SlideShare a Scribd company logo
1 of 24
Download to read offline
www.ajms.com 36
ISSN 2581-3463
RESEARCH ARTICLE
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider
Biasing Common Emitter Amplifier with Account Mismatch-Induced Stress – On
Increasing of Density of Elements
E. L. Pankratov1,2
1
Department of Mathematics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950,
Russia, 2
Department of Mathematics, Nizhny Novgorod State Technical University, 24 in Street, Nizhny
Novgorod 603950, Russia
Received: 25-10-2018; Revised: 15-11-2018; Accepted: 30-01-2019
ABSTRACT
In this paper, we introduce an approach for prognosis of manufacturing of voltage divider biasing
common emitter amplifier based on bipolar transistors with account mismatch-induced stress. Based
on this prognosis, we formulate some recommendations for optimization of manufacturing of the
amplifier. Main aims of the optimization are as follows: (1) Decreasing dimensions of elements of the
considered operational amplifier and (2) increasing of performance and reliability of the considered
bipolar transistors. Dimensions of considered bipolar transistors will be decreased due to manufacture
of these transistors framework heterostructure with specific structure, doping of required areas of
the heterostructure by diffusion or ion implantation, and optimization of annealing of dopant and/or
radiation defects. Performance and reliability of the above bipolar transistors could be increased by
optimization of annealing of dopant and/or radiation defects and using inhomogeneity of the properties
of heterostructure. Choosing of inhomogeneity properties of heterostructure leads to increasing of
compactness of distribution of concentration of dopant. At the same time, one can obtain increasing
of homogeneity of the above concentration. In this paper, we also introduce an analytical approach
for prognosis of technological process of manufacturing of the considered operational amplifier. The
approach gives a possibility to take into account variation of parameters of processes in space and at the
same time in space. At the same time, one can take into account nonlinearity of the considered processes.
Key words: Voltage divider biasing common emitter amplifier, increasing integration rate of bipolar
transistors, optimization of manufacturing
INTRODUCTION
In the present time, several actual problems of the solid-state electronics (such as increasing of
performance, reliability, and density of elements of integrated circuits: Diodes, and field effect and
bipolar transistors) are intensively solving.[1-6]
To increase the performance of these devices, it is
attracted an interest determination of materials with higher values of charge carriers mobility.[7-10]
One
way to decrease dimensions of the elements of integrated circuits is manufacturing them in thin-film
heterostructures.[3-5,11]
In this case, it is possible to use inhomogeneity of heterostructure and necessary
optimization of doping of electronic materials[12,13]
and development of epitaxial technology to improve
these materials (including analysis of mismatch induced stress).[14-16]
An alternative approaches to
increase dimensions of integrated circuits are using of laser and microwave types of annealing.[17-19]
Framework the paper, we introduce an approach to manufacture a bipolar transistor. The approach
gives a possibility to dimensions of the transistor framework a voltage divider biasing common
Address for correspondence:
E. L. Pankratov,
E-mail: elp2004@mail.ru
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 37
emitter amplifier. We also consider possibility to decrease mismatch-induced stress to decrease
quantity of defects, generated due to the stress. In this paper, we consider a heterostructure, which
consists of a substrate and an epitaxial layer [Figure 1]. We also consider a buffer layer between
the substrate and the epitaxial layer. The epitaxial layer includes into itself several sections, which
were manufactured using another material. These sections have been doped by diffusion or ion
implantation to manufacture the required types of conductivity (p or n). These areas became sources,
drains, and gates [Figure 1]. After this doping, it is required annealing of dopant and/or radiation
defects. Main aim of the present paper is the analysis of redistribution of dopant and radiation defects
to determine conditions, which corresponds to decrease of the elements of the considered divider and
at the same time to increase their density. At the same time, we consider a possibility to decrease
mismatch-induced stress.
METHOD OF SOLUTION
To solve our aim, we determine and analyzed spatiotemporal distribution of the concentration of dopant
in the considered heterostructure. We determine the distribution by solving the second Fick’s law in the
following form.[1,20-24]
∂ ( )
∂
=
∂
∂
∂ ( )
∂





 +
∂
∂
∂ ( )
∂



C x y z t
t x
D
C x y z t
x y
D
C x y z t
y
, , , , , , , , , 


 +
∂
∂
∂ ( )
∂






z
D
C x y z t
z
, , ,
  ( ) ( )
1
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
x kT

 
∂
+Ω ∇
 
∂  
 
∫ ( ) ( )
1
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
y kT

 
∂
+Ω ∇
 
∂  
 
∫  (1)
Figure 1: (a) Structure of the considered voltage divider.[13]
(b) Heterostructure with a substrate, epitaxial layers, and buffer
layer (view from side)
b
a
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 38
With boundary and initial conditions,
∂ ( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
=
= = =
C x y z t
x
C x y z t
x
C x y z t
y
x x L y
x
, , ,
,
, , ,
,
, , ,
,
0 0
0 0 0 C
C x y z f x y z
C x y z t
y
C x y z t
z
C
x L z
y
( , , , ) , , ,
, , ,
,
, , ,
0
0
0
= ( )
∂ ( )
∂
=
∂ ( )
∂
= =
=
=
∂ ( )
∂
=
=
0 0
,
, , ,
.
C x y z t
z x Lz
Here, C(x,y,z,t) is the spatiotemporal distribution of concentration of dopant; Ω is the atomic volume of
dopant; Ñs
is the symbol of surficial gradient; C x y z t d z
Lz
, , ,
( )
∫
0
is the surficial concentration of dopant
on interface between layers of heterostructure (in this situation, we assume that Z-axis is perpendicular
to interface between layers of heterostructure); m1
(x,y,z,t) is the chemical potential due to the presence of
mismatch-induced stress; and D and DS
are the coefficients of volumetric and surficial diffusions. Values
of dopant diffusions coefficients depend on properties of materials of heterostructure, speed of heating
and cooling of materials during annealing, and spatiotemporal distribution of concentration of dopant.
Dependences of dopant diffusions coefficients on parameters could be approximated by the following
relations.[22-24]
D D x y z T
C x y z t
P x y z T
V x y z t
C L
= ( ) +
( )
( )





 +
(
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
)
)
+
( )
( )








V
V x y z t
V
* *
, , ,
,
ς2
2
2
D D x y z T
C x y z t
P x y z T
V x y z
S S L S
= ( ) +
( )
( )





 +
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
t
t
V
V x y z t
V
( )
+
( )
( )








* *
, , ,
.
ς2
2
2
 (2)
Here, DL
(x,y,z,T) and DLS
(x,y,z,T) are the spatial (due to accounting all layers of heterostructure) and
temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of
annealing; P(x,y,z,T) is the limit of solubility of dopant; parameter g depends on properties of materials
and could be integer in the following interval g Î;[1,3,22]
V (x,y,z,t) is the spatiotemporal distribution of
concentration of radiation vacancies; V*
is the equilibrium distribution of vacancies. Concentration
dependenceofdopantdiffusioncoefficienthasbeendescribedindetailsin.[22]
Spatiotemporaldistributions
of the concentration of point radiation defects have been determined by solving the following system of
equations.[20,23,24]








I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
I x y z t
y
( )
( )








  + ( )
( )





 − ( ) (




z
D x y z T
I x y z t
z
k x y z T I x y z t
I I I
, , ,
, , ,
, , , , , ,
,
2
)
)− ( )
k x y z T
I V
, , , ,
  × ( ) ( )+
∂
∂
∇ ( ) ( )
I x y z t V x y z t
x
D
kT
x y z t I x y W t dW
IS
S
Lz
, , , , , , , , , , , ,
Ω
0
∫
∫








  +
∂
∂
∇ ( ) ( )








∫
Ω
y
D
kT
x y z t I x y W t dW
IS
S
Lz
, , , , , ,
0
 (3)
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 39








V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
V x y z t
y
( )
( )








  + ( )
( )





 − ( ) (




z
D x y z T
V x y z t
z
k x y z T V x y z t
V V V
, , ,
, , ,
, , , , , ,
,
2
)
)− ( )
k x y z T
I V
, , , ,
  × ( ) ( )+
∂
∂
∇ ( ) ( )
I x y z t V x y z t
x
D
kT
x y z t V x y W t dW
VS
S
Lz
, , , , , , , , , , , ,
Ω
0
∫
∫








  ×
∂
∂
∇ ( ) ( )








∫
Ω
y
D
kT
x y z t V x y W t dW
VS
S
Lz
, , , , , ,
0
With boundary and initial conditions,






I x y z t
x
I x y z t
x
I x y z t
y
x x L y
x
, , ,
,
, , ,
,
, , ,
,
( )
=
( )
=
( )
=
= = =
0 0
0 0
0







I x y z t
y
I x y z t
z
I x y z t
z
y L z z L
y z
, , ,
,
, , ,
,
, , ,
( )
=
( )
=
( )
=
= = =
0 0
0
0
0 0 0
0 0
,
, , ,
,
, , ,
,
, , ,






V x y z t
x
V x y z t
x
V x y z t
y
x x L y
x
( )
=
( )
=
( )
= = =
=
=
( )
=
( )
=
( )
= = =
0 0 0
0
,
, , ,
,
, , ,
,
, , ,






V x y z t
y
V x y z t
z
V x y z t
z
y L z z
y L
L
I V
z
I x y z f x y z V x y z f x y z
= ( ) = ( ) ( ) = ( )
0 0 0
, , , , , , , , , , , , .  (4)
Here, I (x,y,z,t) is the spatiotemporal distribution of concentration of radiation interstitials; I* is the
equilibrium distribution of interstitials; DI
(x,y,z,T), DV
(x,y,z,T), DIS
(x,y, z,T), and DVS
(x,y,z,T) are
the coefficients of volumetric and surficial diffusions of interstitials and vacancies, respectively;
terms V2
(x,y,z,t) and I2
(x,y,z,t) correspond to generation of divacancies and di-interstitials,
respectively (for example,[24]
and appropriate references in this book); and kI,V
(x,y,z,T), kI,I
(x,y,z,T),
and kV,V
(x,y,z,T) are the parameters of recombination of point radiation defects and generation of
their complexes.
Spatiotemporal distributions of divacancies FV
(x,y,z,t) and di-interstitials FI
(x,y,z, t) could be determined
by solving the following system of equations.[20,23,24]








Φ Φ
Φ Φ
I I
x y z t
t x
D x y z T
x y z t
x y
D x
I I
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )








Φ
  + ( )
( )





 +
∂
∂
∇
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
I
I
I S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
1 (
( ) ( )








∫ ΦI
L
x y W t dW
z
, , ,
0
  +
∂
∂
∇ ( ) ( )








+
∫
Ω Φ
Φ
y
D
kT
x y z t x y W t dW k x y
I
z
S
S I
L
I I
1
0
, , , , , , , ,
, z
z T I x y z t
, , , ,
( ) ( )
2
  + ( ) ( )
k x y z T I x y z t
I , , , , , ,  (5)
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 40








Φ Φ
Φ Φ
V V
x y z t
t x
D x y z T
x y z t
x y
D x
V V
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )








Φ
  ( )
( )
( ) ( )
1
0
, , ,
, , , , , , , , ,
z
V
V
L
S
V
S V
D
x y z t
D x y z T x y z t x y W t dW
z z x kT

Φ
Φ
 
 
∂Φ
∂ ∂
+ + Ω ∇ Φ
 
 
∂ ∂ ∂  
   
∫
  ( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
V
L
S
S V V V
D
x y z t x y W t dW k x y z T V x y z t
y kT

Φ
 
∂
+Ω ∇ Φ +
 
∂  
 
∫
  + ( ) ( )
k x y z T V x y z t
V , , , , , ,
With boundary and initial conditions,
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
0 0
0
0 0
0
, , , , , , , , ,
0, 0,
, , , , , , , , ,
0, 0, 0,
, , , , , , , , ,
0, 0, 0, 0,
, , , , , ,
0,
x
y z
x
y
I I I
x x L y
I I I
y L z z L
V V V
x x L y
V V
y L z
x y z t x y z t x y z t
x x y
x y z t x y z t x y z t
y z z
x y z t x y z t x y z t
x x y
x y z t x y z t
y z
  
  
  
  
  
  
 
 
= = =
= = =
= = =
= =
Φ Φ Φ
= =
Φ Φ Φ
= =
Φ Φ Φ
= = =
Φ Φ
=
( )
( ) ( ) ( ) ( )
, , ,
0, 0,
, , ,0 , , , , , ,0 , , .
z
V
z L
I I V V
x y z t
z
x y z f x y z x y z f x y z

 =
Φ Φ
Φ
= =
Φ = Φ = (6)
Here, DI
(x,y,z,T), DV
(x,y,z,T), DIS
(x,y,z,T), and DVS
(x,y,z,T) are the coefficients of volumetric and
surficial diffusions of complexes of radiation defects; kI
(x,y,z,T) and kV
(x,y,z,T) are the parameters of
decay of complexes of radiation defects.
Chemical potential m1
in Equation (1) could be determined by the following relation: [20]
m1
=E(z)Wsij
[uij
(x,y,z,t)+uji
(x,y,z,t)]/2,(7)
Where, E(z) is the Young modulus, sij
is the stress tensor; u
u
x
u
x
ij
i
j
j
i
=
∂
∂
+
∂
∂






1
2
is the deformation tensor;
ui
, uj
are the components ux
(x,y,z,t), uy
(x,y,z,t), and uz
(x,y,z,t) of the displacement vector

u x y z t
, , ,
( ); and
xi
, xj
are the coordinate x, y, z. The Equation (3) could be transformed to the following form.
x y z t
u x y z t
x
u x y z t
x
u x y
i
j
j
i
i
, , ,
, , , , , , ,
( ) =
∂ ( )
∂
+
∂ ( )
∂








∂
1
2
,
, , , , ,
z t
x
u x y z t
x
j
j
i
( )
∂
+
∂ ( )
∂













− +
( )
− ( )
∂ ( )
∂
−





 − ( ) ( )
ε δ
σ δ
σ
ε β
0 0
1 2
3
ij
ij k
k
z
z
u x y z t
x
K z z T x
, , ,
, y
y z t T E z
ij
, , ,
( )−

 






( )
0
2
δ
Ω
Where, s is Poisson coefficient; e0
= (as
-aEL
)/aEL
is the mismatch parameter; as
, aEL
are lattice distances
of the substrate and the epitaxial layer; K is the modulus of uniform compression; b is the coefficient
of thermal expansion; and Tr
is the equilibrium temperature, which coincides (for our case) with room
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 41
temperature. Components of displacement vector could be obtained by solution of the following
equations.[25]
ρ
σ σ σ
z
u x y z t
t
x y z t
x
x y z t
y
x
x xx xy xz
( )
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
2
2
, , , , , , , , , ,
, , ,
, , , , , , , , ,
y z t
z
z
u x y z t
t
x y z t
x
x y z
y yx yy
( )
∂
( )
∂ ( )
∂
=
∂ ( )
∂
+
∂
ρ
σ σ
2
2
t
t
y
x y z t
z
z
u x y z t
t
x y z t
x
yz
z zx
( )
∂
+
∂ ( )
∂
( )
∂ ( )
∂
=
∂ ( )
∂
σ
ρ
σ
, , ,
, , , , , ,
2
2
+
+
∂ ( )
∂
+
∂ ( )
∂











σ σ
zy zz
x y z t
y
x y z t
z
, , , , , ,
Where, σ
σ
δ
ij
i
j
j
i
ij k
E z
z
u x y z t
x
u x y z t
x
u
=
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂
−
∂
2 1 3
, , , , , , x
x y z t
x
K z
u x y z t
x
k
ij
k
k
, , , , , ,
( )
∂








+ ( ) ×
∂ ( )
∂
−
δ
×
∂ ( )
∂
− ( ) ( ) ( )−

 

u x y z t
x
z K z T x y z t T
k
k
r
, , ,
, , ,
 r(z) is the density of materials of heterostructure, and dij
is the Kronecker symbol. With account, the relation for sij
last system of equation could be written as
follows.
ρ
σ
z
u x y z t
t
K z
E z
z
u x
x x
( )
∂ ( )
∂
= ( )+
( )
+ ( )

 











∂
2
2
2
5
6 1
, , , , y
y z t
x
K z
E z
z
, ,
( )
∂
+ ( )−
( )
+ ( )

 











2
3 1 σ
  ×
∂ ( )
∂ ∂
+
( )
+ ( )

 

∂ ( )
∂
+
∂
2 2
2
2
2 1
u x y z t
x y
E z
z
u x y z t
y
u x y
y y z
, , , , , , ,

,
, ,
z t
z
K z
E z
z
( )
∂








+ ( )+
( )
+ ( )

 









2
3 1 
  ×
∂ ( )
∂ ∂
− ( ) ( )
∂ ( )
∂
2
u x y z t
x z
K z z
T x y z t
x
z , , , , , ,

ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u x
y y x
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
2
2 1
, , , , , , ,
, , , , , ,
y z t
x y
T x y z t
y
( )
∂ ∂








−
∂ ( )
∂
  × ( ) ( )+
∂
∂
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂

K z z
z
E z
z
u x y z t
z
u x y z t
y
y z
β
σ
2 1
, , , , , ,
















+
∂ ( )
∂
2
2
u x y z t
y
y , , ,
  ×
( )
+ ( )

