournal
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of driftijcsa
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 

Similar to 3_AJMS_222_19.pdf (20)

On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...BRNSS Publication Hub
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHSBRNSS Publication Hub
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRABRNSS Publication Hub
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERSBRNSS Publication Hub
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationBRNSS Publication Hub
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...BRNSS Publication Hub
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseBRNSS Publication Hub
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...BRNSS Publication Hub
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...BRNSS Publication Hub
 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
 

Recently uploaded

APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 

Recently uploaded (20)

APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 

3_AJMS_222_19.pdf

  • 1. www.ajms.com 15 ISSN 2581-3463 RESEARCH ARTICLE On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop E. L. Pankratov1,2 1 Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 2 Department of Higher Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia Received: 17-11-2019; Revised: 07-12-2019; Accepted: 10-01-2020 ABSTRACT The paper describes an approach for increasing of density of field-effect heterotransistors in a sense- amplifier based flip-flop. To illustrate the approach, we consider manufacturing of an amplifier of power in a heterostructure with specific configuration. One shall dope some specific areas of the heterostructure by diffusion or ion implantation. After that, it should be done optimized annealing of radiation defects and/or dopant. We introduce an approach for decreasing of stress between layers of heterostructure. Furthermore, it has been considered an analytical approach for prognosis of heat and mass transport in heterostructures, which can be take into account mismatch-induced stress. Key words: Broadband power amplifier, increasing of element integration rate, optimization of manufacturing INTRODUCTION Now some electrical problems (to increase performance of solid-state electronic devices, to increase their reliability, and to increase density of integrated circuits elements: Transistors and diodes) are solving.[1-6] Increasing of performance could be obtained using materials, which have mobility of charge carriers with higher values.[7-10] Increasing of density of elements of integrated circuits could be obtained by optimized manufacturing of their elements in heterostructures with thin epitaxial layers.[3-5,11-15] In this situation, dimensions of elements of integrated circuits will be decreased. Another approach to decrease these dimensions is using microwave annealing and laser annealing of radiation defects and/ or dopants.[16-18] In this paper, our aim is to formulate an approach to decrease dimensions of field-effect heterotransistors framework a broadband amplifier of power [Figure 1] framework a heterostructure with specific configuration (epitaxial layer/porous buffer layer/substrate and sections in the epitaxial layer, and manufactured using another materials). Method of solution Now let us analyze distribution of concentration of dopant in space and time in heterostructure from Figure 1. To determine the concentration, we solve the following second Fick’s law.[1,20-23] ( ) ( ) ( ) ( ) , , , , , , , , , , , , C x y z t C x y z t C x y z t C x y z t D D D t x x y y z z       ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂       Address for correspondence: E. L. Pankratov, E-mail: elp2004@mail.ru
  • 2. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 16 ( ) ( ) 1 0 , , , , , , z L S S D x y z t C x y W t dW x kT    ∂ Ω ∇ +   ∂     ∫ ( ) ( ) 1 0 , , , , , , z L S S D x y z t C x y W t dW y kT    ∂ Ω ∇ +   ∂     ∫ (1) ( ) ( ) ( ) 2 2 2 , , , , , , , , , C S C S C S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z                      + +             . Conditions (initial and boundary) for this equation are following (these boundary conditions correspond to absents of dopant flow through external boundary of heterostructure; and the initial condition corresponds to distribution of dopant before starting of annealing). Figure 1: (a) Scheme of the amplifier, which considered in this paper.[19] (b) Considered heterostructure, which includes into itself epitaxial layers, buffer layer, and substrate b a
  • 3. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 17 ( ) 0 , , , 0 x C x y z t x = ∂ = ∂ , ( ) , , , 0 x x L C x y z t x = ∂ = ∂ , ( ) 0 , , , 0 y C x y z t y = ∂ = ∂ , C(x,y,z,0)=fC (x,y,z), ( ) , , , 0 y x L C x y z t y = ∂ = ∂ , ( ) 0 , , , 0 z C x y z t z = ∂ = ∂ , ( ) , , , 0 z x L C x y z t z = ∂ = ∂ (1a) Function C(x,y,z,t) describes distribution of concentration of dopant in space and time; parameter W mean volume of atom of dopant; symbol Ñs mean surficial gradient operator; function ( ) 0 , , , z L C x y z t d z ∫ describes dopant surficial concentration on interface between layers of heterostructure (we consider: Z-axis is perpendicular to interface between heterostructure’s layers); functions m1 (x,y,z,t) and m2 (x,y,z,t) describe distributions of chemical potentials in space and their dependences on temperature: m1 (x,y,z,t) accounting mismatch-induced stress in layers of heterostructure, m2 (x,y,z,t) accounting porosity of material; functions D(x,y,z,T) and DS (x,y,z,T) describe distributions of coefficients of volumetric and surficial diffusions in space and their dependences on temperature. We used recently described approximations of dopant diffusions coefficients.[24-26] ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 2 * * , , , , , , , , , , , , 1 1 , , , C L C x y z t V x y z t V x y z t D D x y z T P x y z T V V            = + + +         , ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 2 * * , , , , , , , , , , , , 1 1 , , , S S L S C x y z t V x y z t V x y z t D D x y z T P x y z T V V            = + + +         (2) Functions DL (x,y,z,T) and DLS (x,y,z,T) describe dependences of dopant diffusion coefficients on coordinate and temperature; parameter T describes temperature of annealing; function P(x,y,z,T) describes dependence of solubility of dopant on coordinate and temperature; value of parameter g will be changed with changing of properties of materials and will be integer usually in the following interval gÎ;[1,3,24] function V(x,y,z,t) describes distribution of radiation vacancies concentration in space and time with equilibrium distribution V*. Distributions of point radiation defects concentration in space and time have been determined solutions of the following system of equations.[20-23,25,26] ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , I I I x y z t I x y z t I x y z t D x y z T D x y z T t x x y y               = + +         ( ) ( ) ( ) ( ) ( ) 2 , , , , , , , , , , , , , , , , , I I I I V I x y z t D x y z T k x y z T I x y z t k x y z T z z       − − ×     ( ) ( ) ( ) ( ) 0 , , , , , , , , , , , , z L IS S D I x y z t V x y z t x y z t I x y W t dW x kT    ∂ + Ω ∇ +   ∂     ∫ ( ) ( ) ( ) 2 0 , , , , , , , , , z L I S IS S D x y z t D x y z t I x y W t dW y kT x V kT x       ∂ ∂ ∂ Ω ∇ + +     ∂ ∂ ∂       ∫
  • 4. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 18 ( ) ( ) 2 2 , , , , , , I S I S D D x y z t x y z t y VkT y z VkT z       ∂ ∂ ∂ ∂ +     ∂ ∂ ∂ ∂     (3) ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , V V V x y z t V x y z t V x y z t D x y z T D x y z T t x x y y               = + +         ( ) ( ) ( ) ( ) ( ) 2 , , , , , , , , , , , , , , , , , V V V I V V x y z t D x y z T k x y z T V x y z t k x y z T z z       − − ×     ( ) ( ) ( ) ( ) 0 , , , , , , , , , , , , z L VS S D I x y z t V x y z t x y z t V x y W t dW x kT    ∂ + Ω ∇ +   ∂     ∫ ( ) ( ) ( ) 2 0 , , , , , , , , , z L V S VS S D x y z t D x y z t V x y W t dW y kT x VkT x       ∂ ∂ ∂ Ω ∇ + +     ∂ ∂ ∂       ∫ ( ) ( ) 2 2 , , , , , , V S V S D D x y z t x y z t y VkT y z VkT z       ∂ ∂ ∂ ∂ +     ∂ ∂ ∂ ∂     Initial and boundary conditions for Eq. (3) could be written as ( ) 0 , , , 0 x I x y z t x   = = , ( ) , , , 0 x x L I x y z t x   = = , ( ) 0 , , , 0 y I x y z t y   = = , ( ) , , , 0 y y L I x y z t y   = = , ( ) 0 , , , 0 z I x y z t z   = = , ( ) , , , 0 z z L I x y z t z   = = , ( ) 0 , , , 0 x V x y z t x   = = , ( ) , , , 0 x x L V x y z t x   = = , ( ) 0 , , , 0 y V x y z t y   = = , (4) ( ) , , , 0 y y L V x y z t y   = = , ( ) 0 , , , 0 z V x y z t z   = = , ( ) , , , 0 z z L V x y z t z   = = , I(x,y,z,0)= fI (x,y,z), V(x,y,z,0)=fV (x,y,z), ( ) 1 1 1 2 2 2 1 1 1 2 , , , 1 n n n V x V t y V t z V t t V kT x y z  ∞   + + + = +   + +    Function I(x,y,z,t) describes distribution of concentration of radiation interstitials (equilibrium distribution I*) in space and time; functions DI (x,y,z,T), DV (x,y,z,T), DIS (x,y,z,T), and DVS (x,y,z,T) describe dependences of volumetric and surficial diffusions coefficients of vacancies and interstitials on coordinates and temperature; terms I2 (x,y,z,t) and V2 (x,y,z,t) describe generation di-interstitials and divacancies (e.g., Vinetskiy and Kholodar’[26] and appropriate references in this book); functions kI,V (x,y,z,T), kI,I (x,y,z,T), and kV,V (x,y,z,T) describe analogous dependences of parameters of recombination of point radiation defects and generation of their simplest complexes; parameter k corresponds to Boltzmann constant; parameter w is equal to a3 , where a describes interatomic distance; parameter 
