SlideShare a Scribd company logo
1 of 24
Download to read offline
www.ajms.com 59
ISSN 2581-3463
RESEARCH ARTICLE
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
E. L. Pankratov1,2
1
Department of Mathematics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod,
603950, Russia, 2
Department of Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street,
Nizhny Novgorod, 603950, Russia
Received: 25-06-2020; Revised: 10-07-2020; Accepted: 10-08-2020
ABSTRACT
In this paper, we introduce an approach to increase integration rate of elements of a current source circuit.
Framework the approach, we consider a heterostructure with special configuration. Several specific
areas of the heterostructure should be doped by diffusion or ion implantation. Annealing of dopant and/
or radiation defects should be optimized.
Key words: Analytical approach for modeling, current source circuit, optimization of manufacturing
INTRODUCTION
An actual and intensively solving problem of solid-state electronics is increasing of integration rate of
elements of integrated circuits (p-n-junctions, their systems et al.).[1-8]
Increasing of the integration rate
leads to necessity to decrease their dimensions. To decrease, the dimensions are using several approaches.
They are widely using laser and microwave types of annealing of infused dopants. These types of
annealing are also widely using for annealing of radiation defects, generated during ion implantation.[9-17]
Using the approaches gives a possibility to increase integration rate of elements of integrated circuits
through inhomogeneity of technological parameters due to generating inhomogenous distribution of
temperature. In this situation, one can obtain decreasing dimensions of elements of integrated circuits[18]
with account Arrhenius law.[1,3]
Another approach to manufacture elements of integrated circuits with
smaller dimensions is doping of heterostructure by diffusion or ion implantation.[1-3]
However, in this
case, optimization of dopant and/or radiation defects is required.[18]
In this paper, we consider a heterostructure. The heterostructure consists of a substrate and several
epitaxial layers. Some sections have been manufactured in the epitaxial layers. Further, we
consider doping of these sections by diffusion or ion implantation. The doping gives a possibility to
manufacture field-effect transistors framework a current source circuit so as it is shown in Figure 1.
The manufacturing gives a possibility to increase density of elements of the current source circuit.[4]
After the considered doping, dopant and/or radiation defects should be annealed. Framework the paper,
we analyzed dynamics of redistribution of dopant and/or radiation defects during their annealing. We
introduce an approach to decrease dimensions of the element. However, it is necessary to complicate
technological process.
METHOD OF SOLUTION
In this section, we determine spatiotemporal distributions of concentrations of infused and implanted
dopants. To determine these distributions, we calculate appropriate solutions of the second Fick’s law.[1,3,18]
Address for correspondence:
E. L. Pankratov
E-mail: elp2004@mail.ru
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 60
C x y z t
t
, , ,
( )
∂
=











x
D
C x y z t
x y
D
C x y z t
y z
D
C x
C C C
, , , , , ,
( )





 +
( )





 +
,
, , ,
y z t
z
( )







(1)
Boundary and initial conditions for the equations are


C x y z t
x x
, , ,
( )
=
=0
0,


C x y z t
x x Lx
, , ,
( )
=
=
0,


C x y z t
y y
, , ,
( )
=
=0
0,


C x y z t
y x Ly
, , ,
( )
=
=
0,


C x y z t
z z
, , ,
( )
=
=0
0,


C x y z t
z x Lz
, , ,
( )
=
=
0, C (x,y,z,0)=f(x,y,z).(2)
The function C(x,y,z,t) describes the spatiotemporal distribution of concentration of dopant; T is the
temperature of annealing; DС
is the dopant diffusion coefficient. Value of dopant diffusion coefficient
could be changed with changing materials of heterostructure, with changing temperature of materials
(including annealing), with changing concentrations of dopant and radiation defects. We approximate
dependences of dopant diffusion coefficient on parameters by the following relation with account results
in Refs.[20-22]
D D x y z T
C x y z t
P x y z T
V x y z t
C L
= ( ) +
( )
( )





 +
(
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
)
)
+
( )
( )








V
V x y z t
V
* *
, , ,
ς2
2
2
(3)
Here, the function DL
(x,y,z,T) describes the spatial (in heterostructure) and temperature (due toArrhenius
law) dependences of diffusion coefficient of dopant. The function P(x,y,z,T) describes the limit of
solubility of dopant. Parameter γ ∈[1,3]
describes average quantity of charged defects interacted with
atom of dopant.[20]
The function V(x,y,z,t) describes the spatiotemporal distribution of concentration of
radiation vacancies. Parameter V*
describes the equilibrium distribution of concentration of vacancies.
The considered concentrational dependence of dopant diffusion coefficient has been described in details
Figure 1: The considered cascaded inverter[4]
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 61
in Kozlivsky.[20]
It should be noted that using diffusion type of doping did not generation radiation
defects. In this situation, ζ1
= ζ2
= 0. We determine spatiotemporal distributions of concentrations of
radiation defects by solving the following system of equations.[21,22]








I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
I x y z t
y
( )
( )





 +






z
D x y z T
I x y z t
z
k x y z T I x y z t V
I I V
, , ,
, , ,
, , , , , ,
,
( )
( )





 − ( ) ( ) x
x y z t
, , ,
( )−
k x y z T I x y z t
I I
, , , , , , ,
( ) ( )
2
(4)








V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
V x y z t
y
( )
( )





 +






z
D x y z T
V x y z t
z
k x y z T I x y z t V
V I V
, , ,
, , ,
, , , , , ,
,
( )
( )





 − ( ) ( ) x
x y z t
, , ,
( )+
k x y z T V x y z t
V V
, , , , , , ,
( ) ( )
2
.
Boundary and initial conditions for these equations are
∂ ρ
∂
x y z t
x x
, , ,
( )
=
=0
0,
∂ ρ
∂
x y z t
x x Lx
, , ,
( )
=
=
0,
∂ ρ
∂
x y z t
y y
, , ,
( )
=
=0
0,
∂ ρ
∂
x y z t
y y Ly
, , ,
( )
=
=
0,
∂ ρ
∂
x y z t
z z
, , ,
( )
=
=0
0,
∂ ρ
∂
x y z t
z z Lz
, , ,
( )
=
=
0,  (x,y,z,0)=fρ
(x,y,z).(5)
Here, ρ = I,V. The function I(x,y,z,t) describes the spatiotemporal distribution of concentration of
radiation interstitials; Dρ(x,y,z,T) is the diffusion coefficients of point radiation defects; terms V2
(x,y,z,t)
and I2
(x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V
(x,y,z,T) is the parameter of
recombination of point radiation defects; kI,I
(x,y,z,T) and kV,V
(x,y,z,T) are the parameters of generation of
simplest complexes of point radiation defects.
Further, we determine distributions in space and time of concentrations of divacancies ΦV
(x,y,z,t) and
diinterstitials ΦI
(x,y,z,t) by solving the following system of equations.[21,22]








Φ Φ
Φ Φ
I
I
I
I
x y z t
t x
D x y z T
x y z t
x y
D x
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )





 +


Φ




z
D x y z T
x y z t
z
k x y z T I x y z t
I
I
I I
Φ
Φ
, , ,
, , ,
, , , , , ,
,
( )
( )





 + ( ) 2
(
( )− ( ) ( )
k x y z T I x y z t
I , , , , , , (6)








Φ Φ
Φ Φ
V
V
V
V
x y z t
t x
D x y z T
x y z t
x y
D x
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )





 +


Φ
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 62




z
D x y z T
x y z t
z
k x y z T V x y z t
V
V
V V
Φ
Φ
, , ,
, , ,
, , , , , ,
,
( )
( )





 + ( ) 2
(
( )− ( ) ( )
k x y z T V x y z t
V , , , , , , .
Boundary and initial conditions for these equations are [19,23]
∂
∂
ρ
Φ x y z t
x x
, , ,
( )
=
=0
0,
∂
∂
ρ
Φ x y z t
x x Lx
, , ,
( )
=
=
0,
∂
∂
ρ
Φ x y z t
y y
, , ,
( )
=
=0
0,
∂
∂
ρ
Φ x y z t
y y Ly
, , ,
( )
=
=
0,
∂
∂
ρ
Φ x y z t
z z
, , ,
( )
=
=0
0,
∂
∂
ρ
Φ x y z t
z z Lz
, , ,
( )
=
=
0,
I
(x,y,z,0)=fΦ
I
(x,y,z), V
(x,y,z,0)=fΦ
V
(x,y,z).(7)
Here, DΦρ
(x,y,z,T) is the diffusion coefficients of the above complexes of radiation defects; kI
(x,y,z,T) and
kV
(x,y,z,T) are the parameters of decay of these complexes.
We calculate distributions of concentrations of point radiation defects in space and time by recently
elaborated approach.[18]
The approach based on transformation of approximations of diffusion coefficients
in the following form: Dρ
(x,y,z,T)=D0ρ
[1+ερ
gρ
(x,y,z,T)], where D0ρ
is the average values of diffusion
coefficients, 0≤ερ
1, |gρ
(x, y,z,T)|≤1, ρ =I,V. We also used analogous transformation of approximations
of parameters of recombination of point defects and parameters of generation of their complexes:
kI,V
(x,y,z,T)=k0I,V
[1+εI,V
gI,V
(x,y,z,T)], kI,I
(x,y,z,T)=k0I,I
[1+εI,I
gI,I
(x,y,z,T)] and kV,V
(x,y,z,T)=k0V,V
[1+εV,V
gV,V
(x,y,z,T)], where k0ρ1,ρ2
is the their average values, 0≤εI,V
1, 0≤εI,I
1, 0≤εV,V
1, | gI,V
(x,y,z,T)|≤1,
|gI,I
(x,y,z,T)|≤1, |gV,V
(x,y,z,T)|≤1. Let us introduce the following dimensionless variables:

I x y z t I x y z t I
, , , , , , *
( ) = ( ) , 
V x y z t
, , ,
( ) = = ( )
V x y z t V
, , , *
,  = L k D D
I V I V
2
0 0 0
, ,
Ω  
= L k D D
I V
2
0 0 0
, , ϑ = D D t L
I V
0 0
2
, χ = x/Lx
, η = y /Ly
, φ = z/Lz
. The introduction leads to
transformation of Equation (4) and conditions (5) to the following form
∂ χ η ϕ
∂
∂
∂ χ
ε χ η ϕ
∂ χ η ϕ
 
I D
D D
g T
I
I
I V
I I
, , ,
, , ,
, , ,
ϑ
ϑ
ϑ
( )
= + ( )

 

( )
0
0 0
1
∂
∂ χ
∂
∂ η
ε χ η ϕ






+ + ( )

 
 ×
{ 1 I I
g T
, , ,
∂ χ η ϕ ϑ
∂ η
∂
∂ ϕ
ε χ η ϕ

I D
D D
D
D D
g T
I
I V
I
I V
I I
, , ,
, , ,
( )


+ + ( )

 

0
0 0
0
0 0
1
∂
∂ χ η ϕ ϑ
∂ ϕ
χ η ϕ ϑ


I
I
, , ,
, , ,
( )






− ( ) ×
ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
1 1
+ ( )

 
 ( )− + ( )

I V I V I I I I I
g T V g T
, , , ,
, , , , , , , , ,
 Ω 
 
 ( )

I 2
χ η ϕ ϑ
, , , (8)
∂ χ η ϕ
∂
∂
∂ χ
ε χ η ϕ
∂ χ η ϕ
 
V D
D D
g T
V
V
I V
V V
, , ,
, , ,
, , ,
ϑ
ϑ
ϑ
( )
= + ( )

 

( )
0
0 0
1
∂
∂ χ
∂
∂ η
ε χ η ϕ






+ + ( )

 
 ×
{ 1 V V
g T
, , ,
∂ χ η ϕ ϑ
∂ η
∂
∂ ϕ
ε χ η ϕ

V D
D D
D
D D
g T
V
I V
V
I V
V V
, , ,
, , ,
( )


+ + ( )

 

0
0 0
0
0 0
1
∂
∂ χ η ϕ ϑ
ϕ
χ η ϕ ϑ


V
I
, , ,
, , ,
( )
∂






− ( ) ×
ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
1 1
+ ( )

 
 ( )− + ( )

I V I V V V V V V
g T V g T
, , , ,
, , , , , , , , ,
 Ω 
 
 ( )

V 2
χ η ϕ ϑ
, , ,
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 63
∂ ρ χ η ϕ
∂ χ χ
 , , ,ϑ
( )
=
=0
0 ,
∂ ρ χ η ϕ
∂ χ χ
 , , ,ϑ
( )
=
=1
0,
∂ ρ χ η ϕ
∂ η η
 , , ,ϑ
( )
=
=0
0 ,
∂ ρ χ η ϕ
∂ η η
 , , ,ϑ
( )
=
=1
0,
∂ ρ χ η ϕ
∂ ϕ ϕ
 , , ,ϑ
( )
=
=0
0,
∂ ρ χ η ϕ
∂ ϕ ϕ
 , , ,ϑ
( )
=
=1
0, 
ρ χ η ϕ
χ η ϕ
ρ
ρ
, , ,
, , ,
*
ϑ
ϑ
( ) =
( )
f
(9)
We determine solutions of Equation (8) with conditions (9) framework recently introduced approach,[18]
that is, as the power series
 
ρ χ η ϕ ε ω ρ χ η ϕ
ρ ρ
, , , , , ,
ϑ ϑ
( ) = ( )
=
∞
=
∞
=
∞
∑
∑
∑ i j k
ijk
k
j
i
Ω
0
0
0
.(10)
Substitution of the series (10) into Equation (8) and conditions (9) gives us possibility to obtain equations
for initial order approximations of concentration of point defects 
I000 χ η ϕ
, , ,ϑ
( ) and 
V000 χ η ϕ
, , ,ϑ
( ) and
corrections for them 
Iijk χ η ϕ
, , ,ϑ
( ) and 
Vijk χ η ϕ
, , ,ϑ
( ), i ≥1, j ≥1, k ≥1. The equations are presented in
the Appendix. Solutions of the equations could be obtained by standard Fourier approach.[24,25]
The
solutions are presented in the Appendix.[34]
Now, we calculate distributions of concentrations of simplest complexes of point radiation defects in
space and time. To determine the distributions, we transform approximations of diffusion coefficients in
the following form: DΦρ
(x,y,z,T)=D0Φρ
[1+εΦρ
gΦρ
(x,y,z,T)], where D0Φρ
is the average values of diffusion
coefficients. In this situation, the Equation (6) could be written as
∂
∂
∂
∂
ε
∂
∂
Φ Φ
Φ Φ Φ
I
I I I
I
x y z t
t
D
x
g x y z T
x y z t
x
, , ,
, , ,
, , ,
( )
= + ( )

 

( )

0 1






+ ( ) ( )+
k x y z T I x y z t
I I
, , , , , , ,
2
D
y
g x y z T
x y z t
y
D
z
I I I
I
I
0 0
1 1
Φ Φ Φ Φ
Φ
∂
∂
ε
∂
∂
∂
∂
+ ( )

 

( )






+ +
, , ,
, , ,
ε
ε
∂
∂
Φ Φ
Φ
I I
I
g x y z T
x y z t
z
, , ,
, , ,
( )

 

( )






−
k x y z T I x y z t
I , , , , , ,
( ) ( )
∂
∂
∂
∂
ε
∂
Φ Φ
Φ Φ Φ
V
V V V
V
x y z t
t
D
x
g x y z T
x y z t
x
, , ,
, , ,
, , ,
( )
= + ( )

 

( )


0 1





+ ( ) ( )+
k x y z T I x y z t
I I
, , , , , , ,
2
D
y
g x y z T
x y z t
y
D
z
V V V
V
V
0 0
1 1
Φ Φ Φ Φ
Φ
∂
∂
ε
∂
∂
∂
∂
+ ( )

 

( )






+ +
, , ,
, , ,
ε
ε
∂
∂
Φ Φ
Φ
V V
V
g x y z T
x y z t
z
, , ,
, , ,
( )

 

( )






