SlideShare a Scribd company logo
1 of 27
Download to read offline
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014 
AN APPROACH TO DECREASE DIMENSIONS OF DRIFT 
HETERO-BOPOLAR TRANSISTORS 
E.L.Pankratov1,3 and E.A.Bulaeva1,2 
1Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, 
Russia 
2Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky 
street, Nizhny Novgorod, 603950, Russia 
3Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi-novskoe 
Shosse, Nizhny Novgorod, 603950, Russia 
ABSTRACT 
In this paper based on recently introduced approach we formulated some recommendations to optimize 
manufacture drift bipolar transistor to decrease their dimensions and to decrease local overheats during 
functioning. The approach based on manufacture a heterostructure, doping required parts of the hetero-structure 
by dopant diffusion or by ion implantation and optimization of annealing of dopant and/or radia-tion 
defects. The optimization gives us possibility to increase homogeneity of distributions of concentrations 
of dopants in emitter and collector and specific inhomogenous of concentration of dopant in base and at the 
same time to increase sharpness of p-n-junctions, which have been manufactured framework the transistor. 
We obtain dependences of optimal annealing time on several parameters. We also introduced an analytical 
approach to model nonlinear physical processes (such as mass- and heat transport) in inhomogenous me-dia 
with time-varying parameters. 
KEYWORDS 
Drift heterobipolar transistor, analytical approach to model technological process, decreasing of dimen-sions 
of transistor 
1.INTRODUCTION 
In the present time performance of elements of integrated circuits (p-n-junctions, field-effect and 
bipolar transistors, ...) and their discrete analogs are intensively increasing [1-14]. To solve the 
problem they are using several ways. One of them is manufacturing new materials with higher 
speed of charge carriers [1-18]. Another way to increase the performance is elaboration of new 
technological processes or modification of existing one [1-14,19,20]. In this paper we introduce 
one of approaches of modification of technological to increase performance of bipolar transistor. 
To solve our aim we consider hetero structure, which consist of a substrate and three epitaxial 
layers (see Fig. 1). One section have been manufactured in every epitaxial layer by using another 
materials so as it is presented on Fig. 1. After manufacturing of the section in the first epitaxial 
layer the section has been doped by diffusion or ion implantation to produce required type of 
conductivity (p or n) in the section. Farther we consider annealing of dopant and/or radiation de- 
DOI:10.5121/ijcsa.2014.4503 25
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014 
fects. After that we consider manufacturing of the second and the third epitaxial layers, which 
also including into itself one section in each new epitaxial layer. The sections are also been manu-factured 
by using another materials. Both new sections have been doped by diffusion or ion im-plantation 
to produce required type of conductivity (p or n) in the sections. Farther we consider 
microwave annealing of dopant and/or radiation defects. Main aim of the paper is analysis of do-pand 
26 
and radiation defects in the considered heterostructure. 
Dopant 1 Dopant 2 Dopant 3 
Substrate 
Epitaxial layers 
Fig. 1. Heterostructure, which consist of a substrate and three epitaxial layers with sections, manufactured 
by using another materials. View from side 
2. Method of solution 
To solve our aims we determine spatio-temporal distribution of concentration of dopant. 
We determine the required distribution by solving the second Fick's law [1,3-5] 
( ) ( ) ( ) ( ) 
 
 
 
¶ , , , , , , , , , , , , 
 
 
+ +  
 
 
 
+  
 
 
= 
C x y z t 
z 
D 
C x y z t 
¶ 
y z 
D 
C x y z t 
¶ 
x y 
D 
C x y z t 
¶ 
t x 
¶ 
C C ¶ 
¶ 
C ¶ 
¶ 
¶ 
¶ 
¶ 
¶ 
¶ 
(1) 
with boundary and initial conditions 
( ) 
0 
, , , 
0 
= 
C x y z t 
¶ 
¶ 
x= 
x 
, 
( ) 
0 
, , , 
= 
C x y z t 
¶ 
¶ 
x=Lx 
x 
, 
( ) 
0 
, , , 
0 
= 
C x y z t 
¶ 
¶ 
y= 
y 
, 
( ) 
0 
, , , 
= 
C x y z t 
¶ 
¶ 
x=Ly 
y 
, 
( ) 
0 
, , , 
0 
= 
C x y z t 
¶ 
¶ 
z= 
z 
, 
( ) 
0 
, , , 
= 
C x y z t 
¶ 
¶ 
x=Lz 
z 
, C (x,y,z,0)=f (x,y,z). (2) 
Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant, T is the temperature 
of annealing, D is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends 
on properties of materials of the considered hetero structure, speed of heating and cooling of hete-ro 
structure (with account Arrhenius law). Dependences of dopant diffusion coefficient could be 
approximated by the following relation [3,21]
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
27 
( ) ( ) 
, , , , , , 
, , , 
V x y z t 
V x y z t 
g 
C x y z t 
D D x y z T C L x V V g 
= + * 2 
( ) 
( ) ( ) 
 
( )   
 
  
 
+ +  
 
 
2 
1 * 2 
1 
, , , 
, , , 1 
V 
V 
P x y z T 
, (3) 
where DL (x,y,z,T) is the spatial (due to inhomogeneity of hetero structure) and temperature (due to 
Arrhenius law) dependences of diffusion coefficient; P (x,y,z,T) is the limit of solubility of do-pant; 
value of parameter g depends on materials of heterostructure and could be integer in the fol-lowing 
interval g Î[1,3] [3]; V (x,y,z,t) is the spatio-temporal distribution of concentration of va-cancies; 
V* is the equilibrium distribution of concentration of vacancies. Concentrational depen-dence 
of dopant diffusion coefficient has been discussed in details in [3]. It should be noted, that 
using diffusion type of doping and radiation damage is absent in the case (i.e. z1= z2= 0). We de-termine 
spatio-temporal distributions of concentrations of point radiation defects by solving of the 
following system of equations [21,22] 
( ) ( ) ( ) ( ) ( ) 
 
+  
 
 
I x y z t 
¶ 
¶ 
¶ 
¶ 
 
+  
 
 
I x y z t 
¶ 
¶ 
¶ 
¶ 
= 
I x y z t 
¶ 
¶ 
y 
D x y z T 
x y 
D x y z T 
t x 
I I 
, , , 
, , , 
, , , 
, , , 
, , , 
 
 
( ) ( ) − ( ) ( ) ( )−  
I x y z t 
+ k x y z T I x y z t V x y z t 
z I I V , , , , , , , , , 
 
¶ 
¶ 
¶ 
¶ 
z 
D x y z T 
, , , 
, , , , 
k (x y z T )I (x y z t ) I I , , , , , , 2 
, − (4) 
( ) ( ) ( ) ( ) ( ) 
 