 

+ ( )










+ ( )−
( )
+ ( )

 





5
12 1 6 1
E z
z
K z K z
E z
z
 







∂ ( )
∂ ∂
+ ( )
∂ ( )
∂ ∂
2 2
u x y z t
y z
K z
u x y z t
x y
y y
, , , , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u x
z z z
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
2
2 1
, , , , , , ,
, , , , , ,
y z t
y
u x y z t
x z
x
( )
∂
+
∂ ( )
∂ ∂


 2
2
  +
∂ ( )
∂ ∂




+
∂
∂
( )
∂ ( )
∂
+
∂ ( )
∂
2
u x y z t
y z z
K z
u x y z t
x
u x y z t
y x y
, , , , , , , , ,
y
y
u x y z t
z
x
+
∂ ( )
∂
















, , ,
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 42
  +
∂
∂
( )
+ ( )
∂ ( )
∂
−
∂ ( )
∂
−
∂ (
1
6 1
6
z
E z
z
u x y z t
z
u x y z t
x
u x y z t
z x y

, , , , , , , , , )
)
∂
−
∂ ( )
∂
















y
u x y z t
z
z , , ,
  −K z z
T x y z t
z
( ) ( )
∂ ( )
∂

, , ,
. (8)
Conditions for the system of Equation (8) could be written in the form.
∂ ( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
=
∂
   
u y z t
x
u L y z t
x
u x z t
y
u x L
x
0
0 0
0
0
, , ,
;
, , ,
;
, , ,
;
, y
y
z
z t
y
u x y t
z
u x y L t
z
u x y z
, ,
;
, , ,
;
, , ,
; , , ,
( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
= (
0
0
0 0 0
 

)
) = ∞
( ) =
  
u u x y z u
0 0
; , , , .
We determine spatiotemporal distributions of concentrations of dopant and radiation defects by solving
the Equations (1), (3), and (5) framework standard method of averaging of function corrections.[26]
Previously, we transform the Equations (1), (3), and (5) to the following form with account initial
distributions of the considered concentrations.
∂ ( )
∂
=
∂
∂
∂ ( )
∂





 +
∂
∂
∂ ( )
∂



C x y z t
t x
D
C x y z t
x y
D
C x y z t
y
, , , , , , , , , 


 +
∂
∂
∂ ( )
∂






z
D
C x y z t
z
, , ,
  + ( ) ( )+
∂
∂
∇ ( ) ( )







∫
f x y z t
x
D
kT
x y z t C x y W t dW
C
S
S
Lz
, , , , , , , ,
δ µ
Ω
0 

  ( ) ( )
0
, , , , , ,
z
L
S
S
D
x y z t C x y W t dW
y kT

 
∂
+Ω ∇
 
∂  
 
∫  (1a)








I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
I x y z t
y
( )
( )








  + ( )
( )





 +
∂
∂
∇ ( )
∂
∂
∂
∂
µ
z
D x y z T
I x y z t
z x
D
kT
x y z t I
I
IS
S
, , ,
, , ,
, , ,
Ω 1 x
x y W t dW
Lz
, , ,
( )








∫
0
  ( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
L
IS
S I I
D
x y z t I x y W t dW k x y z T I x y z t
y kT

 
∂
+Ω ∇ −
 
∂  
 
∫
  − ( ) ( ) ( )+ ( ) ( )
k x y z T I x y z t V x y z t f x y z t
I V I
, , , , , , , , , , , ,   (3a)








V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
V x y z t
y
( )
( )








  + ( )
( )





 +
∂
∂
∇ ( )
∂
∂
∂
∂
µ
z
D x y z T
V x y z t
z x
D
kT
x y z t V
V
VS
S
, , ,
, , ,
, , ,
Ω 1 x
x y W t dW
Lz
, , ,
( )








∫
0
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 43
  ( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
L
IS
S V V
D
x y z t I x y W t dW k x y z T V x y z t
y kT

 
∂
+Ω ∇ −
 
∂  
 
∫
  − ( ) ( ) ( )+ ( ) ( )
k x y z T I x y z t V x y z t f x y z t
I V V
, , , , , , , , , , , , 








Φ Φ
Φ Φ
I I
x y z t
t x
D x y z T
x y z t
x y
D x
I I
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )








Φ
  + ( )
( )





 +
∂
∂
∇
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
I
I
I S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
1 (
( ) ( )








∫ ΦI
L
x y W t dW
z
, , ,
0
  ( ) ( ) ( ) ( )
1
0
, , , , , , , , , , , ,
z
I
L
S
S I I
D
x y z t x y W t dW k x y z T I x y z t
y kT

Φ
 
∂
+Ω ∇ Φ +
 
∂  
 
∫
  + ( ) ( )+ ( ) ( )
k x y z T I x y z t f x y z t
I I I
, , , , , , , , ,
2
Φ   (5a)








Φ Φ
Φ Φ
V V
x y z t
t x
D x y z T
x y z t
x y
D x
V V
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )








Φ
  + ( )
( )





 +
∂
∂
∇
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
V
V
V S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
1 (
( ) ( )








∫ ΦV
L
x y W t dW
z
, , ,
0
  ( ) ( ) ( ) ( )
1
0
, , , , , , , , , , , ,
z
I
L
S
S I I
D
x y z t x y W t dW k x y z T I x y z t
y kT

Φ
 
∂
+Ω ∇ Φ +
 
∂  
 
∫
  + ( ) ( )+ ( ) ( )
k x y z T V x y z t f x y z t
V V V
, , , , , , , , ,
2
Φ  .
Farther, we replace concentrations of dopant and radiation defects in the right sides of Equations (1a),
(3a), and (5a) on their not yet known average values a1ρ
. In this situation, we obtain equations for the
first-order approximations of the required concentrations in the following form.
∂ ( )
∂
=
∂
∂
∇ ( )





 +
∂
∂
C x y z t
t x
z
D
kT
x y z t
y
z
D
k
C
S
S C
S
1
1 1 1
, , ,
, , ,
α µ α
Ω Ω
T
T
x y z t
S
∇ ( )






µ1 , , ,
  + ( ) ( )
f x y z t
C , ,   (1b)
∂
∂
α µ α
I x y z t
t
z
x
D
kT
x y z t
y
z
D
I
IS
S I
IS
1
1 1
, , ,
, , ,
( )
=
∂
∂
∇ ( )





 +
∂
∂
Ω Ω
k
kT
x y z t
S
∇ ( )






µ , , ,
+ ( ) ( )− ( )− ( )
f x y z t k x y z T k x y z T
I I I I I V I V
, , , , , , , ,
, ,
δ α α α
1
2
1 1  (3b)
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 44
∂
∂
α µ α
V x y z t
t
z
x
D
kT
x y z t
y
z
D
V
VS
S V
V
1
1 1 1
, , ,
, , ,
( )
=
∂
∂
∇ ( )





 +
∂
∂
Ω Ω S
S
S
kT
x y z t
∇ ( )






µ1 , , ,
  + ( ) ( )− ( )− ( )
f x y z t k x y z T k x y z T
V V V V I V I V
, , , , , , , ,
, ,
δ α α α
1
2
1 1
∂
∂
α µ α
Φ
Ω Ω
Φ
Φ
Φ
1
1 1 1
I S
S
x y z t
t
z
x
D
kT
x y z t z
I
I
I
, , ,
, , ,
( )
=
∂
∂
∇ ( )





 +
∂
∂
∂
∇ ( )






y
D
kT
x y z t
I S
S
Φ
µ1 , , ,
  + ( ) ( )+ ( ) ( )+ ( )
f x y z t k x y z T I x y z t k x y z T I x y z
I I I I
Φ , , , , , , , , , , , , ,
,
 2
,
,t
( ) (5b)
∂
∂
α µ α
Φ
Ω Ω
Φ
Φ
Φ
1
1 1 1
V S
S
x y z t
t
z
x
D
kT
x y z t z
V
V
V
, , ,
, , ,
( )
=
∂
∂
∇ ( )





 +
∂
∂
∂
∇ ( )






y
D
kT
x y z t
V S
S
Φ
µ1 , , ,
  + ( ) ( )+ ( ) ( )+ ( )
f x y z t k x y z T V x y z t k x y z T V x y z
V V V V
Φ , , , , , , , , , , , , ,
,
 2
,
,t
( ).
Integration of the left and right sides of the Equations (1b), (3b), and (5b) on time gives us possibility to
obtain relations for above approximation in the final form.
C x y z t
x
D x y z T
z
kT
V x y z
V
V x y
C S L
1 1 1 2
2
1
, , , , , ,
, , , ,
*
( ) =
∂
∂
( ) +
( )
+
α ς
τ
ς
Ω
,
, ,
*
z
V
t
τ
( )
( )








∫ 2
0
  ×∇ ( ) +
( )











+
∂
∂
S
S C
C S L
x y z
P x y z T
d
y
D x
µ τ
ξ α
τ α
γ
γ
1
1
1
1
, , ,
, , ,
, y
y z T
P x y z T
S C
t
, ,
, , ,
( ) +
( )





 +
∫ 1 1
0
ξ αγ
γ
  × ∇ ( ) +
( )
+
( )
( )





Ω S x y z
z
kT
V x y z
V
V x y z
V
µ τ ς
τ
ς
τ
1 1 2
2
2
1
, , ,
, , , , , ,
* *




+ ( )
d f x y z
C
τ , ,  (1c)
I x y z t z
x
D
kT
x y z d z
y
D
kT
I
IS
S
t
I
IS
1 1 1
0
1
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ α
Ω Ω S
S
t
x y z d
µ τ τ
1
0
, , ,
( )
∫
  + ( )− ( ) − ( )
∫ ∫
f x y z k x y z T d k x y z T d
I I I I
t
I V I V
t
, , , , , , , ,
, ,
α τ α α τ
1
2
0
1 1
0
 (3c)
V x y z t z
x
D
kT
x y z d z
y
D
kT
V
IS
S
t
V
IS
1 1 1
0
1
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ α
Ω Ω S
S
t
x y z d
µ τ τ
1
0
, , ,
( )
∫
  + ( )− ( ) − ( )
∫ ∫
f x y z k x y z T d k x y z T d
V V V V
t
I V I V
t
, , , , , , , ,
, ,
α τ α α τ
1
2
0
1 1
0
Φ Ω Ω
Φ
Φ Φ
1 1 1
0
I
S
S
t
S
x y z t z
x
D
kT
x y z d
x
D
kT
I
I I
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ S
S
t
x y z d
µ τ τ
1
0
, , ,
( )
∫
  × + ( )+ + ( ) ( ) + (
∫
α τ τ
1
0
Φ Φ
I I
z f x y z k x y z T I x y z d k x y z T
I
t
I I
, , , , , , , , , , ,
, )
) ( )
∫ I x y z d
t
2
0
, , ,τ τ  (5c)
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 45
Φ Ω Ω
Φ
Φ Φ
1 1 1
0
V
S
S
t
S
x y z t z
x
D
kT
x y z d
x
D
kT
V
V V
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ S
S
t
x y z d
µ τ τ
1
0
, , ,
( )
∫
  × + ( )+ ( ) ( ) + ( )
∫
α τ τ
1
0
Φ Φ
V V
z f x y z k x y z T V x y z d k x y z T
V
t
V V
, , , , , , , , , , ,
, V
V x y z d
t
2
0
, , ,τ τ
( )
∫ .
We determine average values of the first-order approximations of concentrations of dopant and radiation
defects by the following standard relation.[26]
α ρ
ρ
1 1
0
0
0
0
1
= ( )
∫
∫
∫
∫
Θ
Θ
L L L
x y z t d z d y d x d t
x y z
L
L
L z
y
x
, , , . (9)
Substitution of the relations (1c), (3c). and (5c) into relation (9) gives us possibility to obtain required
average values in the following form
 
1
0
0
0
1
3
2
4
2
1
4
4
C
x y z
C
L
L
L
I
L L L
f x y z d z d y d x
a A
a
B
z
y
x
= ( ) =
+
( ) − +
∫
∫
∫ , , ,
Θ
Θ Θ
a B L L L a
a
x y z
3
2
1
4
+





 ,
  −
+
= ( ) −
∫
∫
∫
a A
a S
f x y z d z d y d x S
V
IV I
I
L
L
L
I II
z
y
x
3
4
1
00 1 0
0
0
1 0
4
1
, , ,



Θ
0
0 −








ΘL L L
x y z ,
Where, S t k x y z T I x y z t V x y z t d z d y d xd t
ij
i j
L
  
= −
( ) ( ) ( ) ( )
Θ , , , , , , , , , ,
1 1
0
z
z
y
x
L
L
II
a S
∫
∫
∫
∫ =
0
0
0
4 00
Θ
,
  × −
( ) = + − =
S S S a S S S S S a f
IV II VV IV II IV II VV V
00
2
00 00 3 00 00 00
2
00 00 2
, , x
x y z d z d y d x
L
L
L z
y
x
, ,
( )
∫
∫
∫ 0
0
0
  × + + ( )
S S S L L L S S f x y z d z d y d x
IV IV IV x y z VV II I
Lz
00 00
2
00
2 2 2
00 00
0
2
Θ , ,
∫
∫
∫
∫ −
0
0
2 2 2
00
L
L
x y z VV
y
x
L L L S
Θ
  − ( ) = ( )
∫
∫
∫
S f x y z d z d y d x a S f x y z d z d y d x
IV I
L
L
L
IV I
z
y
x
00
2
0
0
0
1 00
, , , , ,
0
0
0
0
0 00
L
L
L
VV
z
y
x
a S
∫
∫
∫ =
,
  × ( )








= + −
∫
∫
∫ f x y z d z d y d x A y
a
a
a
a
I
L
L
L z
y
x
, , ,
0
0
0
2
2 3
2
4
2
2
4
8 4
Θ Θ ,
, B
a
a
q p q
= + + −
Θ 2
4
2 3
3
6
  − + + = −





 − −
q p q q
a
a
a L L L
a a
a
a
a
a
x y z
2 3
3
3
2
4
2 0
1 3
4
2 0
4
2 2
24
4
8
4
,
Θ
Θ Θ Θ Θ
Θ2 3
2
4
a
a






  − − =
−
−
Θ Θ
Θ
Θ
3
2
3
4
3
2 2 2
4
1
2
4
2
2 0 4 1 3
4
2
54 8
4
12
a
a
L L L
a
a
p
a a L L L a a
a
x y z
x y z
,
Θ
Θa
a
2
4
18
,
  1
1 20
0
0
1
Φ Φ
Θ Θ
I I
z
R
L L L
S
L L L L L L
f x y z d z d y d x
I
x y z
II
x y z x y z
L
L
= + + ( )
∫ , ,
y
y
x
L
∫
∫
0
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 46
  1
1 20
0
0
1
Φ Φ
Θ Θ
V V
z
R
L L L
S
L L L L L L
f x y z d z d y d x
V
x y z
VV
x y z x y z
L
L
= + + ( )
∫ , ,
y
y
x
L
∫
∫
0
,
Where, R t k x y z T I x y z t d z d y d xd t
i I
i
L
L
L z
y
x
 = −
( ) ( ) ( )
∫
∫
∫
∫ Θ
Θ
, , , , , ,
1
0
0
0
0
.
We determine approximations of the second and higher orders of concentrations of dopant and radiation
defects framework standard iterative procedure of the method of averaging of function corrections.[26]
Framework this procedure to determine approximations of the n-th order of concentrations of dopant
and radiation defects, we replace the required concentrations in the Equations (1c), (3c), and (5c) on the
following sum anr
+r n-1
(x,y,z,t). The replacement leads to the following transformation of the appropriate
equations.
∂ ( )
∂
=
∂
∂
+
+ ( )

 

( )






C x y z t
t x
C x y z t
P x y z T
C
2 2 1
1
, , , , , ,
, , ,
ξ
α
γ
γ 




+
( )
+
( )
( )












1 1 2
2
2
ς ς
V x y z t
V
V x y z t
V
, , , , , ,
* *
  × ( )
∂ ( )
∂


 +
∂
∂
+
( )
+
D x y z T
C x y z t
x y
V x y z t
V
V x y
L , , ,
, , , , , , , ,
*
1
1 2
2
1  
z
z t
V
C x y z t
y
, , , ,
*
( )
( )








∂ ( )
∂




2
1
  × ( ) +
+ ( )

 

( )












D x y z T
C x y z t
P x y z T
L
C
, , ,
, , ,
, , ,
1
2 1
ξ
α
γ
γ



+
∂
∂
+
( )
+
( )
( )












z
V x y z t
V
V x y z t
V
1 1 2
2
2
ς ς
, , , , , ,
* *
  × ( )
∂ ( )
∂
+
+ ( )

 

D x y z T
C x y z t
z
C x y z t
P x y z T
L
C
, , ,
, , , , , ,
, , ,
1 2 1
1 ξ
α
γ
γ
(
( )














+ ( ) ( )
f x y z t
C , , δ
  +
∂
∂
∇ ( ) + ( )

 











∫
Ω
x
D
kT
x y z t C x y W t dW
S
S C
Lz
µ α
1 2
0
, , , , , ,
  +
∂
∂
∇ ( ) + ( )

 