  • 5. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 19 describes specific surface energy. To take into account the porosity of buffer layers we assume, that porous are approximately cylindrical with average values 2 2 1 1 r x y = + and z1 before annealing.[23] With time small pores will decompose on vacancies. These vacancies will be absorbed by larger pores.[27] With the time volume of large pores decreasing due to absorbing these vacancies and became more spherical.[27] Distribution of concentration of vacancies in heterostructure, existing due to porosity, could be determined by summing on all pores, i.e., ( ) ( ) 0 0 0 , , , , , , l m n p i j k V x y z t V x i y j z k t    = = = = + + + ∑∑∑ , 2 2 2 R x y z = + + Parameters a, b, and c describe average distances between centers of pores in directions x, y, and z, respectively, parameters l, m, and n are the quantities of pores in appropriate directions. Distributions of di-interstitials FI (x,y,z,t) and divacancies FV (x,y,z,t) in space and time have been calculated as solutions of the system of equations, which were presented below.[25,26] ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , I I I I I x y z t x y z t x y z t D x y z T D x y z T t x x y y           Φ Φ     Φ Φ Φ = + +         ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I I L S I S I D x y z t D x y z T x y z t x y W t dW z z x kT      Φ Φ     Φ ∂ + Ω ∇ Φ +     ∂       ∫ ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z I L S S I I I D x y z t x y W t dW k x y z T I x y z t y kT  Φ   ∂ Ω ∇ Φ + +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V k T z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) , , , , , , I k x y z T I x y z t (5) ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , V V V V V x y z t x y z t x y z t D x y z T D x y z T t x x y y           Φ Φ     Φ Φ Φ = + +         ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z V V L S V S V D x y z t D x y z T x y z t x y W t dW z z x kT      Φ Φ     Φ ∂ + Ω ∇ Φ +     ∂       ∫ ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z V L S S V V V D x y z t x y W t dW k x y z T V x y z t y kT  Φ   ∂ Ω ∇ Φ + +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) , , , , , , V k x y z T V x y z t . Initial and boundary conditions for above equations takes the form ( ) 0 , , , 0 I x x y z t x   = Φ = , ( ) , , , 0 x x L I x y z t x   = = , ( ) 0 , , , 0 y I x y z t y   = = ,
  • 6. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 20 ( ) , , , 0 I y Ly x y z t y   = Φ = , ( ) 0 , , , 0 I z x y z t z   = Φ = , ( ) , , , 0 z I z L x y z t z   = Φ = , ( ) 0 , , , 0 V x x y z t x   = Φ = , ( ) , , , 0 x V x L x y z t x   = Φ = , ( ) 0 , , , 0 V y x y z t y   = Φ = , (6) ( ) , , , 0 y V y L x y z t y   = Φ = , ( ) 0 , , , 0 V z x y z t z   = Φ = , ( ) , , , 0 z V z L x y z t z   = Φ = , FI (x,y,z,0)=fFI (x,y,z), FV (x,y,z,0)=fFV (x,y,z). Functions DFIS (x,y,z,T), DFVS (x,y,z,T), DFI (x,y,z,T), and DFV (x,y,z,T) describe dependences of surficial and volumetric diffusions of complexes of radiation defects on coordinate ant temperature; functions kI (x,y,z,T) and kV (x,y,z,T) describe analogous dependences of parameters of decay of the above complexes. We determined chemical potential m1 by the following relation.[20] m1 =E(z)Wsij [uij (x,y,z,t)+uji (x,y,z,t)]/2.(7) Function E(z) describes spatial dependences of Young modulus; value sij describes tensor of stress; value 1 2 j i ij j i u u u x x   ∂ ∂ = +   ∂ ∂   describes tensor of deformation; values ui , and uj describe the displacement vector ( ) , , , u x y z t  components ux (x,y,z,t), uy (x,y,z,t), and uz (x,y,z,t); xi , xj are the coordinate x, y, z. The Eq. (3) could be transform to the following form ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , 1 , , , 2 j j i i j i j i u x y z t u x y z t u x y z t u x y z t x y z t x x x x       ∂ ∂ ∂ ∂  = + + −      ∂ ∂ ∂ ∂           ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 , , , 3 , , , 1 2 2 ij k ij ij k z u x y z t K z z T x y z t T E z z x            ∂ Ω    + − − −      − ∂     . Value s describes value of coefficient of Poisson; value e0 = (as -aEL )/aEL describes value of mismatch parameter, where parameters as , aEL describes value of lattice distances in the considered substrate and the epitaxial layer, respectively; parameter K describes value of the uniform compression modulus; parameter b describes value of thermal expansion coefficient; parameter Tr describes value of equilibrium temperature, which we consider as room temperature. We consider components of displacement vector as solutions of the following equations.[21] ( ) ( ) ( ) ( ) ( ) 2 2 , , , , , , , , , , , , xy x xx xz x y z t u x y z t x y z t x y z t z t x y z     ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) 2 2 , , , , , , , , , , , , y yx yy yz u x y z t x y z t x y z t x y z t z t x y z     ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) 2 2 , , , , , , , , , , , , zy z zx zz x y z t u x y z t x y z t x y z t z t x y z     ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ . Here ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , , , 3 2 1 j ij i k ij ij j i k u x y z t E z u x y z t u x y z t K z x x x z       ∂ ∂ ∂ = + − + ×   ∂ ∂ ∂   +      
  • 7. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 21 ( ) ( ) ( ) ( ) , , , , , , k r k u x y z t z K z T x y z t T x  ∂   − −   ∂ , where function r(z) describes the density of materials of heterostructure and parameter, dij describes symbol of Kronecker. Accounting of the relation for sij in the last system of the equation leads to the following relation ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 , , , 5 , , , 6 1 3 1 x x u x y z t E z u x y z t E z z K z K z t x z z        ∂ ∂     = + + − ×     ∂ ∂     + +             ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 , , , , , , , , , 2 1 3 1 y y z u x y z t u x y z t E z u x y z t E z K z x y y z z z       ∂ ∂ ∂ + + + + ×     ∂ ∂ ∂ ∂     + +             ( ) ( ) ( ) ( ) 2 , , , , , , z u x y z t T x y z t K z z x z x  ∂ ∂ − ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 , , , , , , , , , , , , 2 1 y y x u x y z t u x y z t E z u x y z t T x y z t z t x x y y z     ∂ ∂ ∂ ∂ = + − ×   ∂ ∂ ∂ ∂ ∂   +       ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 , , , , , , , , , 2 1 y y z u x y z t u x y z t E z u x y z t K z z z z y y z       ∂ ∂ ∂ ∂   + + + ×     ∂ ∂ ∂ ∂   +         (8) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 , , , , , , 5 12 1 6 1 y y u x y z t u x y z t E z E z K z K z K z y z x y z z       ∂ ∂     + + − +     ∂ ∂ ∂ ∂     + +             ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 , , , , , , , , , , , , 2 1 z z z x u x y z t E z u x y z t u x y z t u x y z t z t x y x z z    ∂ ∂ ∂ ∂ = + + +  ∂ ∂ ∂ ∂ ∂   +    ( ) ( ) ( ) ( ) ( ) 2 , , , , , , , , , , , , y y x x u x y z t u x y z t u x y z t u x y z t K z y z z x y z      ∂ ∂ ∂ ∂ ∂   + + + +      ∂ ∂ ∂ ∂ ∂ ∂         ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , 1 6 6 1 y z x z u x y z t E z u x y z t u x y z t u x y z t z z z x y z      ∂ ∂ ∂ ∂ ∂   − − − −     ∂ + ∂ ∂ ∂ ∂       ( ) ( ) ( ) , , , T x y z t K z z z  ∂ ∂ . Conditions for the above equations take the form ( ) 0, , , 0 u y z t x ∂ = ∂  ; ( ) , , , 0 x u L y z t x ∂ = ∂  ; ( ) ,0, , 0 u x z t y ∂ = ∂  ; ( ) , , , 0 y u x L z t y ∂ = ∂  ; ( ) , ,0, 0 u x y t z ∂ = ∂  ; ( ) , , , 0 z u x y L t z ∂ = ∂  ; ( ) 0 , , ,0 u x y z u =   ; ( ) 0 , , , u x y z u ∞ =   .