+  
 
 
V x y z t 
¶ 
¶ 
¶ 
¶ 
 
+  
 
 
V x y z t 
¶ 
¶ 
¶ 
¶ 
= 
V x y z t 
¶ 
¶ 
y 
D x y z T 
x y 
D x y z T 
t x 
V V 
, , , 
, , , 
, , , 
, , , 
, , , 
 
 
( ) ( ) − ( ) ( ) ( )−  
V x y z t 
+ k x y z T I x y z t V x y z t 
z V I V , , , , , , , , , 
 
¶ 
¶ 
¶ 
¶ 
z 
D x y z T 
, , , 
, , , , 
k (x y z T )V (x y z t ) V V , , , , , , 2 
, − 
with initial 
r (x,y,z,0)=fr (x,y,z) (5a) 
and boundary conditions 
( ) 
0 
r x , y , z , 
t 
0 
= 
¶ 
¶ 
x= 
x 
, 
( ) 
0 
r x , y , z , 
t 
= 
¶ 
¶ 
x=Lx 
x 
, 
( ) 
0 
r x , y , z , 
t 
0 
= 
¶ 
¶ 
y= 
y 
, 
( ) 
0 
r x , y , z , 
t 
= 
¶ 
¶ 
y=Ly 
y 
, 
( ) 
0 
r x , y , z , 
t 
0 
= 
¶ 
¶ 
z= 
z 
, 
( ) 
0 
r x , y , z , 
t 
= 
¶ 
¶ 
z=Lz 
z 
. (5b) 
Here r =I,V; I (x,y,z,t) is the spatio-temporal distribution of concentrations of interstitials; Dr(x, 
y,z,T) are the diffusion coefficients of interstitials and vacancies; terms V2(x,y,z,t) and I2(x,y,z,t) 
correspond to generation of divacancies and diinterstitials; kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y, 
z,T) are the parameters of recombination of point radiation defects and generation appropriate 
their complexes, respectively. 
We determine spatio-temporal distributions of concentrations of divacancies FV (x, y,z,t) and diin-terstitials 
FI 
(x,y,z,t) by solving the following system of equations [21,22]
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
x y z t r , 
+ l (8) 
28 
( ) 
 F 
¶ , , , 
¶ 
¶ 
x y z t I 
( ) 
( ) 
 F 
( ) 
( ) 
 
+  
 
 
+  
 
= 
F 
x y z t 
D x y z T 
x y z t 
F x y 
F y 
D x y z T 
t x 
I 
I 
I 
I 
¶ 
¶ 
¶ 
¶ 
¶ 
¶ 
¶ 
, , , 
, , , 
, , , 
, , , 
 F 
( ) 
( ) 
 
( ) ( ) − +  
, , , 
x y z t 
¶ 
, , , I 
2 
¶ 
+ F k x y z T I x y z t 
 
I , , , , , , 
¶ 
z 
, D x y z T 
z I I 
¶ 
k (x y z T )I (x y z t ) I − , , , , , , (6) 
( ) 
 F 
¶ , , , 
¶ 
¶ 
x y z t V 
( ) 
( ) 
 F 
( ) 
( ) 
 
+  
 
 
+  
 
= 
F 
x y z t 
D x y z T 
x y z t 
F x y 
F y 
D x y z T 
t x 
V 
V 
V 
V 
¶ 
¶ 
¶ 
¶ 
¶ 
¶ 
¶ 
, , , 
, , , 
, , , 
, , , 
 F 
( ) 
( ) 
 
( ) ( )− +  
, , , 
x y z t 
¶ 
, , , V 
2 
¶ 
+ F k x y z T V x y z t 
 
V , , , , , , 
¶ 
z 
, D x y z T 
z V V 
¶ 
k (x y z T )V (x y z t ) V − , , , , , , 
with boundary and initial conditions 
( ) 
x y z t r 0 
, 
, , , 
0 
= 
¶ 
¶F 
x= 
x 
( ) 
x y z t r , 
0 
, , , 
= 
¶ 
¶F 
x=Lx 
x 
( ) 
x y z t r 0 
, 
, , , 
0 
= 
¶ 
¶F 
y= 
y 
( ) 
0 
, , , 
= 
¶ 
¶F 
y=Ly 
y 
( ) 
x y z t r 0 
, 
, , , 
0 
= 
¶ 
¶F 
z= 
z 
( ) 
I 
Fx y z t r 0 
, , , , 
= 
¶ 
¶F 
z=Lz 
z 
(x,y,z,0)=fFI (x,y,z), FV (x,y,z,0)=fFV (x,y,z). (7) 
Here DFI(x,y,z,T) and DFV(x,y,z,T) are the diffusion coefficients of simplest complexes of radia-tion 
defects; kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of simplest complexes of radi-ation 
defects. 
We described distribution of temperature by the second law of Fourier [23] 
( ) ( ) ( ) ( ) ( ) ( ) 
 
+  
 
 
T x y z t 
¶ 
¶ 
¶ 
¶ 
+   
 
 
T x y z t 
¶ 
¶ 
¶ 
¶ 
= 
T x y z t 
¶ 
¶ 
y 
x y z T 
x y 
x y z T 
t x 
c T 
, , , 
, , , 
, , , 
, , , 
, , , 
l l 
( ) T ( x y z t 
) p(x y z t ) 
z 
x y z T 
¶ 
z 
, , , 
, , , 
 