∫
Ω
y
D
kT
x y z t C x y W t dW
S
S C
Lz
µ α
1 2
0
, , , , , ,  (1d)








I x y z t
t x
D x y z T
I x y z t
x y
D x y
I I
2 1
, , ,
, , ,
, , ,
,
( )
= ( )
( )





 + ,
, ,
, , ,
z T
I x y z t
y
( )
( )








1
  + ( )
( )





 − ( ) +
∂
∂
∂
∂
α
z
D x y z T
I x y z t
z
k x y z T I x y
I I I I
, , ,
, , ,
, , , ,
,
1
1 1 ,
, , , , ,
,
z t k x y z T
I V
( )

 
 − ( )
2
  × + ( )

 
 + ( )

 
 +
∂
∂
∇ ( )
α α µ α
1 1 1 1 2
I V S
I x y z t V x y z t
x
x y z t
, , , , , , , , ,
Ω I
I
L
I x y W t dW
z
+ ( )

 






∫ 1
0
, , ,
  ×



+
∂
∂
∇ ( ) + ( )

 


 ∫
D
kT y
D
kT
x y z t I x y W t dW
IS IS
S I
Lz
Ω µ α
, , , , , ,
2 1
0









 (3d)
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 47








V x y z t
t x
D x y z T
V x y z t
x y
D x y
V V
2 1
, , ,
, , ,
, , ,
,
( )
= ( )
( )





 + ,
, ,
, , ,
z T
V x y z t
y
( )
( )








1
  + ( )
( )





 − ( ) +
∂
∂
∂
∂
α
z
D x y z T
V x y z t
z
k x y z T V x y
V V V V
, , ,
, , ,
, , , ,
,
1
1 1 ,
, , , , ,
,
z t k x y z T
I V
( )

 
 − ( )
2
  × + ( )

 
 + ( )

 
 +
∂
∂
∇ ( )
α α µ α
1 1 1 1 2
I V S
I x y z t V x y z t
x
x y z t
, , , , , , , , ,
Ω V
V
L
V x y W t dW
z
+ ( )

 






∫ 1
0
, , ,
  ×



+
∂
∂
∇ ( ) + ( )

 


 ∫
D
kT y
D
kT
x y z t V x y W t dW
VS VS
S V
Lz
Ω µ α
, , , , , ,
2 1
0

















Φ Φ
Φ Φ
2 1
I I
x y z t
t x
D x y z T
x y z t
x y
D
I
, , ,
, , ,
, , ,
( )
= ( )
( )





 + I
I
x y z T
x y z t
y
I
, , ,
, , ,
( )
( )








Φ1
  +
∂
∂
∇ ( ) + ( )












∫
Ω Φ
Φ
Φ
x
D
kT
x y z t x y W t dW
I
I
z
S
S I
L
µ α
, , , , , ,
2 1
0 


+ ( ) ( )
k x y z T I x y z t
I I
, , , , , , ,
2
  +
∂
∂
∇ ( ) + ( )












∫
Ω Φ
Φ
Φ
y
D
kT
x y z t x y W t dW
I
I
z
S
S I
L
µ α
, , , , , ,
2 1
0 


+ ( ) ( )
k x y z T I x y z t
I , , , , , ,
  + ( )
( )





 + ( ) ( )
∂
∂
∂
∂
δ
z
D x y z T
x y z t
z
f x y z t
I I
I
Φ Φ
Φ
, , ,
, , ,
, ,
1
 (5d)








Φ Φ
Φ Φ
2 1
V V
x y z t
t x
D x y z T
x y z t
x y
D
V
, , ,
, , ,
, , ,
( )
= ( )
( )





 + V
V
x y z T
x y z t
y
V
, , ,
, , ,
( )
( )








Φ1
  +
∂
∂
∇ ( ) + ( )












∫
Ω Φ
Φ
Φ
x
D
kT
x y z t x y W t dW
V
V
z
S
S V
L
µ α
, , , , , ,
2 1
0 


+ ( ) ( )
k x y z T V x y z t
V V
, , , , , , ,
2
  +
∂
∂
∇ ( ) + ( )












∫
Ω Φ
Φ
Φ
y
D
kT
x y z t x y W t dW
V
V
z
S
S V
L
µ α
, , , , , ,
2 1
0 


+ ( ) ( )
k x y z T V x y z t
V , , , , , ,
  + ( )
( )





 + ( ) ( )
∂
∂
∂
∂
δ
z
D x y z T
x y z t
z
f x y z t
V V
V
Φ Φ
Φ
, , ,
, , ,
, ,
1
.
Integration of the left and the right sides of Equations (1d), (3d), and (5d) gives us possibility to obtain
relations for the required concentrations in the final form
C x y z t
x
C x y z
P x y z T
C
2
2 1
1
, , ,
, , ,
, , ,
( ) =
∂
∂
+
+ ( )

 

( )









ξ
α τ
γ
γ


+
( )
+
( )
( )








∫ 1 1 2
2
2
0
ς
τ
ς
τ
V x y z
V
V x y z
V
t
, , , , , ,
* *
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 48
  × ( )
∂ ( )
∂
+
∂
∂
( ) +
( )
D x y z T
C x y z
x
d
y
D x y z T
V x y z
V
L L
, , ,
, , ,
, , ,
, , ,
1
1
1
τ
τ ς
τ
*
* *
, , ,
+
( )
( )








∫ ς
τ
2
2
2
0
V x y z
V
t
  ×
∂ ( )
∂
+
+ ( )

 

( )









C x y z
y
C x y z t
P x y z T
C
1 2 1
1
, , , , , ,
, , ,
τ
ξ
α
γ
γ


+
∂
∂
+
( )
+
( )
( )








∫
z
V x y z
V
V x y z
V
t
1 1 2
2
2
0
ς
τ
ς
τ
, , , , , ,
* *
  × ( )
∂ ( )
∂
+
+ ( )

 

D x y z T
C x y z
z
C x y z
P x y z T
L
C
, , ,
, , , , , ,
, , ,
1 2 1
1
τ
ξ
α τ
γ
γ
(
( )










+ ( )
d f x y z
C
τ , ,
  +
∂
∂
∇ ( ) + ( )

 
 +
∂
∂
∇
∫
∫
Ω
x
D
kT
x y z C x y W dW d
y
S
S C
L
t
S
z
µ τ α τ τ µ
, , , , , ,
2 1
0
0
x
x y z
t
, , ,τ
( )
∫
0
  × + ( )

 

∫
Ω
D
kT
C x y W dW d
S
C
Lz
α τ τ
2 1
0
, , ,  (1e)
I x y z t
x
D x y z T
I x y z
x
d
y
D x y z T
I
t
I
2
1
0
, , , , , ,
, , ,
, , ,
( ) = ( )
( )
+
∫
∂
∂
∂ τ
∂
τ
∂
∂
(
( )
( )
∫
∂ τ
∂
τ
I x y z
y
d
t
1
0
, , ,
  + ( )
( )
− ( ) +
∫
∂
∂
∂ τ
∂
τ α
z
D x y z T
I x y z
z
d k x y z T I x y
I
t
I I I
, , ,
, , ,
, , , , ,
,
1
0
2 1 z
z d
t
,τ τ
( )

 

∫
2
0
  − ( ) + ( )

 
 + ( )

 
 +
∫k x y z T I x y z V x y z d
I V I V
t
, , , , , , , , , ,
α τ α τ τ
2 1 2 1
0
∂
∂
∂
∇ ( )
∫
x
x y z
S
t
µ τ
, , ,
0
  × + ( )

 
 +
∂
∂
∇ ( ) +
∫
Ω
D
kT
I x y W dW d
y
x y z I x
IS
I
L
S I
z
α τ τ µ τ α
2 1
0
2 1
, , , , , , , y
y W
L
t z
, ,τ
( )

 

∫
∫ 0
0
  × Ω
D
kT
d W d
IS
  (3e)
V x y z t
x
D x y z T
V x y z
x
d
y
D x y z T
V
t
V
2
1
0
, , , , , ,
, , ,
, , ,
( ) = ( )
( )
+
∫
∂
∂
∂ τ
∂
τ
∂
∂
(
( )
( )
∫
∂ τ
∂
τ
V x y z
y
d
t
1
0
, , ,
  + ( )
( )
− ( ) +
∫
∂
∂
∂ τ
∂
τ α
z
D x y z T
V x y z
z
d k x y z T V x y
V
t
V V V
, , ,
, , ,
, , , , ,
,
1
0
2 1 z
z d
t
,τ τ
( )

 

∫
2
0
  − ( ) + ( )

 
 + ( )

 
 +
∫k x y z T I x y z V x y z d
I V I V
t
, , , , , , , , , ,
α τ α τ τ
2 1 2 1
0
∂
∂
∂
∇ ( )
∫
x
x y z
S
t
µ τ
, , ,
0
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 49
  × + ( )

 
 +
∂
∂
∇ ( ) +
∫
Ω
D
kT
V x y W dW d
y
x y z V x
VS
V
L
S V
z
α τ τ µ τ α
2 1
0
2 1
, , , , , , , y
y W
L
t z
, ,τ
( )

 

∫
∫ 0
0
  × + ( )
Ω
D
kT
d W d f x y z
VS
V
 , ,
Φ
Φ Φ
Φ
2
1
0
1
I
I
t
I
x y z t
x
D x y z T
x y z
x
d
y
x
I
, , , , , ,
, , , ,
( ) = ( )
( )
+
∫
∂
∂
∂ τ
∂
τ
∂
∂
∂ y
y z
y
t
, ,τ
∂
( )
∫
0
  × ( ) + ( )
( )
+
∂
∂
∇
∫
D x y z T d
z
D x y z T
x y z
z
d
x
I I
I
t
S
Φ Φ
Φ
Ω
, , , , , ,
, , ,
τ
∂
∂
∂ τ
∂
τ
1
0
µ
µ τ
x y z
t
, , ,
( )
∫
0
  × + ( )



 +
∂
∂
+
∫
D
kT
x y W dW d
y
D
kT
x y
I
I
z
I
I
S
I
L
S
I
Φ
Φ
Φ
Φ
Φ Ω Φ
α τ τ α
2 1
0
2 1
, , , , ,
, ,
W dW
L
t z
τ
( )




∫
∫ 0
0
  × ∇ ( ) + ( ) ( ) + ( )
∫
S I I
t
I
x y z d k x y z T I x y z d k x y z T I
µ τ τ τ τ
, , , , , , , , , , , ,
,
2
0
x
x y z d
t
, , ,τ τ
( )
∫
0
  + ( )
f x y z
I
Φ , ,  (5e)
Φ
Φ Φ
Φ
2
1
0
1
V
V
t
V
x y z t
x
D x y z T
x y z
x
d
y
x
V
, , , , , ,
, , , ,
( ) = ( )
( )
+
∫
∂
∂
∂ τ
∂
τ
∂
∂
∂ y
y z
y
t
, ,τ
∂
( )
∫
0
  × ( ) + ( )
( )
+
∂
∂
∇
∫
D x y z T d
z
D x y z T
x y z
z
d
x
V V
V
t
S
Φ Φ
Φ
Ω
, , , , , ,
, , ,
τ
∂
∂
∂ τ
∂
τ
1
0
µ
µ τ
x y z
t
, , ,
( )
∫
0
  × + ( )



 +
∂
∂
+
∫
D
kT
x y W dW d
y
D
kT
x y
V
V
z
V
V
S
V
L
S
V
Φ
Φ
Φ
Φ
Φ Ω Φ
α τ τ α
2 1
0
2 1
, , , , ,
, ,
W dW
L
t z
τ
( )




∫
∫ 0
0
  × ∇ ( ) + ( ) ( ) + ( )
∫
S V V
t
V
x y z d k x y z T V x y z d k x y z T V
µ τ τ τ τ
, , , , , , , , , , , ,
,
2
0
x
x y z d
t
, , ,τ τ
( )
∫
0
  + ( )
f x y z
V
Φ , , .
Average values of the second-order approximations of required approximations using the following
standard relation.[26]
α ρ ρ
ρ
2 2 1
0
0
0
1
= ( )− ( )

 

∫
∫
ΘL L L
x y z t x y z t d z d y d x d t
x y z
L
L
L z
y
x
, , , , , ,
∫
∫
∫
0
Θ
. (10)
Substitution of the relations (1e), (3e), and (5e) into relation (10) gives us possibility to obtain relations
for required average values a2r
a a a
b E
b
F
a F L L L b
b
C I V V
x y z
2 2 2 2
3
2
4
2
3
2
1
4
0 0 0
4
4
= = = =
+
( ) − +
+


, , ,
Φ Φ
Θ Θ
 



 −
+
b E
b
3
4
4
,
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 50

 
2
2
2
00 2 01 10 02 11
0
2
I
V V VV V VV IV x y z V V IV
IV
C S S S L L L S S
S
=
− − + +
( ) − −
Θ
1
1 2 00
+ V IV
S
,
Where, b
L L L
S S
L L L
S S b
S S
x y z
IV V V
x y z
VV II
II VV
4 00
2
00 00
2
00 3
00 00
1 1
= − = −
Θ Θ Θ
,
L
L L L
S S
x y z
VV IV
2 01 10
+
(
  + )+ + + +
( )+
Θ
Θ
Θ
L L L
S S
L L L
S S S L L L
S
x y z
IV VV
x y z
IV II IV x y z
I
00 00
01 10 01
2 V
V
x y z
VV IV
L L L
S S
00
2
01 10
2
Θ
+
(
  + )− =
Θ
Θ Θ
L L L
S S
L L L
b
S S
L L L
S
x y z
IV IV
x y z
II VV
x y z
VV
00
2
10
3 3 3 3 2
00 00
02
, +
+ +
( )− − +
(
S C S S L L
IV V IV VV x y
11 10 01
2 Θ
  × ) + + +
( )+
L
S S
L L L
L L L S S
S
L L L
z
IV VV
x y z
x y z II IV
IV
x y z
2 01 00
10 01
00
2
Θ
Θ
Θ
S
S S S L L
IV II IV x y
01 10 01
2 2
+ + +
( Θ
  × ) + +
( )− − −
( )+
L S L L L S
S
L L L
C S S
C
z VV x y z IV
IV
x y z
V VV IV
2 01 10
00
2
02 11
Θ
Θ
I
I IV
x y z
IV
x y z
S
L L L
S
L L L
00
2
2 2 2 2
10
2
Θ Θ
−
  × =
+ +
+ +
S S b S
S S C
L L L
S S L L
IV IV II
IV VV V
x y z
VV IV x
00 01 1 00
11 02
01 10
2
,
Θ
Θ y
y z
IV
x y z
x y
L
S
L L L
L L
( )+ (
01
Θ
Θ
  × + + ) + +
( )− −
L S S S S LL L
S S
L L L
z II IV VV IV y z
IV IV
x y z
2 2
10 01 01 10
10 01
2
Θ
Θ
S
S
L L L
S S
IV
x y z
IV II
00
01 10
3 2
Θ
+
(
  + ) − −
( )+ =
Θ
Θ
L L L C S S C S S b
S
L L L
S
x y z V VV IV I IV IV
II
x y z
IV
02 11 00 01 0
00
2 , 0
00 02
2 01
+
( ) −
S
S
L L L
VV
IV
x y z
  × + +
( ) − −
( )+ −
1
2 2
10 01 02 11 01
2
01
Θ
ΘL L L S S C S S C S S
C
x y z II IV V VV IV I IV IV
V
V VV IV
x y z
S S
L L L
− −
02 11
Θ
  × + +
( ) = +
1
2 10 01
1 1
00
1
2
00
Θ
Θ
Θ Θ
L L L S S C
L L L
S
S
x y z II IV I
I V
x y z
IV
I II
,
  
L
L L L
S S
L L L
S
L L L
x y z
II II
x y z
IV
x y z
− −
20 20 11
Θ Θ
C S S S S E y
a
a
a
a
V I V IV V VV VV IV
= + − − = + −
  
1 1 00 1
2
00 02 11
2 3
2
4
2
2
4
8 4
, ,
Θ Θ F
F
a
a
=
Θ 2
4
6
  + + − − + + = −





 −
r s r r s r r
b
b
b L L L
b b
b
b
x y z
2 3
3 2 3
3
3
2
4
2 0
1 3
4
3
2
24
4
,
Θ
Θ
Θ 3
3
4
3 0
2
4
2
54 8
b
b
b
−
Θ
  × −