  • 8. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 22 We calculate dopant and radiation defects concentration distribution in space and time by the solution of the Eqs. (1), (3), and (5) using the standard method of averaging of function corrections.[28] First of all, we transform the Eqs. (1), (3), and (5) to the following form with accounting initial conditions of the above concentrations ( ) ( ) ( ) ( ) , , , , , , , , , , , , C x y z t C x y z t C x y z t C x y z t D D D t x x y y z z       ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂       (1a) ( ) ( ) 2 2 , , , , , , ( , , ) ( ) C S C S c D D x y z t x y z t f x y z t y V kT y z V kT z                + + + +         ( ) ( ) ( ) 2 0 , , , , , , , , , z L C S S S D x y z t D x y z t C x y W t dW z V kT z x kT           ∂ + Ω ∇ +     ∂       ∫ ( ) ( ) 0 , , , , , , z L S S D x y z t C x y z t dW y kT    ∂ Ω ∇   ∂     ∫ ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , I I I x y z t I x y z t I x y z t D x y z T D x y z T t x x y y               = + +         ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z L IS I S I x y z t D D x y z T x y z t I x y W t dW z z x kT          ∂ + Ω ∇ +     ∂       ∫ ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z L IS S I I D x y z t I x y W t dW k x y z T I x y z t y kT    ∂ Ω ∇ − −   ∂     ∫ ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , I V I k x y z T I x y z t V x y z t f x y z t  + (3a) ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , V V V x y z t V x y z t V x y z t D x y z T D x y z T t x x y y               = + +         ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z L VS V S V x y z t D D x y z T x y z t V x y W t dW z z x kT          ∂ + Ω ∇ +     ∂       ∫ ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z L IS S V V D x y z t I x y W t dW k x y z T I x y z t y kT    ∂ Ω ∇ − −   ∂     ∫ ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , I V V k x y z T I x y z t V x y z t f x y z t  + ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , I I I I I x y z t x y z t x y z t D x y z T D x y z T t x x y y           Φ Φ     Φ Φ Φ = + +        
  • 9. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 23 ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I I L S I S I D x y z t D x y z T x y z t x y W t dW z z x kT      Φ Φ     Φ ∂ + Ω ∇ Φ +     ∂       ∫ ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I L S S I I D x y z t x y W t dW k x y z T I x y z t y kT  Φ   ∂ Ω ∇ Φ + +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) ( ) ( ) 2 , , , , , , , , , I I I k x y z T I x y z t f x y z t  Φ + (5a) ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , V V V V V x y z t x y z t x y z t D x y z T D x y z T t x x y y           Φ Φ     Φ Φ Φ = + +         ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z V V L S V S V D x y z t D x y z T x y z t x y W t dW z z x kT      Φ Φ     Φ ∂ + Ω ∇ Φ +     ∂       ∫ ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I L S S I V D x y z t x y W t dW k x y z T V x y z t y kT  Φ   ∂ Ω ∇ Φ + +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) ( ) ( ) 2 , , , , , , , , , V V V k x y z T V x y z t f x y z t  Φ + . Now we consider not yet known average values a1r instead of radiation defects and dopant concentrations in right sides of Eqs. (1a), (3a), and (5a). The replacement gives a possibility to obtain equations for the first-order approximations of the required concentrations in the following form ( ) ( ) ( ) 1 1 1 1 1 , , , , , , , , , S S C S C S C x y z t D D z x y z t z x y z t t x kT y kT     ∂     ∂ ∂ = Ω ∇ + Ω ∇ +     ∂ ∂ ∂     ( ) ( ) ( ) ( ) 2 2 , , , , , , , , C S C S C D D x y z t x y z t f x y z t x V kT x y V kT y                + + +         ( ) 2 , , , C S D x y z t z V kT z            (1b) ( ) ( ) ( ) 1 1 1 , , , , , , , , , IS IS I S I S I x y z t D D z x y z t z x y z t t x kT y kT           ∂ ∂ = Ω ∇ + Ω ∇ +     ∂ ∂     ( ) ( ) ( ) 2 2 2 , , , , , , , , , I S I S I S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z          ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂      
  • 10. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 24 ( ) ( ) ( ) ( ) 2 1 , 1 1 , , , , , , , , , I I I I I V I V f x y z t k x y z T k x y z T     − − (3b) ( ) ( ) ( ) 1 1 1 1 1 , , , , , , , , , VS VS V S V S V x y z t D D z x y z t z x y z t t x kT y kT           ∂ ∂ = Ω ∇ + Ω ∇ +     ∂ ∂     ( ) ( ) ( ) 2 2 2 , , , , , , , , , V S V S V S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z          ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) ( ) ( ) 2 1 , 1 1 , , , , , , , , , V V V V I V I V f x y z t k x y z T k x y z T     − − ( ) ( ) ( ) 1 1 1 1 1 , , , , , , , , , I I I I S S I S S D D x y z t z x y z t z x y z t t x kT y kT       Φ Φ Φ Φ     Φ ∂ ∂ = Ω ∇ + Ω ∇ +     ∂ ∂     ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) ( ) ( ) ( ) ( ) 2 , , , , , , , , , , , , , , , I I I I f x y z t k x y z T I x y z t k x y z T I x y z t  Φ + + (5b) ( ) ( ) ( ) 1 1 1 1 1 , , , , , , , , , V V V V S S V S S D D x y z t z x y z t z x y z t t x kT y kT       Φ Φ Φ Φ Φ     ∂ ∂ = Ω ∇ + Ω ∇ +     ∂ ∂     ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) ( ) ( ) ( ) ( ) 2 , , , , , , , , , , , , , , , V V V V f x y z t k x y z T V x y z t k x y z T V x y z t  Φ + + . Integration of the left and right sides of the Eqs. (1b), (3b), and (5b) on time gives us the possibility to obtain relations for above approximation in this form ( ) ( ) ( ) ( ) ( ) 2 1 1 1 2 2 * * 0 , , , , , , , , , , , , 1 t C S L V x y z V x y z z C x y z t D x y z T x kT V V        ∂   = Ω + + × ∂     ∫ ( ) ( ) ( ) ( ) 1 1 1 1 0 , , , 1 , , , 1 , , , , , , t S C S C S C S L x y z d D x y z T P x y z T y P x y z T                  ∂  ∇ + + + +      ∂       ∫ ( ) ( ) ( ) ( ) 2 1 1 2 2 * * 0 , , , , , , , , , 1 t C S S D V x y z V x y z z x y z d kT V x V kT V              Ω∇ + + + ×     ∫ ( ) ( ) ( ) 2 2 2 0 0 , , , , , , , , , t t C S C S D D x y z x y z x y z d d d x y V kT y z V kT z                    + + + ∫ ∫