, , , +  
 
 
¶ 
¶ 
¶ 
with boundary and initial conditions 
( ) 
0 
, , , 
0 
= 
T x y z t 
¶ 
¶ 
x= 
x 
, 
( ) 
0 
, , , 
= 
T x y z t 
¶ 
¶ 
x=Lx 
x 
, 
( ) 
0 
, , , 
0 
= 
T x y z t 
¶ 
¶ 
y= 
y 
, (9) 
( ) 
0 
, , , 
= 
T x y z t 
¶ 
¶ 
x=Ly 
y 
, 
( ) 
0 
, , , 
0 
= 
T x y z t 
¶ 
¶ 
z= 
z 
, 
( ) 
0 
, , , 
= 
T x y z t 
¶ 
¶ 
x=Lz 
z 
, T (x,y,z,0)=fT (x,y,z), 
where T(x,y,z,t) is the spatio-temporal distribution of temperature; c (T)=cass[1-h exp(-T(x,y,z,t)/ 
Td)] is the heat capacitance (in the most interesting case, when temperature of annealing is ap-proximately 
equal or larger, than Debay temperature Td, one can assume c (T)»cass [23]); l is the 
heat conduction coefficient, which depends on properties of materials and current temperature of 
annealing; temperature dependence of heat conduction coefficient in the most interesting tem-perature 
interval could be approximated by the following function l(x,y,z,T)=lass(x,y,z) [1+μ 
(Td/T(x,y,z,t))j] (see, for example, [23]); p(x,y,z,t) is the volumetric density of heat power, gener-
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
ated in heterostructure during annealing; a (x,y,z,T)=l(x,y,z,T)/c (T) is the heat diffusivity. First of 
all we determine spatio-temporal distribution of temperature. To calculate the distribution of tem-perature 
we used recently introduced approach [24-26]. Framework the approach we transform 
approximation of heat diffusivity to the following form: a ass (x,y,z) =lass(x,y,z)/cas s=a0ass[1+eT 
gT(x,y,z)]. Farther we determine solution of Eq.(8) as the following power series 
i j 
T T x y z t e μ T x y z t . (10) 
29 
¥ 
( , , , )=   ( , , , 
) 
= 
¥ 
0 =0 
i j 
ij 
Substitution of the series into Eq.(8) gives us possibility to obtain system of equations for the ini-tial- 
order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i³1, j³1). 
The equations are presented in the Appendix. Substitution of the series (9) into boundary and ini-tial 
conditions for temperature gives us possibility to obtain the same conditions for all functions 
Tij(x,y,z,t) (i³0, j³0). The conditions are presented in the Appendix. The equations for the func-tions 
Tij(x,y,z,t) (i³0, j³0) with account boundary and initial conditions have been solved by using 
standard approaches [27,28] for the second-order approximation of the temperature T (x,y,z,t) on 
the parameters e and μ. The solutions are presented in the Appendix. The second- order is usually 
enough good approximation to make qualitative analysis and to obtain some quantitative results 
(see, for example, [24-26]). Analytical results give us possibility to make more demonstrative 
analysis in comparison with numerical one. To calculate the obtained result with higher exactness 
and checking the obtain results by independent approaches we used numerical approaches. 
To calculate spatio-temporal distributions of concentrations of point of radiation defects we used 
recently introduced approach [24-26] and transform approximations of diffusion coefficients in 
the following form: Dr(x,y,z,T)=D0r[1+ergr(x,y,z,T)], where D0r are the average values of diffu-sion 
coefficients, 0£er 1, |gr(x,y,z,T)|£1, r =I,V. The same transformations have been used for 
approximations of parameters of recombination of point radiation defects and generation of their 
complexes: kI,V(x,y,z,T)=k0I,V [1+ eI,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I[1+ eI,I gI,I(x,y,z,T)] and 
kV,V(x,y,z,T) = k0V,V [1+eV,V gV,V(x,y,z,T)], where k0r1,r2 are the appropriate average values of these 
parameters, 0£ eI,V 1, 0£ eI,I 1, 0£eV,V 1, |gI,V(x,y,z,T)|£1, | gI,I(x,y,z,T)|£1, |gV,V(x,y,z,T)|£1. Let us 
introduce the following dimensionless variables: ( ) ( ) * , , , , , , 
~ 
I x y z t = I x y z t I , c = x/Lx, h = y/Ly, f 
~ 
V x y z t =V x y z t V , I V I V L k D D0 , 0 0 
= z/Lz, ( ) ( ) * , , , , , , 
w = 2 , L 2 
k D D0 , 0 I 0 
V r r r W = , 
2 
0 0 D D t L I V J = . The introduction leads to the following transformation of equations (4) and 
conditions (5) 
( ) [ ( )] ( ) 
I 
c h f J 
I D 
0 
+ ×
¶ 
¶ 
0 , , , 
+ 
¶ 
¶ 
c h f J 
I D 
= 
¶ 
¶ 
I V 
I I 
I 
I V 
D D 
g T 
D D 
0 0 
0 0 
~ 
1 , , , 
, , , 
~ 
c 
e c h f 
J c 
[ ( )] I ( ) D 
¶ 
0 I 
{[ + e ( c h f 
)] × 
× g T 
g T 1 , , , 
I I I I 
h ¶ 
f 
+
¶ 
¶ 
+ 
¶ 
¶ 
D D 
I V 
, , , 
~ 
1 , , , 
0 0 
c h f J 
e c h f 
h 
 	 
 
( c h f J 
) )− [ + ( )] ( ) ( − 
¶ 
× w e c h f c h f J c h f J 
f 
¶ 
, , , 
~ 
, , , 
~ 
1 , , , 
, , , 
~ 
, , g T I V 
I 
I V I V 
~ 
[ 1 e (c , h , f , )] 2 
(c ,h ,f ,J ) 
, , g T I I I I I I −W + (11) 
( ) [ ( )] ( ) 
0 
V 
c h f J 
V D 
+ ×
0 , , , 
¶ 
¶ 
+ 
¶ 
¶ 
c h f J 
V D 
= 
¶ 
¶ 
I V 
V V 
V 
I V 
D D 
g T 
D D 
0 0 
0 0 
~ 
1 , , , 
, , , 
~ 
c 
e c h f 
J c
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
r c h f J r f 
= . (12) 
i j k r c h f J e w r c h f J r r . (13) 
~ 
000 I and 
30 
[ ( )] V ( ) D 
¶ 
0 V 
{[ + e ( c h f 
)]× 
+ g T 
g T 1 , , , 
V V V V 
h ¶ 
f 
+
¶ 
¶ 
+ 
¶ 
¶ 
D D 
I V 
, , , 
~ 
1 , , , 
0 0 
c h f J 
e c h f 
h 
 	 
 
( c h f J 
) )− [ + ( )] ( ) ( − 
¶ 
× w e c h f c h f J c h f J 
f 
¶ 
, , , 
~ 
, , , 
~ 
1 , , , 
, , , 
~ 
, , g T I V 
V 
I V I V 
~ 
[ 1 e (c , h , f , )] 2 
(c ,h,f ,J ) 
, , g T V I V V V V −W + 
( ) 
0 
~ , , , 
0 
= 
r c h f J 
¶ 
¶ 
c = c 
, 
( ) 
0 
~ , , , 
1 
= 
r c h f J 
¶ 
¶ 
c = c 
, 
( ) 
0 
~ , , , 
0 
= 
r c h f J 
¶ 
¶ 
h = h 
, 
( ) 
0 
~ , , , 
1 
= 
r c h f J 
¶ 
¶ 
h = h 
, 
( ) 
0 
~ , , , 
0 
= 
r c h f J 
¶ 
¶ 
f = f 
, 
( ) 
0 
~ , , , 
1 
= 
r c h f J 
¶ 
¶ 
f = f 
, ( ) 
( c , h , f , 
J 
) 
* 
~ , , , 
r 
We determine solutions of Eqs.(11) as the following power series (see [24-26]) 
¥ 
~ , , , ~ , , , 
( ) =   W ( ) 
= 
¥ 
= 
¥ 
0 0 =0 
i j k 
ijk 
Substitution of the series (13) into Eqs. (11) and conditions (12) gives us possibility to obtain eq-uations 
for initial-order approximations of concentrations of point defects (c,h,f,J) 
~ 
V (c,h,f,J) 
and corrections for them (c,h,f,J) 
000 ~ 
ijk I and (c ,h,f,J) 
~ 
ijk V , i ³1, j ³1, k ³1. The equa-tions 
and conditions for them are presented in the Appendix. The equations have been solved by 
standard approaches (see, for example Fourier approach, [27,28]). The equations are presented in 
the Appendix. 
Farther we determine spatio-temporal distributions of concentrations of complexes of radiation 
defects. First of all we transform approximations of diffusion coefficients into the following form: 
DFr(x,y,z,T)=D0Fr[1+eFrgFr(x,y,z,T)], where D0Fr are the average values of diffusion coefficients. 
In this situation Eqs.(6) will be transformed to the following form
( ) ¶ 
[ ( )] ( ) ¶ 
[ ( )] 
I 1 , , , 
+ + ×
F 
= + 
F 
x y z t 
F F F F F g x y z T 
x y 
g x y z T 
x 
D 
x y z t 
t 
I I 
I 
I I I 
, , , 
1 , , , 
, , , 
0 e 
¶ 
¶ 
¶ 
e 
¶ 
¶ 
¶ 
( ) 
[ ( )] ( ) 
+
¶ , , , 
F 
¶ 
x y z t I 
+ + 
 	 