 − =
−
4
8
4
2
2 3
2
4
2 2 2
4
1
2
4
2
2 0 4 1
Θ Θ
Θ
Θ
Θ
b
b
b
L L L
b
b
s
b b L L L b
x y z
x y z
,
b
b
b
b
b
3
4
2
2
4
12 18
−
Θ
.
Farther, we determine solutions of Equations (8), i.e., components of displacement vector. To determine
the first-order approximations of the considered components framework method of averaging of function
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 51
corrections, we replace the required functions in the right sides of the equations by their not yet known
average values ai
. The substitution leads to the following result.
ρ β ρ
z
u x y z t
t
K z z
T x y z t
x
z
u x y
x y
( )
∂ ( )
∂
= − ( ) ( )
∂ ( )
∂
( )
∂
2
1
2
2
1
, , , , , ,
,
, , z
z t
t
,
( )
∂ 2
  = − ( ) ( )
∂ ( )
∂
( )
∂ ( )
∂
= − ( ) ( )
∂
K z z
T x y z t
y
z
u x y z t
t
K z z
T x
z
β ρ β
, , ,
,
, , ,
2
1
2
,
, , ,
y z t
z
( )
∂
.
Integration of the left and the right sides of the above relations on time t leads to the following result.
u x y z t u K z
z
z x
T x y z d d
x x
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( )
∫
∫
β
ρ
τ τ ϑ
ϑ
  − ( )
( )
( )
∂
∂
( )
∫
∫
∞
K z
z
z x
T x y z d d
β
ρ
τ τ ϑ
ϑ
, , , ,
0
0
u x y z t u K z
z
z y
T x y z d d
y y
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( )
∫
∫
β
ρ
τ τ ϑ
ϑ
  − ( )
( )
( )
∂
∂
( )
∫
∫
∞
K z
z
z y
T x y z d d
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
,
u x y z t u K z
z
z z
T x y z d d
z z
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( )
∫
∫
β
ρ
τ τ ϑ
ϑ
  − ( )
( )
( )
∂
∂
( )
∫
∫
∞
K z
z
z z
T x y z d d
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
.
Approximations of the second and higher orders of components of displacement vector could be
determined using standard replacement of the required components on the following sums ai
+ui
(x,y,z,t).[26]
The replacement leads to the following result.
ρ
σ
z
u x y z t
t
K z
E z
z
u
x x
( )
∂ ( )
∂
= ( )+
( )
+ ( )

 











∂
2
2
2
2
1
5
6 1
, , , x
x y z t
x
K z
E z
z
, , ,
( )
∂
+ ( )−
( )
+ ( )

 











2
3 1 σ
  ×
∂ ( )
∂ ∂
+
( )
+ ( )

 

∂ ( )
∂
+
∂
2
1
2
1
2
2
1
2 1
u x y z t
x y
E z
z
u x y z t
y
u
y y z
, , , , , ,

x
x y z t
z
T x y z t
x
, , , , , ,
( )
∂








−
∂ ( )
∂
2
  × ( ) ( )+ ( )+
( )
+ ( )

 











∂ ( )
∂ ∂
K z z K z
E z
z
u x y z t
x z
z
β
σ
3 1
2
1 , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u
y y
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
1
2
2
2 1
, , , , , , 1
1x x y z t
x y
T x y z t
y
, , , , , ,
( )
∂ ∂








−
∂ ( )
∂
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 52
  × ( ) ( )+
∂
∂
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂
K z z
z
E z
z
u x y z t
z
u x y z t
y z
β
σ
2 1
1 1
, , , , , ,
y
y
u x y z t
y
y
















+
∂ ( )
∂
2
1
2
, , ,
  ×
( )
+ ( )

 

+ ( )










+ ( )−
( )
+ ( )

 





5
12 1 6 1
E z
z
K z K z
E z
z
 







∂ ( )
∂ ∂
+ ( )
∂ ( )
∂ ∂
2
1
2
1
u x y z t
y z
K z
u x y z t
x y
y y
, , , , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u
z z
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
1
2
2
2 1
, , , , , , 1
1
2
2
1
z x
x y z t
y
u x y z t
x z
, , , , , ,
( )
∂
+
∂ ( )
∂ ∂



  +
∂ ( )
∂ ∂




+
∂
∂
( )
∂ ( )
∂
+
∂
2
1 1 1
u x y z t
y z z
K z
u x y z t
x
u x y z t
y x y
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂
















y
u x y z t
z
x
1 , , ,
  +
( )
+ ( )

 

∂
∂
∂ ( )
∂
−
∂ ( )
∂
−
∂
E z
z z
u x y z t
z
u x y z t
x
u x
z x y
6 1
6 1 1 1

, , , , , , , y
y z t
y
u x y z t
z
z
, , , , ,
( )
∂
−
∂ ( )
∂






1
  −
∂ ( )
∂
−
∂ ( )
∂
−
∂ ( )
∂








u x y z t
x
u x y z t
y
u x y z t
z
E z
x y z
1 1 1
, , , , , , , , , (
( )
+ ( )
− ( ) ( )
∂ ( )
∂
1 σ
β
z
K z z
T x y z t
z
, , ,
.
Integration of the left and right sides of the above relations on time t leads to the following result.
u x y z t
z
K z
E z
z x
u x
x x
2
2
2 1
1 5
6 1
, , ,
( ) =
( )
( )+
( )
+ ( )

 











∂
∂
ρ σ
,
, , ,
y z d d
z
K z
t
τ τ ϑ
ρ
ϑ
( ) +
( )
( )
{
∫
∫ 0
0
1
   −
( )
+ ( )

 






∂
∂ ∂
( ) +
( )
(
∫
∫
E z
z x y
u x y z d d
E z
z
y
t
3 1 2
2
1
0
0
σ
τ τ ϑ
ρ
ϑ
, , ,
)
)
∂
∂
( )


 ∫
∫
2
2 1
0
0
y
u x y z d d
y
t
, , ,τ τ ϑ
ϑ
  +
∂
∂
( )



+ ( )
+
( )
∂
∂ ∂
∫
∫
2
2 1
0
0
2
1
1
1
1
z
u x y z d d
z z x z
u x y z
z
t
z
, , , , ,
τ τ ϑ
σ ρ
ϑ
,
,τ τ ϑ
ϑ
( ) ( )
{
∫
∫ d d K z
t
0
0
  +
( )
+ ( )

 






− ( )
( )
( )
∂
∂
( ) −
∫
∫
E z
z
K z
z
z x
T x y z d d
t
3 1 0
0
σ
β
ρ
τ τ ϑ
ϑ
, , ,
∂
∂
∂
( )
∫
∫
∞
2
2 1
0
0
x
u x y z d d
x , , ,τ τ ϑ
ϑ
  ×
( )
( )+
( )
+ ( )

 











− ( )−
( )
+ ( )

 

1 5
6 1 3 1
ρ σ σ
z
K z
E z
z
K z
E z
z











∂
∂ ∂
( )
∫
∫
∞
2
1
0
0
x y
u x y z d d
y , , ,τ τ ϑ
ϑ
  ×
( )
−
( )
( ) + ( )

 

∂
∂
( ) +
∂
∂
∫
∫
∞
1
2 1
2
2 1
0
0
2
ρ ρ σ
τ τ ϑ
ϑ
z
E z
z z y
u x y z d d
z
y , , , 2
2 1
0
0
u x y z d d
z , , ,τ τ ϑ
ϑ
( )






∫
∫
∞
  −
( )
( )+
( )
+ ( )

 











∂
∂ ∂
( )
1
3 1
2
1
ρ σ
τ τ ϑ
z
K z
E z
z x z
u x y z d d
z , , ,
0
0
0
0
ϑ
β
ρ
∫
∫
∞
+ + ( )
( )
( )
u K z
z
z
x
  ×
∂
∂
( )
∫
∫
∞
x
T x y z d d
, , ,τ τ ϑ
ϑ
0
0
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 53
u x y z t
E z
z x
u x y z d d
x y
u
y x
t
2
2
2 1
0
0
2
1
2
, , , , , ,
( ) =
( )
( )
∂
∂
( ) +
∂
∂ ∂
∫
∫
ρ
τ τ ϑ
ϑ
x
x
t
x y z d d
, , ,τ τ ϑ
ϑ
( )






∫
∫ 0
0
  ×
+ ( )
+
( )
( )
∂
∂ ∂
( ) +
( )
( )
∫
∫
1
1
1 5
12
2
1
0
0
σ ρ
τ τ ϑ
ρ
ϑ
z
K z
z x y
u x y z d d
z
E z
y
t
, , ,
1
1+ ( )

 

+ ( )










σ z
K z
  ×
∂
∂
( ) +
( )
∂
∂
( )
+ ( )
∂
∂
∫
∫
2
2 1
0
0
1
1
2 1
y
u x y z d d
z z
E z
z z
u x y
x
t
y
, , , , ,
τ τ ϑ
ρ σ
ϑ
z
z d d
t
,τ τ ϑ
ϑ
( )








∫
∫ 0
0
  +
∂
∂
( )








− ( )
( )
( )
( )
∫
∫
y
u x y z d d K z
z
z
T x y z d
z
t
1
0
0
, , , , , ,
τ τ ϑ
β
ρ
τ
ϑ
τ
τ ϑ
σ
ϑ
d
E z
z
t
0
0 6 1
∫
∫ −
( )
+ ( )

 






  − ( )


 ( )
∂
∂ ∂
( ) −
( )
( )
∂
∂
∫
∫
K z
z y z
u x y z d d
E z
z x
u
y
t
1
2
2
1
0
0
2
2 1
ρ
τ τ ϑ
ρ
ϑ
, , , x
x x y z d d
, , ,τ τ ϑ
ϑ
( )


 ∫
∫
∞
0
0
  +
∂
∂ ∂
( )



+ ( )
− ( )
( )
( )
∫
∫
∞
2
1
0
0
1
1
x y
u x y z d d
z
K z
z
z
T x y z
x , , , , ,
τ τ ϑ
σ
β
ρ
ϑ
,
,τ τ ϑ
ρ
ϑ
( ) −
( )
( )
∫
∫
∞
d d
K z
z
0
0
  ×
∂
∂ ∂
( ) −
( )
∂
∂
( )
∫
∫
∞
2
1
0
0
2
2 1
0
1
x y
u x y z d d
z y
u x y z d d
y x
, , , , , ,
τ τ ϑ
ρ
τ τ ϑ
ϑ ϑ
∫
∫
∫
∞
( )
+ ( )

 






0
5
12 1
E z
z
σ
+ ( )



−
∂
∂
( )
+ ( )
∂
∂
( ) +
∂
∂
∫
∫
∞
K z
z
E z
z z
u x y z d d
y
u x y
y z
1
1
0
0
1
σ
τ τ ϑ
ϑ
, , , , , z
z d d
,τ τ ϑ
ϑ
( )
















∫
∫
∞
0
0
  ×
( )
−
( )
( )−
( )
+ ( )

 











∂
∂ ∂
1
2
1
6 1
2
1
ρ ρ σ
z z
K z
E z
z y z
u x y z
y , , ,τ
τ τ ϑ
ϑ
( ) +
∫
∫
∞
d d u y
0
0
0
u x y z t
E z
z x
u x y z d d
z z
, , , , , ,
( ) =
( )
+ ( )

 

∂
∂
( ) +
∂
∂
∫
∫
∞
2 1
2
2 1
0
0
2
σ
τ τ ϑ
ϑ
y
y
u x y z d d
z
2 1
0
0
, , ,τ τ ϑ
ϑ
( )


 ∫
∫
∞
  +
∂
∂ ∂
( ) +
∂
∂ ∂
( )
∫
∫ ∫
∫
∞ ∞
2
1
0
0
2
1
0
0
x z
u x y z d d
y z
u x y z d d
x y
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ




( )
+
( )
1 1
ρ ρ
z z
  ×
∂
∂
( )
∂
∂
( ) +
∂
∂
( )
∫
∫ ∫
∞ ∞
z
K z
x
u x y z d d
y
u x y z d d
x x
1
0
0
1
0
0
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ
∫
∫








  +
∂
∂
( )








+
( )
∂
∂
( )
+ ( )
∂
∂
∫
∫
∞
z
u x y z d d
z z
E z
z z
x
1
0
0
1
6 1
6
, , ,τ τ ϑ
ρ σ
ϑ
u
u x y z d d
z
1
0
0
, , ,τ τ ϑ
ϑ
( )








∫
∫
∞
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 54
  −
∂
∂
( ) −
∂
∂
( ) −
∂
∂
∫
∫ ∫
∫
∞ ∞
x
u x y z d d
y
u x y z d d
z
u
x y
1
0
0
1
0
0
1
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ
z
z x y z d d
, , ,τ τ ϑ
ϑ
( )








∫
∫
∞
0
0
  − ( )
( )
( )
∂
∂
( ) +
∫
∫
∞
K z
z
z z
T x y z d d u z
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
0 .
Framework this paper, we determine concentration of dopant, concentrations of radiation defects,
and components of displacement vector using the second-order approximation framework method of
averaging of function corrections. This approximation is usually enough good approximation to make
qualitative analysis and to obtain some quantitative results. All obtained results have been checked by
comparison with results of numerical simulations.
DISCUSSION
In this section, we analyzed dynamics of redistributions of dopant and radiation defects during annealing
and under influence of mismatch-induced stress. Typical distributions of concentrations of dopant in
heterostructures are presented in Figures 2 and 3 for diffusion and ion types of doping, respectively. These
distributions have been calculated for the case when value of dopant diffusion coefficient in the epitaxial
layer is larger than in the substrate. The figures show that inhomogeneity of heterostructure gives us
possibility to increase compactness of transistors. At the same time, one can find increasing homogeneity
of dopant distribution in doped part of epitaxial layer. Increasing of compactness of transistors gives us
possibility to increase their density.
The second effect leads to decrease local heating of materials during functioning of transistors or
decreasing of their dimensions for fixed maximal value of local overheat. However, this framework
approach of manufacturing of bipolar transistor, it is necessary to optimize annealing of dopant and/or
radiation defects. If annealing time is small, the dopant did not achieve any interfaces between materials
of heterostructure. In this situation, one cannot find any modifications of distribution of concentration
of dopant. If annealing time is large, distribution of the concentration of dopant is too homogenous.
We optimize annealing time framework recently introduces approach.[15,25-32]
Framework this criterion,
Figure 2: Distributions of the concentration of infused dopant in heterostructure from Figure 1 in direction, which is
perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to increase of
difference between values of dopant diffusion coefficient in layers of heterostructure under condition when value of dopant
diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 55
we approximate real distribution of concentration of dopant by step-wise function [Figures 4 and 5].
Farther, we determine optimal values of annealing time by minimization of the following mean-squared
error.
U
L L L
C x y z x y z d z d y d x
x y z
L
L
L z
y
x
= ( )− ( )

 