  • 11. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 25 ( ) , , C f x y z (1c) ( ) ( ) ( ) 1 1 1 1 1 0 0 , , , , , , , , , t t IS IS I S I S D D I x y z t z x y z d z x y z d x kT y kT         ∂ ∂ = Ω ∇ + Ω ∇ + ∂ ∂ ∫ ∫ ( ) ( ) ( ) 2 2 2 0 0 0 , , , , , , , , , t t t I S I S I S D D D x y z t x y z t x y z t d d d x V kT x y V kT y z V kT z       ∂ ∂ ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∫ ∫ ∫ ( ) ( ) ( ) 2 1 , 1 1 , 0 0 , , , , , , , , t t I I I I I V I V f x y z k x y z T d k x y z T d      − − ∫ ∫ (3c) ( ) ( ) ( ) 1 1 1 1 1 0 0 , , , , , , , , , t t IS IS V S V S D D V x y z t z x y z d z x y z d x kT y kT         ∂ ∂ = Ω ∇ + Ω ∇ + ∂ ∂ ∫ ∫ ( ) ( ) ( ) 2 2 2 0 0 0 , , , , , , , , , t t t V S V S V S D D D x y z t x y z t x y z t d d d x V kT x y V kT y z V kT z       ∂ ∂ ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∫ ∫ ∫ ( ) ( ) ( ) 2 1 , 1 1 , 0 0 , , , , , , , , t t V V V V I V I V f x y z k x y z T d k x y z T d      − − ∫ ∫ ( ) ( ) ( ) 1 1 1 1 0 0 , , , , , , , , , I I I t t S S I S S D D x y z t z x y z d x y z d x kT x kT        Φ Φ Φ ∂ ∂ Φ = Ω ∇ +Ω ∇ × ∂ ∂ ∫ ∫ ( ) ( ) ( ) 2 2 1 0 0 , , , , , , , , I I I I t t S S D D x y z x y z z f x y z d d x V kT x y V kT y        Φ Φ Φ Φ ∂ ∂ ∂ ∂ + + + + ∂ ∂ ∂ ∂ ∫ ∫ (5c) ( ) ( ) ( ) 2 0 0 , , , , , , , , , I t t S I D x y z d k x y z T I x y z d z V kT z      Φ ∂ ∂ + + ∂ ∂ ∫ ∫ ( ) ( ) 2 , 0 , , , , , , t I I k x y z T I x y z d   ∫ ( ) ( ) ( ) 1 1 1 1 0 0 , , , , , , , , , V V V t t S S V S S D D x y z t z x y z d x y z d x kT x kT        Φ Φ Φ ∂ ∂ Φ = Ω ∇ +Ω ∇ × ∂ ∂ ∫ ∫ ( ) ( ) ( ) 2 2 1 0 0 , , , , , , , , V V V V t t S S D D x y z x y z z f x y z d d x V kT x y V kT y        Φ Φ Φ Φ ∂ ∂ ∂ ∂ + + + + ∂ ∂ ∂ ∂ ∫ ∫ ( ) ( ) ( ) 2 0 0 , , , , , , , , , V t t S V D x y z d k x y z T V x y z d z V kT z      Φ ∂ ∂ + + ∂ ∂ ∫ ∫
  • 12. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 26 ( ) ( ) 2 , 0 , , , , , , t V V k x y z T V x y z d   ∫ . Followingstandardrelationgivesapossibilitytocalculateaveragevaluesofthefirst-orderapproximations of dopant and radiation defects concentrations.[28] ( ) 1 1 0 0 0 0 1 , , , y x z L L L x y z x y z t d z d y d xd t L L L    Θ = Θ ∫ ∫ ∫ ∫ (9) Substitution of the above first-order approximations into relation Eqs. (9) leads to the following results ( ) 1 0 0 0 1 , , y x z L L L C C x y z f x y z d z d y d x L L L  = ∫ ∫ ∫ , ( )2 2 3 1 3 1 2 4 4 4 4 x y z I a B L L L a a A B a a    Θ + Θ + = − + −     3 4 4 a A a + − , ( ) 1 1 00 00 1 0 0 0 1 , , y x z L L L V I I II x y z IV I f x y z d z d y d x S L L L S      Θ − − Θ       ∫ ∫ ∫ . Here ( ) ( ) ( ) ( ) , 1 1 0 0 0 0 , , , , , , , , , y x z L L L i j ij S t k x y z T I x y z t V x y z t d z d y d xd t    Θ = Θ − ∫ ∫ ∫ ∫ , 4 00 II a S = × ( ) 2 00 00 00 IV II VV S S S − , 2 3 00 00 00 00 00 IV II IV II VV a S S S S S = + − , ( ) 2 0 0 0 , , y x z L L L V a f x y z d z d y d x = × ∫ ∫ ∫ ( ) 2 2 2 2 2 2 2 00 00 00 00 00 00 0 0 0 2 , , y x z L L L IV IV IV x y z VV II I x y z VV S S S L L L S S f x y z d z d y d x L L L S + Θ + − Θ − ∫ ∫ ∫ ( ) 2 00 0 0 0 , , y x z L L L IV I S f x y z d z d y d x ∫ ∫ ∫ , ( ) 1 00 0 0 0 , , y x z L L L IV I a S f x y z d z d y d x = ∫ ∫ ∫ , 0 00 VV a S = × ( ) 2 0 0 0 , , y x z L L L I f x y z d z d y d x         ∫ ∫ ∫ , 2 2 3 2 2 4 4 8 4 a a A y a a = + Θ − Θ , 2 3 2 3 4 6 a B q p q a Θ = + + − − 2 3 3 q p q + + , 2 3 3 3 2 2 1 3 0 3 2 2 0 2 2 2 3 4 4 4 4 4 4 4 24 8 54 x y z a a a a a a q a L L L a a a a a a     Θ Θ = − Θ − Θ Θ − Θ − −         4 2 2 2 2 1 2 4 8 x y z a L L L a Θ , 0 4 1 3 2 2 2 4 4 4 12 18 x y z a a L L L a a a p a a − Θ Θ = Θ − , ( ) 20 1 1 0 0 0 1 , , y x z I I L L L II I x y z x y z x y z S R f x y z d z d y d x L L L L L L L L L  Φ Φ = + + Θ Θ ∫ ∫ ∫ ( ) 20 1 1 0 0 0 1 , , y x z V V L L L VV V x y z x y z x y z S R f x y z d z d y d x L L L L L L L L L  Φ Φ = + + Θ Θ ∫ ∫ ∫ .
  • 13. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 27 Here ( ) ( ) ( ) 1 0 0 0 0 , , , , , , y x z L L L i i I R t k x y z T I x y z t d z d y d xd t  Θ = Θ − ∫ ∫ ∫ ∫ . Now, we calculate approximations with the second and higher (n-th) orders of considered concentrations using the method of averaging of function corrections in the classical form.[28] The considered procedure leads to the replacement of considered concentrations on the right sides of Eqs. (1c), (3c), and (5c) on the following sum anr +rn−1 (x,y,z,t). In this situation, one can obtain the following equations for the second- order approximations of the above concentrations ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 2 1 2 2 * * , , , , , , , , , , , , 1 1 , , , C C x y z t C x y z t V x y z t V x y z t t x P x y z T V V              + ∂ ∂        = + + + ×   ∂ ∂         ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 1 2 2 * * , , , , , , , , , , , , , , , 1 L C x y z t V x y z t V x y z t C x y z t D x y z T x y V y V       ∂ ∂ ∂    × + + + ×  ∂ ∂ ∂        ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 2 2 * * , , , , , , , , , , , , 1 1 , , , C L C x y z t V x y z t V x y z t D x y z T P x y z T z V V               + ∂         + + + + ×   ∂            ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 , , , , , , , , , 1 , , , , , C L C C x y z t C x y z t D x y z T f x y z t z P x y z T           + ∂      + + +   ∂      ( ) ( ) ( ) 2 2 2 , , , , , , , , , C S C S C S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z                      + + +             ( ) ( ) 1 2 0 , , , , , , z L S S C D x y z t C x y W t dW x kT     ∂     Ω ∇ + +     ∂     ∫ ( ) ( ) 1 2 0 , , , , , , z L S S C D x y z t C x y W t dW y kT     ∂     Ω ∇ +     ∂     ∫ (1d) ( ) ( ) ( ) ( ) ( ) 2 1 1 , , , , , , , , , , , , , , , I I I x y z t I x y z t I x y z t D x y z T D x y z T t x x y y               = + +         ( ) ( ) ( ) ( ) ( ) 2 1 , 1 1 , , , , , , , , , , , , , , , , I I I I I V I x y z t D x y z T k x y z T I x y z t k x y z T z z          − + − ×       ( ) ( ) ( ) ( ) 1 1 1 1 2 1 0 , , , , , , , , , , , , z L I V S I I x y z t V x y z t x y z t I x y W t dW x      ∂        + + + Ω ∇ + ×        ∂   ∫ ( ) ( ) ( ) 2 2 1 0 0 , , , , , , , , , z L t IS IS S I x y z t D D x y z t I x y W t dW kT y kT x x      ∂  ∂ ∂     + Ω ∇ + + ×      ∂ ∂ ∂      ∫ ∫
  • 14. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 28 ( ) ( ) 2 2 0 0 , , , , , , t t I S I S I S D D D x y z t x y z t d d d V kT y V kT y z V kT z      ∂ ∂ ∂ ∂ + + ∂ ∂ ∂ ∂ ∫ ∫ (3d) ( ) ( ) ( ) ( ) ( ) 2 1 1 , , , , , , , , , , , , , , , V V V x y z t V x y z t V x y z t D x y z T D x y z T t x x y y               = + +         ( ) ( ) ( ) ( ) ( ) 2 1 , 1 1 , , , , , , , , , , , , , , , , V V V V I V V x y z t D x y z T k x y z T V x y z t k x y z T z z          − + − ×       ( ) ( ) ( ) ( ) 1 1 1 1 2 1 0 , , , , , , , , , , , , z L I V S V I x y z t V x y z t x y z t V x y W t dW x      ∂        + + + Ω ∇ + ×        ∂   ∫ ( ) ( ) ( ) 2 2 1 0 0 , , , , , , , , , z L t VS VS S V x y z t D D x y z t V x y W t dW kT y kT x x      ∂  ∂ ∂     + Ω ∇ + + ×      ∂ ∂ ∂      ∫ ∫ ( ) ( ) 2 2 0 0 , , , , , , t t V S V S V S D D D x y z t x y z t d d d V kT y V kT y z V kT z      ∂ ∂ ∂ ∂ + + ∂ ∂ ∂ ∂ ∫ ∫ ( ) ( ) ( ) ( ) ( ) 2 1 1 , , , , , , , , , , , , , , , I I I I I x y z t x y z t x y z t D x y z T D x y z T t x x y y           Φ Φ     Φ Φ Φ = + +         ( ) ( ) ( ) ( ) 2 2 1 , 0 , , , , , , , , , , , , z I I L S S I I I D x y z t x y W t dW k x y z T I x y z t x kT   Φ Φ   ∂     Ω ∇ + Φ + +     ∂     ∫ ( ) ( ) ( ) ( ) 2 1 0 , , , , , , , , , , , , z I I L S S I I D x y z t x y W t dW k x y z T I x y z t y kT   Φ Φ   ∂     Ω ∇ + Φ + +     ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) ( ) ( ) 1 , , , , , , , , I I I x y z t D x y z T f x y z t z z      Φ Φ   Φ +     (5d) ( ) ( ) ( ) ( ) ( ) 2 1 1 , , , , , , , , , , , , , , , V V V V V x y z t x y z t x y z t D x y z T D x y z T t x x y y           Φ Φ     Φ Φ Φ = + +         ( ) ( ) ( ) ( ) 2 2 1 , 0 , , , , , , , , , , , , z V V L S S V V V D x y z t x y W t dW k x y z T V x y z t x kT   Φ Φ   ∂     Ω ∇ + Φ + +     ∂     ∫ ( ) ( ) ( ) ( ) 2 1 0 , , , , , , , , , , , , z V V L S S V V D x y z t x y W t dW k x y z T V x y z t y kT   Φ Φ   ∂     Ω ∇ + Φ + +     ∂     ∫