 
F 
× F F F F 
x y z t 
z 
g x y z T 
z 
D D 
y 
I I I I 
I 
¶ 
¶ 
e 
¶ 
¶ 
1 , , , 
, , , 
0 0 
[ g (x y z T )] k (x y z T ) I (x y z t ) k (x y z T )I (x y z t ) I I I I I 1 , , , , , , , , , , , , , , , 2 
, + − 
 
	 
 
× + F F e 
( )
[ )] ( ) 
( ¶ 
[ ( )] 
¶ 
V 1 , , , 
+ + ×
F 
= + 
F 
x y z t 
F F F F F g x y z T 
x y 
g x y z T 
x 
D 
x y z t 
t 
V V 
V 
V V V 
, , , 
1 , , , 
, , , 
0 e 
¶ 
¶ 
¶ 
e 
¶ 
¶ 
¶ 
( ) 
[ ( )] ( ) 
+
F 
¶ , , , 
¶ 
x y z t V 
+ + 
 	 
 
F 
x y z t 
× D D 
g x y z T 
y 
F V F V z 
F V F V 
z 
V 
¶ 
¶ 
e 
¶ 
¶ 
1 , , , 
, , , 
0 0 
[ g (x y z T )] k (x y z T ) V (x y z t ) k (x y z T )V (x y z t ) V V V V V 1 , , , , , , , , , , , , , , , 2 
, + − 
 
	 
 