∫
∫
∫
1
0
0
0
, , , , ,
Θ   , (15)
Figure 3:DistributionsofconcentrationofimplanteddopantinheterostructurefromFigure 1indirection,whichisperpendicular
to interface between epitaxial layer substrate. Curves 1 and 3 correspond to annealing time Θ  = 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0
.
Curves 2 and 4 correspond to annealing time Θ = 0.0057(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 1 and 2 correspond to homogenous sample.
Curves 3 and 4 correspond to heterostructure under condition when value of dopant diffusion coefficient in epitaxial layer is
larger than the value of dopant diffusion coefficient in substrate
Figure 4: Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of dopant.
Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds
to increase of annealing time
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 56
Where, y (x,y,z) is the approximation function. Dependences of optimal values of annealing time on
parameters are presented in Figures 6 and 7 for diffusion and ion types of doping, respectively. It should
be noted that it is necessary to anneal radiation defects after ion implantation. One could find spreading
of concentration of distribution of dopant during this annealing. In the ideal case, distribution of dopant
achieves appropriate interfaces between materials of heterostructure during annealing of radiation
Figure 5: Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of dopant.
Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds
to increase of annealing time
Figure 6: Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by
minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing
time on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure.
Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L = 1/2 and x = g = 0.
Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L = 1/2 and e = g = 0. Curve
4 is the dependence of dimensionless optimal annealing time on value of parameter g for a/L = 1/2 and e = x = 0
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 57
defects. If dopant did not achieve any interfaces during annealing of radiation defects, it is practicably to
additionally anneal the dopant. In this situation, optimal value of additional annealing time of implanted
dopant is smaller than annealing time of infused dopant.
Farther, we analyzed the influence of relaxation of mechanical stress on distribution of dopant in doped
areas of heterostructure. Under the following condition e0
 0, one can find compression of distribution of
concentration of dopant near interface between materials of heterostructure. Contrary (at e0
 0) one can
find spreading of distribution of the concentration of dopant in this area. This changing of distribution
Figure 7: Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained
by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing
time on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure.
Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L = 1/2 and x = g = 0. Curve
3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L = 1/2 and e = g = 0. Curve 4 is
the dependence of dimensionless optimal annealing time on value of parameter g for a/L = 1/2 and e = x = 0
Figure 8: Normalized distributions of charge carrier mobility in the considered heterostructure. Curve 1 corresponds to
the heterostructure, which has been considered in Figure 1. Curve 2 corresponds to a homogenous material with averaged
parameters of heterostructure from Figure 1
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 58
of the concentration of dopant could be at least partially compensated using laser annealing.[29]
This
type of annealing gives us possibility to accelerate diffusion of dopant and another process in annealed
area due to inhomogeneous distribution of temperature and Arrhenius law Figure 8. Accounting
relaxation of mismatch-induced stress in heterostructure could lead to change of optimal values of
annealing time. Mismatch-induced stress could be used to increase density of elements of integrated
circuits, on the other hand, could lead to generation dislocations of the discrepancy. Figure 9 shows
distributions of the component of displacement vector, which is perpendicular to interface between
layers of heterostructure.
CONCLUSION
In this paper, we model redistribution of infused and implanted dopants with account relaxation
mismatch-induced stress during manufacturing a bipolar heterotransistors framework a circuit of voltage
divider biasing common emitter amplifier. We formulate recommendations for optimization of annealing
to decrease dimensions of transistors and to increase their density. We formulate recommendations to
decrease mismatch-induced stress. Analytical approach to model diffusion and ion types of doping with
account concurrent changing of parameters in space and time has been introduced. At the same time, the
approach gives us possibility to take into account non-linearity of considered processes.
REFERENCES
1.	 Lachin VI, Savelov NS. Electronics. Rostov-on-Don: Phoenix; 2001.
2.	 Polishscuk A. Mod Electron 2004;12:8.
3.	 Volovich G. Mod Electron 2006;2:10.
4.	 Kerentsev A, Lanin V. Power Electron 2008;1:34.
5.	 Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudrik YA, et al. Semiconductors 2009;43:897.
6.	 Tsai JH, Chiu SY, Lour WS, Guo DF. Semiconductors 2009;43:971.
7.	 Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Semiconductors 1998;32:1029.
8.	 Ermolovich IB, Milenin VV, Red’ko RA, Red’ko SM. Semiconductors 2009;43:1016.
9.	 Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via
band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett 2013;102:53901.
10.	 Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in
p-type ZnO. Appl Phys Lett 2013;102:152114.
Figure 9: Normalized dependences of component uz
of displacement vector on coordinate z for nonporous (curve 1) and
porous (curve 2) epitaxial layers
Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier
AJMS/Jan-Mar-2019/Vol 3/Issue 1 59
11.	 Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. Semiconductors
2013;35:1013.
12.	 Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. analytical
approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci
2013;1:58.
13.	 Chen X, Xue J, Xie SH, Huang W, Wang P, Gong K, et al. Error analysis of approximate calculation of voltage divider
biased common-emitter amplifier. Circuits Syst 2017;8:247-52.
14.	 Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial growth of zinc oxide by the method of atomic layer deposition on
SiC/Si substrates. Phys Solid State 2016;58:1448-52.
15.	 Trukhanov EM, Kolesnikov AV, Loshkarev ID. Long-range stresses generated by misfit dislocations in epitaxial films.
Russ Microelectron 2015;44:552-8.
16.	 Pankratov EL, Bulaeva EA. On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model
physical processes in reactors for epitaxy from gas phase during growth films. Rev Theor Sci 2015;3:365-98.
17.	 Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the
maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111.
18.	 Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901.
19.	 Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in
semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836.
20.	 Zhang YW, Bower AF. Numerical simulations of island formation in a coherent strained epitaxial thin film system.
J Mech Phys Solids 1999;47:2273-97.
21.	 Landau LD, Lefshits EM. Theoretical Physics, Theory of Elasticity. Vol. 7. Moscow: Physmatlit; 2001.
22.	 Gotra ZU. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991.
23.	 Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289.
24.	 Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979.
25.	 Pankratov EL, Bulaeva EA. An approach to manufac-ture of bipolar transistors in thin film structures. On the method of
optimization. Int J Micro-Nano Scale Transp 2014;4:17.
26.	 Sokolov YD. About the definition of dynamic forces in the mine lifting. Appl Mech 1955;1:23-35.
27.	 Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity.
Russ Microelectron 2007;36:33-9.
28.	 Pankratov EL. Int J Nanosci 2008;7:187.
29.	 Pankratov EL, Bulaeva EA. Decreasing of quantity of radiation defects in an im-planted-junction rectifiers by using
overlayers. Int J Micro-Nano Scale Transp 2012;3:119-30.
30.	 Pankratov EL. Nano 2011;6:31.
31.	 Pankratov EL, Bulaeva EA. Application of radiation processing of materials to increase sharpness of p-n-junction in a
semiconductor heterostructure. J Comp Theor Nanosci 2013;10:1888-94.
32.	 Pankratov EL, Bulaeva EA. On prognosis of technological process to optimize manufacturing of an invertors to increase
density their of elements. J Nanoeng Nanomanuf 2016;6:313-26.

More Related Content

What's hot

MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...BRNSS Publication Hub
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ijoejournal
 
On prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseOn prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseijaceeejournal
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitBRNSS Publication Hub
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...BRNSS Publication Hub
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of driftijcsa
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double basemsejjournal
 

What's hot (17)

MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
 
On prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseOn prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebase
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double base
 

Similar to On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier with Account Mismatch-Induced Stress – On Increasing of Density of Elements

On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopBRNSS Publication Hub
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...BRNSSPublicationHubI
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ijfcstjournal
 

Similar to On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier with Account Mismatch-Induced Stress – On Increasing of Density of Elements (20)

On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
4_AJMS_223_19_RA.pdf
4_AJMS_223_19_RA.pdf4_AJMS_223_19_RA.pdf
4_AJMS_223_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...BRNSS Publication Hub
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHSBRNSS Publication Hub
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRABRNSS Publication Hub
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERSBRNSS Publication Hub
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationBRNSS Publication Hub
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...BRNSS Publication Hub
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseBRNSS Publication Hub
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...BRNSS Publication Hub
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...BRNSS Publication Hub
 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
 

Recently uploaded

Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 

Recently uploaded (20)

Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 

On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier with Account Mismatch-Induced Stress – On Increasing of Density of Elements