−
k x y z T I x y z t
I , , , , , ,
( ) ( ).
Farther, we determine solutions of above equations as the following power series
Φ Φ
Φ
ρ ρ ρ
ε
x y z t x y z t
i
i
i
, , , , , ,
( ) = ( )
=
∞
∑
0
.(11)
Now, we used the series (11) into Equation (6) and appropriate boundary and initial conditions. The using
gives the possibility to obtain equations for initial order approximations of concentrations of complexes
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 64
of defects Φρ0
(x,y,z,t), corrections for them Φρi
(x,y,z,t) (for them i ≥1) and boundary and initial conditions
for them. We remove equations and conditions to the Appendix. Solutions of the equations have been
calculated by standard approaches[24,25]
and presented in the Appendix.
Now, we calculate distribution of concentration of dopant in space and time using the approach, which
was used for analysis of radiation defects. To use the approach, we consider the following transformation
of approximation of dopant diffusion coefficient: DL
(x,y,z,T)=D0L
[1+ εL
gL
(x,y,z,T)], where D0L
is the
average value of dopant diffusion coefficient, 0≤εL
 1, |gL
(x,y,z,T)|≤1. Farther, we consider solution of
Equation (1) as the following series:
C x y z t C x y z t
L
i j
ij
j
i
, , , , , ,
( ) = ( )
=
∞
=
∞
∑
∑ε ξ
1
0
.
Using the relation into Equation (1) and conditions (2) leads to obtaining equations for the functions
Cij
(x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions for them. The equations are presented in the
Appendix.Solutionsoftheequationshavebeencalculatedbystandardapproaches(see,forexample,[24,25]
).
The solutions are presented in the Appendix.
We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically
using the second-order approximations on all parameters, which have been used in appropriate series.
Usually, the second-order approximations are enough good approximations to make qualitative analysis
and to obtain quantitative results. All analytical results have been checked by numerical simulation.
DISCUSSION
In this section, we analyzed spatiotemporal distributions of concentrations of dopants. Figure 2 shows
typical spatial distributions of concentrations of dopants in neighborhood of interfaces of heterostructures.
We calculate these distributions of concentrations of dopants under the following condition: Value of
dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest
areas. In this situation, one can find increasing of compactness of field-effect transistors with increasing
of homogeneity of distribution of concentration of dopant at 1 time. Changing relation between values
of dopant diffusion coefficients leads to opposite result [Figure 3].
Figure 2a: Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in direction,
which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion
coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in
the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 65
It should be noted that framework the considered approach one shall optimize annealing of dopant and/
or radiation defects. To do the optimization, we used recently introduced criterion.[26-33]
The optimization
based on approximation real distribution by step-wise function  (x,y,z) [Figure 4]. Farther, the required
values of optimal annealing time have been calculated by minimization the following mean-squared
error.
Figure 2b: Dependences of concentration of dopant, implanted in heterostructure from Figure 1, on coordinate in direction,
which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient
in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial
layer is larger, than value of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogenous sample and
annealing time Θ = 0.0048 (Lx
2
+Ly
2
+Lz
2
)/D0
. Curve 2 corresponds to homogenous sample and annealing time Θ = 0.0057
(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 3 and 4 correspond to heterostructure from Figure 1; annealing times Θ = 0.0048 (Lx
2
+Ly
2
+Lz
2
)/D0
and Θ = 0.0057 (Lx
2
+Ly
2
+Lz
2
)/D0
, respectively 
Figure 3a: Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from
Figure 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between values
of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient in this
section is smaller, than value of dopant diffusion coefficient in nearest sections
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 66
U
L L L
C x y z x y z d z d y d x
x y z
L
L
L z
y
x
= ( )− ( )

 

∫
∫
∫
1
0
0
0
, , , , ,
Θ  (12)
We show optimal values of annealing time as functions of parameters on Figure 5. It is known that
standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal case
after finishing the annealing, dopant achieves interface between layers of heterostructure. If the dopant
Figure 3b: Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial
distributions of implanted dopant in system of two epitaxial layers. Dashed lines are spatial distributions of implanted dopant
in one epitaxial layer. Annealing time increases with increasing of number of curves
Figure 4a: Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different values of
annealing time (curves 2–4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to
increasing of annealing time
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 67
has no enough time to achieve the interface, it is practicably to anneal the dopant additionally. Figure 5b
shows the described dependences of optimal values of additional annealing time for the same parameters
as for Figure 5a. Necessity to anneal radiation defects leads to smaller values of optimal annealing of
implanted dopant in comparison with optimal annealing time of infused dopant.
Figure 4b: Distributions of concentration of implanted dopant in depth of heterostructure from Figure 1 for different values
of annealing time (curves 2–4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds
to increasing of annealing time
Figure 5a: Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes
the dependence of the annealing time on the relation a/L and  = γ = 0 for equal to each other values of dopant diffusion
coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε
for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter  for a/L=1/2 and
ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 68
CONCLUSIONS
In this paper, we introduce an approach to increase integration rate of element of a current source
circuit. The approach gives us possibility to decrease area of the elements with smaller increasing of the
element’s thickness.
REFERENCES
1.	 Lachin VI, Savelov NS. Electronics. Phoenix: Rostov-na-Donu; 2001.
2.	 Alexenko AG, Shagurin II. Microcircuitry. Moscow: Radio and Communication; 1990.
3.	 Avaev NA, Naumov YE, Frolkin VT. Basis of Microelectronics. Moscow: Radio and Communication; 1991.
4.	 Nenadovic M, Fischer G, Fiebig N. A 32 ppm/°C temperature-compensated operational amplifier for application in
medical device tracking. Analog Integr Circ Sig Process 2014;87:117-27.
5.	 Fathi D, Forouzandeh B, Masoumi N. New enhanced noise analysis in active mixers in nanoscale technologies. Nano
2009;4:233-8.
6.	 Chachuli SA, Fasyar PN, Soin N, Kar NM, Yusop N. On approach to increase integration rate of elements. Mat Sci Sem
Proc 2014;24:9-14.
7.	 Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudryk YY, et al. Technologies dependencies.
Semiconductors 2009;43:897-903.
8.	 Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF Jr., Chow TP. Monolithic integration of light-emitting diodes and
power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits
in GaN on sapphire substrate. Appl Phys Lett 2013;102:192107-9.
9.	 Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor.
Semiconductors 2009;43:971-4.
10.	 Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO, et al. Formation of donor centers
upon annealing of dysprosium-and holmiumimplanted silicon. Semiconductors 1998;32:1029-32.
11.	 Kumar MJ, Singh TV. Quantum confinement effects in strained silicon mosfets. Int J Nanosci 2008;7:81-4.
12.	 Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Band alignment of SnS/Zn (O, S) heterojunctions
in SnS thin film solar cells. Appl Phys Lett 2013;102:53901-5.
13.	 Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in p-type
ZnO. Appl Phys Lett 2013;102:152114-8.
14.	 Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the
maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4.
15.	 Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901-5.
16.	Shishiyanu ST, Shishiyanu TS, Railyan SK. Shallow pn-junctions in Si prepared by pulse photon annealing.
Figure 5b: Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes
the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion
coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε
for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and
ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 69
Semiconductors 2002;36:611-7.
17.	Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in
semiconductor structures during microwave annealing. Radiophys Quant Electron 2003;43:836-43.
18. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical
approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci
2013;1:58-82.
19.	 Erofeev YN. Pulse Devices. Moscow: Higher School; 1989.
20.	 Kozlivsky VV. Modification of Semiconductors by Proton Beams. Sant-Peterburg: Nauka; 2003.
21.	 Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991.
22.	 Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979.
23.	 Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289-388.
24.	 Tikhonov AN, Samarskii AA. The Mathematical Physics Equations. Moscow: Nauka; 1972.
25.	 Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford: Oxford University Press; 1964.
26.	 PankratovEL.Dopantdiffusiondynamicsandoptimaldiffusiontimeasinfluencedbydiffusion-coefficientnonuniformity.
Russ Micro Electron 2007;36:33-9.
27.	 Pankratov EL. Redistribution of a dopant during annealing of radiation defects in a multilayer structure by laser scans for
production of an implanted-junction rectifier. Int J Nanosci 2008;7:187-97.
28.	 Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational
amplifier to increase their integration rate. Influence mismatch-induced stress. J Comput Theor Nanosci 2017;14:4885-99.
29.	 Pankratov EL. On optimization of manufacturing of two-phase logic circuit based on heterostructures to increase density
of their elements. Influence of miss-match induced stress. Adv Sci Eng Med 2017;9:787-801
30.	 Pankratov EL, Bulaeva EA. On increasing of density of transistors in a hybrid cascaded multilevel inverter. Multidiscip
Mod Mater Struct 2017;13:664-77.
31.	 Pankratov EL, Bulaeva EA.An approach to manufacture a heterobipolar transistors in thin film structures. On the method
of optimization. Int J Micro Nano Scale Trans 2014;4:17-31.
32.	Pankratov EL, Bulaeva EA. An analytical approach for analysis and optimization of formation of field-effect
heterotransistors. Multidiscip Mod Mater Struct 2016;12:578-604.
33.	 Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater
Sci Semicond Proc 2015;34:260-8.
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 70
APPENDIX
Equations for the functions 
Iijk χ η ϕ
, , ,ϑ
( ) and 
Vijk χ η ϕ
, , ,ϑ
( ), i ≥0, j ≥0, k ≥0 and conditions for them
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
000 0
0
2
000
2
2
000
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ
ϕ
2
2
000
2

I , , ,ϑ
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
000 0
0
2
000
2
2
000
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ
ϕ
2
2
000
2

V , , ,ϑ
;
∂
∂
∂
∂
∂
∂
  
I D
D
I I
i I
V
i i
00 0
0
2
00
2
2
00
χ χ η ϕ
χ
χ η ϕ
η
, , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
( )
2
2
2
00
2
0
0
+
( )





 + ×
∂
∂

I D
D
i I
V
χ η ϕ
ϕ
, , ,ϑ
∂
∂
∂
∂
∂
∂
∂
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
g T
I
g T
I
I
i
I
i
, , ,
, , ,
, , ,
( )
( )





 + ( )
−
 
100 −
− ( )





 +





100 χ η ϕ ϑ
η
, , ,
∂
∂
∂
∂
∂
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
g T
I
I
i
, , ,
, , ,
( )
( )











−

100
, i ≥1,
∂
∂
∂
∂
∂
∂
  
V D
D
V V
i V
I
i i
00 0
0
2
00
2
2
00
χ χ η ϕ
χ
χ η ϕ
η
, , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
( )
2
2
2
00
2
+
( )





 + ( ) ×



∂
∂
∂
∂

V
g T
i
V
χ η ϕ
ϕ χ
χ η ϕ
, , ,
, , ,
ϑ
∂
∂
∂
∂
∂
 
V D
D
D
D
g T
V
i V
I
V
I
V
i
− −
( )

 + ( )
100 0
0
0
0
100
χ η ϕ ϑ
χ η
χ η ϕ
χ
, , ,
, , ,
,
, , ,
, , ,
η ϕ ϑ
η ϕ
χ η ϕ
( )





 + ( ) ×



∂
∂
∂
g T
V
∂ ( )
∂



−

V D
D
i V
I
100 0
0
χ η ϕ ϑ
ϕ
, , ,
, i ≥1,
∂
∂
∂
∂
∂
  
I D
D
I I
I
V
010 0
0
2
010
2
2
010
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 −
∂
∂
∂
η
χ η ϕ
ϕ
2
2
010
2

I , , ,ϑ
1 000 000
+ ( )

 
 ( ) ( )
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V
, , , , , , , , , , ,
 
∂
∂
∂
∂
∂
  
V D
D
V V
V
I
010 0
0
2
010
2
2
010
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 −
∂
∂
∂
η
χ η ϕ
ϕ
2
2
010
2

V , , ,ϑ
1 000 000
+ ( )

 
 ( ) ( )
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V
, , , , , , , , , , ,
  ;
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 71
∂
∂
∂
∂
∂
  
I D
D
I I
I
V
020 0
0
2
020
2
2
020
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 −
∂
∂
∂
η
χ η ϕ
ϕ
2
2
020
2

I , , ,ϑ
1 010 000 000
+ ( )

 
 ( ) ( )+
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ χ
I V I V
g T I V I
, , , , , , , , , , ,
   ,
, , , , , ,
η ϕ ϑ χ η ϕ ϑ
( ) ( )

 


V010
∂
∂
∂
∂
∂
  
V D
D
V V
I
V
020 0
0
2
020
2
2
020
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 −
∂
∂
∂
η
χ η ϕ
ϕ
2
2
020
2

V , , ,ϑ
1 010 000 000
+ ( )

 
 ( ) ( )+
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ χ
I V I V
g T I V I
, , , , , , , , , , ,
   ,
, , , , , ,
η ϕ ϑ χ η ϕ ϑ
( ) ( )

 


V010 ;
∂
∂
∂
∂
∂
  
I D
D
I I
I
V
001 0
0
2
001
2
2
001
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 −
∂
∂
∂
η
χ η ϕ
ϕ
2
2
001
2

I , , ,ϑ
1 000
2
+ ( )

 
 ( )
ε χ η ϕ χ η ϕ ϑ
I I I I
g T I
, , , , , , , ,

∂
∂
∂
∂
∂
  
V D
D
V V
V
I
001 0
0
2
001
2
2
001
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 −
∂
∂
∂
η
χ η ϕ
ϕ
2
2
001
2

V , , ,ϑ
1 000
2
+ ( )

 
 ( )
ε χ η ϕ χ η ϕ ϑ
I I I I
g T V
, , , , , , , ,
 ;
∂
∂
∂
∂
∂
  
I D
D
I I
I
V
110 0
0
2
110
2
2
110
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 + ×
∂
∂
∂
η
χ η ϕ
ϕ
2
2
110
2
0
0

I D
D
I
V
, , ,ϑ
∂
∂
∂
∂
∂
∂
∂
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
g T
I
g T
I
I I
, , ,
, , ,
, , ,
( )
( )





 + ( )
 
010 010 χ
χ η ϕ ϑ
η ϕ
χ η ϕ
, , ,
, , ,
( )





 + ( ) ×






 ∂
∂
∂
g T
I
∂
∂

  
I
I V I
010
100 000 0
χ η ϕ ϑ
ϕ
χ η ϕ ϑ χ η ϕ ϑ
, , ,
, , , , , ,
( )







− ( ) ( )+ 0
00 100
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 
 ×

V
1+ ( )

 

ε χ η ϕ
I I I I
g T
, , , , ,
( ) ( ) ( ) ( )
2 2 2
110 110 110 110
0V
2 2 2
0I
V , , , V , , , V , , , V , , ,
D
D
χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ
ϑ χ η ϕ
 
∂ ∂ ∂ ∂
= + + +
 
∂ ∂ ∂ ∂
 
 
   
D
D
g T
V
g T
V
I
V V
0
0
010
∂
∂
∂
∂
∂
∂
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,
( )
( )





 + ( )
 ∂
∂
∂

V010 χ η ϕ ϑ
η
, , ,
( )





 +





Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 72
∂
∂
∂
∂
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
V
g
V V V V V
, , ,
, , ,
, ,
, ,
( )
( )











− +

010
1 ,
,T
( )

 
 ×
   
V I V I
100 000 000 100
χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ
, , , , , , , , , , , ,
( ) ( )+ ( ) ( )


 
 ;
∂
∂
∂
∂
∂
  
I D
D
I I
I
V
002 0
0
2
002
2
2
002
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 −
∂
∂
∂
η
χ η ϕ
ϕ
2
2
002
2

I , , ,ϑ
1 001 000
+ ( )

 
 ( ) ( )
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I I I I
g T I I
, , , , , , , , , , ,
 
∂
∂
∂
∂
∂
  
V D
D
V V
V
I
002 0
0
2
002
2
2
002
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 −
∂
∂
∂
η
χ η ϕ
ϕ
2
2
002
2

V , , ,ϑ
1 001 000
+ ( )

 
 ( ) ( )
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
V V V V
g E V V
, , , , , , , , , , ,
  ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
101 0
0
2
101
2
2
101
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ
ϕ
2
2
101
2

I , , ,ϑ
D
D
g T
I
g T
I
V
I I
0
0
001
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,
 ∂
∂ ( )
∂





 +






I001 χ η ϕ ϑ
η
, , ,
∂
∂
∂
∂
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
I
g T
I I I
, , ,
, , ,
, , ,
( )
( )











− + ( )

001
1


 
 ( ) ( )
 
I V
100 000
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
∂
∂
∂
∂
∂
  
V D
D
V V
V
I
101 0
0
2
101
2
2
101
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 +
∂
∂
∂
η
χ η ϕ
ϕ
2
2
101
2

V , , ,ϑ
D
D
g T
V
g T
V
I
V V
0
0
001
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,
 ∂
∂ ( )
∂





 +






V001 χ η ϕ ϑ
η
, , ,
∂
∂
∂
∂
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
V
g T
V V V
, , ,
, , ,
, , ,
( )
( )











− + ( )

001
1


 
 ( ) ( )
 