× + F F e .
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
i x y z t x y z t r r r e . (11) 
31 
Farther we determine solutions of the above equations as the following power series 
¥ 
F ( , , , ) =  F ( , , , 
) 
= 
F 
0 
i 
i 
Substitution of the series (14) into Eqs. (6) and appropriate boundary and initial conditions gives 
us possibility to obtain equations for initial-order approximations of concentrations of complexes 
of radiation defects Fr0(x,y,z,t) and corrections for them Fri(x,y,z,t) (i ³1) and appropriate condi-tions 
for all functions Fri(x,y,z,t) (i ³0). The equations and conditions are presented in the Appen-dix. 
The obtained equations have been solved by standard approaches (see, for example, [27,28]) 
with account boundary and initial conditions. The solutions are presented in the Appendix. 
We calculate spatio-temporal distribution of dopant concentration by using the same approach, 
which have been used for calculation spatio-temporal distribution of concentrations of radiation 
defects. In this situation we transform approximation of dopant diffusion coefficient to the fol-lowing 
form: DL(x,y,z,T)=D0L[1+eLgL(x,y,z,T)], where D0L is the average value of dopant diffusion 
coefficient, 0£eL 1, |gL(x,y,z,T)|£1. Farther we determine solution of Eq.(1) in the following form 
¥ 
( ) =   ( ) 
C x , y , z , t e i x j 
C x , y , z , 
t . 
L = 
¥ 
0 =1 
i j 
ij 
Substitution of the series into Eq.(1) and conditions (2) gives us possibility to obtain equation for 
initial-order approximation of the concentration of dopant C00(x,y,z,t) and corrections for them 
Cij(x,y,z,t) (i ³1, j ³1) and boundary and initial conditions for them. The equations and conditions 
are presented in the Appendix. The solutions have been calculated by standard approaches (see, 
for example, [27,28]). The solutions are presented in the Appendix. 
Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects have 
been done analytically by using the second-order approximations on all parameters, which are 
used in appropriate series. The approximation is usually enough good approximation to make qu-alitative 
analysis and to obtain some quantitative results. Results of analytical calculations have 
been checked with comparison with numerical one. 
3.Discussion 
In this section we analyzed redistribution of dopant and radiation defects by using relations, cal-culated 
in the previous section. Typical distributions of concentrations of dopant near interface 
between materials of hetero structure are presented on Figs. 2 and 3 for diffusion and ion types of 
doping, respectively. The distributions have been calculated for the case, when value of dopant 
diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest 
areas. The figures show, that presents of interface between materials gives us possibility to in-crease 
sharpness of p-n-junctions, which included into the considered heterobipolar transistor. At 
the same time homogeneity of distribution of concentration of dopant increases. Increasing of 
sharpness of p-n-junctions gives us possibility to decrease their switching time. Increasing of ho-mogeneity 
of distribution of concentration of dopant gives us possibility to decrease value of lo-cal 
overheats during functioning of the p-n-junctions or to decrease dimensions of p-n-junctions 
with fixed maximal value of the overheats. To accelerate transport of charge carriers it is attracted 
an interest inhomogenous distribution of dopant in base. In this case it is electrical field has been 
generated in the base. This electrical field gives us possibility to accelerate transport of charge 
carriers in base of transistors. To manufacture in homogenous distribution of dopant in base it is 
practicably to dope required area (section) of the first (nearest to the substrate) epitaxial layer. 
After that it is practicably to anneal dopant and/or radiation defects. Farther they are attracted an
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
interest the following steps: (i) manufacturing of the second epitaxial layer with section, manufac-tured 
by using another materials; (ii) doping the section of the second epitaxial layer by diffusion 
or ion implantation; (iii) manufacturing of the third epitaxial layer with section, manufactured by 
using another materials; (iv) doping the section of the third epitaxial layer by diffusion or ion im-plantation. 
After that we consider microwave annealing of dopant and/or radiation defects. Ad-vantage 
of the approach of annealing is formation of inhomogenous distribution of temperature. 
In this situation it is practicably to choose parameters of annealing so, that thickness of scin-layer 
became larger, than thickness of the third (external) epitaxial layer and smaller, than total of 
thickness of the third and the second epitaxial layers. In this case dopant diffusion in nearest to 
the substrate side became slower, than in farther side. This is a reason to inhomogeneity of distri-bution 
of concentration of dopant in depth of hetero structure. After finishing of manufacturing of 
bipolar transistor the section of the average epitaxial layer with inhomogenous distribution of 
concentration of dopant assumes function of base. 
Fig. 2. Distributions of concentrations of infused dopant in hetero structure from Fig. 1 in direc-tion, 
which is perpendicular to interface between layers of heterostructure. Increasing of number 
of curves corresponds to increasing of difference between values of dopant diffusion coefficient 
in layers of heterostructure. The curves have been calculated under condition, when dopant diffu-sion 
32 
coefficient in doped layer is larger, than in nearest layer. 
Epitaxial layer Substrate 
x 
2.0 
1.5 
1.0 
0.5 
0.0 
C(x,Q) 
2 
3 
4 
1 
0 L/4 L/2 3L/4 L
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
Fig. 3. Spatial distributions of implanted dopant concentration after annealing with continuous Q 
= 0.0048(Lx 
33 
2+Ly 
2+Lz 
2)/D0 (curves 1 and 3) and Q = 0.0057(Lx 
2+Ly 
2+Lz 
2)/ D0 (curves 2 and 4). 
Curves 1 and 2 are calculated distributions of dopant concentration in homogenous structure. 
Curves 3 and 4 are calculated distributions of dopant concentration in hetero structure under con-dition, 
when dopant diffusion coefficient in doped layer is larger, than in nearest layer. 
Using of the considered approach to manufacture of transistors leads to necessity of optimization 
of annealing time. To optimize the annealing time we used recently introduced criterion 
[24,26,29-33]. Framework the approach we approximate real distributions of concentration of 
dopant by step-wise function. Farther we determine the required optimal values of annealing time 
by minimization of the following mean- squared error 
Lx y z L L 
=    [ ( Q)− ( )] 
x y z 
C x y z x y z d z d y d x 
L L L 
U 
0 0 0 
, , , , , 
1 
y , (15) 
where y (x) is the approximation function, Q is the required value of annealing time. 
0.0 0.1 0.2 0.3 0.4 0.5 
a/L, x, e, g 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
Q D0 L-2 
3 
2 
4 
1 
Fig.4. Dependences of dimensionless optimal annealing time for doping by diffusion, which have 
been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the de-pendence 
of dimensionless optimal annealing time on the relation a/L and x = g = 0 for equal to 
each other values of dopant diffusion coefficient in all parts of hetero structure. Curve 2 is the 
dependence of dimensionless optimal annealing time on value of parameter e for a/L=1/2 and x = 
g = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter x 
for a/L=1/2 and e = g = 0. Curve 4 is the dependence of dimensionless optimal annealing time on 
value of parameter g for a/L=1/2 and e = x = 0
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
34 
0.0 0.1 0.2 0.3 0.4 0.5 
a/L, x, e, g 
0.12 
0.08 
0.04 
0.00 
Q D0 L-2 
3 
2 
4 
1 
Fig.5. Dependences of dimensionless optimal annealing time for doping by ion implantation, 
which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 
is the dependence of dimensionless optimal annealing time on the relation a/L and x = g = 0 for 
equal to each other values of dopant diffusion coefficient in all parts of hetero structure. Curve 2 
is the dependence of dimensionless optimal annealing time on value of parameter e for a/L=1/2 
and x = g = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of 
parameter x for a/L=1/2 and e = g = 0. Curve 4 is the dependence of dimensionless optimal an-nealing 
time on value of parameter g for a/L=1/2 and e = x = 0 
Dependences of optimal values of annealing time are presented in Fig. 4 for diffusion type of 
doping. Using ion implantation leads to necessity of annealing of radiation defects. In the ideal 
case after finishing of annealing of radiation defects dopant achieves interface between materials 
of hetero structure. If the dopant did not achieves the interface during the annealing, it is practica-bly 
to use additional annealing of dopant. Dependences of optimal values of additional annealing 
time are presented in Fig. 5. Optimal value of time of additional annealing of implanted dopant is 
smaller, than in optimal value of infused dopant. Reason of this difference is necessity of anneal-ing 
of radiation defects. 
4. CONCLUSIONS 
In this paper we introduce an approach to manufacture a heterobipolar transistor with inhomo-genous 
doping of base. At the same time the introduced approach to manufacture of bipolar tran-sistors 
gives us possibility to increase their compactness and to increase sharpness of p-n-junctions, 
which included into the transistor. The approach based on manufacturing of a hetero-structure 
with special construction, doping of special areas of the hetero structure and optimiza-tion 
of annealing of dopant and/or radiation defects. 
ACKNOWLEDGEMENTS 
This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, 
grant of Scientific School of Russia, the agreement of August 27, 2013  02..49.21.0003 be-tween 
The Ministry of education and science of the Russian Federation and Lobachevsky State 
University of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Nov-gorod 
State University of Architecture and Civil Engineering.
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
35 
APPENDIX 
Equations for the functions Tij(x,y,z,t) (i³0, j³0) have been obtained by substitution the power se-ries 
(10) in the equation (8) and equating terms with equal powers of parameters eT and μ. The 
equations could be written as 
( , , , )  
( , , , ) ( , , , ) ( , , , ) ( , , , 
) 
ass 
00 ass 
 
+ p x y z t 
T x y z t 
z 
T x y z t 
y 
T x y z t 
x 
T x y z t 
t 
n 
a 
2 
00 
2 
2 
00 
2 
2 
00 
2 
0 
 
 
¶ 
¶ 
+ 
¶ 
¶ 
+ 
¶ 
¶ 
= 
¶ 
¶ 
( ) ( ) ( ) ( ) 
 
a a 
× +  
 
0 , , , , , , , , , , , , 
 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
= 
T x y z t 
¶ 
¶ 
ass 
i i i 
ass 
i 
z 
y 
x 
t 
2 0 
0 
2 
2 
0 
2 
2 
0 
2 
0 
( ) ( ) ( ) ( )
+ 
2 , , , 
T x y z t 
¶ 
¶ 
g x y z T i 
+ 
T x y z t 
¶ 
¶ 
× − − 
2 
10 
2 
2 
10 
, , , 
, , , 
, , , 
y 
g x y z T 
x 
T 
i 
T 
( ) ( ) 
 	 
 
 
 
 
T x y z t 
+ − 
 
¶ 
¶ 
¶ 
¶ 
z 
g x y z T 
z 
i 
T 
, , , 
, , , 10 , i ³1 
( , , , ) ( , , , ) ( , , , ) ( , , , 
) 
j a 
T x y z t T 
ass d 
+ × ( ) 
 