  • 1. www.ajms.com 36 ISSN 2581-3463 RESEARCH ARTICLE On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier with Account Mismatch-Induced Stress – On Increasing of Density of Elements E. L. Pankratov1,2 1 Department of Mathematics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia, 2 Department of Mathematics, Nizhny Novgorod State Technical University, 24 in Street, Nizhny Novgorod 603950, Russia Received: 25-10-2018; Revised: 15-11-2018; Accepted: 30-01-2019 ABSTRACT In this paper, we introduce an approach for prognosis of manufacturing of voltage divider biasing common emitter amplifier based on bipolar transistors with account mismatch-induced stress. Based on this prognosis, we formulate some recommendations for optimization of manufacturing of the amplifier. Main aims of the optimization are as follows: (1) Decreasing dimensions of elements of the considered operational amplifier and (2) increasing of performance and reliability of the considered bipolar transistors. Dimensions of considered bipolar transistors will be decreased due to manufacture of these transistors framework heterostructure with specific structure, doping of required areas of the heterostructure by diffusion or ion implantation, and optimization of annealing of dopant and/or radiation defects. Performance and reliability of the above bipolar transistors could be increased by optimization of annealing of dopant and/or radiation defects and using inhomogeneity of the properties of heterostructure. Choosing of inhomogeneity properties of heterostructure leads to increasing of compactness of distribution of concentration of dopant. At the same time, one can obtain increasing of homogeneity of the above concentration. In this paper, we also introduce an analytical approach for prognosis of technological process of manufacturing of the considered operational amplifier. The approach gives a possibility to take into account variation of parameters of processes in space and at the same time in space. At the same time, one can take into account nonlinearity of the considered processes. Key words: Voltage divider biasing common emitter amplifier, increasing integration rate of bipolar transistors, optimization of manufacturing INTRODUCTION In the present time, several actual problems of the solid-state electronics (such as increasing of performance, reliability, and density of elements of integrated circuits: Diodes, and field effect and bipolar transistors) are intensively solving.[1-6] To increase the performance of these devices, it is attracted an interest determination of materials with higher values of charge carriers mobility.[7-10] One way to decrease dimensions of the elements of integrated circuits is manufacturing them in thin-film heterostructures.[3-5,11] In this case, it is possible to use inhomogeneity of heterostructure and necessary optimization of doping of electronic materials[12,13] and development of epitaxial technology to improve these materials (including analysis of mismatch induced stress).[14-16] An alternative approaches to increase dimensions of integrated circuits are using of laser and microwave types of annealing.[17-19] Framework the paper, we introduce an approach to manufacture a bipolar transistor. The approach gives a possibility to dimensions of the transistor framework a voltage divider biasing common Address for correspondence: E. L. Pankratov, E-mail: elp2004@mail.ru
  • 2. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 37 emitter amplifier. We also consider possibility to decrease mismatch-induced stress to decrease quantity of defects, generated due to the stress. In this paper, we consider a heterostructure, which consists of a substrate and an epitaxial layer [Figure 1]. We also consider a buffer layer between the substrate and the epitaxial layer. The epitaxial layer includes into itself several sections, which were manufactured using another material. These sections have been doped by diffusion or ion implantation to manufacture the required types of conductivity (p or n). These areas became sources, drains, and gates [Figure 1]. After this doping, it is required annealing of dopant and/or radiation defects. Main aim of the present paper is the analysis of redistribution of dopant and radiation defects to determine conditions, which corresponds to decrease of the elements of the considered divider and at the same time to increase their density. At the same time, we consider a possibility to decrease mismatch-induced stress. METHOD OF SOLUTION To solve our aim, we determine and analyzed spatiotemporal distribution of the concentration of dopant in the considered heterostructure. We determine the distribution by solving the second Fick’s law in the following form.[1,20-24] ∂ ( ) ∂ = ∂ ∂ ∂ ( ) ∂       + ∂ ∂ ∂ ( ) ∂    C x y z t t x D C x y z t x y D C x y z t y , , , , , , , , ,     + ∂ ∂ ∂ ( ) ∂       z D C x y z t z , , ,   ( ) ( ) 1 0 , , , , , , z L S S D x y z t C x y W t dW x kT    ∂ +Ω ∇   ∂     ∫ ( ) ( ) 1 0 , , , , , , z L S S D x y z t C x y W t dW y kT    ∂ +Ω ∇   ∂     ∫ (1) Figure 1: (a) Structure of the considered voltage divider.[13] (b) Heterostructure with a substrate, epitaxial layers, and buffer layer (view from side) b a
  • 3. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 38 With boundary and initial conditions, ∂ ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = = = = C x y z t x C x y z t x C x y z t y x x L y x , , , , , , , , , , , , 0 0 0 0 0 C C x y z f x y z C x y z t y C x y z t z C x L z y ( , , , ) , , , , , , , , , , 0 0 0 = ( ) ∂ ( ) ∂ = ∂ ( ) ∂ = = = = ∂ ( ) ∂ = = 0 0 , , , , . C x y z t z x Lz Here, C(x,y,z,t) is the spatiotemporal distribution of concentration of dopant; Ω is the atomic volume of dopant; Ñs is the symbol of surficial gradient; C x y z t d z Lz , , , ( ) ∫ 0 is the surficial concentration of dopant on interface between layers of heterostructure (in this situation, we assume that Z-axis is perpendicular to interface between layers of heterostructure); m1 (x,y,z,t) is the chemical potential due to the presence of mismatch-induced stress; and D and DS are the coefficients of volumetric and surficial diffusions. Values of dopant diffusions coefficients depend on properties of materials of heterostructure, speed of heating and cooling of materials during annealing, and spatiotemporal distribution of concentration of dopant. Dependences of dopant diffusions coefficients on parameters could be approximated by the following relations.[22-24] D D x y z T C x y z t P x y z T V x y z t C L = ( ) + ( ) ( )       + ( , , , , , , , , , , , , 1 1 1 ξ ς γ γ ) ) + ( ) ( )         V V x y z t V * * , , , , ς2 2 2 D D x y z T C x y z t P x y z T V x y z S S L S = ( ) + ( ) ( )       + , , , , , , , , , , , , 1 1 1 ξ ς γ γ t t V V x y z t V ( ) + ( ) ( )         * * , , , . ς2 2 2 (2) Here, DL (x,y,z,T) and DLS (x,y,z,T) are the spatial (due to accounting all layers of heterostructure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of annealing; P(x,y,z,T) is the limit of solubility of dopant; parameter g depends on properties of materials and could be integer in the following interval g Î;[1,3,22] V (x,y,z,t) is the spatiotemporal distribution of concentration of radiation vacancies; V* is the equilibrium distribution of vacancies. Concentration dependenceofdopantdiffusioncoefficienthasbeendescribedindetailsin.[22] Spatiotemporaldistributions of the concentration of point radiation defects have been determined by solving the following system of equations.[20,23,24]         I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T I x y z t y ( ) ( )           + ( ) ( )       − ( ) (     z D x y z T I x y z t z k x y z T I x y z t I I I , , , , , , , , , , , , , 2 ) )− ( ) k x y z T I V , , , ,   × ( ) ( )+ ∂ ∂ ∇ ( ) ( ) I x y z t V x y z t x D kT x y z t I x y W t dW IS S Lz , , , , , , , , , , , , Ω 0 ∫ ∫           + ∂ ∂ ∇ ( ) ( )         ∫ Ω y D kT x y z t I x y W t dW IS S Lz , , , , , , 0 (3)
  • 4. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 39         V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T V x y z t y ( ) ( )           + ( ) ( )       − ( ) (     z D x y z T V x y z t z k x y z T V x y z t V V V , , , , , , , , , , , , , 2 ) )− ( ) k x y z T I V , , , ,   × ( ) ( )+ ∂ ∂ ∇ ( ) ( ) I x y z t V x y z t x D kT x y z t V x y W t dW VS S Lz , , , , , , , , , , , , Ω 0 ∫ ∫           × ∂ ∂ ∇ ( ) ( )         ∫ Ω y D kT x y z t V x y W t dW VS S Lz , , , , , , 0 With boundary and initial conditions,       I x y z t x I x y z t x I x y z t y x x L y x , , , , , , , , , , , , ( ) = ( ) = ( ) = = = = 0 0 0 0 0        I x y z t y I x y z t z I x y z t z y L z z L y z , , , , , , , , , , , ( ) = ( ) = ( ) = = = = 0 0 0 0 0 0 0 0 0 , , , , , , , , , , , ,       V x y z t x V x y z t x V x y z t y x x L y x ( ) = ( ) = ( ) = = = = = ( ) = ( ) = ( ) = = = 0 0 0 0 , , , , , , , , , , , ,       V x y z t y V x y z t z V x y z t z y L z z y L L I V z I x y z f x y z V x y z f x y z = ( ) = ( ) ( ) = ( ) 0 0 0 , , , , , , , , , , , , . (4) Here, I (x,y,z,t) is the spatiotemporal distribution of concentration of radiation interstitials; I* is the equilibrium distribution of interstitials; DI (x,y,z,T), DV (x,y,z,T), DIS (x,y, z,T), and DVS (x,y,z,T) are the coefficients of volumetric and surficial diffusions of interstitials and vacancies, respectively; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation of divacancies and di-interstitials, respectively (for example,[24] and appropriate references in this book); and kI,V (x,y,z,T), kI,I (x,y,z,T), and kV,V (x,y,z,T) are the parameters of recombination of point radiation defects and generation of their complexes. Spatiotemporal distributions of divacancies FV (x,y,z,t) and di-interstitials FI (x,y,z, t) could be determined by solving the following system of equations.[20,23,24]         Φ Φ Φ Φ I I x y z t t x D x y z T x y z t x y D x I I , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )         Φ   + ( ) ( )       + ∂ ∂ ∇ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t I I I S S Φ Φ Φ Ω , , , , , , , , , 1 ( ( ) ( )         ∫ ΦI L x y W t dW z , , , 0   + ∂ ∂ ∇ ( ) ( )         + ∫ Ω Φ Φ y D kT x y z t x y W t dW k x y I z S S I L I I 1 0 , , , , , , , , , z z T I x y z t , , , , ( ) ( ) 2   + ( ) ( ) k x y z T I x y z t I , , , , , , (5)
  • 5. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 40         Φ Φ Φ Φ V V x y z t t x D x y z T x y z t x y D x V V , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )         Φ   ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z V V L S V S V D x y z t D x y z T x y z t x y W t dW z z x kT  Φ Φ     ∂Φ ∂ ∂ + + Ω ∇ Φ     ∂ ∂ ∂       ∫   ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z V L S S V V V D x y z t x y W t dW k x y z T V x y z t y kT  Φ   ∂ +Ω ∇ Φ +   ∂     ∫   + ( ) ( ) k x y z T V x y z t V , , , , , , With boundary and initial conditions, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 0 , , , , , , , , , 0, 0, , , , , , , , , , 0, 0, 0, , , , , , , , , , 0, 0, 0, 0, , , , , , , 0, x y z x y I I I x x L y I I I y L z z L V V V x x L y V V y L z x y z t x y z t x y z t x x y x y z t x y z t x y z t y z z x y z t x y z t x y z t x x y x y z t x y z t y z                       = = = = = = = = = = = Φ Φ Φ = = Φ Φ Φ = = Φ Φ Φ = = = Φ Φ = ( ) ( ) ( ) ( ) ( ) , , , 0, 0, , , ,0 , , , , , ,0 , , . z V z L I I V V x y z t z x y z f x y z x y z f x y z   = Φ Φ Φ = = Φ = Φ = (6) Here, DI (x,y,z,T), DV (x,y,z,T), DIS (x,y,z,T), and DVS (x,y,z,T) are the coefficients of volumetric and surficial diffusions of complexes of radiation defects; kI (x,y,z,T) and kV (x,y,z,T) are the parameters of decay of complexes of radiation defects. Chemical potential m1 in Equation (1) could be determined by the following relation: [20] m1 =E(z)Wsij [uij (x,y,z,t)+uji (x,y,z,t)]/2,(7) Where, E(z) is the Young modulus, sij is the stress tensor; u u x u x ij i j j i = ∂ ∂ + ∂ ∂       1 2 is the deformation tensor; ui , uj are the components ux (x,y,z,t), uy (x,y,z,t), and uz (x,y,z,t) of the displacement vector  u x y z t , , , ( ); and xi , xj are the coordinate x, y, z. The Equation (3) could be transformed to the following form. x y z t u x y z t x u x y z t x u x y i j j i i , , , , , , , , , , ( ) = ∂ ( ) ∂ + ∂ ( ) ∂         ∂ 1 2 , , , , , , z t x u x y z t x j j i ( ) ∂ + ∂ ( ) ∂              − + ( ) − ( ) ∂ ( ) ∂ −       − ( ) ( ) ε δ σ δ σ ε β 0 0 1 2 3 ij ij k k z z u x y z t x K z z T x , , , , y y z t T E z ij , , , ( )−          ( ) 0 2 δ Ω Where, s is Poisson coefficient; e0 = (as -aEL )/aEL is the mismatch parameter; as , aEL are lattice distances of the substrate and the epitaxial layer; K is the modulus of uniform compression; b is the coefficient of thermal expansion; and Tr is the equilibrium temperature, which coincides (for our case) with room
  • 6. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 41 temperature. Components of displacement vector could be obtained by solution of the following equations.[25] ρ σ σ σ z u x y z t t x y z t x x y z t y x x xx xy xz ( ) ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ 2 2 , , , , , , , , , , , , , , , , , , , , , , y z t z z u x y z t t x y z t x x y z y yx yy ( ) ∂ ( ) ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ρ σ σ 2 2 t t y x y z t z z u x y z t t x y z t x yz z zx ( ) ∂ + ∂ ( ) ∂ ( ) ∂ ( ) ∂ = ∂ ( ) ∂ σ ρ σ , , , , , , , , , 2 2 + + ∂ ( ) ∂ + ∂ ( ) ∂            σ σ zy zz x y z t y x y z t z , , , , , , Where, σ σ δ ij i j j i ij k E z z u x y z t x u x y z t x u = ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂ − ∂ 2 1 3 , , , , , , x x y z t x K z u x y z t x k ij k k , , , , , , ( ) ∂         + ( ) × ∂ ( ) ∂ − δ × ∂ ( ) ∂ − ( ) ( ) ( )−     u x y z t x z K z T x y z t T k k r , , , , , ,  r(z) is the density of materials of heterostructure, and dij is the Kronecker symbol. With account, the relation for sij last system of equation could be written as follows. ρ σ z u x y z t t K z E z z u x x x ( ) ∂ ( ) ∂ = ( )+ ( ) + ( )               ∂ 2 2 2 5 6 1 , , , , y y z t x K z E z z , , ( ) ∂ + ( )− ( ) + ( )               2 3 1 σ   × ∂ ( ) ∂ ∂ + ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 1 u x y z t x y E z z u x y z t y u x y y y z , , , , , , ,  , , , z t z K z E z z ( ) ∂         + ( )+ ( ) + ( )             2 3 1    × ∂ ( ) ∂ ∂ − ( ) ( ) ∂ ( ) ∂ 2 u x y z t x z K z z T x y z t x z , , , , , ,  ρ σ z u x y z t t E z z u x y z t x u x y y x ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 2 1 , , , , , , , , , , , , , y z t x y T x y z t y ( ) ∂ ∂         − ∂ ( ) ∂   × ( ) ( )+ ∂ ∂ ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂  K z z z E z z u x y z t z u x y z t y y z β σ 2 1 , , , , , ,                 + ∂ ( ) ∂ 2 2 u x y z t y y , , ,   × ( ) + ( )     + ( )           + ( )− ( ) + ( )         5 12 1 6 1 E z z K z K z E z z          ∂ ( ) ∂ ∂ + ( ) ∂ ( ) ∂ ∂ 2 2 u x y z t y z K z u x y z t x y y y , , , , , , ρ σ z u x y z t t E z z u x y z t x u x z z z ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 2 1 , , , , , , , , , , , , , y z t y u x y z t x z x ( ) ∂ + ∂ ( ) ∂ ∂    2 2   + ∂ ( ) ∂ ∂     + ∂ ∂ ( ) ∂ ( ) ∂ + ∂ ( ) ∂ 2 u x y z t y z z K z u x y z t x u x y z t y x y , , , , , , , , , y y u x y z t z x + ∂ ( ) ∂                 , , ,
  • 7. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 42   + ∂ ∂ ( ) + ( ) ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ ( 1 6 1 6 z E z z u x y z t z u x y z t x u x y z t z x y  , , , , , , , , , ) ) ∂ − ∂ ( ) ∂                 y u x y z t z z , , ,   −K z z T x y z t z ( ) ( ) ∂ ( ) ∂  , , , . (8) Conditions for the system of Equation (8) could be written in the form. ∂ ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = ∂     u y z t x u L y z t x u x z t y u x L x 0 0 0 0 0 , , , ; , , , ; , , , ; , y y z z t y u x y t z u x y L t z u x y z , , ; , , , ; , , , ; , , , ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = ( 0 0 0 0 0    ) ) = ∞ ( ) =    u u x y z u 0 0 ; , , , . We determine spatiotemporal distributions of concentrations of dopant and radiation defects by solving the Equations (1), (3), and (5) framework standard method of averaging of function corrections.[26] Previously, we transform the Equations (1), (3), and (5) to the following form with account initial distributions of the considered concentrations. ∂ ( ) ∂ = ∂ ∂ ∂ ( ) ∂       + ∂ ∂ ∂ ( ) ∂    C x y z t t x D C x y z t x y D C x y z t y , , , , , , , , ,     + ∂ ∂ ∂ ( ) ∂       z D C x y z t z , , ,   + ( ) ( )+ ∂ ∂ ∇ ( ) ( )        ∫ f x y z t x D kT x y z t C x y W t dW C S S Lz , , , , , , , , δ µ Ω 0     ( ) ( ) 0 , , , , , , z L S S D x y z t C x y W t dW y kT    ∂ +Ω ∇   ∂     ∫ (1a)         I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T I x y z t y ( ) ( )           + ( ) ( )       + ∂ ∂ ∇ ( ) ∂ ∂ ∂ ∂ µ z D x y z T I x y z t z x D kT x y z t I I IS S , , , , , , , , , Ω 1 x x y W t dW Lz , , , ( )         ∫ 0   ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z L IS S I I D x y z t I x y W t dW k x y z T I x y z t y kT    ∂ +Ω ∇ −   ∂     ∫   − ( ) ( ) ( )+ ( ) ( ) k x y z T I x y z t V x y z t f x y z t I V I , , , , , , , , , , , ,  (3a)         V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T V x y z t y ( ) ( )           + ( ) ( )       + ∂ ∂ ∇ ( ) ∂ ∂ ∂ ∂ µ z D x y z T V x y z t z x D kT x y z t V V VS S , , , , , , , , , Ω 1 x x y W t dW Lz , , , ( )         ∫ 0