I V
000 100
χ η ϕ ϑ χ η ϕ ϑ
, , , , , , ;
∂
∂
∂
∂
∂
  
I D
D
I I
I
V
011 0
0
2
011
2
2
011
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 − ( ) ×
∂
∂
∂
η
χ η ϕ
ϕ
χ η ϕ
2
2
011
2 010


I
I
, , ,
, , ,
ϑ
ϑ
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 73
1 1
000
+ ( )

 
 ( )− + ( )

ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
I I I I I V I V
g T I g T
, , , ,
, , , , , , , , ,


 
 ( ) ( )
 
I V
001 000
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
∂
∂
∂
∂
∂
  
V D
D
V V
V
I
011 0
0
2
011
2
2
011
χ η ϕ χ η ϕ
χ
χ η ϕ
, , , , , , , , ,
ϑ
ϑ
ϑ ϑ
( )
=
( )
+
(
( )
+
( )





 − ( ) ×
∂
∂
∂
η
χ η ϕ
ϕ
χ η ϕ
2
2
011
2 010


V
V
, , ,
, , ,
ϑ
ϑ
1 1
000
+ ( )

 
 ( )− + ( )

ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
V V V V I V I V
g T V g t
, , , ,
, , , , , , , , ,


 
 ( ) ( )
 
I V
000 001
χ η ϕ ϑ χ η ϕ ϑ
, , , , , , ;
∂
∂

ρ χ η ϕ
χ
ijk
x
, , ,ϑ
( )
=
=0
0,
∂
∂

ρ χ η ϕ
χ
ijk
x
, , ,ϑ
( )
=
=1
0 ,
∂
∂

ρ χ η ϕ
η η
ijk , , ,ϑ
( )
=
=0
0,
∂
∂

ρ χ η ϕ
η η
ijk , , ,ϑ
( )
=
=1
0,
∂
∂

ρ χ η ϕ
ϕ ϕ
ijk , , ,ϑ
( )
=
=0
0 ,
∂
∂

ρ χ η ϕ
ϕ ϕ
ijk , , ,ϑ
( )
=
=1
0 (i ≥0, j ≥0, k ≥0);

ρ χ η ϕ χ η ϕ ρ
ρ
000 0
, , , , , *
( ) = ( )
f , 
ρ χ η ϕ
ijk , , ,0 0
( ) = (i ≥1, j ≥1, k ≥1).
Solutions of the above equations could be written as

ρ χ η ϕ χ η ϕ
ρ ρ
000
1
1 2
, , ,ϑ ϑ
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
L L
F c c c e
n n
n
,
where F nu nv n w f u v w d wd vd u
n n
ρ ρ
ρ
π π π
= ( ) ( ) ( ) ( )
∫
∫
∫
1
0
1
0
1
0
1
*
cos cos cos , , , cn
(χ) = cos (π n χ),
( ) ( )
2 2
0 0
exp
ϑ ϑ
nI V I
e n D D

= − , e n D D
nV I V
ϑ ϑ
( ) = −
( )
exp π2 2
0 0 ;

I
D
D
nc c c e e s u c
i
I
V
n nI nI n n
00
0
0
2
χ η ϕ π χ η ϕ τ
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) v
v
I u v w
u
i
n
( )
∂ ( )
∂
×
−
=
∞
∫
∫
∫
∫
∑

100
0
1
0
1
0
1
0
1
, , ,τ
ϑ
c w g u v w T d wd vd u d
D
D
nc c c e e
n I
I
V
n nI nI
( ) ( ) − ( ) ( ) ( ) ( ) −
, , , τ π χ η ϕ ϑ τ
2 0
0
(
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
c u s v
n n
n 0
1
0
1
0
1
ϑ
c w g u v w T
I u v w
v
d wd vd u d
D
D
nc
n I
i I
V
n
( ) ( )
∂ ( )
∂
−
−
∫ , , ,
, , ,

100
0
1
0
0
2
τ
τ π χ
χ η ϕ ϑ τ
ϑ
( ) ( ) ( ) ( ) −
( ) ×
∫
∑
=
∞
c c e e
nI nI
n 0
1
c u c v s w g u v w T
I u v w
w
d wd vd u d
n n n I
i
( ) ( ) ( ) ( )
∂ ( )
∂
−
∫ , , ,
, , ,

100
0
1
0
1


∫
∫
∫
0
1
, i ≥1,

V
D
D
nc c c e e s u c
i
V
I
n nV nI n n
00
0
0
2
χ η ϕ π χ η ϕ τ
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) v
v g u v w T
V
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 74
c w
V u
u
d wd vd u d
D
D
nc c c e e
n
i V
I
n nV nI
( )
∂ ( )
∂
− ( ) ( ) ( ) ( )
−

100 0
0
,τ
τ χ η ϕ ϑ −
−
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
τ
ϑ
c u s v
n n
n 0
1
0
1
0
1
2 2
100
0
1
0
0
π
τ
τ π χ
c w g u v w T
V u
v
d wd vd u d
D
D
nc
n V
i V
I
n
( ) ( )
∂ ( )
∂
− (
−
∫ , , ,
,

)
) ( ) ( ) ( ) ×
=
∞
∑ c c enV
n
η ϕ ϑ
1
e c u c v s w g u v w T
V u
w
d wd vd u d
nI n n n V
i
−
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
τ
τ
τ
, , ,
,

100
0
1
∫
∫
∫
∫
∫ 0
1
0
1
0
ϑ
, i ≥1,
where sn
(χ) = sin (π n χ);

ρ χ η ϕ χ η ϕ τ
ρ ρ
010 2
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
1 000 000
+ ( )

 
 ( ) ( )
ε τ τ
I V I V
g u v w T I u v w V u v w d wd vd u d
, , , , , , , , , , ,
  τ
τ ;

ρ χ η ϕ χ η ϕ τ
ρ ρ
020
0
0
2
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( )
D
D
c c c e e c u c
I
V
n n n n n n n v
v c w
n I V
n
( ) ( ) +

 ×
∫
∫
∫
∫
∑
=
∞
1
0
1
0
1
0
1
0
1
ε ,
ϑ
g u v w T I u v w V u v w I u v w
I V
, , , , , , , , , , , , ,
( )
 ( ) ( )+ ( )
  
010 000 000
   

V u v w d wd vd u d
010 , , , 
( )

 
 ;

ρ χ η ϕ χ η ϕ τ
ρ ρ
001 2
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
1 000
2
+ ( )

 
 ( )
ε ρ τ τ
ρ ρ ρ ρ
, , , , , , , ,
g u v w T u v w d wd vd u d
 ;

ρ χ η ϕ χ η ϕ τ
ρ ρ
002 2
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
1 001 000
+ ( )

 
 ( ) ( )
ε ρ τ ρ τ
ρ ρ ρ ρ
, , , , , , , , , , ,
g u v w T u v w u v w d wd vd u d
  τ
τ ;

I
D
D
nc c c e e s u
I
V
n n n nI nI n
110
0
0
2
χ η ϕ π χ η ϕ τ
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v c u
n n
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
g u v w T
I u v w
u
d wd vd u d
D
D
nc c
I
i I
V
n n
, , ,
, , ,
( )
∂ ( )
∂
− ( ) ( )
−

100 0
0
2
τ
τ π χ η c
c e
n nI
n
ϕ ϑ
( ) ( ) ×
=
∞
∑
1
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 75
e c u s v c u g u v w T
I u v w
v
d wd vd u
nI n n n I
i
−
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
τ
τ
, , ,
, , ,

100
d
d
D
D
I
V
τ π
ϑ
0
1
0
1
0
1
0
0
0
2
∫
∫
∫
∫ − ×
n e e c u c v s u g u v w T
I u v w
nI nI n n n I
i
ϑ τ
τ
( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
, , ,
, , ,

100
w
w
d wd vd u d
n
τ
ϑ
0
1
0
1
0
1
0
1
∫
∫
∫
∫
∑
=
∞
×
c c c c e c c e c u c v c v
n n n n nI n n nI n n n
χ η ϕ χ ϑ η ϕ τ
( ) ( ) ( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( )
2 (
( ) + ×


∫
∫
∫
∫
∑
=
∞
1
0
1
0
1
0
1
0
1
ε
ϑ
I V
n
,
g u v w T I u v w V u v w I u v w
I V
, , , , , , , , , , , , ,
( )
 ( ) ( )+ ( )
  
100 000 000
   

V u v w d wd vd u d
100 , , , 
( )

 


V
D
D
nc c c e e s u
V
I
n n n nV nV n
110
0
0
2
χ η ϕ π χ η ϕ τ
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v c u
n n
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
g u v w T
V u v w
u
d wd vd u d
D
D
nc c
V
i V
I
n n
, , ,
, , ,
( )
∂ ( )
∂
− ( ) ( )
−

100 0
0
2
τ
τ π χ η c
c e
n nV
n
ϕ ϑ
( ) ( ) ×
=
∞
∑
1
e c u s v c u g u v w T
V u v w
v
d wd vd u
nV n n n V
i
−
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
τ
τ
, , ,
, , ,

100
d
d
D
D
V
I
τ π
ϑ
0
1
0
1
0
1
0
0
0
2
∫
∫
∫
∫ − ×
ne e c u c v s u g u v w T
V u v w
nV nV n n n V
i
ϑ τ
τ
( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
, , ,
, , ,

100
w
w
d wd vd u d
n
τ
ϑ
0
1
0
1
0
1
0
1
∫
∫
∫
∫
∑
=
∞
×
c c c c e c c e c u c v
n n n n nI n n nV n n
χ η ϕ χ ϑ η ϕ τ ε
( ) ( ) ( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( ) +
2 1 I
I V I V
n
g u v w T
, , , , ,
( )

 
 ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
c w I u v w V u v w I u v w V u v w
n ( ) ( ) ( )+ ( )
   
100 000 000 100
, , , , , , , , , , ,
   ,
, 
( )

 
 d wd vd u d ;

I
D
D
nc c c e e s u
I
V
n n n nI nI n
101
0
0
2
χ η ϕ π χ η ϕ τ
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v g u v w T
n I
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
c w
I u v w
u
d wd vd u d
D
D
nc c c e
n
I
V
n n n nI
( )
∂ ( )
∂
− ( ) ( ) ( )

001 0
0
2
, , ,τ
τ π χ η ϕ ϑ
ϑ
( ) ×
=
∞
∑
n 1
s v c w g u v w T
I u v w
v
d wd vd u d
D
n n I
I
( ) ( ) ( )
∂ ( )
∂
−
∫
∫ , , ,
, , ,

001
0
1
0
1
0
2
τ
τ π
D
D
ne c c c
V
nI n n n
n
0 1
ϑ χ η ϕ
( ) ( ) ( ) ( ) ×
=
∞
∑
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 76
e c u c v s w g u v w T
I u v w
w
d wd vd u d
nI n n n I
−
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
τ
τ
τ
, , ,
, , ,

001
0
0
1
0
1
0
1
0 1
2
∫
∫
∫
∫ ∑
− ( ) ( ) ( ) ×
=
∞
ϑ
χ η ϕ
c c c
n n n
n
e e c u c v c w g u v w T I u
nI nI n n n I V I V
ϑ τ ε
( ) −
( ) ( ) ( ) ( ) + ( )

 

1 100
, , , , , ,
 v
v w V u v w d wd vd u d
, , , , ,
τ τ τ
ϑ
( ) ( )
∫
∫
∫
∫ 
000
0
1
0
1
0
1
0

V
D
D
nc c c e e s u
V
I
n n n nV nV n
101
0
0
2
χ η ϕ π χ η ϕ τ
, , ,ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( )
ϑ c
c v g u v w T
n V
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
c w
V u v w
u
d wd vd u d
D
D
nc c c e
n
V
I
n n n nI
( )
∂ ( )
∂
− ( ) ( ) ( )

001 0
0
2
, , ,τ
τ π χ η ϕ ϑ
ϑ τ
ϑ
( ) −
( ) ( ) ×
∫
∫
∑
=
∞
e c u
nV n
n 0
1
0
1
s v c w g u v w T
I u v w
v
d wd vd u d
D
n n I
I
( ) ( ) ( )
∂ ( )
∂
−
∫
∫ , , ,
, , ,

001
0
1
0
1
0
2
τ
τ π
D
D
ne c c c
V
nI n n n
n
0 1
ϑ χ η ϕ
( ) ( ) ( ) ( ) ×
=
∞
∑
e c u c v s w g u v w T
V u v w
w
d wd vd u d
nV n n n V
−
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
τ
τ
τ
, , ,
, , ,

001
0
0
1
0
1
0
1
0 1
2
∫
∫
∫
∫ ∑
− ( ) ( ) ( ) ×
=
∞
ϑ
χ η ϕ
c c c
n n n
n
e e c u c v c w g u v w T I u
nV nV n n n I V I V
ϑ τ ε
( ) −
( ) ( ) ( ) ( ) + ( )

 

1 100
, , , , , ,
 v
v w V u v w d wd vd u d
, , , , ,
τ τ τ
ϑ
( ) ( )
∫
∫
∫
∫ 
000
0
1
0
1
0
1
0
;

I c c c e e c u c v c w
n n n nI nI n n n
011 2
χ η ϕ χ η ϕ τ
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( ) (
( ) ( )
{ ×
∫
∫
∫
∫
∑
=
∞

I u v w
n
000
0
1
0
1
0
1
0
1
, , ,τ
ϑ
1 1
010
+ ( )

 
 ( )+ + ( )

ε τ ε
I I I I I V I V
g u v w T I u v w g u v w T
, , , ,
, , , , , , , , ,


 
 ( ) ( )}
 
I u v w V u v w d wd vd u d
001 000
, , , , , ,
τ τ τ

V c c c e e c u c v c w
n n n nV nV n n n
011 2
χ η ϕ χ η ϕ τ
, , ,ϑ ϑ
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( ) (
( ) ( )
{ ×
∫
∫
∫
∫
∑
=
∞

I u v w
n
000
0
1
0
1
0
1
0
1
, , ,τ
ϑ
1 1
010
+ ( )

 
 ( )+ + ( )

ε τ ε
I I I I I V I V
g u v w T I u v w g u v w T
, , , ,
, , , , , , , , ,


 
 ( ) ( )}
 
I u v w V u v w d wd vd u d
001 000
, , , , , ,
τ τ τ .
Equations for functions Φρi
(x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radiation
defects.