 
 
 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
= 
¶ 
¶ 
T x y z t 
z 
y 
x 
t 
ass , , , 
00 
0 
2 
01 
2 
2 
01 
2 
2 
01 
2 
0 
01 
j 
a 
( ) ( ) ( ) 
j ja 
2 , , , 
T x y z t T 
ass d 
( ) 
( )
+  
 
 
T x y z t 
¶ 
¶ 
 
−  
 
 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
+ 
¶ 
¶ 
× + 
2 
00 
1 
00 
0 
2 
00 
2 
2 
00 
2 
2 
00 
, , , 
, , , , , , , , , 
x 
T x y z t 
z 
y 
x 
j 
( ) ( ) 
 	
 
 
 
 
 
T x y z t 
¶ 
¶ 
 
+  
 
 
T x y z t 
¶ 
¶ 
+ 
2 
00 
2 
00 , , , , , , 
z 
y 
( , , , ) ( , , , ) ( , , , ) ( , , , 
) 
j a 
T x y z t T 
ass d 
+ × ( ) 
 
 
 
 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
= 
¶ 
¶ 
T x y z t 
z 
y 
x 
t 
ass , , , 
00 
0 
2 
02 
2 
2 
02 
2 
2 
02 
2 
0 
02 
j 
a 
( ) ( ) ( ) 
j ja 
T x y z t ass d , , , , , , 
, , , , , , , , , T 
00 01 
( ) 
( ) ( ) 
 
 
+ 
T x y z t 
¶ 
¶ 
T x y z t 
¶ 
¶ 
 
−  
 
 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
+ 
¶ 
¶ 
× x 
y 
z 
T + x y z t 
x 
x 
, , , 
1 
00 
0 
2 
01 
2 
2 
01 
2 
2 
01 
2 
j 
( ) ( ) ( ) ( ) 
 
 
T x, y, z, t , , , , , , , , , 00 01 00 01 
T x y z t 
¶ 
¶ 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
¶ 
¶ 
+ 
z 
z 
y 
y 
( ) ( ) ( ) 
, , , , , , T x , y , z , 
t 
, , , , , , 
11 ( ) 
( ) 
( ) ( )
× 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
= 
T x y z t 
¶ 
¶ 
2 
00 
2 
2 
00 
2 
01 
00 
2 0 
11 
2 
0 
, , , 
, , , 
y 
x 
g x y z T 
T x y z t 
x 
t 
ass ass T a a 
 
¶ 
( ) ( ) 
( ) 
( ) 
( )
+  
 
00 a 
g x y z T T T ass T 
 
T x y z t 
¶ 
¶ 
¶ 
¶ 
+ 
 
	 
 
 
 
 
T x y z t 
¶ 
¶ 
¶ 
× + 
x 
g x y z T 
z x 
g x y z T 
z 
, , , 
, , , 
, , , 
, , , , , , 01 
0 
( ) 
[ ( )] ( ) 
[ ( )] ( ) 
+ 
 	 
 
2 , , , 
¶ 
+ 2 
T x y z t 
¶ 
¶ 
+ + 
T x y z t 
¶ 
¶ 
+ + 
T x y z t 
¶ 
01 
2 
2 
01 
2 
2 
01 
1 , , , 
, , , 
1 , , , 
, , , 
z 
g x y z T 
y 
g x y z T 
x 
T T 
( ) 
( ) 
( , , , ) T ( x , y , z , 
t 
) 
, , , 
10 
10 
10 
Tass d , , , 
( ) 
( ) ( ) 
 
T x y z t 
+ × 
T x y z t 
T x y z t 
T x y z t 
( )  
0 j j j 
¶ 
¶ 
+ 
¶ 
¶ 
+ T + x y z t 
x 
T + x y z t 
y 
T + x y z t 
, , , , , , 
, , , 
, , , 
1 
00 
2 
00 
2 
1 
00 
2 
00 
2 
1 
00 
j a
International Journal on Computational Sciences  Applications (IJCSA) Vol.4, No.5, October 2014 
36 
( ) 
j a 
2 , , , , , , , , , 
¶ 
T x y z t T 
× ass d 
2 
( ) 
( ) ( ) ( ) 
 
+  
 
 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
 
+  
¶ 
10 
2 
2 
10 
2 
2 
10 
2 
00 
0 
2 
00 
, , , 
, , , 
z 
y 
x 
T x y z t 
z 
j 
( ) 
( ) 
( ) 
( ) 
( )
× +  
 
g x y z T T T T , , , 
 
T x y z t 
¶ 
¶ 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
+ g x y z T 
z 
g x y z T 
x z 
, , , 
, , , 
, , , 
, , , 00 
2 
10 
2 
j a 
Tass d , , , , , , , , , , , , 
, , , 
( ) 
( )  
( ) ( ) ( ) 
 
× 
T x y z t 
¶ 
¶ 
+ 
T x y z t 
¶ 
¶ 
T x y z t 
¶ 
¶ 
− 
 	 
 
T x y z t 
¶ 
¶ 
× 
y 
x 
x 
y 
T x y z t 
10 00 10 
2 
10 
2 
00 
0 
j 
( ) ( ) ( ) 
¶ 
T x y z t T 
× 00 10 00 0 
T 
+ T + x y z t 
( ) 
( ) 
( ) 
 
, , , 
× −  
T x y z t 
¶ 
¶ 
T x y z t 
¶ 
¶ 
+ 
¶ 
g x y z T 
T 
T x y z t 
z 
z 
y 
ass d 
ass d 
, , , 
, , , 
, , , , , , , , , 
1 
00 
1 0 
00 
j 
j 
j 
j 
a j 
ja 
( ) ( ) ( )

More Related Content

What's hot

On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableAlexander Decker
 
On 1 d fractional supersymmetric theory
  On 1 d fractional supersymmetric theory  On 1 d fractional supersymmetric theory
On 1 d fractional supersymmetric theoryAlexander Decker
 
Neutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsNeutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsIJSRED
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new informationijitjournal
 
Inner product space
Inner product spaceInner product space
Inner product spaceSheharBano31
 
11 x1 t09 03 rules for differentiation (2013)
11 x1 t09 03 rules for differentiation (2013)11 x1 t09 03 rules for differentiation (2013)
11 x1 t09 03 rules for differentiation (2013)Nigel Simmons
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceAlexander Decker
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
A fixed point result in banach spaces
A fixed point result in banach spacesA fixed point result in banach spaces
A fixed point result in banach spacesAlexander Decker
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems ijcax
 