  • 8. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 43   ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z L IS S V V D x y z t I x y W t dW k x y z T V x y z t y kT    ∂ +Ω ∇ −   ∂     ∫   − ( ) ( ) ( )+ ( ) ( ) k x y z T I x y z t V x y z t f x y z t I V V , , , , , , , , , , , ,          Φ Φ Φ Φ I I x y z t t x D x y z T x y z t x y D x I I , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )         Φ   + ( ) ( )       + ∂ ∂ ∇ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t I I I S S Φ Φ Φ Ω , , , , , , , , , 1 ( ( ) ( )         ∫ ΦI L x y W t dW z , , , 0   ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I L S S I I D x y z t x y W t dW k x y z T I x y z t y kT  Φ   ∂ +Ω ∇ Φ +   ∂     ∫   + ( ) ( )+ ( ) ( ) k x y z T I x y z t f x y z t I I I , , , , , , , , , 2 Φ  (5a)         Φ Φ Φ Φ V V x y z t t x D x y z T x y z t x y D x V V , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )         Φ   + ( ) ( )       + ∂ ∂ ∇ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t V V V S S Φ Φ Φ Ω , , , , , , , , , 1 ( ( ) ( )         ∫ ΦV L x y W t dW z , , , 0   ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I L S S I I D x y z t x y W t dW k x y z T I x y z t y kT  Φ   ∂ +Ω ∇ Φ +   ∂     ∫   + ( ) ( )+ ( ) ( ) k x y z T V x y z t f x y z t V V V , , , , , , , , , 2 Φ  . Farther, we replace concentrations of dopant and radiation defects in the right sides of Equations (1a), (3a), and (5a) on their not yet known average values a1ρ . In this situation, we obtain equations for the first-order approximations of the required concentrations in the following form. ∂ ( ) ∂ = ∂ ∂ ∇ ( )       + ∂ ∂ C x y z t t x z D kT x y z t y z D k C S S C S 1 1 1 1 , , , , , , α µ α Ω Ω T T x y z t S ∇ ( )       µ1 , , ,   + ( ) ( ) f x y z t C , ,  (1b) ∂ ∂ α µ α I x y z t t z x D kT x y z t y z D I IS S I IS 1 1 1 , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ Ω Ω k kT x y z t S ∇ ( )       µ , , , + ( ) ( )− ( )− ( ) f x y z t k x y z T k x y z T I I I I I V I V , , , , , , , , , , δ α α α 1 2 1 1 (3b)
  • 9. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 44 ∂ ∂ α µ α V x y z t t z x D kT x y z t y z D V VS S V V 1 1 1 1 , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ Ω Ω S S S kT x y z t ∇ ( )       µ1 , , ,   + ( ) ( )− ( )− ( ) f x y z t k x y z T k x y z T V V V V I V I V , , , , , , , , , , δ α α α 1 2 1 1 ∂ ∂ α µ α Φ Ω Ω Φ Φ Φ 1 1 1 1 I S S x y z t t z x D kT x y z t z I I I , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ ∂ ∇ ( )       y D kT x y z t I S S Φ µ1 , , ,   + ( ) ( )+ ( ) ( )+ ( ) f x y z t k x y z T I x y z t k x y z T I x y z I I I I Φ , , , , , , , , , , , , , ,  2 , ,t ( ) (5b) ∂ ∂ α µ α Φ Ω Ω Φ Φ Φ 1 1 1 1 V S S x y z t t z x D kT x y z t z V V V , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ ∂ ∇ ( )       y D kT x y z t V S S Φ µ1 , , ,   + ( ) ( )+ ( ) ( )+ ( ) f x y z t k x y z T V x y z t k x y z T V x y z V V V V Φ , , , , , , , , , , , , , ,  2 , ,t ( ). Integration of the left and right sides of the Equations (1b), (3b), and (5b) on time gives us possibility to obtain relations for above approximation in the final form. C x y z t x D x y z T z kT V x y z V V x y C S L 1 1 1 2 2 1 , , , , , , , , , , * ( ) = ∂ ∂ ( ) + ( ) + α ς τ ς Ω , , , * z V t τ ( ) ( )         ∫ 2 0   ×∇ ( ) + ( )            + ∂ ∂ S S C C S L x y z P x y z T d y D x µ τ ξ α τ α γ γ 1 1 1 1 , , , , , , , y y z T P x y z T S C t , , , , , ( ) + ( )       + ∫ 1 1 0 ξ αγ γ   × ∇ ( ) + ( ) + ( ) ( )      Ω S x y z z kT V x y z V V x y z V µ τ ς τ ς τ 1 1 2 2 2 1 , , , , , , , , , * *     + ( ) d f x y z C τ , , (1c) I x y z t z x D kT x y z d z y D kT I IS S t I IS 1 1 1 0 1 , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ α Ω Ω S S t x y z d µ τ τ 1 0 , , , ( ) ∫   + ( )− ( ) − ( ) ∫ ∫ f x y z k x y z T d k x y z T d I I I I t I V I V t , , , , , , , , , , α τ α α τ 1 2 0 1 1 0 (3c) V x y z t z x D kT x y z d z y D kT V IS S t V IS 1 1 1 0 1 , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ α Ω Ω S S t x y z d µ τ τ 1 0 , , , ( ) ∫   + ( )− ( ) − ( ) ∫ ∫ f x y z k x y z T d k x y z T d V V V V t I V I V t , , , , , , , , , , α τ α α τ 1 2 0 1 1 0 Φ Ω Ω Φ Φ Φ 1 1 1 0 I S S t S x y z t z x D kT x y z d x D kT I I I , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ S S t x y z d µ τ τ 1 0 , , , ( ) ∫   × + ( )+ + ( ) ( ) + ( ∫ α τ τ 1 0 Φ Φ I I z f x y z k x y z T I x y z d k x y z T I t I I , , , , , , , , , , , , ) ) ( ) ∫ I x y z d t 2 0 , , ,τ τ (5c)
  • 10. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 45 Φ Ω Ω Φ Φ Φ 1 1 1 0 V S S t S x y z t z x D kT x y z d x D kT V V V , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ S S t x y z d µ τ τ 1 0 , , , ( ) ∫   × + ( )+ ( ) ( ) + ( ) ∫ α τ τ 1 0 Φ Φ V V z f x y z k x y z T V x y z d k x y z T V t V V , , , , , , , , , , , , V V x y z d t 2 0 , , ,τ τ ( ) ∫ . We determine average values of the first-order approximations of concentrations of dopant and radiation defects by the following standard relation.[26] α ρ ρ 1 1 0 0 0 0 1 = ( ) ∫ ∫ ∫ ∫ Θ Θ L L L x y z t d z d y d x d t x y z L L L z y x , , , . (9) Substitution of the relations (1c), (3c). and (5c) into relation (9) gives us possibility to obtain required average values in the following form   1 0 0 0 1 3 2 4 2 1 4 4 C x y z C L L L I L L L f x y z d z d y d x a A a B z y x = ( ) = + ( ) − + ∫ ∫ ∫ , , , Θ Θ Θ a B L L L a a x y z 3 2 1 4 +       ,   − + = ( ) − ∫ ∫ ∫ a A a S f x y z d z d y d x S V IV I I L L L I II z y x 3 4 1 00 1 0 0 0 1 0 4 1 , , ,    Θ 0 0 −         ΘL L L x y z , Where, S t k x y z T I x y z t V x y z t d z d y d xd t ij i j L    = − ( ) ( ) ( ) ( ) Θ , , , , , , , , , , 1 1 0 z z y x L L II a S ∫ ∫ ∫ ∫ = 0 0 0 4 00 Θ ,   × − ( ) = + − = S S S a S S S S S a f IV II VV IV II IV II VV V 00 2 00 00 3 00 00 00 2 00 00 2 , , x x y z d z d y d x L L L z y x , , ( ) ∫ ∫ ∫ 0 0 0   × + + ( ) S S S L L L S S f x y z d z d y d x IV IV IV x y z VV II I Lz 00 00 2 00 2 2 2 00 00 0 2 Θ , , ∫ ∫ ∫ ∫ − 0 0 2 2 2 00 L L x y z VV y x L L L S Θ   − ( ) = ( ) ∫ ∫ ∫ S f x y z d z d y d x a S f x y z d z d y d x IV I L L L IV I z y x 00 2 0 0 0 1 00 , , , , , 0 0 0 0 0 00 L L L VV z y x a S ∫ ∫ ∫ = ,   × ( )         = + − ∫ ∫ ∫ f x y z d z d y d x A y a a a a I L L L z y x , , , 0 0 0 2 2 3 2 4 2 2 4 8 4 Θ Θ , , B a a q p q = + + − Θ 2 4 2 3 3 6   − + + = −       − − q p q q a a a L L L a a a a a a x y z 2 3 3 3 2 4 2 0 1 3 4 2 0 4 2 2 24 4 8 4 , Θ Θ Θ Θ Θ Θ2 3 2 4 a a         − − = − − Θ Θ Θ Θ 3 2 3 4 3 2 2 2 4 1 2 4 2 2 0 4 1 3 4 2 54 8 4 12 a a L L L a a p a a L L L a a a x y z x y z , Θ Θa a 2 4 18 ,   1 1 20 0 0 1 Φ Φ Θ Θ I I z R L L L S L L L L L L f x y z d z d y d x I x y z II x y z x y z L L = + + ( ) ∫ , , y y x L ∫ ∫ 0
  • 11. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 46   1 1 20 0 0 1 Φ Φ Θ Θ V V z R L L L S L L L L L L f x y z d z d y d x V x y z VV x y z x y z L L = + + ( ) ∫ , , y y x L ∫ ∫ 0 , Where, R t k x y z T I x y z t d z d y d xd t i I i L L L z y x  = − ( ) ( ) ( ) ∫ ∫ ∫ ∫ Θ Θ , , , , , , 1 0 0 0 0 . We determine approximations of the second and higher orders of concentrations of dopant and radiation defects framework standard iterative procedure of the method of averaging of function corrections.[26] Framework this procedure to determine approximations of the n-th order of concentrations of dopant and radiation defects, we replace the required concentrations in the Equations (1c), (3c), and (5c) on the following sum anr +r n-1 (x,y,z,t). The replacement leads to the following transformation of the appropriate equations. ∂ ( ) ∂ = ∂ ∂ + + ( )     ( )       C x y z t t x C x y z t P x y z T C 2 2 1 1 , , , , , , , , , ξ α γ γ      + ( ) + ( ) ( )             1 1 2 2 2 ς ς V x y z t V V x y z t V , , , , , , * *   × ( ) ∂ ( ) ∂    + ∂ ∂ + ( ) + D x y z T C x y z t x y V x y z t V V x y L , , , , , , , , , , , * 1 1 2 2 1   z z t V C x y z t y , , , , * ( ) ( )         ∂ ( ) ∂     2 1   × ( ) + + ( )     ( )             D x y z T C x y z t P x y z T L C , , , , , , , , , 1 2 1 ξ α γ γ    + ∂ ∂ + ( ) + ( ) ( )             z V x y z t V V x y z t V 1 1 2 2 2 ς ς , , , , , , * *   × ( ) ∂ ( ) ∂ + + ( )     D x y z T C x y z t z C x y z t P x y z T L C , , , , , , , , , , , , 1 2 1 1 ξ α γ γ ( ( )               + ( ) ( ) f x y z t C , , δ   + ∂ ∂ ∇ ( ) + ( )               ∫ Ω x D kT x y z t C x y W t dW S S C Lz µ α 1 2 0 , , , , , ,   + ∂ ∂ ∇ ( ) + ( )               ∫ Ω y D kT x y z t C x y W t dW S S C Lz µ α 1 2 0 , , , , , , (1d)         I x y z t t x D x y z T I x y z t x y D x y I I 2 1 , , , , , , , , , , ( ) = ( ) ( )       + , , , , , , z T I x y z t y ( ) ( )         1   + ( ) ( )       − ( ) + ∂ ∂ ∂ ∂ α z D x y z T I x y z t z k x y z T I x y I I I I , , , , , , , , , , , 1 1 1 , , , , , , , z t k x y z T I V ( )     − ( ) 2   × + ( )     + ( )     + ∂ ∂ ∇ ( ) α α µ α 1 1 1 1 2 I V S I x y z t V x y z t x x y z t , , , , , , , , , Ω I I L I x y W t dW z + ( )          ∫ 1 0 , , ,   ×    + ∂ ∂ ∇ ( ) + ( )       ∫ D kT y D kT x y z t I x y W t dW IS IS S I Lz Ω µ α , , , , , , 2 1 0          (3d)
  • 12. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 47         V x y z t t x D x y z T V x y z t x y D x y V V 2 1 , , , , , , , , , , ( ) = ( ) ( )       + , , , , , , z T V x y z t y ( ) ( )         1   + ( ) ( )       − ( ) + ∂ ∂ ∂ ∂ α z D x y z T V x y z t z k x y z T V x y V V V V , , , , , , , , , , , 1 1 1 , , , , , , , z t k x y z T I V ( )     − ( ) 2   × + ( )     + ( )     + ∂ ∂ ∇ ( ) α α µ α 1 1 1 1 2 I V S I x y z t V x y z t x x y z t , , , , , , , , , Ω V V L V x y W t dW z + ( )          ∫ 1 0 , , ,   ×    + ∂ ∂ ∇ ( ) + ( )       ∫ D kT y D kT x y z t V x y W t dW VS VS S V Lz Ω µ α , , , , , , 2 1 0                  Φ Φ Φ Φ 2 1 I I x y z t t x D x y z T x y z t x y D I , , , , , , , , , ( ) = ( ) ( )       + I I x y z T x y z t y I , , , , , , ( ) ( )         Φ1   + ∂ ∂ ∇ ( ) + ( )             ∫ Ω Φ Φ Φ x D kT x y z t x y W t dW I I z S S I L µ α , , , , , , 2 1 0    + ( ) ( ) k x y z T I x y z t I I , , , , , , , 2   + ∂ ∂ ∇ ( ) + ( )             ∫ Ω Φ Φ Φ y D kT x y z t x y W t dW I I z S S I L µ α , , , , , , 2 1 0    + ( ) ( ) k x y z T I x y z t I , , , , , ,   + ( ) ( )       + ( ) ( ) ∂ ∂ ∂ ∂ δ z D x y z T x y z t z f x y z t I I I Φ Φ Φ , , , , , , , , 1 (5d)         Φ Φ Φ Φ 2 1 V V x y z t t x D x y z T x y z t x y D V , , , , , , , , , ( ) = ( ) ( )       + V V x y z T x y z t y V , , , , , , ( ) ( )         Φ1   + ∂ ∂ ∇ ( ) + ( )             ∫ Ω Φ Φ Φ x D kT x y z t x y W t dW V V z S S V L µ α , , , , , , 2 1 0    + ( ) ( ) k x y z T V x y z t V V , , , , , , , 2   + ∂ ∂ ∇ ( ) + ( )             ∫ Ω Φ Φ Φ y D kT x y z t x y W t dW V V z S S V L µ α , , , , , , 2 1 0    + ( ) ( ) k x y z T V x y z t V , , , , , ,   + ( ) ( )       + ( ) ( ) ∂ ∂ ∂ ∂ δ z D x y z T x y z t z f x y z t V V V Φ Φ Φ , , , , , , , , 1 . Integration of the left and the right sides of Equations (1d), (3d), and (5d) gives us possibility to obtain relations for the required concentrations in the final form C x y z t x C x y z P x y z T C 2 2 1 1 , , , , , , , , , ( ) = ∂ ∂ + + ( )     ( )          ξ α τ γ γ   + ( ) + ( ) ( )         ∫ 1 1 2 2 2 0 ς τ ς τ V x y z V V x y z V t , , , , , , * *
  • 13. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 48   × ( ) ∂ ( ) ∂ + ∂ ∂ ( ) + ( ) D x y z T C x y z x d y D x y z T V x y z V L L , , , , , , , , , , , , 1 1 1 τ τ ς τ * * * , , , + ( ) ( )         ∫ ς τ 2 2 2 0 V x y z V t   × ∂ ( ) ∂ + + ( )     ( )          C x y z y C x y z t P x y z T C 1 2 1 1 , , , , , , , , , τ ξ α γ γ   + ∂ ∂ + ( ) + ( ) ( )         ∫ z V x y z V V x y z V t 1 1 2 2 2 0 ς τ ς τ , , , , , , * *   × ( ) ∂ ( ) ∂ + + ( )     D x y z T C x y z z C x y z P x y z T L C , , , , , , , , , , , , 1 2 1 1 τ ξ α τ γ γ ( ( )           + ( ) d f x y z C τ , ,   + ∂ ∂ ∇ ( ) + ( )     + ∂ ∂ ∇ ∫ ∫ Ω x D kT x y z C x y W dW d y S S C L t S z µ τ α τ τ µ , , , , , , 2 1 0 0 x x y z t , , ,τ ( ) ∫ 0   × + ( )     ∫ Ω D kT C x y W dW d S C Lz α τ τ 2 1 0 , , , (1e) I x y z t x D x y z T I x y z x d y D x y z T I t I 2 1 0 , , , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ( ( ) ( ) ∫ ∂ τ ∂ τ I x y z y d t 1 0 , , ,   + ( ) ( ) − ( ) + ∫ ∂ ∂ ∂ τ ∂ τ α z D x y z T I x y z z d k x y z T I x y I t I I I , , , , , , , , , , , , 1 0 2 1 z z d t ,τ τ ( )     ∫ 2 0   − ( ) + ( )     + ( )     + ∫k x y z T I x y z V x y z d I V I V t , , , , , , , , , , α τ α τ τ 2 1 2 1 0 ∂ ∂ ∂ ∇ ( ) ∫ x x y z S t µ τ , , , 0   × + ( )     + ∂ ∂ ∇ ( ) + ∫ Ω D kT I x y W dW d y x y z I x IS I L S I z α τ τ µ τ α 2 1 0 2 1 , , , , , , , y y W L t z , ,τ ( )     ∫ ∫ 0 0   × Ω D kT d W d IS  (3e) V x y z t x D x y z T V x y z x d y D x y z T V t V 2 1 0 , , , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ( ( ) ( ) ∫ ∂ τ ∂ τ V x y z y d t 1 0 , , ,   + ( ) ( ) − ( ) + ∫ ∂ ∂ ∂ τ ∂ τ α z D x y z T V x y z z d k x y z T V x y V t V V V , , , , , , , , , , , , 1 0 2 1 z z d t ,τ τ ( )     ∫ 2 0   − ( ) + ( )     + ( )     + ∫k x y z T I x y z V x y z d I V I V t , , , , , , , , , , α τ α τ τ 2 1 2 1 0 ∂ ∂ ∂ ∇ ( ) ∫ x x y z S t µ τ , , , 0
  • 14. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 49   × + ( )     + ∂ ∂ ∇ ( ) + ∫ Ω D kT V x y W dW d y x y z V x VS V L S V z α τ τ µ τ α 2 1 0 2 1 , , , , , , , y y W L t z , ,τ ( )     ∫ ∫ 0 0   × + ( ) Ω D kT d W d f x y z VS V  , , Φ Φ Φ Φ 2 1 0 1 I I t I x y z t x D x y z T x y z x d y x I , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ y y z y t , ,τ ∂ ( ) ∫ 0   × ( ) + ( ) ( ) + ∂ ∂ ∇ ∫ D x y z T d z D x y z T x y z z d x I I I t S Φ Φ Φ Ω , , , , , , , , , τ ∂ ∂ ∂ τ ∂ τ 1 0 µ µ τ x y z t , , , ( ) ∫ 0   × + ( )     + ∂ ∂ + ∫ D kT x y W dW d y D kT x y I I z I I S I L S I Φ Φ Φ Φ Φ Ω Φ α τ τ α 2 1 0 2 1 , , , , , , , W dW L t z τ ( )     ∫ ∫ 0 0   × ∇ ( ) + ( ) ( ) + ( ) ∫ S I I t I x y z d k x y z T I x y z d k x y z T I µ τ τ τ τ , , , , , , , , , , , , , 2 0 x x y z d t , , ,τ τ ( ) ∫ 0   + ( ) f x y z I Φ , , (5e) Φ Φ Φ Φ 2 1 0 1 V V t V x y z t x D x y z T x y z x d y x V , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ y y z y t , ,τ ∂ ( ) ∫ 0   × ( ) + ( ) ( ) + ∂ ∂ ∇ ∫ D x y z T d z D x y z T x y z z d x V V V t S Φ Φ Φ Ω , , , , , , , , , τ ∂ ∂ ∂ τ ∂ τ 1 0 µ µ τ x y z t , , , ( ) ∫ 0   × + ( )     + ∂ ∂ + ∫ D kT x y W dW d y D kT x y V V z V V S V L S V Φ Φ Φ Φ Φ Ω Φ α τ τ α 2 1 0 2 1 , , , , , , , W dW L t z τ ( )     ∫ ∫ 0 0   × ∇ ( ) + ( ) ( ) + ( ) ∫ S V V t V x y z d k x y z T V x y z d k x y z T V µ τ τ τ τ , , , , , , , , , , , , , 2 0 x x y z d t , , ,τ τ ( ) ∫ 0   + ( ) f x y z V Φ , , . Average values of the second-order approximations of required approximations using the following standard relation.[26] α ρ ρ ρ 2 2 1 0 0 0 1 = ( )− ( )     ∫ ∫ ΘL L L x y z t x y z t d z d y d x d t x y z L L L z y x , , , , , , ∫ ∫ ∫ 0 Θ . (10) Substitution of the relations (1e), (3e), and (5e) into relation (10) gives us possibility to obtain relations for required average values a2r a a a b E b F a F L L L b b C I V V x y z 2 2 2 2 3 2 4 2 3 2 1 4 0 0 0 4 4 = = = = + ( ) − + +   , , , Φ Φ Θ Θ       − + b E b 3 4 4 ,
  • 15. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 50    2 2 2 00 2 01 10 02 11 0 2 I V V VV V VV IV x y z V V IV IV C S S S L L L S S S = − − + + ( ) − − Θ 1 1 2 00 + V IV S , Where, b L L L S S L L L S S b S S x y z IV V V x y z VV II II VV 4 00 2 00 00 2 00 3 00 00 1 1 = − = − Θ Θ Θ , L L L L S S x y z VV IV 2 01 10 + (   + )+ + + + ( )+ Θ Θ Θ L L L S S L L L S S S L L L S x y z IV VV x y z IV II IV x y z I 00 00 01 10 01 2 V V x y z VV IV L L L S S 00 2 01 10 2 Θ + (   + )− = Θ Θ Θ L L L S S L L L b S S L L L S x y z IV IV x y z II VV x y z VV 00 2 10 3 3 3 3 2 00 00 02 , + + + ( )− − + ( S C S S L L IV V IV VV x y 11 10 01 2 Θ   × ) + + + ( )+ L S S L L L L L L S S S L L L z IV VV x y z x y z II IV IV x y z 2 01 00 10 01 00 2 Θ Θ Θ S S S S L L IV II IV x y 01 10 01 2 2 + + + ( Θ   × ) + + ( )− − − ( )+ L S L L L S S L L L C S S C z VV x y z IV IV x y z V VV IV 2 01 10 00 2 02 11 Θ Θ I I IV x y z IV x y z S L L L S L L L 00 2 2 2 2 2 10 2 Θ Θ −   × = + + + + S S b S S S C L L L S S L L IV IV II IV VV V x y z VV IV x 00 01 1 00 11 02 01 10 2 , Θ Θ y y z IV x y z x y L S L L L L L ( )+ ( 01 Θ Θ   × + + ) + + ( )− − L S S S S LL L S S L L L z II IV VV IV y z IV IV x y z 2 2 10 01 01 10 10 01 2 Θ Θ S S L L L S S IV x y z IV II 00 01 10 3 2 Θ + (   + ) − − ( )+ = Θ Θ L L L C S S C S S b S L L L S x y z V VV IV I IV IV II x y z IV 02 11 00 01 0 00 2 , 0 00 02 2 01 + ( ) − S S L L L VV IV x y z   × + + ( ) − − ( )+ − 1 2 2 10 01 02 11 01 2 01 Θ ΘL L L S S C S S C S S C x y z II IV V VV IV I IV IV V V VV IV x y z S S L L L − − 02 11 Θ   × + + ( ) = + 1 2 10 01 1 1 00 1 2 00 Θ Θ Θ Θ L L L S S C L L L S S x y z II IV I I V x y z IV I II ,    L L L L S S L L L S L L L x y z II II x y z IV x y z − − 20 20 11 Θ Θ C S S S S E y a a a a V I V IV V VV VV IV = + − − = + −    1 1 00 1 2 00 02 11 2 3 2 4 2 2 4 8 4 , , Θ Θ F F a a = Θ 2 4 6   + + − − + + = −       − r s r r s r r b b b L L L b b b b x y z 2 3 3 2 3 3 3 2 4 2 0 1 3 4 3 2 24 4 , Θ Θ Θ 3 3 4 3 0 2 4 2 54 8 b b b − Θ   × −       − = − 4 8 4 2 2 3 2 4 2 2 2 4 1 2 4 2 2 0 4 1 Θ Θ Θ Θ Θ b b b L L L b b s b b L L L b x y z x y z , b b b b b 3 4 2 2 4 12 18 − Θ . Farther, we determine solutions of Equations (8), i.e., components of displacement vector. To determine the first-order approximations of the considered components framework method of averaging of function