Φ Φ Φ
Φ
I
I
I I
x y z t
t
D
x y z t
x
x y z t
y
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+
Φ
ΦI x y z t
z
0
2
, , ,
( )





 +

k x y z T I x y z t k x y z T I x y z t
I I I
, , , , , , , , , , , , ,
( ) ( )− ( ) ( )
2
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 77







Φ Φ Φ
Φ
V
V
V V
x y z t
t
D
x y z t
x
x y z t
y
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+
Φ
ΦV x y z t
z
0
2
, , ,
( )





 +

k x y z T V x y z t k x y z T V x y z t
V V V
, , , , , , , , , , , , ,
( ) ( )− ( ) ( )
2
;







Φ Φ Φ
Φ
I i
I
I i I i
x y z t
t
D
x y z t
x
x y z t
y
, , , , , , , , ,
( )
=
( )
+
( )
+
0
2
2
2
2
2
Φ
ΦI i x y z t
z
, , ,
( )








+
 2
D
x
g x y z T
x y z t
x y
g x y z T
I I
I i
I
0
1
Φ Φ Φ
Φ






, , ,
, , ,
, , ,
( )
( )





 + ( )
− 


ΦI i x y z t
y
− ( )





 +





1 , , ,




z
g x y z T
x y z t
z
I
I i
Φ
Φ
, , ,
, , ,
( )
( )











−1
, i≥1,
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
Φ Φ Φ
Φ
V i
V
V i V i
x y z t
t
D
x y z t
x
x y z t
y
, , , , , , , , ,
0
2
2
2
2
2
Φ
ΦV i x y z t
z
, , ,
( )
∂








+
2
D
x
g x y z T
x y z t
x y
g x y z T
V V
V i
V
0
1
Φ Φ Φ
Φ






, , ,
, , ,
, , ,
( )
( )





 + ( )
− 


ΦV i x y z t
y
− ( )





 +





1 , , ,




z
g x y z T
x y z t
z
V
V i
Φ
Φ
, , ,
, , ,
( )
( )











−1
, i≥1;
Boundary and initial conditions for the functions take the form
∂
∂
Φρi
x
x y z t
x
, , ,
( )
=
=0
0,
∂
∂
Φρi
x L
x y z t
x
x
, , ,
( )
=
=
0,
∂
∂
Φρi
y
x y z t
y
, , ,
( )
=
=0
0,
∂
∂
Φρi
y L
x y z t
y
y
, , ,
( )
=
=
0,
∂
∂
Φρi
z
x y z t
z
, , ,
( )
=
=0
0,
∂
∂
Φρi
z L
x y z t
z
z
, , ,
( )
=
=
0, i≥0; Φρ
0
(x,y,z,0)=fΦρ
(x,y,z),
Φρ
i
(x,y,z,0)=0, i≥1.
Solutions of the above equations could be written as
Φ Φ Φ
  
0
1
1 2
x y z t
L L L L L L
F c x c y c z e t
x y z x y z
n n n n n
n
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
∑ ∑
+ ( ) ( ) ( ) ×
=
∞
2
1
L
n c x c y c z
n n n
n
e t e c u c v c w k u v w T I u v w
n n n n n I I
Φ Φ
ρ ρ
τ τ
( ) −
( ) ( ) ( ) ( ) ( ) ( )−

 , , , , , , ,
2
0
L
L
L
L
t z
y
x
∫
∫
∫
∫ 0
0
0
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 78
k u v w T I u v w d wd vd u d
I , , , , , ,
( ) ( )

  ,
where F c u c v c w f u v w d wd vd u
n n n n
L
L
L z
y
x
Φ Φ
 
= ( ) ( ) ( ) ( )
∫
∫
∫ , ,
0
0
0
, e t n D t L L L
n x y z
Φ Φ
ρ ρ
π
( ) = − + +
( )




− − −
exp 2 2
0
2 2 2
,
cn
(x) = cos (π n x/Lx
);
Φ Φ Φ
ρ
π
τ
ρ ρ
i
x y z
n n n n n n
x y z t
L L L
nc x c y c z e t e s u
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) (
2
2 )
) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v g u v w T
n
L
L
L
t
n
z
y
x
Φρ
, , ,
0
0
0
0
1
c w
u v w
u
d wd vd u d
L L L
nc x c y c z e
n
I i
x y z
n n n
( )
( )
− ( ) ( ) ( )
−
∂ τ
∂
τ
π
ρ
Φ 1
2
2
, , ,
Φ
Φ Φ
ρ ρ
τ
n n
t
n
t e
( ) −
( ) ×
∫
∑
=
∞
0
1
e c u s v c w g u v w T
u v w
v
d wd vd
n n n n
I i
Φ Φ
Φ
ρ ρ
ρ
τ
∂ τ
∂
−
( ) ( ) ( ) ( ) ( )
( )
−
, , ,
, , ,
1
u
u d
L L L
n
L
L
L
t
x y z n
z
y
x
τ
π
0
0
0
0
2
1
2
∫
∫
∫
∫ ∑
− ×
=
∞
e t e c u c v s w
u v w
w
g u v w T
n n n n n
I i
Φ Φ Φ
Φ
ρ ρ
ρ
ρ
τ
∂ τ
∂
( ) −
( ) ( ) ( ) ( )
( )
−1 , , ,
, , ,
(
( ) ×
∫
∫
∫
∫ d wd vd u d
L
L
L
t z
y
x
τ
0
0
0
0
c x c y c z
n n n
( ) ( ) ( ), i ≥1,
where sn
(x) = sin (π n x/Lx
).
Equations for the functions Cij
(x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be written as






C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
00
0
2
00
2 0
2
00
2
, , , , , , , , ,
( )
=
( )
+
( )
+ D
D
C x y z t
z
L
0
2
00
2


, , ,
( )
;







C x y z t
t
D
C x y z t
x
C x y z t
y
C
i
L
i i
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+ i
i x y z t
z
0
2
, , ,
( )





 +

D
x
g x y z T
C x y z t
x
D
y
g x y z T
L L
i
L L
0
10
0






, , ,
, , ,
, , ,
( )
( )





 + ( )
− 


C x y z t
y
i− ( )





 +
10 , , ,
D
z
g x y z T
C x y z t
z
L L
i
0
10




, , ,
, , ,
( )
( )






−
, i ≥1;






C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
01
0
2
01
2 0
2
01
2
, , , , , , , , ,
( )
=
( )
+
( )
+ D
D
C x y z t
z
L
0
2
01
2


, , ,
( )
+
D
x
C x y z t
P x y z T
C x y z t
x
D
y
L L
0
00 00
0
∂
∂
∂
∂
∂
∂
γ
γ
, , ,
, , ,
, , ,
( )
( )
( )





 +
C
C x y z t
P x y z T
C x y z t
y
00 00
γ
γ
, , ,
, , ,
, , ,
( )
( )
( )





 +
∂
∂
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 79
D
z
C x y z t
P x y z T
C x y z t
z
L
0
00 00
∂
∂
( )
( )
∂ ( )
∂








, , ,
, , ,
, , ,
;






C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
02
0
2
02
2 0
2
02
2
, , , , , , , , ,
( )
=
( )
+
( )
+ D
D
C x y z t
z
L
0
2
02
2


, , ,
( )
+
D
x
C x y z t
C x y z t
P x y z T
C x y z t
L
0 01
00
1
00
∂
∂
∂
∂
, , ,
, , ,
, , ,
, , ,
( )
( )
( )
( )
−
γ
γ
x
x y
C x y z t
C x y z t
P x y z T





 + ( )
( )
( )
×







−
∂
∂
01
00
1
, , ,
, , ,
, , ,
γ
γ


∂
∂
∂
∂
C x y z t
y z
C x y z t
C x y z t
P x y z T
00
01
00
1
, , ,
, , ,
, , ,
, , ,
( )

 + ( )
( )
−
γ
γ
(
( )
( )











+
∂
∂
C x y z t
z
00 , , ,
∂
∂
∂
∂
C x y z t
y z
C x y z t
C x y z t
P x y z T
00
01
00
1
, , ,
, , ,
, , ,
, , ,
( )

 + ( )
( )
−
γ
γ
(
( )
( )











+
( )
∂
∂
∂
∂
C x y z t
z
D
x
C x y z t
P x y z T
L
00
0
00
, , , , , ,
, , ,
γ
γ
(
( )
×








∂
∂
∂
∂
∂
C x y z t
x y
C x y z t
P x y z T
C x y z t
01 00 01
, , , , , ,
, , ,
, , ,
( )

 +
( )
( )
(
γ
γ
)
)





 +
( )
( )
( )





∂
∂
∂
∂
∂
y z
C x y z t
P x y z T
C x y z t
z
00 01
γ
γ
, , ,
, , ,
, , ,







;






C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
11
0
2
11
2 0
2
11
2
, , , , , , , , ,
( )
=
( )
+
( )
+ D
D
C x y z t
z
L
0
2
11
2


, , ,
( )
+
∂
∂
∂
∂
x
C x y z t
C x y z t
P x y z T
C x y z t
x
10
00
1
00
, , ,
, , ,
, , ,
, , ,
( )
( )
( )
( )


−
γ
γ




 + ( )
( )
( )
×








−
∂
∂ y
C x y z t
C x y z t
P x y z T
10
00
1
, , ,
, , ,
, , ,
γ
γ
∂
∂
∂
∂
C x y z t
y z
C x y z t
C x y z t
P x y z T
00
10
00
1
, , ,
, , ,
, , ,
, , ,
( )

 + ( )
( )
−
γ
γ
(
( )
( )











+
∂
∂
C x y z t
z
D L
00
0
, , ,
D
x
C x y z t
P x y z T
C x y z t
x y
C
L
0
00 10 00
∂
∂
∂
∂
∂
∂
γ
γ
, , ,
, , ,
, , ,
( )
( )
( )





 +
γ
γ
γ
x y z t
P x y z T
C x y z t
y
, , ,
, , ,
, , ,
( )
( )
( )





 +





∂
∂
10
∂
∂
∂
∂
∂
z
C x y z t
P x y z T
C x y z t
z
D L
00 10
0
γ
γ
, , ,
, , ,
, , ,
( )
( )
( )











+
∂
∂
∂
∂
x
g x y z T
C x y z t
x
L , , ,
, , ,
( )
( )





 +





01







y
g x y z T
C x y z t
y z
g x y z T
C x y
L L
, , ,
, , ,
, , ,
, ,
( )
( )





 + ( )
01 01 z
z t
z
,
( )












;


C x y z t
x
ij
x
, , ,
( )
=
=0
0,


C x y z t
x
ij
x Lx
, , ,
( )
=
=
0,


C x y z t
y
ij
y
, , ,
( )
=
=0
0,


C x y z t
y
ij
y Ly
, , ,
( )
=
=
0,
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 80


C x y z t
z
ij
z
, , ,
( )
=
=0
0,


C x y z t
z
ij
z Lz
, , ,
( )
=
=
0 , i ≥0, j ≥0;
C00
(x,y,z,0)=fC
(x,y,z), Cij
(x,y,z,0)=0, i ≥1, j ≥1.
Functions Cij
(x,y,z,t) (i ≥0, j ≥0) could be approximated by the following series during solutions of the
above equations
C x y z t
F
L L L L L L
F c x c y c z e t
C
x y z x y z
nC n n n nC
n
00
0
1
2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
∑ .
Here ( ) 2 2
0 2 2 2
1 1 1
nC C
x y z
e t exp n D t
L L L

 
 
= − + +
 
 
 
 
 
, F c u c v f u v w c w d wd v d u
nC n n C n
L
L
L z
y
x
= ( ) ( ) ( ) ( )
∫
∫
∫ , ,
0
0
0
;
C x y z t
L L L
n F c x c y c z e t e s u
i
x y z
nC n n n nC nC n
0 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v g u v w T
n L
L
L
L
t
n
z
y
x
, , ,
0
0
0
0
1
c w
C u v w
u
d wd vd u d
L L L
n F c x c y c z
n
i
x y z
nC n n n
( )
∂ ( )
∂
− ( ) ( ) (
−10
2
2
, , ,τ
τ
π
)
) ( ) −
( ) ×
∫
∑
=
∞
e t e
nC nC
t
n
τ
0
1
c u s v c v g u v w T
C u v w
v
d wd vd u d
n n n L
i
L
L z
y
( ) ( ) ( ) ( )
∂ ( )
∂
−
∫ , , ,
, , ,
10
0
0
τ
τ
∫
∫
∫ ∑
− ( ) ×
=
∞
0
2
1
2
L
x y z
nC nC
n
x
L L L
n F e t
π
c x c y c z e c u c v s v g u v w T
C u v
n n n nC n n n L
i
( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
∂ −
 , , ,
, ,
10 w
w
w
d wd vd u d
L
L
L
t z
y
x
,

( )
∂
∫
∫
∫
∫ 0
0
0
0
, i ≥1;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
01 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( )×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
C u v w
P u v w T
C u v w
u
d wd vd u d
L L L
n
x y z
00 00
2
2
γ
γ
τ τ
τ
π
, , ,
, , ,
, , ,
( )
( )
∂ ( )
∂
− F
F c x c y c z e t
nC n n n nC
n
( ) ( ) ( ) ( ) ×
=
∞
∑
1
e c u s v c w
C u v w
P u v w T
C u v w
nC n n n
−
( ) ( ) ( ) ( )
( )
( )
∂ (
τ
τ τ
γ
γ
00 00
, , ,
, , ,
, , , )
)
∂
− ( )×
∫
∫
∫
∫ ∑
=
∞
v
d wd vd u d
L L L
n e t
L
L
L
t
x y z
nC
n
z
y
x
τ
π
0
0
0
0
2
1
2
F c x c y c z e c u c v s w
C u v w
P u v
nC n n n nC n n n
( ) ( ) ( ) −
( ) ( ) ( ) ( )
( )
τ
τ
γ
γ
00 , , ,
, ,
, ,
, , ,
w T
C u v w
w
d wd vd u d
L
L
L
t z
y
x
( )
∂ ( )
∂
∫
∫
∫
∫
00
0
0
0
0
τ
τ ;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
02 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 81
C u v w
C u v w
P u v w T
C u v w
u
d wd vd
01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ τ
γ
γ
( )
( )
( )
∂ ( )
∂
−
u
u d
L L L
F c x c y
x y z
nC n n
n
τ
π
− ( ) ( )×
=
∞
∑
2
2
1
nc z e t e c u s v C u v w
C u v w
P
n nC nC n n
( ) ( ) −
( ) ( ) ( ) ( )
( )
−
τ τ
τ
γ
γ
01
00
1
, , ,
, , ,
u
u v w T
C u v w
v
L
L
L
t z
y
x
, , ,
, , ,
( )
∂ ( )
∂
×
∫
∫
∫
∫
00
0
0
0
0
τ
c w d wd vd u d
L L L
n F c x c y c z e t e c u
n
x y z
nC n n n nC nC n
( ) − ( ) ( ) ( ) ( ) −
( )
τ
π
τ
2
2 (
( ) ( ) ×
∫
∫
∫
∑
=
∞
c v
n
L
L
t
n
y
x
0
0
0
1
s w C u v w
C u v w
P u v w T
C u v w
w
n ( ) ( )
( )
( )
∂ ( )
∂
−
01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ τ
γ
γ
d
d wd vd u d
L L L
n c x
L
x y z
n
n
z
τ
π
0
2
1
2
∫ ∑
− ( ) ×
=
∞
F c y c z e t e s u c v c w C u v w
C u
nC n n nC nC n n n
( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
∂
 
01
00
, , ,
,
, , ,
v w
u
L
L
L
t z
y
x

( )
∂
×
∫
∫
∫
∫ 0
0
0
0
C u v w
P u v w T
d wd vd u d
L L L
n F c x c y
x y z
nC n n
00
1
2
2
γ
γ
τ
τ
π
−
( )
( )
− ( ) ( )
, , ,
, , ,
c
c z e t e c u
n nC nC n
L
t
n
x
( ) ( ) −
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
s v c w C u v w
C u v w
P u v w T
C u v w
n n
( ) ( ) ( )
( )
( )
∂
−
01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ
γ
γ
τ
τ
τ
π
( )
∂
− ×
∫
∫ ∑
=
∞
v
d wd vd u d
L L L
n
L
L
x y z n
z
y
0
0
2
1
2
F c x c y c z e t e c u c v s w C u v w
nC n n n nC nC n n n
( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
τ τ
01 , , ,
C
C u v w
P u v w T
L
L
L
t z
y
x
00
1
0
0
0
0
γ
γ
τ
−
( )
( )
×
∫
∫
∫
∫
, , ,
, , ,
∂
∂
C u v w
w
d wd vd u d
L L L
F c x c y c z e t e
x y z
nC n n n nC
00
2
2
, , ,τ
τ
π
( )
− ( ) ( ) ( ) ( ) n
nC n
L
t
n
s u
x
−
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
n c v c w
C u v w
P u v w T
C u v w
u
d wd vd u d
n n
( ) ( )
( )
( )
∂ ( )
∂
00 01
γ
γ
τ τ
τ
, , ,
, , ,
, , ,
0
0
0
2
1
2
L
L
x y z
n nC
n
z
y
L L L
c x e t
∫
∫ ∑
− ( ) ( ) ×
=
∞
π
F c y e c u s v c w
C u v w
P u v w T
C
nC n nC n n n
( ) −
( ) ( ) ( ) ( )
( )
( )
∂
τ
τ
γ
γ
00 01
, , ,
, , ,
u
u v w
v
d wd vd u d
L
L
L
t z
y
x
, , ,τ
τ
( )
∂
×
∫
∫
∫
∫ 0
0
0
0
n c z
L L L
n F c x c y c z e t e c u c v
n
x y z
nC n n n nC nC n n
( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( )
2
2
π
τ s
s w
n
L
L
L
t
n
z
y
x
( ) ×
∫
∫
∫
∫
∑
=
∞
0
0
0
0
1
C u v w
P u v w T
C u v w
w
d wd vd u d
00 01
γ
γ
τ τ
τ
, , ,
, , ,
, , ,
( )
( )
∂ ( )
∂
;
Pankratov: On approach to increase integration rate
AJMS/Jul-Sep-2020/Vol 4/Issue 3 82
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
11 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
g u v w T
C u v w
u
d wd vd u d
L L L
n F c x c y
L
x y z
nC n n
, , ,
, , ,
( )
∂ ( )
∂
− ( ) ( )
01
2
2
τ
τ
π
c
c z e t
n nC
n
( ) ( ) ×
=
∞
∑
1
e c u s v c w g u v w T
C u v w
v
d wd vd u d
nC n n n L
L
−
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
τ
τ
τ
, , ,
, , ,
01
0
z
z
y
x
L
L
t
x y z
L L L
∫
∫
∫
∫ − ×
0
0
0
2
2π
n e t e c u c v s w g u v w T
C u v w
w
d wd
nC nC n n n L
( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂


, , ,
, , ,
01
v
vd u d
L
L
L
t
n
z
y
x

0
0
0
0
1
∫
∫
∫
∫
∑
=
∞
×
F c x c y c z
L L L
F c x c y c z e t e
nC n n n
x y z
nC n n n nC nC
( ) ( ) ( )− ( ) ( ) ( ) ( ) −
(
2
2
π
τ )
) ( ) ( ) ×
∫
∫
∫
∑
=
∞
s u c v
n n
L
L
t
n
y
x
0
0
0
1
n c w
C u v w
P u v w T
C u v w
u
d wd vd u d
n
Lz
( )
( )
( )
∂ ( )
∂
−
∫
00 10
0
γ
γ
τ τ
τ
, , ,
, , ,
, , , 2
2
2
1
π
L L L
n F c x c y
x y z
nC n n
n
( ) ( )×
=
∞
∑
c z e t e c u s v c w
C u v w
P u v w T
n nC nC n n n
( ) ( ) −
( ) ( ) ( ) ( )
( )
( )
∂
τ
τ
γ
γ
00 , , ,
, , ,
C
C u v w
v
d wd vd u d
L
L
L
t z
y
x
10
0
0
0
0
, , ,τ
τ
( )
∂
−
∫
∫
∫
∫
2
2
0
π
τ
L L L
n F c x c y c z e t e c u c v s w
C
x y z
nC n n n nC nC n n n
( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( ) 0
0
0
0
0
0
1
γ
γ
τ
u v w
P u v w T
L
L
L
t
n
z
y
x
, , ,
, , ,
( )
( )
×
∫
∫
∫
∫
∑
=
∞
∂ ( )
∂
− ( ) ( ) ( ) ( )
C u v w
w
d wd vd u d
L L L
n F c x c y c z e t
x y z
nC n n n nC
10
2
2
, , ,τ
τ
π
e
e s u
nC n
L
t
n
x
−
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
c v c w C u v w
C u v w
P u v w T
C u v w
n n
( ) ( ) ( )
( )
( )
∂
−
10
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ
γ
γ
τ
τ
τ
π
( )
∂
− ×
∫
∫ ∑
=
∞
u
d wd vd u d
L L L
n
L
L
x y z n
z
y
0
0
2
1
2
F c x c y c z e t e c u s v c w
C u v w
nC n n n nC nC n n n
( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( )
−
τ
γ
00
1
, , ,τ
τ τ
γ
( )
( )
∂ ( )
∂
×
∫
∫
∫
∫ P u v w T
C u v w
v
L
L
L
t z
y
x
, , ,
, , ,
00
0
0
0
0
C u v w d wd vd u d
L L L
n F c x c y c z e t e
x y z
nC n n n nC nC
10 2
2
, , ,τ τ
π
( ) − ( ) ( ) ( ) ( ) −
−
( ) ( ) ×
∫
∫
∑
=
∞
τ c u
n
L
t
n
x
0
0
1
c v s w C u v w
C u v w
P u v w T
C u v w
n n
( ) ( ) ( )
( )
( )
∂
−
10
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ
γ
γ
τ
τ
τ
( )
∂
∫
∫ w
d wd vd u d
L
L z
y
0
0
.

More Related Content

What's hot

MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...BRNSS Publication Hub
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...antjjournal
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
Peridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositePeridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositeYILE HU
 
Differential equations and its applications
Differential equations and its applicationsDifferential equations and its applications
Differential equations and its applicationsDr.Jagadish Tawade
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
Principal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationPrincipal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationTatsuya Yokota
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionPedro222284
 
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET Journal
 

What's hot (18)

MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
41-50
41-5041-50
41-50
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
Peridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositePeridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced composite
 
Differential equations and its applications
Differential equations and its applicationsDifferential equations and its applications
Differential equations and its applications
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
Principal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationPrincipal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classification
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability Distribution
 
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
 

Similar to On Approach to Increase Integration Rate of Elements of a Current Source Circuit

On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ijmejournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...antjjournal
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopBRNSS Publication Hub
 

Similar to On Approach to Increase Integration Rate of Elements of a Current Source Circuit (20)

02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...BRNSS Publication Hub
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHSBRNSS Publication Hub
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRABRNSS Publication Hub
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERSBRNSS Publication Hub
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationBRNSS Publication Hub
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...BRNSS Publication Hub
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseBRNSS Publication Hub
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...BRNSS Publication Hub
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...BRNSS Publication Hub
 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
 

Recently uploaded

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 

Recently uploaded (20)