  • 15. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 29 ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       ( ) ( ) ( ) ( ) 1 , , , , , , , , V V V x y z t D x y z T f x y z t z z      Φ Φ   Φ +     . The above equations could be solved by the integration of both sides of the above equations on time. After this integration one can be obtained ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 2 1 2 2 * * 0 , , , , , , , , , , , , 1 1 , , , t C C x y z V x y z V x y z C x y z t x P x y z T V V                + ∂       = + + + ×   ∂         ∫ ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 2 2 * * 0 , , , , , , , , , , , , , , , 1 t L L C x y z V x y z V x y z D x y z T d D x y z T x y V V         ∂ ∂   + + + × ∂ ∂     ∫ ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 1 2 2 * * 0 , , , , , , , , , , , , 1 1 , , , t C C x y z t C x y z V x y z V x y z y P x y z T z V V                + ∂ ∂       + + + + ×   ∂ ∂         ∫ ( ) ( ) ( ) ( ) ( ) 2 1 1 , , , , , , , , , 1 , , , , , C L C C x y z C x y z D x y z T d f x y z z P x y z T            + ∂     + + +   ∂     ( ) ( ) ( ) 2 1 0 0 0 , , , , , , , , , z L t t S S C S D x y z C x y W dW d x y z x kT y        ∂ ∂   Ω ∇ + + ∇ ×   ∂ ∂ ∫ ∫ ∫ ( ) ( ) 2 2 1 0 , , , , , , z L C S S C D x y z t D C x y W dW d kT x V kT x             Ω + + +       ∫ ( ) ( ) 2 2 , , , , , , C S C S D D x y z t x y z t y V kT y z V kT z               +        (1e) ( ) ( ) ( ) ( ) ( ) 1 1 2 0 0 , , , , , , , , , , , , , , , t t I I I x y z I x y z I x y z t D x y z T d D x y z T d x x y y             = + + ∫ ∫ ( ) ( ) ( ) ( ) 2 1 , 2 1 0 0 , , , , , , , , , , , , t t I I I I I x y z D x y z T d k x y z T I x y z d z z            − + −   ∫ ∫ ( ) ( ) ( ) ( ) , 2 1 2 1 0 0 , , , , , , , , , , , , t t I V I V S k x y z T I x y z V x y z d x y z x        ∂     + + + ∇ ×     ∂ ∫ ∫ ( ) ( ) ( ) 2 1 2 1 0 0 0 , , , , , , , , , z z L L t IS I S I D I x y W dW d x y z I x y W kT y        ∂     Ω + + ∇ + ×     ∂ ∫ ∫ ∫
  • 16. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 30 ( ) ( ) 2 2 , , , , , , I S I S IS D D x y z t x y z t D d W d k T x V kT x y V kT y                Ω + + +         ( ) ( ) 2 , , , , , I S I D x y z t f x y z z V kT z        +     (3e) ( ) ( ) ( ) ( ) ( ) 1 1 2 0 0 , , , , , , , , , , , , , , , t t V V V x y z V x y z V x y z t D x y z T d D x y z T d x x y y             = + + ∫ ∫ ( ) ( ) ( ) ( ) 2 1 , 2 1 0 0 , , , , , , , , , , , , t t V V V V V x y z D x y z T d k x y z T V x y z d z z            − + −   ∫ ∫ ( ) ( ) ( ) ( ) , 2 1 2 1 0 0 , , , , , , , , , , , , t t I V I V S k x y z T I x y z V x y z d x y z x        ∂     + + + ∇ ×     ∂ ∫ ∫ ( ) ( ) ( ) 2 1 2 1 0 0 0 , , , , , , , , , z z L L t VS V S V D V x y W dW d x y z V x y W kT y        ∂     Ω + + ∇ + ×     ∂ ∫ ∫ ∫ ( ) ( ) 2 2 , , , , , , V S V S VS D D x y z t x y z t D d W d kT x V kT x y V kT y                Ω + + +         ( ) ( ) 2 , , , , , V S V D x y z t f x y z z V kT z        +     ( ) ( ) ( ) ( ) 1 1 2 0 0 , , , , , , , , , , , , I t t I I I x y z x y z x y z t D x y z T d x x y y            Φ Φ Φ Φ + × ∫ ∫ ( ) ( ) ( ) ( ) 1 0 0 , , , , , , , , , , , , I I t t I S x y z D x y z T d D x y z T d x y z z z x          Φ Φ Φ ∂ + + Ω ∇ × ∂ ∫ ∫ ( ) ( ) 2 1 2 1 0 0 0 , , , , , , z z I I I I L L t S S I I D D x y W dW d x y W dW kT y kT      Φ Φ Φ Φ ∂     + Φ + Ω + Φ ×     ∂ ∫ ∫ ∫ ( ) ( ) ( ) ( ) 2 2 , 0 0 , , , , , , , , , , , , I t t S S I I D x y z x y z d k x y z T I x y z d d x V kT x         Φ ∂ ∂ ∇ + + + ∂ ∂ ∫ ∫ ( ) ( ) ( ) 2 2 0 0 , , , , , , , , I I I t t S S D D x y z x y z d d f x y z y V kT y z V kT z       Φ Φ Φ ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∫ ∫ ( ) ( ) 0 , , , , , , t I k x y z T I x y z d   ∫ (5e)
  • 17. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 31 ( ) ( ) ( ) ( ) 1 1 2 0 0 , , , , , , , , , , , , V t t V V V x y z x y z x y z t D x y z T d x x y y            Φ Φ Φ Φ + × ∫ ∫ ( ) ( ) ( ) ( ) 1 0 0 , , , , , , , , , , , , V V t t V S x y z D x y z T d D x y z T d x y z z z x          Φ Φ Φ ∂ + + Ω ∇ × ∂ ∫ ∫ ( ) ( ) 2 1 2 1 0 0 0 , , , , , , z z V V V V L L t S S V V D D x y W dW d x y W dW kT y kT      Φ Φ Φ Φ ∂     + Φ + Ω + Φ ×     ∂ ∫ ∫ ∫ ( ) ( ) ( ) ( ) 2 2 , 0 0 , , , , , , , , , , , , V t t S S V V D x y z x y z d k x y z T V x y z d d x V kT x         Φ ∂ ∂ ∇ + + + ∂ ∂ ∫ ∫ ( ) ( ) ( ) 2 2 0 0 , , , , , , , , V V V t t S S D D x y z x y z d d f x y z y V kT y z V kT z       Φ Φ Φ ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∫ ∫ ( ) ( ) 0 , , , , , , t V k x y z T V x y z d   ∫ . The next standard relation gives a possibility to calculate average values of the second-order approximations of the above concentrations.[28] ( ) ( ) 2 2 1 0 0 0 0 1 , , , , , , y x z L L L x y z x y z t x y z t d z d y d xd t L L L     Θ   −   Θ ∫ ∫ ∫ ∫ (10) Substitution of the second-order approximations of the considered concentrations into relation Eqs. (10) gives a possibility to obtain relations for required average values a2r a2C =0, a2FI =0, a2FV =0, ( )2 2 3 1 3 3 2 2 4 4 4 4 4 4 x y z V a F L L L b b E b E F b b b    Θ + Θ + + = − + −     , ( ) 2 2 00 2 01 10 02 11 2 01 2 00 2 V V VV V VV IV x y z V V IV I IV V IV C S S S L L L S S S S     − − + + Θ − − = + . Here 2 2 4 00 00 00 00 1 1 IV V V VV II x y z x y z b S S S S L L L L L L − Θ Θ , ( 00 00 3 01 10 2 II VV VV IV x y z S S b S S L L L = − + + Θ ) ( ) ( 2 00 00 00 01 10 01 01 10 2 2 IV VV IV x y z IV II IV x y z VV IV x y z x y z S S S L L L S S S L L L S S L L L L L L Θ + + + + Θ + + + Θ Θ ) 2 00 10 3 3 3 3 IV IV x y z x y z S S L L L L L L Θ − Θ , ( ) ( 00 00 2 02 11 10 01 2 II VV VV IV V IV VV x y x y z S S b S S C S S L L L L L = + + − − + Θ × Θ ) ( ) ( 2 01 00 00 10 01 01 10 01 2 2 2 IV VV IV z x y z II IV IV II IV x y x y z x y z S S S L L L L S S S S S L L L L L L L L + Θ + + + + + + Θ × Θ Θ )( ) ( ) 2 2 00 00 10 01 10 02 11 2 2 2 2 2 2 IV I IV IV z VV x y z IV V VV IV x y z x y z x y z S C S S L S L L L S C S S L L L L L L L L L + Θ + − − − + − × Θ Θ Θ