What's hot (17)

relations-function
relations-functionrelations-function
relations-function
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
On 1 d fractional supersymmetric theory
  On 1 d fractional supersymmetric theory  On 1 d fractional supersymmetric theory
On 1 d fractional supersymmetric theory
 
Neutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsNeutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New Operations
 
ppt_tech
ppt_techppt_tech
ppt_tech
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new information
 
Inner product space
Inner product spaceInner product space
Inner product space
 
11 x1 t09 03 rules for differentiation (2013)
11 x1 t09 03 rules for differentiation (2013)11 x1 t09 03 rules for differentiation (2013)
11 x1 t09 03 rules for differentiation (2013)
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
E029024030
E029024030E029024030
E029024030
 
A fixed point result in banach spaces
A fixed point result in banach spacesA fixed point result in banach spaces
A fixed point result in banach spaces
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
 
Vertex
VertexVertex
Vertex
 
P1 . norm vector space
P1 . norm vector spaceP1 . norm vector space
P1 . norm vector space
 

Viewers also liked

A SERIAL COMPUTING MODEL OF AGENT ENABLED MINING OF GLOBALLY STRONG ASSOCIATI...
A SERIAL COMPUTING MODEL OF AGENT ENABLED MINING OF GLOBALLY STRONG ASSOCIATI...A SERIAL COMPUTING MODEL OF AGENT ENABLED MINING OF GLOBALLY STRONG ASSOCIATI...
A SERIAL COMPUTING MODEL OF AGENT ENABLED MINING OF GLOBALLY STRONG ASSOCIATI...ijcsa
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ijcsa
 
Recognition of optical images based on the
Recognition of optical images based on theRecognition of optical images based on the
Recognition of optical images based on theijcsa
 
Computational science guided soft
Computational science guided softComputational science guided soft
Computational science guided softijcsa
 
ANGLE ROUTING:A FULLY ADAPTIVE PACKET ROUTING FOR NOC
ANGLE ROUTING:A FULLY ADAPTIVE PACKET ROUTING FOR NOCANGLE ROUTING:A FULLY ADAPTIVE PACKET ROUTING FOR NOC
ANGLE ROUTING:A FULLY ADAPTIVE PACKET ROUTING FOR NOCijcsa
 
An efficient recovery mechanism
An efficient recovery mechanismAn efficient recovery mechanism
An efficient recovery mechanismijcsa
 
Empirical evaluation of web based personal
Empirical evaluation of web based personalEmpirical evaluation of web based personal
Empirical evaluation of web based personalijcsa
 
Techniques of lattice based
Techniques of lattice basedTechniques of lattice based
Techniques of lattice basedijcsa
 
EMPIRICAL APPLICATION OF SIMULATED ANNEALING USING OBJECT-ORIENTED METRICS TO...
EMPIRICAL APPLICATION OF SIMULATED ANNEALING USING OBJECT-ORIENTED METRICS TO...EMPIRICAL APPLICATION OF SIMULATED ANNEALING USING OBJECT-ORIENTED METRICS TO...
EMPIRICAL APPLICATION OF SIMULATED ANNEALING USING OBJECT-ORIENTED METRICS TO...ijcsa
 
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...ijcsa
 
A NOVEL BINNING AND INDEXING APPROACH USING HAND GEOMETRY AND PALM PRINT TO E...
A NOVEL BINNING AND INDEXING APPROACH USING HAND GEOMETRY AND PALM PRINT TO E...A NOVEL BINNING AND INDEXING APPROACH USING HAND GEOMETRY AND PALM PRINT TO E...
A NOVEL BINNING AND INDEXING APPROACH USING HAND GEOMETRY AND PALM PRINT TO E...ijcsa
 
A SURVEY OF MACHINE LEARNING TECHNIQUES FOR SENTIMENT CLASSIFICATION
A SURVEY OF MACHINE LEARNING TECHNIQUES FOR SENTIMENT CLASSIFICATIONA SURVEY OF MACHINE LEARNING TECHNIQUES FOR SENTIMENT CLASSIFICATION
A SURVEY OF MACHINE LEARNING TECHNIQUES FOR SENTIMENT CLASSIFICATIONijcsa
 
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...ijcsa
 
SBVRLDNACOMP:AN EFFECTIVE DNA SEQUENCE COMPRESSION ALGORITHM
 SBVRLDNACOMP:AN EFFECTIVE DNA SEQUENCE COMPRESSION ALGORITHM SBVRLDNACOMP:AN EFFECTIVE DNA SEQUENCE COMPRESSION ALGORITHM
SBVRLDNACOMP:AN EFFECTIVE DNA SEQUENCE COMPRESSION ALGORITHMijcsa
 
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...ijcsa
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logicalijcsa
 
Effects of missing observations on
Effects of missing observations onEffects of missing observations on
Effects of missing observations onijcsa
 

Viewers also liked (20)

A SERIAL COMPUTING MODEL OF AGENT ENABLED MINING OF GLOBALLY STRONG ASSOCIATI...
A SERIAL COMPUTING MODEL OF AGENT ENABLED MINING OF GLOBALLY STRONG ASSOCIATI...A SERIAL COMPUTING MODEL OF AGENT ENABLED MINING OF GLOBALLY STRONG ASSOCIATI...
A SERIAL COMPUTING MODEL OF AGENT ENABLED MINING OF GLOBALLY STRONG ASSOCIATI...
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
 
Recognition of optical images based on the
Recognition of optical images based on theRecognition of optical images based on the
Recognition of optical images based on the
 
Computational science guided soft
Computational science guided softComputational science guided soft
Computational science guided soft
 
ANGLE ROUTING:A FULLY ADAPTIVE PACKET ROUTING FOR NOC
ANGLE ROUTING:A FULLY ADAPTIVE PACKET ROUTING FOR NOCANGLE ROUTING:A FULLY ADAPTIVE PACKET ROUTING FOR NOC
ANGLE ROUTING:A FULLY ADAPTIVE PACKET ROUTING FOR NOC
 
An efficient recovery mechanism
An efficient recovery mechanismAn efficient recovery mechanism
An efficient recovery mechanism
 
Empirical evaluation of web based personal
Empirical evaluation of web based personalEmpirical evaluation of web based personal
Empirical evaluation of web based personal
 
Techniques of lattice based
Techniques of lattice basedTechniques of lattice based
Techniques of lattice based
 
EMPIRICAL APPLICATION OF SIMULATED ANNEALING USING OBJECT-ORIENTED METRICS TO...
EMPIRICAL APPLICATION OF SIMULATED ANNEALING USING OBJECT-ORIENTED METRICS TO...EMPIRICAL APPLICATION OF SIMULATED ANNEALING USING OBJECT-ORIENTED METRICS TO...
EMPIRICAL APPLICATION OF SIMULATED ANNEALING USING OBJECT-ORIENTED METRICS TO...
 