  • 16. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 51 corrections, we replace the required functions in the right sides of the equations by their not yet known average values ai . The substitution leads to the following result. ρ β ρ z u x y z t t K z z T x y z t x z u x y x y ( ) ∂ ( ) ∂ = − ( ) ( ) ∂ ( ) ∂ ( ) ∂ 2 1 2 2 1 , , , , , , , , , z z t t , ( ) ∂ 2   = − ( ) ( ) ∂ ( ) ∂ ( ) ∂ ( ) ∂ = − ( ) ( ) ∂ K z z T x y z t y z u x y z t t K z z T x z β ρ β , , , , , , , 2 1 2 , , , , y z t z ( ) ∂ . Integration of the left and the right sides of the above relations on time t leads to the following result. u x y z t u K z z z x T x y z d d x x t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ β ρ τ τ ϑ ϑ   − ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ K z z z x T x y z d d β ρ τ τ ϑ ϑ , , , , 0 0 u x y z t u K z z z y T x y z d d y y t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ β ρ τ τ ϑ ϑ   − ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ K z z z y T x y z d d β ρ τ τ ϑ ϑ , , , 0 0 , u x y z t u K z z z z T x y z d d z z t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ β ρ τ τ ϑ ϑ   − ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ K z z z z T x y z d d β ρ τ τ ϑ ϑ , , , 0 0 . Approximations of the second and higher orders of components of displacement vector could be determined using standard replacement of the required components on the following sums ai +ui (x,y,z,t).[26] The replacement leads to the following result. ρ σ z u x y z t t K z E z z u x x ( ) ∂ ( ) ∂ = ( )+ ( ) + ( )               ∂ 2 2 2 2 1 5 6 1 , , , x x y z t x K z E z z , , , ( ) ∂ + ( )− ( ) + ( )               2 3 1 σ   × ∂ ( ) ∂ ∂ + ( ) + ( )     ∂ ( ) ∂ + ∂ 2 1 2 1 2 2 1 2 1 u x y z t x y E z z u x y z t y u y y z , , , , , ,  x x y z t z T x y z t x , , , , , , ( ) ∂         − ∂ ( ) ∂ 2   × ( ) ( )+ ( )+ ( ) + ( )               ∂ ( ) ∂ ∂ K z z K z E z z u x y z t x z z β σ 3 1 2 1 , , , ρ σ z u x y z t t E z z u x y z t x u y y ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 1 2 2 2 1 , , , , , , 1 1x x y z t x y T x y z t y , , , , , , ( ) ∂ ∂         − ∂ ( ) ∂
  • 17. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 52   × ( ) ( )+ ∂ ∂ ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂ K z z z E z z u x y z t z u x y z t y z β σ 2 1 1 1 , , , , , , y y u x y z t y y                 + ∂ ( ) ∂ 2 1 2 , , ,   × ( ) + ( )     + ( )           + ( )− ( ) + ( )         5 12 1 6 1 E z z K z K z E z z          ∂ ( ) ∂ ∂ + ( ) ∂ ( ) ∂ ∂ 2 1 2 1 u x y z t y z K z u x y z t x y y y , , , , , , ρ σ z u x y z t t E z z u x y z t x u z z ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 1 2 2 2 1 , , , , , , 1 1 2 2 1 z x x y z t y u x y z t x z , , , , , , ( ) ∂ + ∂ ( ) ∂ ∂      + ∂ ( ) ∂ ∂     + ∂ ∂ ( ) ∂ ( ) ∂ + ∂ 2 1 1 1 u x y z t y z z K z u x y z t x u x y z t y x y , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂                 y u x y z t z x 1 , , ,   + ( ) + ( )     ∂ ∂ ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ E z z z u x y z t z u x y z t x u x z x y 6 1 6 1 1 1  , , , , , , , y y z t y u x y z t z z , , , , , ( ) ∂ − ∂ ( ) ∂       1   − ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ ( ) ∂         u x y z t x u x y z t y u x y z t z E z x y z 1 1 1 , , , , , , , , , ( ( ) + ( ) − ( ) ( ) ∂ ( ) ∂ 1 σ β z K z z T x y z t z , , , . Integration of the left and right sides of the above relations on time t leads to the following result. u x y z t z K z E z z x u x x x 2 2 2 1 1 5 6 1 , , , ( ) = ( ) ( )+ ( ) + ( )               ∂ ∂ ρ σ , , , , y z d d z K z t τ τ ϑ ρ ϑ ( ) + ( ) ( ) { ∫ ∫ 0 0 1    − ( ) + ( )          ∂ ∂ ∂ ( ) + ( ) ( ∫ ∫ E z z x y u x y z d d E z z y t 3 1 2 2 1 0 0 σ τ τ ϑ ρ ϑ , , , ) ) ∂ ∂ ( )    ∫ ∫ 2 2 1 0 0 y u x y z d d y t , , ,τ τ ϑ ϑ   + ∂ ∂ ( )    + ( ) + ( ) ∂ ∂ ∂ ∫ ∫ 2 2 1 0 0 2 1 1 1 1 z u x y z d d z z x z u x y z z t z , , , , , τ τ ϑ σ ρ ϑ , ,τ τ ϑ ϑ ( ) ( ) { ∫ ∫ d d K z t 0 0   + ( ) + ( )          − ( ) ( ) ( ) ∂ ∂ ( ) − ∫ ∫ E z z K z z z x T x y z d d t 3 1 0 0 σ β ρ τ τ ϑ ϑ , , , ∂ ∂ ∂ ( ) ∫ ∫ ∞ 2 2 1 0 0 x u x y z d d x , , ,τ τ ϑ ϑ   × ( ) ( )+ ( ) + ( )               − ( )− ( ) + ( )     1 5 6 1 3 1 ρ σ σ z K z E z z K z E z z            ∂ ∂ ∂ ( ) ∫ ∫ ∞ 2 1 0 0 x y u x y z d d y , , ,τ τ ϑ ϑ   × ( ) − ( ) ( ) + ( )     ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ 1 2 1 2 2 1 0 0 2 ρ ρ σ τ τ ϑ ϑ z E z z z y u x y z d d z y , , , 2 2 1 0 0 u x y z d d z , , ,τ τ ϑ ϑ ( )       ∫ ∫ ∞   − ( ) ( )+ ( ) + ( )               ∂ ∂ ∂ ( ) 1 3 1 2 1 ρ σ τ τ ϑ z K z E z z x z u x y z d d z , , , 0 0 0 0 ϑ β ρ ∫ ∫ ∞ + + ( ) ( ) ( ) u K z z z x   × ∂ ∂ ( ) ∫ ∫ ∞ x T x y z d d , , ,τ τ ϑ ϑ 0 0
  • 18. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 53 u x y z t E z z x u x y z d d x y u y x t 2 2 2 1 0 0 2 1 2 , , , , , , ( ) = ( ) ( ) ∂ ∂ ( ) + ∂ ∂ ∂ ∫ ∫ ρ τ τ ϑ ϑ x x t x y z d d , , ,τ τ ϑ ϑ ( )       ∫ ∫ 0 0   × + ( ) + ( ) ( ) ∂ ∂ ∂ ( ) + ( ) ( ) ∫ ∫ 1 1 1 5 12 2 1 0 0 σ ρ τ τ ϑ ρ ϑ z K z z x y u x y z d d z E z y t , , , 1 1+ ( )     + ( )           σ z K z   × ∂ ∂ ( ) + ( ) ∂ ∂ ( ) + ( ) ∂ ∂ ∫ ∫ 2 2 1 0 0 1 1 2 1 y u x y z d d z z E z z z u x y x t y , , , , , τ τ ϑ ρ σ ϑ z z d d t ,τ τ ϑ ϑ ( )         ∫ ∫ 0 0   + ∂ ∂ ( )         − ( ) ( ) ( ) ( ) ∫ ∫ y u x y z d d K z z z T x y z d z t 1 0 0 , , , , , , τ τ ϑ β ρ τ ϑ τ τ ϑ σ ϑ d E z z t 0 0 6 1 ∫ ∫ − ( ) + ( )            − ( )    ( ) ∂ ∂ ∂ ( ) − ( ) ( ) ∂ ∂ ∫ ∫ K z z y z u x y z d d E z z x u y t 1 2 2 1 0 0 2 2 1 ρ τ τ ϑ ρ ϑ , , , x x x y z d d , , ,τ τ ϑ ϑ ( )    ∫ ∫ ∞ 0 0   + ∂ ∂ ∂ ( )    + ( ) − ( ) ( ) ( ) ∫ ∫ ∞ 2 1 0 0 1 1 x y u x y z d d z K z z z T x y z x , , , , , τ τ ϑ σ β ρ ϑ , ,τ τ ϑ ρ ϑ ( ) − ( ) ( ) ∫ ∫ ∞ d d K z z 0 0   × ∂ ∂ ∂ ( ) − ( ) ∂ ∂ ( ) ∫ ∫ ∞ 2 1 0 0 2 2 1 0 1 x y u x y z d d z y u x y z d d y x , , , , , , τ τ ϑ ρ τ τ ϑ ϑ ϑ ∫ ∫ ∫ ∞ ( ) + ( )          0 5 12 1 E z z σ + ( )    − ∂ ∂ ( ) + ( ) ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ K z z E z z z u x y z d d y u x y y z 1 1 0 0 1 σ τ τ ϑ ϑ , , , , , z z d d ,τ τ ϑ ϑ ( )                 ∫ ∫ ∞ 0 0   × ( ) − ( ) ( )− ( ) + ( )               ∂ ∂ ∂ 1 2 1 6 1 2 1 ρ ρ σ z z K z E z z y z u x y z y , , ,τ τ τ ϑ ϑ ( ) + ∫ ∫ ∞ d d u y 0 0 0 u x y z t E z z x u x y z d d z z , , , , , , ( ) = ( ) + ( )     ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ 2 1 2 2 1 0 0 2 σ τ τ ϑ ϑ y y u x y z d d z 2 1 0 0 , , ,τ τ ϑ ϑ ( )    ∫ ∫ ∞   + ∂ ∂ ∂ ( ) + ∂ ∂ ∂ ( ) ∫ ∫ ∫ ∫ ∞ ∞ 2 1 0 0 2 1 0 0 x z u x y z d d y z u x y z d d x y , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ     ( ) + ( ) 1 1 ρ ρ z z   × ∂ ∂ ( ) ∂ ∂ ( ) + ∂ ∂ ( ) ∫ ∫ ∫ ∞ ∞ z K z x u x y z d d y u x y z d d x x 1 0 0 1 0 0 , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ ∫ ∫           + ∂ ∂ ( )         + ( ) ∂ ∂ ( ) + ( ) ∂ ∂ ∫ ∫ ∞ z u x y z d d z z E z z z x 1 0 0 1 6 1 6 , , ,τ τ ϑ ρ σ ϑ u u x y z d d z 1 0 0 , , ,τ τ ϑ ϑ ( )         ∫ ∫ ∞
  • 19. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 54   − ∂ ∂ ( ) − ∂ ∂ ( ) − ∂ ∂ ∫ ∫ ∫ ∫ ∞ ∞ x u x y z d d y u x y z d d z u x y 1 0 0 1 0 0 1 , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ z z x y z d d , , ,τ τ ϑ ϑ ( )         ∫ ∫ ∞ 0 0   − ( ) ( ) ( ) ∂ ∂ ( ) + ∫ ∫ ∞ K z z z z T x y z d d u z β ρ τ τ ϑ ϑ , , , 0 0 0 . Framework this paper, we determine concentration of dopant, concentrations of radiation defects, and components of displacement vector using the second-order approximation framework method of averaging of function corrections. This approximation is usually enough good approximation to make qualitative analysis and to obtain some quantitative results. All obtained results have been checked by comparison with results of numerical simulations. DISCUSSION In this section, we analyzed dynamics of redistributions of dopant and radiation defects during annealing and under influence of mismatch-induced stress. Typical distributions of concentrations of dopant in heterostructures are presented in Figures 2 and 3 for diffusion and ion types of doping, respectively. These distributions have been calculated for the case when value of dopant diffusion coefficient in the epitaxial layer is larger than in the substrate. The figures show that inhomogeneity of heterostructure gives us possibility to increase compactness of transistors. At the same time, one can find increasing homogeneity of dopant distribution in doped part of epitaxial layer. Increasing of compactness of transistors gives us possibility to increase their density. The second effect leads to decrease local heating of materials during functioning of transistors or decreasing of their dimensions for fixed maximal value of local overheat. However, this framework approach of manufacturing of bipolar transistor, it is necessary to optimize annealing of dopant and/or radiation defects. If annealing time is small, the dopant did not achieve any interfaces between materials of heterostructure. In this situation, one cannot find any modifications of distribution of concentration of dopant. If annealing time is large, distribution of the concentration of dopant is too homogenous. We optimize annealing time framework recently introduces approach.[15,25-32] Framework this criterion, Figure 2: Distributions of the concentration of infused dopant in heterostructure from Figure 1 in direction, which is perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to increase of difference between values of dopant diffusion coefficient in layers of heterostructure under condition when value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate
  • 20. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 55 we approximate real distribution of concentration of dopant by step-wise function [Figures 4 and 5]. Farther, we determine optimal values of annealing time by minimization of the following mean-squared error. U L L L C x y z x y z d z d y d x x y z L L L z y x = ( )− ( )     ∫ ∫ ∫ 1 0 0 0 , , , , , Θ   , (15) Figure 3:DistributionsofconcentrationofimplanteddopantinheterostructurefromFigure 1indirection,whichisperpendicular to interface between epitaxial layer substrate. Curves 1 and 3 correspond to annealing time Θ  = 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 2 and 4 correspond to annealing time Θ = 0.0057(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 1 and 2 correspond to homogenous sample. Curves 3 and 4 correspond to heterostructure under condition when value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate Figure 4: Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of dopant. Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds to increase of annealing time
  • 21. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 56 Where, y (x,y,z) is the approximation function. Dependences of optimal values of annealing time on parameters are presented in Figures 6 and 7 for diffusion and ion types of doping, respectively. It should be noted that it is necessary to anneal radiation defects after ion implantation. One could find spreading of concentration of distribution of dopant during this annealing. In the ideal case, distribution of dopant achieves appropriate interfaces between materials of heterostructure during annealing of radiation Figure 5: Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of dopant. Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds to increase of annealing time Figure 6: Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L = 1/2 and x = g = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L = 1/2 and e = g = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter g for a/L = 1/2 and e = x = 0
  • 22. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 57 defects. If dopant did not achieve any interfaces during annealing of radiation defects, it is practicably to additionally anneal the dopant. In this situation, optimal value of additional annealing time of implanted dopant is smaller than annealing time of infused dopant. Farther, we analyzed the influence of relaxation of mechanical stress on distribution of dopant in doped areas of heterostructure. Under the following condition e0 0, one can find compression of distribution of concentration of dopant near interface between materials of heterostructure. Contrary (at e0 0) one can find spreading of distribution of the concentration of dopant in this area. This changing of distribution Figure 7: Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L = 1/2 and x = g = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L = 1/2 and e = g = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter g for a/L = 1/2 and e = x = 0 Figure 8: Normalized distributions of charge carrier mobility in the considered heterostructure. Curve 1 corresponds to the heterostructure, which has been considered in Figure 1. Curve 2 corresponds to a homogenous material with averaged parameters of heterostructure from Figure 1
  • 23. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 58 of the concentration of dopant could be at least partially compensated using laser annealing.[29] This type of annealing gives us possibility to accelerate diffusion of dopant and another process in annealed area due to inhomogeneous distribution of temperature and Arrhenius law Figure 8. Accounting relaxation of mismatch-induced stress in heterostructure could lead to change of optimal values of annealing time. Mismatch-induced stress could be used to increase density of elements of integrated circuits, on the other hand, could lead to generation dislocations of the discrepancy. Figure 9 shows distributions of the component of displacement vector, which is perpendicular to interface between layers of heterostructure. CONCLUSION In this paper, we model redistribution of infused and implanted dopants with account relaxation mismatch-induced stress during manufacturing a bipolar heterotransistors framework a circuit of voltage divider biasing common emitter amplifier. We formulate recommendations for optimization of annealing to decrease dimensions of transistors and to increase their density. We formulate recommendations to decrease mismatch-induced stress. Analytical approach to model diffusion and ion types of doping with account concurrent changing of parameters in space and time has been introduced. At the same time, the approach gives us possibility to take into account non-linearity of considered processes. REFERENCES 1. Lachin VI, Savelov NS. Electronics. Rostov-on-Don: Phoenix; 2001. 2. Polishscuk A. Mod Electron 2004;12:8. 3. Volovich G. Mod Electron 2006;2:10. 4. Kerentsev A, Lanin V. Power Electron 2008;1:34. 5. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudrik YA, et al. Semiconductors 2009;43:897. 6. Tsai JH, Chiu SY, Lour WS, Guo DF. Semiconductors 2009;43:971. 7. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Semiconductors 1998;32:1029. 8. Ermolovich IB, Milenin VV, Red’ko RA, Red’ko SM. Semiconductors 2009;43:1016. 9. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett 2013;102:53901. 10. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 2013;102:152114. Figure 9: Normalized dependences of component uz of displacement vector on coordinate z for nonporous (curve 1) and porous (curve 2) epitaxial layers
  • 24. Pankratov: On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasing Common Emitter Amplifier AJMS/Jan-Mar-2019/Vol 3/Issue 1 59 11. Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. Semiconductors 2013;35:1013. 12. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58. 13. Chen X, Xue J, Xie SH, Huang W, Wang P, Gong K, et al. Error analysis of approximate calculation of voltage divider biased common-emitter amplifier. Circuits Syst 2017;8:247-52. 14. Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates. Phys Solid State 2016;58:1448-52. 15. Trukhanov EM, Kolesnikov AV, Loshkarev ID. Long-range stresses generated by misfit dislocations in epitaxial films. Russ Microelectron 2015;44:552-8. 16. Pankratov EL, Bulaeva EA. On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model physical processes in reactors for epitaxy from gas phase during growth films. Rev Theor Sci 2015;3:365-98. 17. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111. 18. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901. 19. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836. 20. Zhang YW, Bower AF. Numerical simulations of island formation in a coherent strained epitaxial thin film system. J Mech Phys Solids 1999;47:2273-97. 21. Landau LD, Lefshits EM. Theoretical Physics, Theory of Elasticity. Vol. 7. Moscow: Physmatlit; 2001. 22. Gotra ZU. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 23. Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289. 24. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 25. Pankratov EL, Bulaeva EA. An approach to manufac-ture of bipolar transistors in thin film structures. On the method of optimization. Int J Micro-Nano Scale Transp 2014;4:17. 26. Sokolov YD. About the definition of dynamic forces in the mine lifting. Appl Mech 1955;1:23-35. 27. Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity. Russ Microelectron 2007;36:33-9. 28. Pankratov EL. Int J Nanosci 2008;7:187. 29. Pankratov EL, Bulaeva EA. Decreasing of quantity of radiation defects in an im-planted-junction rectifiers by using overlayers. Int J Micro-Nano Scale Transp 2012;3:119-30. 30. Pankratov EL. Nano 2011;6:31. 31. Pankratov EL, Bulaeva EA. Application of radiation processing of materials to increase sharpness of p-n-junction in a semiconductor heterostructure. J Comp Theor Nanosci 2013;10:1888-94. 32. Pankratov EL, Bulaeva EA. On prognosis of technological process to optimize manufacturing of an invertors to increase density their of elements. J Nanoeng Nanomanuf 2016;6:313-26.