  • 18. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 32 00 01 IV IV S S , ( ) ( 11 02 01 1 00 01 10 2 IV VV V IV II VV IV x y z x y x y z x y z S S C S b S S S L L L L L L L L L L L + + + + Θ + Θ × Θ Θ )( ) ( 2 10 01 00 10 01 01 10 01 10 2 2 3 2 IV IV IV z II IV VV IV y z IV II x y z x y z S S S L S S S S LL L S S L L L L L L + + + + Θ − − + + Θ Θ )( ) 02 11 00 01 2 x y z V VV IV I IV IV L L L C S S C S S Θ − − + , ( )2 00 01 0 00 02 II IV IV VV x y z x y z S S b S S L L L L L L = + − × Θ ( )( ) 2 02 11 10 01 02 11 01 01 1 2 2 V VV IV x y z II IV V VV IV I IV IV x y z C S S L L L S S C S S C S S L L L − − Θ + + − − + − × Θ Θ ( )( ) ( ) 2 10 01 02 11 01 02 11 01 10 01 1 2 2 2 , x y z II IV V VV IV I IV V VV IV IV x y z II IV x y z L L L S S C S S C S C S S S L L L S S L L L Θ + + − − + − Θ − − × Θ + + Θ 2 1 1 1 00 20 20 11 00 I V I II II II IV I IV x y z x y z x y z x y z S S S S C S L L L L L L L L L L L L    = + − − Θ Θ Θ Θ , 2 1 1 00 1 00 02 11 V I V IV V VV VV IV C S S S S    = + − − , 2 2 3 2 2 4 4 8 4 a a E y a a = + Θ − Θ , 2 4 6 a F a Θ = + 3 3 2 3 2 3 r s r r s r + − − + + , 3 3 3 2 1 3 2 2 0 0 2 3 2 4 4 4 4 4 24 54 8 x y z b b b b r b L L L b b b b b   Θ Θ Θ = − Θ − − ×     2 4 2 2 2 2 2 3 1 2 2 4 4 4 8 x y z b b b L L L b b   Θ Θ − Θ −     , 0 4 1 3 2 2 2 4 4 4 12 18 x y z b b L L L b b b s b b − Θ Θ = Θ − . Now, we calculate solutions of Eqs. (8) by the same method of averaging function corrections. Equations for the first-order approximations of the considered components could be written as ( ) ( ) ( ) ( ) ( ) 2 1 2 , , , , , , x u x y z t T x y z t z K z z t x   ∂ ∂ = − ∂ ∂ , ( ) ( ) 2 1 2 , , , y u x y z t z t  ∂ = ∂ ( ) ( ) ( ) , , , T x y z t K z z y  ∂ − ∂ , ( ) ( ) ( ) ( ) ( ) 2 1 2 , , , , , , z u x y z t T x y z t z K z z t z   ∂ ∂ = − ∂ ∂ . The solution of the above equations could be obtained by integration both their sides. Result of this integration takes the form ( ) ( ) ( ) ( ) ( ) 1 0 0 0 , , , , , , t x x z u x y z t u K z T x y z d d z x       ∂ = + − ∂ ∫∫ ( ) ( ) ( ) ( ) 0 0 , , , z K z T x y z d d z x       ∞ ∂ ∂ ∫∫ ,
  • 19. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 33 ( ) ( ) ( ) ( ) ( ) 1 0 0 0 , , , , , , t y y z u x y z t u K z T x y z d d z y       ∂ = + − ∂ ∫∫ ( ) ( ) ( ) ( ) 0 0 , , , z K z T x y z d d z y       ∞ ∂ ∂ ∫∫ , ( ) ( ) ( ) ( ) ( ) 1 0 0 0 , , , , , , t z z z u x y z t u K z T x y z d d z z       ∂ = + − ∂ ∫∫ ( ) ( ) ( ) ( ) 0 0 , , , z K z T x y z d d z z       ∞ ∂ ∂ ∫∫ . Equations for the second-order approximations of displacement vector components could be obtained framework standard procedure of the method of averaging of function corrections[28] and could be written as ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 2 1 2 2 , , , , , , 5 , , , 6 1 3 1 y x x u x y z t u x y z t E z u x y z t E z z K z K z t x x y z z        ∂ ∂ ∂     = + + − +     ∂ ∂ ∂ ∂     + +             ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 1 1 2 2 , , , , , , , , , , , , 2 1 y y z u x y z t u x y z t E z u x y z t T x y z t x y y z x z    ∂ ∂ ∂ ∂ + + − ×   ∂ ∂ ∂ ∂ ∂   +       ( ) ( ) ( ) ( ) ( ) ( ) 2 1 , , , 3 1 z E z u x y z t K z z K z x z z     ∂   + +   ∂ ∂   +       ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 1 2 2 , , , , , , , , , , , , 2 1 y y x u x y z t u x y z t E z u x y z t T x y z t z t x x y y z     ∂ ∂ ∂ ∂ = + − ×   ∂ ∂ ∂ ∂ ∂   +       ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 1 2 , , , , , , , , , 2 1 y y z u x y z t u x y z t E z u x y z t K z z z z y y z       ∂ ∂ ∂ ∂   + + + ×     ∂ ∂ ∂ ∂   +         ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 , , , , , , 5 12 1 6 1 y y u x y z t u x y z t E z E z K z K z K z y z x y z z       ∂ ∂     + + − +     ∂ ∂ ∂ ∂     + +             ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 1 1 1 2 2 2 , , , , , , , , , , , , 2 1 z z z x u x y z t E z u x y z t u x y z t u x y z t z t x y x z z    ∂ ∂ ∂ ∂ = + + +  ∂ ∂ ∂ ∂ ∂   +    ( ) ( ) ( ) ( ) ( ) 2 1 1 1 1 , , , , , , , , , , , , y y x x u x y z t u x y z t u x y z t u x y z t K z y z z x y z      ∂ ∂ ∂ ∂ ∂   + + + +      ∂ ∂ ∂ ∂ ∂ ∂         ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 , , , , , , , , , , , , 6 6 1 y z x z u x y z t E z u x y z t u x y z t u x y z t z z x y z z    ∂ ∂ ∂ ∂ ∂ − − − −   ∂ ∂ ∂ ∂ ∂   +    
  • 20. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 34 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 , , , , , , , , , , , , 1 y x z u x y z t u x y z t u x y z t E z T x y z t K z z x y z z z     ∂ ∂ ∂ ∂  − − −   ∂ ∂ ∂ + ∂   . Integration of the left and right sides of the above relations on time t leads to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 2 0 0 5 1 1 , , , , , , 6 1 t x x E z u x y z t K z u x y z d d K z z x z z           ∂   = + + −    ∂   +        ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 2 0 0 0 0 , , , , , , 2 3 1 t t y y E z E z u x y z d d u x y z d d x y z y z             ∂ ∂  + +   ∂ ∂ ∂   +     ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) 2 2 1 1 2 0 0 0 0 1 1 , , , , , , 1 t t z z u x y z d d u x y z d d K z z z z x z             ∂ ∂ + +   ∂ + ∂ ∂   ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 0 0 0 0 , , , , , , 3 1 t x E z z K z T x y z d d u x y z d d z x x z            ∞  ∂ ∂  − − ×  ∂ ∂   +    ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 0 0 5 1 , , , 6 1 3 1 y E z E z K z K z u x y z d d z x y z z        ∞     ∂     + − − ×     ∂ ∂     + +             ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 2 2 0 0 0 0 1 , , , , , , 2 1 y z E z u x y z d d u x y z d d z y z z z            ∞ ∞   ∂ ∂ − + −   ∂ ∂   +     ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 0 0 0 1 , , , 3 1 z x E z z K z u x y z d d u K z z x z z z         ∞   ∂   + + + ×   ∂ ∂   +       ∫∫ ( ) 0 0 , , , T x y z d d x     ∞ ∂ ∂ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 1 2 0 0 0 0 , , , , , , , , , 2 1 t t y x x E z u x y z t u x y z d d u x y z d d x x y z z             ∂ ∂ = + +   ∂ ∂ ∂   +     ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 0 0 5 1 1 , , , 1 12 1 t y K z E z u x y z d d K z z z x y z z           ∂   + + + ×   + ∂ ∂   +       ∫∫ ( ) ( ) ( ) ( ) ( ) 2 1 1 2 0 0 0 0 1 , , , , , , 2 1 t t x y E z u x y z d d u x y z d d y z z z z             ∂ ∂ ∂  + +   ∂ ∂ + ∂    ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 0 0 0 0 , , , , , , 6 1 t t z z E z u x y z d d K z T x y z d d y z z               ∂   − − −    ∂   +        ∫∫ ∫∫