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 

On Approach to Increase Integration Rate of Elements of a Current Source Circuit

  • 1. www.ajms.com 59 ISSN 2581-3463 RESEARCH ARTICLE On Approach to Increase Integration Rate of Elements of a Current Source Circuit E. L. Pankratov1,2 1 Department of Mathematics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 2 Department of Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia Received: 25-06-2020; Revised: 10-07-2020; Accepted: 10-08-2020 ABSTRACT In this paper, we introduce an approach to increase integration rate of elements of a current source circuit. Framework the approach, we consider a heterostructure with special configuration. Several specific areas of the heterostructure should be doped by diffusion or ion implantation. Annealing of dopant and/ or radiation defects should be optimized. Key words: Analytical approach for modeling, current source circuit, optimization of manufacturing INTRODUCTION An actual and intensively solving problem of solid-state electronics is increasing of integration rate of elements of integrated circuits (p-n-junctions, their systems et al.).[1-8] Increasing of the integration rate leads to necessity to decrease their dimensions. To decrease, the dimensions are using several approaches. They are widely using laser and microwave types of annealing of infused dopants. These types of annealing are also widely using for annealing of radiation defects, generated during ion implantation.[9-17] Using the approaches gives a possibility to increase integration rate of elements of integrated circuits through inhomogeneity of technological parameters due to generating inhomogenous distribution of temperature. In this situation, one can obtain decreasing dimensions of elements of integrated circuits[18] with account Arrhenius law.[1,3] Another approach to manufacture elements of integrated circuits with smaller dimensions is doping of heterostructure by diffusion or ion implantation.[1-3] However, in this case, optimization of dopant and/or radiation defects is required.[18] In this paper, we consider a heterostructure. The heterostructure consists of a substrate and several epitaxial layers. Some sections have been manufactured in the epitaxial layers. Further, we consider doping of these sections by diffusion or ion implantation. The doping gives a possibility to manufacture field-effect transistors framework a current source circuit so as it is shown in Figure 1. The manufacturing gives a possibility to increase density of elements of the current source circuit.[4] After the considered doping, dopant and/or radiation defects should be annealed. Framework the paper, we analyzed dynamics of redistribution of dopant and/or radiation defects during their annealing. We introduce an approach to decrease dimensions of the element. However, it is necessary to complicate technological process. METHOD OF SOLUTION In this section, we determine spatiotemporal distributions of concentrations of infused and implanted dopants. To determine these distributions, we calculate appropriate solutions of the second Fick’s law.[1,3,18] Address for correspondence: E. L. Pankratov E-mail: elp2004@mail.ru
  • 2. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 60 C x y z t t , , , ( ) ∂ =            x D C x y z t x y D C x y z t y z D C x C C C , , , , , , ( )       + ( )       + , , , , y z t z ( )        (1) Boundary and initial conditions for the equations are   C x y z t x x , , , ( ) = =0 0,   C x y z t x x Lx , , , ( ) = = 0,   C x y z t y y , , , ( ) = =0 0,   C x y z t y x Ly , , , ( ) = = 0,   C x y z t z z , , , ( ) = =0 0,   C x y z t z x Lz , , , ( ) = = 0, C (x,y,z,0)=f(x,y,z).(2) The function C(x,y,z,t) describes the spatiotemporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient could be changed with changing materials of heterostructure, with changing temperature of materials (including annealing), with changing concentrations of dopant and radiation defects. We approximate dependences of dopant diffusion coefficient on parameters by the following relation with account results in Refs.[20-22] D D x y z T C x y z t P x y z T V x y z t C L = ( ) + ( ) ( )       + ( , , , , , , , , , , , , 1 1 1 ξ ς γ γ ) ) + ( ) ( )         V V x y z t V * * , , , ς2 2 2 (3) Here, the function DL (x,y,z,T) describes the spatial (in heterostructure) and temperature (due toArrhenius law) dependences of diffusion coefficient of dopant. The function P(x,y,z,T) describes the limit of solubility of dopant. Parameter γ ∈[1,3] describes average quantity of charged defects interacted with atom of dopant.[20] The function V(x,y,z,t) describes the spatiotemporal distribution of concentration of radiation vacancies. Parameter V* describes the equilibrium distribution of concentration of vacancies. The considered concentrational dependence of dopant diffusion coefficient has been described in details Figure 1: The considered cascaded inverter[4]
  • 3. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 61 in Kozlivsky.[20] It should be noted that using diffusion type of doping did not generation radiation defects. In this situation, ζ1 = ζ2 = 0. We determine spatiotemporal distributions of concentrations of radiation defects by solving the following system of equations.[21,22]         I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T I x y z t y ( ) ( )       +       z D x y z T I x y z t z k x y z T I x y z t V I I V , , , , , , , , , , , , , ( ) ( )       − ( ) ( ) x x y z t , , , ( )− k x y z T I x y z t I I , , , , , , , ( ) ( ) 2 (4)         V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T V x y z t y ( ) ( )       +       z D x y z T V x y z t z k x y z T I x y z t V V I V , , , , , , , , , , , , , ( ) ( )       − ( ) ( ) x x y z t , , , ( )+ k x y z T V x y z t V V , , , , , , , ( ) ( ) 2 . Boundary and initial conditions for these equations are ∂ ρ ∂ x y z t x x , , , ( ) = =0 0, ∂ ρ ∂ x y z t x x Lx , , , ( ) = = 0, ∂ ρ ∂ x y z t y y , , , ( ) = =0 0, ∂ ρ ∂ x y z t y y Ly , , , ( ) = = 0, ∂ ρ ∂ x y z t z z , , , ( ) = =0 0, ∂ ρ ∂ x y z t z z Lz , , , ( ) = = 0,  (x,y,z,0)=fρ (x,y,z).(5) Here, ρ = I,V. The function I(x,y,z,t) describes the spatiotemporal distribution of concentration of radiation interstitials; Dρ(x,y,z,T) is the diffusion coefficients of point radiation defects; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V (x,y,z,T) is the parameter of recombination of point radiation defects; kI,I (x,y,z,T) and kV,V (x,y,z,T) are the parameters of generation of simplest complexes of point radiation defects. Further, we determine distributions in space and time of concentrations of divacancies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z,t) by solving the following system of equations.[21,22]         Φ Φ Φ Φ I I I I x y z t t x D x y z T x y z t x y D x , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )       +   Φ     z D x y z T x y z t z k x y z T I x y z t I I I I Φ Φ , , , , , , , , , , , , , ( ) ( )       + ( ) 2 ( ( )− ( ) ( ) k x y z T I x y z t I , , , , , , (6)         Φ Φ Φ Φ V V V V x y z t t x D x y z T x y z t x y D x , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )       +   Φ
  • 4. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 62     z D x y z T x y z t z k x y z T V x y z t V V V V Φ Φ , , , , , , , , , , , , , ( ) ( )       + ( ) 2 ( ( )− ( ) ( ) k x y z T V x y z t V , , , , , , . Boundary and initial conditions for these equations are [19,23] ∂ ∂ ρ Φ x y z t x x , , , ( ) = =0 0, ∂ ∂ ρ Φ x y z t x x Lx , , , ( ) = = 0, ∂ ∂ ρ Φ x y z t y y , , , ( ) = =0 0, ∂ ∂ ρ Φ x y z t y y Ly , , , ( ) = = 0, ∂ ∂ ρ Φ x y z t z z , , , ( ) = =0 0, ∂ ∂ ρ Φ x y z t z z Lz , , , ( ) = = 0, I (x,y,z,0)=fΦ I (x,y,z), V (x,y,z,0)=fΦ V (x,y,z).(7) Here, DΦρ (x,y,z,T) is the diffusion coefficients of the above complexes of radiation defects; kI (x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes. We calculate distributions of concentrations of point radiation defects in space and time by recently elaborated approach.[18] The approach based on transformation of approximations of diffusion coefficients in the following form: Dρ (x,y,z,T)=D0ρ [1+ερ gρ (x,y,z,T)], where D0ρ is the average values of diffusion coefficients, 0≤ερ 1, |gρ (x, y,z,T)|≤1, ρ =I,V. We also used analogous transformation of approximations of parameters of recombination of point defects and parameters of generation of their complexes: kI,V (x,y,z,T)=k0I,V [1+εI,V gI,V (x,y,z,T)], kI,I (x,y,z,T)=k0I,I [1+εI,I gI,I (x,y,z,T)] and kV,V (x,y,z,T)=k0V,V [1+εV,V gV,V (x,y,z,T)], where k0ρ1,ρ2 is the their average values, 0≤εI,V 1, 0≤εI,I 1, 0≤εV,V 1, | gI,V (x,y,z,T)|≤1, |gI,I (x,y,z,T)|≤1, |gV,V (x,y,z,T)|≤1. Let us introduce the following dimensionless variables:  I x y z t I x y z t I , , , , , , * ( ) = ( ) ,  V x y z t , , , ( ) = = ( ) V x y z t V , , , * ,  = L k D D I V I V 2 0 0 0 , , Ω   = L k D D I V 2 0 0 0 , , ϑ = D D t L I V 0 0 2 , χ = x/Lx , η = y /Ly , φ = z/Lz . The introduction leads to transformation of Equation (4) and conditions (5) to the following form ∂ χ η ϕ ∂ ∂ ∂ χ ε χ η ϕ ∂ χ η ϕ   I D D D g T I I I V I I , , , , , , , , , ϑ ϑ ϑ ( ) = + ( )     ( ) 0 0 0 1 ∂ ∂ χ ∂ ∂ η ε χ η ϕ       + + ( )     × { 1 I I g T , , , ∂ χ η ϕ ϑ ∂ η ∂ ∂ ϕ ε χ η ϕ  I D D D D D D g T I I V I I V I I , , , , , , ( )   + + ( )     0 0 0 0 0 0 1 ∂ ∂ χ η ϕ ϑ ∂ ϕ χ η ϕ ϑ   I I , , , , , , ( )       − ( ) × ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ 1 1 + ( )     ( )− + ( )  I V I V I I I I I g T V g T , , , , , , , , , , , , ,  Ω     ( )  I 2 χ η ϕ ϑ , , , (8) ∂ χ η ϕ ∂ ∂ ∂ χ ε χ η ϕ ∂ χ η ϕ   V D D D g T V V I V V V , , , , , , , , , ϑ ϑ ϑ ( ) = + ( )     ( ) 0 0 0 1 ∂ ∂ χ ∂ ∂ η ε χ η ϕ       + + ( )     × { 1 V V g T , , , ∂ χ η ϕ ϑ ∂ η ∂ ∂ ϕ ε χ η ϕ  V D D D D D D g T V I V V I V V V , , , , , , ( )   + + ( )     0 0 0 0 0 0 1 ∂ ∂ χ η ϕ ϑ ϕ χ η ϕ ϑ   V I , , , , , , ( ) ∂       − ( ) × ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ 1 1 + ( )     ( )− + ( )  I V I V V V V V V g T V g T , , , , , , , , , , , , ,  Ω     ( )  V 2 χ η ϕ ϑ , , ,
  • 5. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 63 ∂ ρ χ η ϕ ∂ χ χ  , , ,ϑ ( ) = =0 0 , ∂ ρ χ η ϕ ∂ χ χ  , , ,ϑ ( ) = =1 0, ∂ ρ χ η ϕ ∂ η η  , , ,ϑ ( ) = =0 0 , ∂ ρ χ η ϕ ∂ η η  , , ,ϑ ( ) = =1 0, ∂ ρ χ η ϕ ∂ ϕ ϕ  , , ,ϑ ( ) = =0 0, ∂ ρ χ η ϕ ∂ ϕ ϕ  , , ,ϑ ( ) = =1 0,  ρ χ η ϕ χ η ϕ ρ ρ , , , , , , * ϑ ϑ ( ) = ( ) f (9) We determine solutions of Equation (8) with conditions (9) framework recently introduced approach,[18] that is, as the power series   ρ χ η ϕ ε ω ρ χ η ϕ ρ ρ , , , , , , ϑ ϑ ( ) = ( ) = ∞ = ∞ = ∞ ∑ ∑ ∑ i j k ijk k j i Ω 0 0 0 .(10) Substitution of the series (10) into Equation (8) and conditions (9) gives us possibility to obtain equations for initial order approximations of concentration of point defects  I000 χ η ϕ , , ,ϑ ( ) and  V000 χ η ϕ , , ,ϑ ( ) and corrections for them  Iijk χ η ϕ , , ,ϑ ( ) and  Vijk χ η ϕ , , ,ϑ ( ), i ≥1, j ≥1, k ≥1. The equations are presented in the Appendix. Solutions of the equations could be obtained by standard Fourier approach.[24,25] The solutions are presented in the Appendix.[34] Now, we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To determine the distributions, we transform approximations of diffusion coefficients in the following form: DΦρ (x,y,z,T)=D0Φρ [1+εΦρ gΦρ (x,y,z,T)], where D0Φρ is the average values of diffusion coefficients. In this situation, the Equation (6) could be written as ∂ ∂ ∂ ∂ ε ∂ ∂ Φ Φ Φ Φ Φ I I I I I x y z t t D x g x y z T x y z t x , , , , , , , , , ( ) = + ( )     ( )  0 1       + ( ) ( )+ k x y z T I x y z t I I , , , , , , , 2 D y g x y z T x y z t y D z I I I I I 0 0 1 1 Φ Φ Φ Φ Φ ∂ ∂ ε ∂ ∂ ∂ ∂ + ( )     ( )       + + , , , , , , ε ε ∂ ∂ Φ Φ Φ I I I g x y z T x y z t z , , , , , , ( )     ( )       − k x y z T I x y z t I , , , , , , ( ) ( ) ∂ ∂ ∂ ∂ ε ∂ Φ Φ Φ Φ Φ V V V V V x y z t t D x g x y z T x y z t x , , , , , , , , , ( ) = + ( )     ( )   0 1      + ( ) ( )+ k x y z T I x y z t I I , , , , , , , 2 D y g x y z T x y z t y D z V V V V V 0 0 1 1 Φ Φ Φ Φ Φ ∂ ∂ ε ∂ ∂ ∂ ∂ + ( )     ( )       + + , , , , , , ε ε ∂ ∂ Φ Φ Φ V V V g x y z T x y z t z , , , , , , ( )     ( )       − k x y z T I x y z t I , , , , , , ( ) ( ). Farther, we determine solutions of above equations as the following power series Φ Φ Φ ρ ρ ρ ε x y z t x y z t i i i , , , , , , ( ) = ( ) = ∞ ∑ 0 .(11) Now, we used the series (11) into Equation (6) and appropriate boundary and initial conditions. The using gives the possibility to obtain equations for initial order approximations of concentrations of complexes
  • 6. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 64 of defects Φρ0 (x,y,z,t), corrections for them Φρi (x,y,z,t) (for them i ≥1) and boundary and initial conditions for them. We remove equations and conditions to the Appendix. Solutions of the equations have been calculated by standard approaches[24,25] and presented in the Appendix. Now, we calculate distribution of concentration of dopant in space and time using the approach, which was used for analysis of radiation defects. To use the approach, we consider the following transformation of approximation of dopant diffusion coefficient: DL (x,y,z,T)=D0L [1+ εL gL (x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0≤εL 1, |gL (x,y,z,T)|≤1. Farther, we consider solution of Equation (1) as the following series: C x y z t C x y z t L i j ij j i , , , , , , ( ) = ( ) = ∞ = ∞ ∑ ∑ε ξ 1 0 . Using the relation into Equation (1) and conditions (2) leads to obtaining equations for the functions Cij (x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions for them. The equations are presented in the Appendix.Solutionsoftheequationshavebeencalculatedbystandardapproaches(see,forexample,[24,25] ). The solutions are presented in the Appendix. We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically using the second-order approximations on all parameters, which have been used in appropriate series. Usually, the second-order approximations are enough good approximations to make qualitative analysis and to obtain quantitative results. All analytical results have been checked by numerical simulation. DISCUSSION In this section, we analyzed spatiotemporal distributions of concentrations of dopants. Figure 2 shows typical spatial distributions of concentrations of dopants in neighborhood of interfaces of heterostructures. We calculate these distributions of concentrations of dopants under the following condition: Value of dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest areas. In this situation, one can find increasing of compactness of field-effect transistors with increasing of homogeneity of distribution of concentration of dopant at 1 time. Changing relation between values of dopant diffusion coefficients leads to opposite result [Figure 3]. Figure 2a: Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate
  • 7. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 65 It should be noted that framework the considered approach one shall optimize annealing of dopant and/ or radiation defects. To do the optimization, we used recently introduced criterion.[26-33] The optimization based on approximation real distribution by step-wise function  (x,y,z) [Figure 4]. Farther, the required values of optimal annealing time have been calculated by minimization the following mean-squared error. Figure 2b: Dependences of concentration of dopant, implanted in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogenous sample and annealing time Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 . Curve 2 corresponds to homogenous sample and annealing time Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 3 and 4 correspond to heterostructure from Figure 1; annealing times Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 and Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0 , respectively  Figure 3a: Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from Figure 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between values of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient in this section is smaller, than value of dopant diffusion coefficient in nearest sections
  • 8. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 66 U L L L C x y z x y z d z d y d x x y z L L L z y x = ( )− ( )     ∫ ∫ ∫ 1 0 0 0 , , , , , Θ  (12) We show optimal values of annealing time as functions of parameters on Figure 5. It is known that standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal case after finishing the annealing, dopant achieves interface between layers of heterostructure. If the dopant Figure 3b: Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial distributions of implanted dopant in system of two epitaxial layers. Dashed lines are spatial distributions of implanted dopant in one epitaxial layer. Annealing time increases with increasing of number of curves Figure 4a: Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2–4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time