  • 21. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 35 } ( ) ( ) ( ) ( ) ( ) 2 2 1 1 2 0 0 0 0 1 ( ) , , , , , , 2 t y x E z K z u x y z d d u x y z d d z y z z x           ∞  ∂ ∂ − − +  ∂ ∂ ∂  ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 0 0 0 0 1 , , , , , , 1 x z K z u x y z d d K z T x y z d d x y z z z             ∞ ∞  ∂ − − ×  ∂ ∂ +  ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) 2 2 1 1 2 0 0 0 0 5 1 , , , , , , 12 1 y x E z u x y z d d u x y z d d x y z y z           ∞ ∞  ∂ ∂  − +  ∂ ∂ ∂   +     ∫∫ ∫∫ ( )} ( ) ( ) ( ) ( ) 1 1 0 0 0 0 , , , , , , 1 y z E z K z u x y z d d u x y z d d z z z y          ∞ ∞     ∂ ∂ ∂   − + ×     ∂ + ∂ ∂       ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) 2 1 0 0 0 1 1 , , , 2 6 1 y y E z K z u x y z d d u z z y z z        ∞   ∂   − − +   ∂ ∂   +       ∫∫ ( ) ( ) ( ) ( ) ( ) 2 2 1 1 2 2 0 0 0 0 , , , , , , , , , 2 1 z z z E z u x y z t u x y z d d u x y z d d x y z          ∞ ∞  ∂ ∂ = + +  ∂ ∂   +    ∫∫ ∫∫ ( ) ( ) ( ) ( ) 2 2 1 1 0 0 0 0 1 1 , , , , , , x y u x y z d d u x y z d d x z y z z z           ∞ ∞  ∂ ∂ + + ×  ∂ ∂ ∂ ∂  ∫∫ ∫∫ ( ) ( ) ( ) 1 1 0 0 0 0 , , , , , , x x K z u x y z d d u x y z d d z x y         ∞ ∞   ∂ ∂ ∂  + +   ∂ ∂ ∂    ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) 1 1 0 0 0 0 1 , , , 6 , , , 6 1 x z E z u x y z d d u x y z d d z z z z z           ∞ ∞     ∂ ∂ ∂   + −     ∂ ∂ + ∂       ∫∫ ∫∫ ( ) ( ) ( ) 1 1 1 0 0 0 0 0 0 , , , , , , , , , x y z u x y z d d u x y z d d u x y z d d x y z             ∞ ∞ ∞   ∂ ∂ ∂  − − −   ∂ ∂ ∂   ∫∫ ∫∫ ∫∫ ( ) ( ) ( ) ( ) 0 0 0 , , , z z K z T x y z d d u z z       ∞ ∂ + ∂ ∫∫ . In this paper, we calculate distributions of concentration of dopant and radiation defects in space and time using the second-order approximation framework method of averaging of function corrections. We also calculate distributions of components of displacement vector in space and time framework the same approximation. Usually, the second-order approximation is enough good approximation to obtain some quantitative results and to make the qualitative analysis. All obtained results have been checked by comparison with the results of numerical simulations. DISCUSSION Now, we will be analyzing the redistributions of radiation defects and dopant during annealing. In this situation, we take into account the influence of modification of porosity and mismatch-induced
  • 22. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 36 stress on the redistribution of radiation defects and dopant. We present several spatial distributions of concentrations of dopant in heterostructures, as shown in Figures 2 and 3. Figure 2 corresponds to the diffusion type of doping. Figure 3 corresponds to ion type of doping. All distributions of dopant correspond to the larger value of dopant diffusion coefficient in comparison with the nearest areas. One can find that inhomogeneity of heterostructure leads to increasing homogeneity of dopant in the doped area of the epitaxial layer. However, it should be noted that optimization of annealing of dopant and/or radiation defects required to obtain a compromise between increasing of homogeneity of distribution of concentration of dopant in the required area and increasing. Figure 2: Spatial distributions of infused dopant concentration in the considered heterostructure in the perpendicular direction to interface between epitaxial layer and substrate. The larger number of curves corresponds to the larger difference between values of dopant diffusion coefficient in the heterostructure. Value of dopant diffusion coefficient in the substrate is smaller, than the value of dopant diffusion coefficient in the epitaxial layer Figure 3: Spatial distributions of implanted dopant concentration in the considered heterostructure in the perpendicular direction to interface between epitaxial layer and substrate. Curves 1 and 3 were calculated for time of annealing Q = 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 2 and 4 were calculated for time of annealing Q = 0.0057(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 1 and 2 were calculated for homogenous samples. Curves 3 and 4 were calculated for heterostructure for the case, when the diffusion coefficient of dopant in the substrate is smaller than the diffusion coefficient of dopant in the epitaxial layer
  • 23. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 37 ( ) ( ) 0 0 0 1 , , , , , y x z L L L x y z U C x y z x y z d z d y d x L L L    Θ −   ∫ ∫ ∫ (15) to determine the compromise value of annealing time. Here, y(x,y,z) is the considered step-wise approximation function [Figure 5]. Figures 6 (for diffusion type of doping) and 7 (for ion type of doping) show optimal annealing times as functions of several parameters. It is known that anneal radiation defects after ion implantation should be done. Spatial distributions of dopant will spread during this annealing. Figure 4: Spatial distributions of concentration of the infused dopant in the considered heterostructure. Curve 1 shows idealized dopant distribution (step-wise function). Curves 2–4 show real dopant distributions at the different continuance of annealing. The larger value of the number of curves mean larger value of continuance of annealing Figure 5: Spatial distributions of concentration of the implanted dopant in the considered heterostructure. Curve 1 shows idealized dopant distribution (step-wise function). Curves 2–4 show real dopant distributions at the different continuance of annealing. Larger value of the number of the curve means larger value of continuance of annealing sharpness of this distribution after this area. To obtain this compromise, we used recently introduced criterion.[29-37] To use this criterion, one shall approximate real spatial distribution of dopant concentration by required step-wise function (Figure 4 for diffusion type of doping and 5 for ion type of doping). After that, one shall minimize the mean-squared error
  • 24. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 38 The dopant should achieve the required interface between layers of heterostructure during the annealing. If dopant cannot achieve during the radiation defects annealing, it is attracted an interest additional annealing of the dopant. In this situation, one can find the smaller value of implanted dopant annealing time in comparison with annealing time of infused dopant. Now, we consider the influence of variation of miss-match induced stress on the dopant concentration distribution in the considered heterostructure.At e0 0, a compression of dopant concentration distribution could be found near the interface between layers of the heterostructure. On the other hand (at e0 0), the spreading of the distribution could be found. The variation of distribution could be partially decreased by laser annealing[37] due to the acceleration of dopant diffusion during this procedure. Mismatch- Figure 6: Dimensionless optimal annealing time of infused dopant as functions of several parameters. Curve 1 describes dependence of the annealing time on a/L at x = g = 0 in homogenous material. Curve 2 describes dependence of the annealing time on e at a/L=1/2 and x = g = 0. Curve 3 describes dependence of the annealing time on x at a/L =1/2 and e = g = 0. Curve 4 describes dependence of the annealing time on g at a/L=1/2 and e = x = 0 Figure 7: Dimensionless optimal annealing time of infused dopant as functions of several parameters. Curve 1 describes dependence of the annealing time on a/L at x = g = 0 in homogenous material. Curve 2 describes dependence of the annealing time on e at a/L=1/2 and x = g = 0. Curve 3 describes dependence of the annealing time on x at a/L =1/2 and e = g = 0. Curve 4 describes dependence of the annealing time on g at a/L=1/2 and e = x = 0
  • 25. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 39 induced stress in heterostructure leads to changing of value of optimal annealing time. At the same time, modification of porosity leads to decrease the value of mechanical stress. On the one hand, mismatch- induced stress could be used to increase the density of elements of integrated circuits. At the same time, the stress could leads to generation dislocations of the discrepancy. Figures 8 and 9 show vacancies concentration distributions in porous materials and component of the displacement vector, which are perpendicular to the interface between layers of the heterostructure. CONCLUSION We analyzed the redistribution of implanted and infused dopants in a heterostructure with porous layer to manufacturing field-effect heterotransistors framework in a sense-amplifier based flip-flop. We also Figure 8: Dependences of the normalized component of displacement vector on coordinate, which is perpendicular to the interface between layers of the heterostructure. Curve 1 corresponds to nonporous material. Curve 2 corresponds to porous material Figure 9: Dependences of normalized vacancy concentrations on coordinate, which is perpendicular to the interface between layers of the heterostructure. Curve 1 corresponds to nonporous material. Curve 2 corresponds to porous material
  • 26. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 40 analyzed the influence of relaxation mismatch-induced stress on the above redistribution. We obtain several recommendations to optimize annealing for decreasing dimensions of transistors and to increase their density framework integrated circuits. We also formulate conditions for decreasing mismatch- induced stress. An analytical approach to solve considered boundary problems with account nonlinearity of processes and changing of parameters in space and time has been introduced. REFERENCES 1. Lachin VI, Savelov NS. Electronics. Rostov-on-Don: Phoenix; 2001. 2. Polishscuk A. Anadigm programmable analog ICs: The entire spectrum of analog electronics on a single chip. Mod Electron 2004;12:8-11. 3. Volovich G. Modern chips UM3Ch class D manufactured by firm MPS. Mod Electron 2006;2:10-7. 4. Kerentsev A, Lanin V. Power Electronics; 2008. p. 34. 5. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Sachenko AV. Au-TiBx-n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors 2009;43:897-903. 6. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors 2009;43:971-4. 7. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers upon annealing of dysprosium and holmium-implanted silicon. Semiconductors 1998;32:1029-32. 8. Ermolovich IB, Milenin VV, Red’ko RA, Red’ko SM. Specific features of recombination processes in CdTe films produced in different temperature conditions of growth and subsequent annealing. Semiconductors 2009;43:1016-20. 9. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Band alignment of SnS/Zn(O,S) heterojunctions in SnS thin film solar cells. Appl Phys Lett 2013;102:53901-5. 10. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF., Rowe JE., Everitt HO, et al. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 2013;102:152114-8. 11. Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. Analysis of technological processses of manufacturing of high-power bipolar transistors. Semiconductors 2001;35:1013-7. 12. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58-82. 13. Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates. Phys Solid State 2016;58:1448-52. 14. Trukhanov EM, Kolesnikov AV, Loshkarev ID. Long-range stresses generated by misfit dislocations in epitaxial films. Russ Microelectron 2015;44:552-8. 15. Pankratov EL, Bulaeva EA. On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model physical processes in reactors for epitaxy from gas phase during growth films. Rev Theor Sci 2015;3:365-98. 16. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4. 17. HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901-5. 18. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836-43. 19. Chen B, Shen L, Liu S, Zheng Y, Gao J. A broadband, high isolation millimeter-wave CMOS power amplifier using a transformer and transmission line matching topology. Analog Integr Circuits Signal Process 2014;81:537-47. 20. ZhangYW, BowerAF. Numerical simulation of islands formation in a coherent strained epitaxial thin film system..J Mech Phys Solids 1999;47:2273-97. 21. Landau LD, Lefshits EM. Theory of elasticity. In: Theoretical Physics. Ch. 7. Moscow: Fizmatlit; 2001. 22. Kitayama M, Narushima T, Carter WC, Cannon RM, Glaeser AM. The Wulff shape of alumina: I, modeling the kinetics of morphological evolution. J Am Ceram Soc 2000;83:2561. 23. Cheremskoy PG, Slesov VV, Betekhtin VI. Pore in Solid Bodies. Moscow: Energoatomizdat; 1990. 24. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 25. Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289-388. 26. Vinetskiy VL, Kholodar’ GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 27. Mynbaeva MG, Mokhov EN, Lavrent’ev AA, Mynbaev KD. High-temperature diffusion doping of porous silicon carbide. Tech Phys Lett 2008;34:13. 28. Sokolov YD. About the definition of dynamic forces in the mine lifting. Appl Mech 1955;1:23-35. 29. PankratovEL.Dopantdiffusiondynamicsandoptimaldiffusiontimeasinfluencedbydiffusion-coefficientnonuniformity. Russ Microelectron 2007;36:33-9. 30. Pankratov EL. Redistribution of dopant during annealing of radia-tive defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int J Nanosci 2008;7:187-97.
  • 27. Pankratov: On optimization of manufacturing of a sense-amplifier based flip-flop AJMS/Jan-Mar-2020/Vol 4/Issue 1 41 31. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distribution of dopants. Rev Theor Sci 2013;1:58-82. 32. Pankratov EL, Bulaeva EA. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using overlayers. Int J Micro-Nano Scale Transp 2012;3:119-30. 33. Pankratov EL, Bulaeva EA. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. Int J Mod Phys B 2015;29:1550023. 34. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. influence mismatch-induced stress. J Comput Theor Nanosci 2017;14:4885-99. 35. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater Sci Semicond Process 2015;34:260-8. 36. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization. Int J Micro-Nano Scale Transp 2014;4:17-31. 37. Pankratov EL. Increasing of the sharpness of p-n-junctions by laser pulses. Nano 2011;6:31-40.