  • 9. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 67 has no enough time to achieve the interface, it is practicably to anneal the dopant additionally. Figure 5b shows the described dependences of optimal values of additional annealing time for the same parameters as for Figure 5a. Necessity to anneal radiation defects leads to smaller values of optimal annealing of implanted dopant in comparison with optimal annealing time of infused dopant. Figure 4b: Distributions of concentration of implanted dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2–4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time Figure 5a: Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and  = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter  for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
  • 10. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 68 CONCLUSIONS In this paper, we introduce an approach to increase integration rate of element of a current source circuit. The approach gives us possibility to decrease area of the elements with smaller increasing of the element’s thickness. REFERENCES 1. Lachin VI, Savelov NS. Electronics. Phoenix: Rostov-na-Donu; 2001. 2. Alexenko AG, Shagurin II. Microcircuitry. Moscow: Radio and Communication; 1990. 3. Avaev NA, Naumov YE, Frolkin VT. Basis of Microelectronics. Moscow: Radio and Communication; 1991. 4. Nenadovic M, Fischer G, Fiebig N. A 32 ppm/°C temperature-compensated operational amplifier for application in medical device tracking. Analog Integr Circ Sig Process 2014;87:117-27. 5. Fathi D, Forouzandeh B, Masoumi N. New enhanced noise analysis in active mixers in nanoscale technologies. Nano 2009;4:233-8. 6. Chachuli SA, Fasyar PN, Soin N, Kar NM, Yusop N. On approach to increase integration rate of elements. Mat Sci Sem Proc 2014;24:9-14. 7. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudryk YY, et al. Technologies dependencies. Semiconductors 2009;43:897-903. 8. Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF Jr., Chow TP. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl Phys Lett 2013;102:192107-9. 9. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors 2009;43:971-4. 10. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO, et al. Formation of donor centers upon annealing of dysprosium-and holmiumimplanted silicon. Semiconductors 1998;32:1029-32. 11. Kumar MJ, Singh TV. Quantum confinement effects in strained silicon mosfets. Int J Nanosci 2008;7:81-4. 12. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Band alignment of SnS/Zn (O, S) heterojunctions in SnS thin film solar cells. Appl Phys Lett 2013;102:53901-5. 13. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 2013;102:152114-8. 14. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4. 15. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901-5. 16. Shishiyanu ST, Shishiyanu TS, Railyan SK. Shallow pn-junctions in Si prepared by pulse photon annealing. Figure 5b: Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
  • 11. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 69 Semiconductors 2002;36:611-7. 17. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quant Electron 2003;43:836-43. 18. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58-82. 19. Erofeev YN. Pulse Devices. Moscow: Higher School; 1989. 20. Kozlivsky VV. Modification of Semiconductors by Proton Beams. Sant-Peterburg: Nauka; 2003. 21. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 22. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 23. Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289-388. 24. Tikhonov AN, Samarskii AA. The Mathematical Physics Equations. Moscow: Nauka; 1972. 25. Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford: Oxford University Press; 1964. 26. PankratovEL.Dopantdiffusiondynamicsandoptimaldiffusiontimeasinfluencedbydiffusion-coefficientnonuniformity. Russ Micro Electron 2007;36:33-9. 27. Pankratov EL. Redistribution of a dopant during annealing of radiation defects in a multilayer structure by laser scans for production of an implanted-junction rectifier. Int J Nanosci 2008;7:187-97. 28. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. J Comput Theor Nanosci 2017;14:4885-99. 29. Pankratov EL. On optimization of manufacturing of two-phase logic circuit based on heterostructures to increase density of their elements. Influence of miss-match induced stress. Adv Sci Eng Med 2017;9:787-801 30. Pankratov EL, Bulaeva EA. On increasing of density of transistors in a hybrid cascaded multilevel inverter. Multidiscip Mod Mater Struct 2017;13:664-77. 31. Pankratov EL, Bulaeva EA.An approach to manufacture a heterobipolar transistors in thin film structures. On the method of optimization. Int J Micro Nano Scale Trans 2014;4:17-31. 32. Pankratov EL, Bulaeva EA. An analytical approach for analysis and optimization of formation of field-effect heterotransistors. Multidiscip Mod Mater Struct 2016;12:578-604. 33. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater Sci Semicond Proc 2015;34:260-8.
  • 12. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 70 APPENDIX Equations for the functions  Iijk χ η ϕ , , ,ϑ ( ) and  Vijk χ η ϕ , , ,ϑ ( ), i ≥0, j ≥0, k ≥0 and conditions for them ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 000 0 0 2 000 2 2 000 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϕ 2 2 000 2  I , , ,ϑ ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 000 0 0 2 000 2 2 000 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϕ 2 2 000 2  V , , ,ϑ ; ∂ ∂ ∂ ∂ ∂ ∂    I D D I I i I V i i 00 0 0 2 00 2 2 00 χ χ η ϕ χ χ η ϕ η , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ) 2 2 2 00 2 0 0 + ( )       + × ∂ ∂  I D D i I V χ η ϕ ϕ , , ,ϑ ∂ ∂ ∂ ∂ ∂ ∂ ∂ χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ g T I g T I I i I i , , , , , , , , , ( ) ( )       + ( ) −   100 − − ( )       +      100 χ η ϕ ϑ η , , , ∂ ∂ ∂ ∂ ∂ ϕ χ η ϕ χ η ϕ ϑ ϕ g T I I i , , , , , , ( ) ( )            −  100 , i ≥1, ∂ ∂ ∂ ∂ ∂ ∂    V D D V V i V I i i 00 0 0 2 00 2 2 00 χ χ η ϕ χ χ η ϕ η , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ) 2 2 2 00 2 + ( )       + ( ) ×    ∂ ∂ ∂ ∂  V g T i V χ η ϕ ϕ χ χ η ϕ , , , , , , ϑ ∂ ∂ ∂ ∂ ∂   V D D D D g T V i V I V I V i − − ( )   + ( ) 100 0 0 0 0 100 χ η ϕ ϑ χ η χ η ϕ χ , , , , , , , , , , , , , η ϕ ϑ η ϕ χ η ϕ ( )       + ( ) ×    ∂ ∂ ∂ g T V ∂ ( ) ∂    −  V D D i V I 100 0 0 χ η ϕ ϑ ϕ , , , , i ≥1, ∂ ∂ ∂ ∂ ∂    I D D I I I V 010 0 0 2 010 2 2 010 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ∂ ∂ ∂ η χ η ϕ ϕ 2 2 010 2  I , , ,ϑ 1 000 000 + ( )     ( ) ( ) ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V , , , , , , , , , , ,   ∂ ∂ ∂ ∂ ∂    V D D V V V I 010 0 0 2 010 2 2 010 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ∂ ∂ ∂ η χ η ϕ ϕ 2 2 010 2  V , , ,ϑ 1 000 000 + ( )     ( ) ( ) ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V , , , , , , , , , , ,   ;
  • 13. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 71 ∂ ∂ ∂ ∂ ∂    I D D I I I V 020 0 0 2 020 2 2 020 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ∂ ∂ ∂ η χ η ϕ ϕ 2 2 020 2  I , , ,ϑ 1 010 000 000 + ( )     ( ) ( )+ ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ χ I V I V g T I V I , , , , , , , , , , ,    , , , , , , , η ϕ ϑ χ η ϕ ϑ ( ) ( )      V010 ∂ ∂ ∂ ∂ ∂    V D D V V I V 020 0 0 2 020 2 2 020 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ∂ ∂ ∂ η χ η ϕ ϕ 2 2 020 2  V , , ,ϑ 1 010 000 000 + ( )     ( ) ( )+ ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ χ I V I V g T I V I , , , , , , , , , , ,    , , , , , , , η ϕ ϑ χ η ϕ ϑ ( ) ( )      V010 ; ∂ ∂ ∂ ∂ ∂    I D D I I I V 001 0 0 2 001 2 2 001 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ∂ ∂ ∂ η χ η ϕ ϕ 2 2 001 2  I , , ,ϑ 1 000 2 + ( )     ( ) ε χ η ϕ χ η ϕ ϑ I I I I g T I , , , , , , , ,  ∂ ∂ ∂ ∂ ∂    V D D V V V I 001 0 0 2 001 2 2 001 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ∂ ∂ ∂ η χ η ϕ ϕ 2 2 001 2  V , , ,ϑ 1 000 2 + ( )     ( ) ε χ η ϕ χ η ϕ ϑ I I I I g T V , , , , , , , ,  ; ∂ ∂ ∂ ∂ ∂    I D D I I I V 110 0 0 2 110 2 2 110 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       + × ∂ ∂ ∂ η χ η ϕ ϕ 2 2 110 2 0 0  I D D I V , , ,ϑ ∂ ∂ ∂ ∂ ∂ ∂ ∂ χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ g T I g T I I I , , , , , , , , , ( ) ( )       + ( )   010 010 χ χ η ϕ ϑ η ϕ χ η ϕ , , , , , , ( )       + ( ) ×        ∂ ∂ ∂ g T I ∂ ∂     I I V I 010 100 000 0 χ η ϕ ϑ ϕ χ η ϕ ϑ χ η ϕ ϑ , , , , , , , , , ( )        − ( ) ( )+ 0 00 100 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )     ×  V 1+ ( )     ε χ η ϕ I I I I g T , , , , , ( ) ( ) ( ) ( ) 2 2 2 110 110 110 110 0V 2 2 2 0I V , , , V , , , V , , , V , , , D D χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ ϑ χ η ϕ   ∂ ∂ ∂ ∂ = + + +   ∂ ∂ ∂ ∂         D D g T V g T V I V V 0 0 010 ∂ ∂ ∂ ∂ ∂ ∂ χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , , ( ) ( )       + ( )  ∂ ∂ ∂  V010 χ η ϕ ϑ η , , , ( )       +     
  • 14. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 72 ∂ ∂ ∂ ∂ ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T V g V V V V V , , , , , , , , , , ( ) ( )            − +  010 1 , ,T ( )     ×     V I V I 100 000 000 100 χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ , , , , , , , , , , , , ( ) ( )+ ( ) ( )      ; ∂ ∂ ∂ ∂ ∂    I D D I I I V 002 0 0 2 002 2 2 002 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ∂ ∂ ∂ η χ η ϕ ϕ 2 2 002 2  I , , ,ϑ 1 001 000 + ( )     ( ) ( ) ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I I I I g T I I , , , , , , , , , , ,   ∂ ∂ ∂ ∂ ∂    V D D V V V I 002 0 0 2 002 2 2 002 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ∂ ∂ ∂ η χ η ϕ ϕ 2 2 002 2  V , , ,ϑ 1 001 000 + ( )     ( ) ( ) ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ V V V V g E V V , , , , , , , , , , ,   ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 101 0 0 2 101 2 2 101 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϕ 2 2 101 2  I , , ,ϑ D D g T I g T I V I I 0 0 001 ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ∂ ∂ ( ) ∂       +       I001 χ η ϕ ϑ η , , , ∂ ∂ ∂ ∂ ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T I g T I I I , , , , , , , , , ( ) ( )            − + ( )  001 1      ( ) ( )   I V 100 000 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ∂ ∂ ∂ ∂ ∂    V D D V V V I 101 0 0 2 101 2 2 101 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       + ∂ ∂ ∂ η χ η ϕ ϕ 2 2 101 2  V , , ,ϑ D D g T V g T V I V V 0 0 001 ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ∂ ∂ ( ) ∂       +       V001 χ η ϕ ϑ η , , , ∂ ∂ ∂ ∂ ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T V g T V V V , , , , , , , , , ( ) ( )            − + ( )  001 1      ( ) ( )   I V 000 100 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ; ∂ ∂ ∂ ∂ ∂    I D D I I I V 011 0 0 2 011 2 2 011 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ( ) × ∂ ∂ ∂ η χ η ϕ ϕ χ η ϕ 2 2 011 2 010   I I , , , , , , ϑ ϑ
  • 15. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 73 1 1 000 + ( )     ( )− + ( )  ε χ η ϕ χ η ϕ ϑ ε χ η ϕ I I I I I V I V g T I g T , , , , , , , , , , , , ,      ( ) ( )   I V 001 000 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ∂ ∂ ∂ ∂ ∂    V D D V V V I 011 0 0 2 011 2 2 011 χ η ϕ χ η ϕ χ χ η ϕ , , , , , , , , , ϑ ϑ ϑ ϑ ( ) = ( ) + ( ( ) + ( )       − ( ) × ∂ ∂ ∂ η χ η ϕ ϕ χ η ϕ 2 2 011 2 010   V V , , , , , , ϑ ϑ 1 1 000 + ( )     ( )− + ( )  ε χ η ϕ χ η ϕ ϑ ε χ η ϕ V V V V I V I V g T V g t , , , , , , , , , , , , ,      ( ) ( )   I V 000 001 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ; ∂ ∂  ρ χ η ϕ χ ijk x , , ,ϑ ( ) = =0 0, ∂ ∂  ρ χ η ϕ χ ijk x , , ,ϑ ( ) = =1 0 , ∂ ∂  ρ χ η ϕ η η ijk , , ,ϑ ( ) = =0 0, ∂ ∂  ρ χ η ϕ η η ijk , , ,ϑ ( ) = =1 0, ∂ ∂  ρ χ η ϕ ϕ ϕ ijk , , ,ϑ ( ) = =0 0 , ∂ ∂  ρ χ η ϕ ϕ ϕ ijk , , ,ϑ ( ) = =1 0 (i ≥0, j ≥0, k ≥0);  ρ χ η ϕ χ η ϕ ρ ρ 000 0 , , , , , * ( ) = ( ) f ,  ρ χ η ϕ ijk , , ,0 0 ( ) = (i ≥1, j ≥1, k ≥1). Solutions of the above equations could be written as  ρ χ η ϕ χ η ϕ ρ ρ 000 1 1 2 , , ,ϑ ϑ ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ L L F c c c e n n n , where F nu nv n w f u v w d wd vd u n n ρ ρ ρ π π π = ( ) ( ) ( ) ( ) ∫ ∫ ∫ 1 0 1 0 1 0 1 * cos cos cos , , , cn (χ) = cos (π n χ), ( ) ( ) 2 2 0 0 exp ϑ ϑ nI V I e n D D  = − , e n D D nV I V ϑ ϑ ( ) = − ( ) exp π2 2 0 0 ;  I D D nc c c e e s u c i I V n nI nI n n 00 0 0 2 χ η ϕ π χ η ϕ τ , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) v v I u v w u i n ( ) ∂ ( ) ∂ × − = ∞ ∫ ∫ ∫ ∫ ∑  100 0 1 0 1 0 1 0 1 , , ,τ ϑ c w g u v w T d wd vd u d D D nc c c e e n I I V n nI nI ( ) ( ) − ( ) ( ) ( ) ( ) − , , , τ π χ η ϕ ϑ τ 2 0 0 ( ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ c u s v n n n 0 1 0 1 0 1 ϑ c w g u v w T I u v w v d wd vd u d D D nc n I i I V n ( ) ( ) ∂ ( ) ∂ − − ∫ , , , , , ,  100 0 1 0 0 2 τ τ π χ χ η ϕ ϑ τ ϑ ( ) ( ) ( ) ( ) − ( ) × ∫ ∑ = ∞ c c e e nI nI n 0 1 c u c v s w g u v w T I u v w w d wd vd u d n n n I i ( ) ( ) ( ) ( ) ∂ ( ) ∂ − ∫ , , , , , ,  100 0 1 0 1   ∫ ∫ ∫ 0 1 , i ≥1,  V D D nc c c e e s u c i V I n nV nI n n 00 0 0 2 χ η ϕ π χ η ϕ τ , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) v v g u v w T V n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ
  • 16. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 74 c w V u u d wd vd u d D D nc c c e e n i V I n nV nI ( ) ∂ ( ) ∂ − ( ) ( ) ( ) ( ) −  100 0 0 ,τ τ χ η ϕ ϑ − − ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ τ ϑ c u s v n n n 0 1 0 1 0 1 2 2 100 0 1 0 0 π τ τ π χ c w g u v w T V u v d wd vd u d D D nc n V i V I n ( ) ( ) ∂ ( ) ∂ − ( − ∫ , , , ,  ) ) ( ) ( ) ( ) × = ∞ ∑ c c enV n η ϕ ϑ 1 e c u c v s w g u v w T V u w d wd vd u d nI n n n V i − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − τ τ τ , , , ,  100 0 1 ∫ ∫ ∫ ∫ ∫ 0 1 0 1 0 ϑ , i ≥1, where sn (χ) = sin (π n χ);  ρ χ η ϕ χ η ϕ τ ρ ρ 010 2 , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n 1 000 000 + ( )     ( ) ( ) ε τ τ I V I V g u v w T I u v w V u v w d wd vd u d , , , , , , , , , , ,   τ τ ;  ρ χ η ϕ χ η ϕ τ ρ ρ 020 0 0 2 , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) D D c c c e e c u c I V n n n n n n n v v c w n I V n ( ) ( ) +   × ∫ ∫ ∫ ∫ ∑ = ∞ 1 0 1 0 1 0 1 0 1 ε , ϑ g u v w T I u v w V u v w I u v w I V , , , , , , , , , , , , , ( )  ( ) ( )+ ( )    010 000 000      V u v w d wd vd u d 010 , , ,  ( )     ;  ρ χ η ϕ χ η ϕ τ ρ ρ 001 2 , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n 1 000 2 + ( )     ( ) ε ρ τ τ ρ ρ ρ ρ , , , , , , , , g u v w T u v w d wd vd u d  ;  ρ χ η ϕ χ η ϕ τ ρ ρ 002 2 , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n 1 001 000 + ( )     ( ) ( ) ε ρ τ ρ τ ρ ρ ρ ρ , , , , , , , , , , , g u v w T u v w u v w d wd vd u d   τ τ ;  I D D nc c c e e s u I V n n n nI nI n 110 0 0 2 χ η ϕ π χ η ϕ τ , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v c u n n n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ g u v w T I u v w u d wd vd u d D D nc c I i I V n n , , , , , , ( ) ∂ ( ) ∂ − ( ) ( ) −  100 0 0 2 τ τ π χ η c c e n nI n ϕ ϑ ( ) ( ) × = ∞ ∑ 1
  • 17. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 75 e c u s v c u g u v w T I u v w v d wd vd u nI n n n I i − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − τ τ , , , , , ,  100 d d D D I V τ π ϑ 0 1 0 1 0 1 0 0 0 2 ∫ ∫ ∫ ∫ − × n e e c u c v s u g u v w T I u v w nI nI n n n I i ϑ τ τ ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − , , , , , ,  100 w w d wd vd u d n τ ϑ 0 1 0 1 0 1 0 1 ∫ ∫ ∫ ∫ ∑ = ∞ × c c c c e c c e c u c v c v n n n n nI n n nI n n n χ η ϕ χ ϑ η ϕ τ ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) 2 ( ( ) + ×   ∫ ∫ ∫ ∫ ∑ = ∞ 1 0 1 0 1 0 1 0 1 ε ϑ I V n , g u v w T I u v w V u v w I u v w I V , , , , , , , , , , , , , ( )  ( ) ( )+ ( )    100 000 000      V u v w d wd vd u d 100 , , ,  ( )      V D D nc c c e e s u V I n n n nV nV n 110 0 0 2 χ η ϕ π χ η ϕ τ , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v c u n n n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ g u v w T V u v w u d wd vd u d D D nc c V i V I n n , , , , , , ( ) ∂ ( ) ∂ − ( ) ( ) −  100 0 0 2 τ τ π χ η c c e n nV n ϕ ϑ ( ) ( ) × = ∞ ∑ 1 e c u s v c u g u v w T V u v w v d wd vd u nV n n n V i − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − τ τ , , , , , ,  100 d d D D V I τ π ϑ 0 1 0 1 0 1 0 0 0 2 ∫ ∫ ∫ ∫ − × ne e c u c v s u g u v w T V u v w nV nV n n n V i ϑ τ τ ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − , , , , , ,  100 w w d wd vd u d n τ ϑ 0 1 0 1 0 1 0 1 ∫ ∫ ∫ ∫ ∑ = ∞ × c c c c e c c e c u c v n n n n nI n n nV n n χ η ϕ χ ϑ η ϕ τ ε ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) + 2 1 I I V I V n g u v w T , , , , , ( )     × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ c w I u v w V u v w I u v w V u v w n ( ) ( ) ( )+ ( )     100 000 000 100 , , , , , , , , , , ,    , ,  ( )     d wd vd u d ;  I D D nc c c e e s u I V n n n nI nI n 101 0 0 2 χ η ϕ π χ η ϕ τ , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v g u v w T n I n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ c w I u v w u d wd vd u d D D nc c c e n I V n n n nI ( ) ∂ ( ) ∂ − ( ) ( ) ( )  001 0 0 2 , , ,τ τ π χ η ϕ ϑ ϑ ( ) × = ∞ ∑ n 1 s v c w g u v w T I u v w v d wd vd u d D n n I I ( ) ( ) ( ) ∂ ( ) ∂ − ∫ ∫ , , , , , ,  001 0 1 0 1 0 2 τ τ π D D ne c c c V nI n n n n 0 1 ϑ χ η ϕ ( ) ( ) ( ) ( ) × = ∞ ∑
  • 18. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 76 e c u c v s w g u v w T I u v w w d wd vd u d nI n n n I − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ τ τ τ , , , , , ,  001 0 0 1 0 1 0 1 0 1 2 ∫ ∫ ∫ ∫ ∑ − ( ) ( ) ( ) × = ∞ ϑ χ η ϕ c c c n n n n e e c u c v c w g u v w T I u nI nI n n n I V I V ϑ τ ε ( ) − ( ) ( ) ( ) ( ) + ( )     1 100 , , , , , ,  v v w V u v w d wd vd u d , , , , , τ τ τ ϑ ( ) ( ) ∫ ∫ ∫ ∫  000 0 1 0 1 0 1 0  V D D nc c c e e s u V I n n n nV nV n 101 0 0 2 χ η ϕ π χ η ϕ τ , , ,ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ϑ c c v g u v w T n V n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ c w V u v w u d wd vd u d D D nc c c e n V I n n n nI ( ) ∂ ( ) ∂ − ( ) ( ) ( )  001 0 0 2 , , ,τ τ π χ η ϕ ϑ ϑ τ ϑ ( ) − ( ) ( ) × ∫ ∫ ∑ = ∞ e c u nV n n 0 1 0 1 s v c w g u v w T I u v w v d wd vd u d D n n I I ( ) ( ) ( ) ∂ ( ) ∂ − ∫ ∫ , , , , , ,  001 0 1 0 1 0 2 τ τ π D D ne c c c V nI n n n n 0 1 ϑ χ η ϕ ( ) ( ) ( ) ( ) × = ∞ ∑ e c u c v s w g u v w T V u v w w d wd vd u d nV n n n V − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ τ τ τ , , , , , ,  001 0 0 1 0 1 0 1 0 1 2 ∫ ∫ ∫ ∫ ∑ − ( ) ( ) ( ) × = ∞ ϑ χ η ϕ c c c n n n n e e c u c v c w g u v w T I u nV nV n n n I V I V ϑ τ ε ( ) − ( ) ( ) ( ) ( ) + ( )     1 100 , , , , , ,  v v w V u v w d wd vd u d , , , , , τ τ τ ϑ ( ) ( ) ∫ ∫ ∫ ∫  000 0 1 0 1 0 1 0 ;  I c c c e e c u c v c w n n n nI nI n n n 011 2 χ η ϕ χ η ϕ τ , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ( ) ( ) { × ∫ ∫ ∫ ∫ ∑ = ∞  I u v w n 000 0 1 0 1 0 1 0 1 , , ,τ ϑ 1 1 010 + ( )     ( )+ + ( )  ε τ ε I I I I I V I V g u v w T I u v w g u v w T , , , , , , , , , , , , ,      ( ) ( )}   I u v w V u v w d wd vd u d 001 000 , , , , , , τ τ τ  V c c c e e c u c v c w n n n nV nV n n n 011 2 χ η ϕ χ η ϕ τ , , ,ϑ ϑ ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ( ) ( ) { × ∫ ∫ ∫ ∫ ∑ = ∞  I u v w n 000 0 1 0 1 0 1 0 1 , , ,τ ϑ 1 1 010 + ( )     ( )+ + ( )  ε τ ε I I I I I V I V g u v w T I u v w g u v w T , , , , , , , , , , , , ,      ( ) ( )}   I u v w V u v w d wd vd u d 001 000 , , , , , , τ τ τ . Equations for functions Φρi (x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radiation defects.        Φ Φ Φ Φ I I I I x y z t t D x y z t x x y z t y 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + Φ ΦI x y z t z 0 2 , , , ( )       +  k x y z T I x y z t k x y z T I x y z t I I I , , , , , , , , , , , , , ( ) ( )− ( ) ( ) 2
  • 19. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 77        Φ Φ Φ Φ V V V V x y z t t D x y z t x x y z t y 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + Φ ΦV x y z t z 0 2 , , , ( )       +  k x y z T V x y z t k x y z T V x y z t V V V , , , , , , , , , , , , , ( ) ( )− ( ) ( ) 2 ;        Φ Φ Φ Φ I i I I i I i x y z t t D x y z t x x y z t y , , , , , , , , , ( ) = ( ) + ( ) + 0 2 2 2 2 2 Φ ΦI i x y z t z , , , ( )         +  2 D x g x y z T x y z t x y g x y z T I I I i I 0 1 Φ Φ Φ Φ       , , , , , , , , , ( ) ( )       + ( ) −    ΦI i x y z t y − ( )       +      1 , , ,     z g x y z T x y z t z I I i Φ Φ , , , , , , ( ) ( )            −1 , i≥1, ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ Φ Φ Φ Φ V i V V i V i x y z t t D x y z t x x y z t y , , , , , , , , , 0 2 2 2 2 2 Φ ΦV i x y z t z , , , ( ) ∂         + 2 D x g x y z T x y z t x y g x y z T V V V i V 0 1 Φ Φ Φ Φ       , , , , , , , , , ( ) ( )       + ( ) −    ΦV i x y z t y − ( )       +      1 , , ,     z g x y z T x y z t z V V i Φ Φ , , , , , , ( ) ( )            −1 , i≥1; Boundary and initial conditions for the functions take the form ∂ ∂ Φρi x x y z t x , , , ( ) = =0 0, ∂ ∂ Φρi x L x y z t x x , , , ( ) = = 0, ∂ ∂ Φρi y x y z t y , , , ( ) = =0 0, ∂ ∂ Φρi y L x y z t y y , , , ( ) = = 0, ∂ ∂ Φρi z x y z t z , , , ( ) = =0 0, ∂ ∂ Φρi z L x y z t z z , , , ( ) = = 0, i≥0; Φρ 0 (x,y,z,0)=fΦρ (x,y,z), Φρ i (x,y,z,0)=0, i≥1. Solutions of the above equations could be written as Φ Φ Φ    0 1 1 2 x y z t L L L L L L F c x c y c z e t x y z x y z n n n n n n , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ ∑ ∑ + ( ) ( ) ( ) × = ∞ 2 1 L n c x c y c z n n n n e t e c u c v c w k u v w T I u v w n n n n n I I Φ Φ ρ ρ τ τ ( ) − ( ) ( ) ( ) ( ) ( ) ( )−   , , , , , , , 2 0 L L L L t z y x ∫ ∫ ∫ ∫ 0 0 0
  • 20. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 78 k u v w T I u v w d wd vd u d I , , , , , , ( ) ( )    , where F c u c v c w f u v w d wd vd u n n n n L L L z y x Φ Φ   = ( ) ( ) ( ) ( ) ∫ ∫ ∫ , , 0 0 0 , e t n D t L L L n x y z Φ Φ ρ ρ π ( ) = − + + ( )     − − − exp 2 2 0 2 2 2 , cn (x) = cos (π n x/Lx ); Φ Φ Φ ρ π τ ρ ρ i x y z n n n n n n x y z t L L L nc x c y c z e t e s u , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( 2 2 ) ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v g u v w T n L L L t n z y x Φρ , , , 0 0 0 0 1 c w u v w u d wd vd u d L L L nc x c y c z e n I i x y z n n n ( ) ( ) − ( ) ( ) ( ) − ∂ τ ∂ τ π ρ Φ 1 2 2 , , , Φ Φ Φ ρ ρ τ n n t n t e ( ) − ( ) × ∫ ∑ = ∞ 0 1 e c u s v c w g u v w T u v w v d wd vd n n n n I i Φ Φ Φ ρ ρ ρ τ ∂ τ ∂ − ( ) ( ) ( ) ( ) ( ) ( ) − , , , , , , 1 u u d L L L n L L L t x y z n z y x τ π 0 0 0 0 2 1 2 ∫ ∫ ∫ ∫ ∑ − × = ∞ e t e c u c v s w u v w w g u v w T n n n n n I i Φ Φ Φ Φ ρ ρ ρ ρ τ ∂ τ ∂ ( ) − ( ) ( ) ( ) ( ) ( ) −1 , , , , , , ( ( ) × ∫ ∫ ∫ ∫ d wd vd u d L L L t z y x τ 0 0 0 0 c x c y c z n n n ( ) ( ) ( ), i ≥1, where sn (x) = sin (π n x/Lx ). Equations for the functions Cij (x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be written as       C x y z t t D C x y z t x D C x y z t y L L 00 0 2 00 2 0 2 00 2 , , , , , , , , , ( ) = ( ) + ( ) + D D C x y z t z L 0 2 00 2   , , , ( ) ;        C x y z t t D C x y z t x C x y z t y C i L i i 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + i i x y z t z 0 2 , , , ( )       +  D x g x y z T C x y z t x D y g x y z T L L i L L 0 10 0       , , , , , , , , , ( ) ( )       + ( ) −    C x y z t y i− ( )       + 10 , , , D z g x y z T C x y z t z L L i 0 10     , , , , , , ( ) ( )       − , i ≥1;       C x y z t t D C x y z t x D C x y z t y L L 01 0 2 01 2 0 2 01 2 , , , , , , , , , ( ) = ( ) + ( ) + D D C x y z t z L 0 2 01 2   , , , ( ) + D x C x y z t P x y z T C x y z t x D y L L 0 00 00 0 ∂ ∂ ∂ ∂ ∂ ∂ γ γ , , , , , , , , , ( ) ( ) ( )       + C C x y z t P x y z T C x y z t y 00 00 γ γ , , , , , , , , , ( ) ( ) ( )       + ∂ ∂
  • 21. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 79 D z C x y z t P x y z T C x y z t z L 0 00 00 ∂ ∂ ( ) ( ) ∂ ( ) ∂         , , , , , , , , , ;       C x y z t t D C x y z t x D C x y z t y L L 02 0 2 02 2 0 2 02 2 , , , , , , , , , ( ) = ( ) + ( ) + D D C x y z t z L 0 2 02 2   , , , ( ) + D x C x y z t C x y z t P x y z T C x y z t L 0 01 00 1 00 ∂ ∂ ∂ ∂ , , , , , , , , , , , , ( ) ( ) ( ) ( ) − γ γ x x y C x y z t C x y z t P x y z T       + ( ) ( ) ( ) ×        − ∂ ∂ 01 00 1 , , , , , , , , , γ γ   ∂ ∂ ∂ ∂ C x y z t y z C x y z t C x y z t P x y z T 00 01 00 1 , , , , , , , , , , , , ( )   + ( ) ( ) − γ γ ( ( ) ( )            + ∂ ∂ C x y z t z 00 , , , ∂ ∂ ∂ ∂ C x y z t y z C x y z t C x y z t P x y z T 00 01 00 1 , , , , , , , , , , , , ( )   + ( ) ( ) − γ γ ( ( ) ( )            + ( ) ∂ ∂ ∂ ∂ C x y z t z D x C x y z t P x y z T L 00 0 00 , , , , , , , , , γ γ ( ( ) ×         ∂ ∂ ∂ ∂ ∂ C x y z t x y C x y z t P x y z T C x y z t 01 00 01 , , , , , , , , , , , , ( )   + ( ) ( ) ( γ γ ) )       + ( ) ( ) ( )      ∂ ∂ ∂ ∂ ∂ y z C x y z t P x y z T C x y z t z 00 01 γ γ , , , , , , , , ,        ;       C x y z t t D C x y z t x D C x y z t y L L 11 0 2 11 2 0 2 11 2 , , , , , , , , , ( ) = ( ) + ( ) + D D C x y z t z L 0 2 11 2   , , , ( ) + ∂ ∂ ∂ ∂ x C x y z t C x y z t P x y z T C x y z t x 10 00 1 00 , , , , , , , , , , , , ( ) ( ) ( ) ( )   − γ γ      + ( ) ( ) ( ) ×         − ∂ ∂ y C x y z t C x y z t P x y z T 10 00 1 , , , , , , , , , γ γ ∂ ∂ ∂ ∂ C x y z t y z C x y z t C x y z t P x y z T 00 10 00 1 , , , , , , , , , , , , ( )   + ( ) ( ) − γ γ ( ( ) ( )            + ∂ ∂ C x y z t z D L 00 0 , , , D x C x y z t P x y z T C x y z t x y C L 0 00 10 00 ∂ ∂ ∂ ∂ ∂ ∂ γ γ , , , , , , , , , ( ) ( ) ( )       + γ γ γ x y z t P x y z T C x y z t y , , , , , , , , , ( ) ( ) ( )       +      ∂ ∂ 10 ∂ ∂ ∂ ∂ ∂ z C x y z t P x y z T C x y z t z D L 00 10 0 γ γ , , , , , , , , , ( ) ( ) ( )            + ∂ ∂ ∂ ∂ x g x y z T C x y z t x L , , , , , , ( ) ( )       +      01        y g x y z T C x y z t y z g x y z T C x y L L , , , , , , , , , , , ( ) ( )       + ( ) 01 01 z z t z , ( )             ;   C x y z t x ij x , , , ( ) = =0 0,   C x y z t x ij x Lx , , , ( ) = = 0,   C x y z t y ij y , , , ( ) = =0 0,   C x y z t y ij y Ly , , , ( ) = = 0,
  • 22. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 80   C x y z t z ij z , , , ( ) = =0 0,   C x y z t z ij z Lz , , , ( ) = = 0 , i ≥0, j ≥0; C00 (x,y,z,0)=fC (x,y,z), Cij (x,y,z,0)=0, i ≥1, j ≥1. Functions Cij (x,y,z,t) (i ≥0, j ≥0) could be approximated by the following series during solutions of the above equations C x y z t F L L L L L L F c x c y c z e t C x y z x y z nC n n n nC n 00 0 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ ∑ . Here ( ) 2 2 0 2 2 2 1 1 1 nC C x y z e t exp n D t L L L      = − + +           , F c u c v f u v w c w d wd v d u nC n n C n L L L z y x = ( ) ( ) ( ) ( ) ∫ ∫ ∫ , , 0 0 0 ; C x y z t L L L n F c x c y c z e t e s u i x y z nC n n n nC nC n 0 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v g u v w T n L L L L t n z y x , , , 0 0 0 0 1 c w C u v w u d wd vd u d L L L n F c x c y c z n i x y z nC n n n ( ) ∂ ( ) ∂ − ( ) ( ) ( −10 2 2 , , ,τ τ π ) ) ( ) − ( ) × ∫ ∑ = ∞ e t e nC nC t n τ 0 1 c u s v c v g u v w T C u v w v d wd vd u d n n n L i L L z y ( ) ( ) ( ) ( ) ∂ ( ) ∂ − ∫ , , , , , , 10 0 0 τ τ ∫ ∫ ∫ ∑ − ( ) × = ∞ 0 2 1 2 L x y z nC nC n x L L L n F e t π c x c y c z e c u c v s v g u v w T C u v n n n nC n n n L i ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ∂ −  , , , , , 10 w w w d wd vd u d L L L t z y x ,  ( ) ∂ ∫ ∫ ∫ ∫ 0 0 0 0 , i ≥1; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 01 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( )× ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 C u v w P u v w T C u v w u d wd vd u d L L L n x y z 00 00 2 2 γ γ τ τ τ π , , , , , , , , , ( ) ( ) ∂ ( ) ∂ − F F c x c y c z e t nC n n n nC n ( ) ( ) ( ) ( ) × = ∞ ∑ 1 e c u s v c w C u v w P u v w T C u v w nC n n n − ( ) ( ) ( ) ( ) ( ) ( ) ∂ ( τ τ τ γ γ 00 00 , , , , , , , , , ) ) ∂ − ( )× ∫ ∫ ∫ ∫ ∑ = ∞ v d wd vd u d L L L n e t L L L t x y z nC n z y x τ π 0 0 0 0 2 1 2 F c x c y c z e c u c v s w C u v w P u v nC n n n nC n n n ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) τ τ γ γ 00 , , , , , , , , , , w T C u v w w d wd vd u d L L L t z y x ( ) ∂ ( ) ∂ ∫ ∫ ∫ ∫ 00 0 0 0 0 τ τ ; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 02 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1
  • 23. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 81 C u v w C u v w P u v w T C u v w u d wd vd 01 00 1 00 , , , , , , , , , , , , τ τ τ γ γ ( ) ( ) ( ) ∂ ( ) ∂ − u u d L L L F c x c y x y z nC n n n τ π − ( ) ( )× = ∞ ∑ 2 2 1 nc z e t e c u s v C u v w C u v w P n nC nC n n ( ) ( ) − ( ) ( ) ( ) ( ) ( ) − τ τ τ γ γ 01 00 1 , , , , , , u u v w T C u v w v L L L t z y x , , , , , , ( ) ∂ ( ) ∂ × ∫ ∫ ∫ ∫ 00 0 0 0 0 τ c w d wd vd u d L L L n F c x c y c z e t e c u n x y z nC n n n nC nC n ( ) − ( ) ( ) ( ) ( ) − ( ) τ π τ 2 2 ( ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ c v n L L t n y x 0 0 0 1 s w C u v w C u v w P u v w T C u v w w n ( ) ( ) ( ) ( ) ∂ ( ) ∂ − 01 00 1 00 , , , , , , , , , , , , τ τ τ γ γ d d wd vd u d L L L n c x L x y z n n z τ π 0 2 1 2 ∫ ∑ − ( ) × = ∞ F c y c z e t e s u c v c w C u v w C u nC n n nC nC n n n ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ∂   01 00 , , , , , , , v w u L L L t z y x  ( ) ∂ × ∫ ∫ ∫ ∫ 0 0 0 0 C u v w P u v w T d wd vd u d L L L n F c x c y x y z nC n n 00 1 2 2 γ γ τ τ π − ( ) ( ) − ( ) ( ) , , , , , , c c z e t e c u n nC nC n L t n x ( ) ( ) − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 s v c w C u v w C u v w P u v w T C u v w n n ( ) ( ) ( ) ( ) ( ) ∂ − 01 00 1 00 , , , , , , , , , , , , τ τ γ γ τ τ τ π ( ) ∂ − × ∫ ∫ ∑ = ∞ v d wd vd u d L L L n L L x y z n z y 0 0 2 1 2 F c x c y c z e t e c u c v s w C u v w nC n n n nC nC n n n ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) τ τ 01 , , , C C u v w P u v w T L L L t z y x 00 1 0 0 0 0 γ γ τ − ( ) ( ) × ∫ ∫ ∫ ∫ , , , , , , ∂ ∂ C u v w w d wd vd u d L L L F c x c y c z e t e x y z nC n n n nC 00 2 2 , , ,τ τ π ( ) − ( ) ( ) ( ) ( ) n nC n L t n s u x − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 n c v c w C u v w P u v w T C u v w u d wd vd u d n n ( ) ( ) ( ) ( ) ∂ ( ) ∂ 00 01 γ γ τ τ τ , , , , , , , , , 0 0 0 2 1 2 L L x y z n nC n z y L L L c x e t ∫ ∫ ∑ − ( ) ( ) × = ∞ π F c y e c u s v c w C u v w P u v w T C nC n nC n n n ( ) − ( ) ( ) ( ) ( ) ( ) ( ) ∂ τ τ γ γ 00 01 , , , , , , u u v w v d wd vd u d L L L t z y x , , ,τ τ ( ) ∂ × ∫ ∫ ∫ ∫ 0 0 0 0 n c z L L L n F c x c y c z e t e c u c v n x y z nC n n n nC nC n n ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) 2 2 π τ s s w n L L L t n z y x ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 0 0 0 1 C u v w P u v w T C u v w w d wd vd u d 00 01 γ γ τ τ τ , , , , , , , , , ( ) ( ) ∂ ( ) ∂ ;
  • 24. Pankratov: On approach to increase integration rate AJMS/Jul-Sep-2020/Vol 4/Issue 3 82 C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 11 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 g u v w T C u v w u d wd vd u d L L L n F c x c y L x y z nC n n , , , , , , ( ) ∂ ( ) ∂ − ( ) ( ) 01 2 2 τ τ π c c z e t n nC n ( ) ( ) × = ∞ ∑ 1 e c u s v c w g u v w T C u v w v d wd vd u d nC n n n L L − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ τ τ τ , , , , , , 01 0 z z y x L L t x y z L L L ∫ ∫ ∫ ∫ − × 0 0 0 2 2π n e t e c u c v s w g u v w T C u v w w d wd nC nC n n n L ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂   , , , , , , 01 v vd u d L L L t n z y x  0 0 0 0 1 ∫ ∫ ∫ ∫ ∑ = ∞ × F c x c y c z L L L F c x c y c z e t e nC n n n x y z nC n n n nC nC ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( 2 2 π τ ) ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ s u c v n n L L t n y x 0 0 0 1 n c w C u v w P u v w T C u v w u d wd vd u d n Lz ( ) ( ) ( ) ∂ ( ) ∂ − ∫ 00 10 0 γ γ τ τ τ , , , , , , , , , 2 2 2 1 π L L L n F c x c y x y z nC n n n ( ) ( )× = ∞ ∑ c z e t e c u s v c w C u v w P u v w T n nC nC n n n ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ( ) ∂ τ τ γ γ 00 , , , , , , C C u v w v d wd vd u d L L L t z y x 10 0 0 0 0 , , ,τ τ ( ) ∂ − ∫ ∫ ∫ ∫ 2 2 0 π τ L L L n F c x c y c z e t e c u c v s w C x y z nC n n n nC nC n n n ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) 0 0 0 0 0 0 1 γ γ τ u v w P u v w T L L L t n z y x , , , , , , ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ ∂ ( ) ∂ − ( ) ( ) ( ) ( ) C u v w w d wd vd u d L L L n F c x c y c z e t x y z nC n n n nC 10 2 2 , , ,τ τ π e e s u nC n L t n x − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 c v c w C u v w C u v w P u v w T C u v w n n ( ) ( ) ( ) ( ) ( ) ∂ − 10 00 1 00 , , , , , , , , , , , , τ τ γ γ τ τ τ π ( ) ∂ − × ∫ ∫ ∑ = ∞ u d wd vd u d L L L n L L x y z n z y 0 0 2 1 2 F c x c y c z e t e c u s v c w C u v w nC n n n nC nC n n n ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) − τ γ 00 1 , , ,τ τ τ γ ( ) ( ) ∂ ( ) ∂ × ∫ ∫ ∫ ∫ P u v w T C u v w v L L L t z y x , , , , , , 00 0 0 0 0 C u v w d wd vd u d L L L n F c x c y c z e t e x y z nC n n n nC nC 10 2 2 , , ,τ τ π ( ) − ( ) ( ) ( ) ( ) − − ( ) ( ) × ∫ ∫ ∑ = ∞ τ c u n L t n x 0 0 1 c v s w C u v w C u v w P u v w T C u v w n n ( ) ( ) ( ) ( ) ( ) ∂ − 10 00 1 00 , , , , , , , , , , , , τ τ γ γ τ τ τ ( ) ∂ ∫ ∫ w d wd vd u d L L z y 0 0 .