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
 
A NOVEL BINNING AND INDEXING APPROACH USING HAND GEOMETRY AND PALM PRINT TO E...
A NOVEL BINNING AND INDEXING APPROACH USING HAND GEOMETRY AND PALM PRINT TO E...A NOVEL BINNING AND INDEXING APPROACH USING HAND GEOMETRY AND PALM PRINT TO E...
A NOVEL BINNING AND INDEXING APPROACH USING HAND GEOMETRY AND PALM PRINT TO E...
 
A SURVEY OF MACHINE LEARNING TECHNIQUES FOR SENTIMENT CLASSIFICATION
A SURVEY OF MACHINE LEARNING TECHNIQUES FOR SENTIMENT CLASSIFICATIONA SURVEY OF MACHINE LEARNING TECHNIQUES FOR SENTIMENT CLASSIFICATION
A SURVEY OF MACHINE LEARNING TECHNIQUES FOR SENTIMENT CLASSIFICATION
 
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
 
SBVRLDNACOMP:AN EFFECTIVE DNA SEQUENCE COMPRESSION ALGORITHM
 SBVRLDNACOMP:AN EFFECTIVE DNA SEQUENCE COMPRESSION ALGORITHM SBVRLDNACOMP:AN EFFECTIVE DNA SEQUENCE COMPRESSION ALGORITHM
SBVRLDNACOMP:AN EFFECTIVE DNA SEQUENCE COMPRESSION ALGORITHM
 
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logical
 
Effects of missing observations on
Effects of missing observations onEffects of missing observations on
Effects of missing observations on
 
Doc Chengs Rest Manager
Doc Chengs Rest ManagerDoc Chengs Rest Manager
Doc Chengs Rest Manager
 
Vj Leaving Cert
Vj Leaving CertVj Leaving Cert
Vj Leaving Cert
 
Cob 222
Cob 222Cob 222
Cob 222
 

Similar to An approach to decrease dimensions of drift

On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitBRNSS Publication Hub
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...BRNSS Publication Hub
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...antjjournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 

Similar to An approach to decrease dimensions of drift (20)

05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 

Recently uploaded (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 

An approach to decrease dimensions of drift

  • 1. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS E.L.Pankratov1,3 and E.A.Bulaeva1,2 1Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia 3Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi-novskoe Shosse, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper based on recently introduced approach we formulated some recommendations to optimize manufacture drift bipolar transistor to decrease their dimensions and to decrease local overheats during functioning. The approach based on manufacture a heterostructure, doping required parts of the hetero-structure by dopant diffusion or by ion implantation and optimization of annealing of dopant and/or radia-tion defects. The optimization gives us possibility to increase homogeneity of distributions of concentrations of dopants in emitter and collector and specific inhomogenous of concentration of dopant in base and at the same time to increase sharpness of p-n-junctions, which have been manufactured framework the transistor. We obtain dependences of optimal annealing time on several parameters. We also introduced an analytical approach to model nonlinear physical processes (such as mass- and heat transport) in inhomogenous me-dia with time-varying parameters. KEYWORDS Drift heterobipolar transistor, analytical approach to model technological process, decreasing of dimen-sions of transistor 1.INTRODUCTION In the present time performance of elements of integrated circuits (p-n-junctions, field-effect and bipolar transistors, ...) and their discrete analogs are intensively increasing [1-14]. To solve the problem they are using several ways. One of them is manufacturing new materials with higher speed of charge carriers [1-18]. Another way to increase the performance is elaboration of new technological processes or modification of existing one [1-14,19,20]. In this paper we introduce one of approaches of modification of technological to increase performance of bipolar transistor. To solve our aim we consider hetero structure, which consist of a substrate and three epitaxial layers (see Fig. 1). One section have been manufactured in every epitaxial layer by using another materials so as it is presented on Fig. 1. After manufacturing of the section in the first epitaxial layer the section has been doped by diffusion or ion implantation to produce required type of conductivity (p or n) in the section. Farther we consider annealing of dopant and/or radiation de- DOI:10.5121/ijcsa.2014.4503 25
  • 2. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014 fects. After that we consider manufacturing of the second and the third epitaxial layers, which also including into itself one section in each new epitaxial layer. The sections are also been manu-factured by using another materials. Both new sections have been doped by diffusion or ion im-plantation to produce required type of conductivity (p or n) in the sections. Farther we consider microwave annealing of dopant and/or radiation defects. Main aim of the paper is analysis of do-pand 26 and radiation defects in the considered heterostructure. Dopant 1 Dopant 2 Dopant 3 Substrate Epitaxial layers Fig. 1. Heterostructure, which consist of a substrate and three epitaxial layers with sections, manufactured by using another materials. View from side 2. Method of solution To solve our aims we determine spatio-temporal distribution of concentration of dopant. We determine the required distribution by solving the second Fick's law [1,3-5] ( ) ( ) ( ) ( ) ¶ , , , , , , , , , , , , + + + = C x y z t z D C x y z t ¶ y z D C x y z t ¶ x y D C x y z t ¶ t x ¶ C C ¶ ¶ C ¶ ¶ ¶ ¶ ¶ ¶ ¶ (1) with boundary and initial conditions ( ) 0 , , , 0 = C x y z t ¶ ¶ x= x , ( ) 0 , , , = C x y z t ¶ ¶ x=Lx x , ( ) 0 , , , 0 = C x y z t ¶ ¶ y= y , ( ) 0 , , , = C x y z t ¶ ¶ x=Ly y , ( ) 0 , , , 0 = C x y z t ¶ ¶ z= z , ( ) 0 , , , = C x y z t ¶ ¶ x=Lz z , C (x,y,z,0)=f (x,y,z). (2) Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant, T is the temperature of annealing, D is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends on properties of materials of the considered hetero structure, speed of heating and cooling of hete-ro structure (with account Arrhenius law). Dependences of dopant diffusion coefficient could be approximated by the following relation [3,21]
  • 3. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 27 ( ) ( ) , , , , , , , , , V x y z t V x y z t g C x y z t D D x y z T C L x V V g = + * 2 ( ) ( ) ( ) ( ) + + 2 1 * 2 1 , , , , , , 1 V V P x y z T , (3) where DL (x,y,z,T) is the spatial (due to inhomogeneity of hetero structure) and temperature (due to Arrhenius law) dependences of diffusion coefficient; P (x,y,z,T) is the limit of solubility of do-pant; value of parameter g depends on materials of heterostructure and could be integer in the fol-lowing interval g Î[1,3] [3]; V (x,y,z,t) is the spatio-temporal distribution of concentration of va-cancies; V* is the equilibrium distribution of concentration of vacancies. Concentrational depen-dence of dopant diffusion coefficient has been discussed in details in [3]. It should be noted, that using diffusion type of doping and radiation damage is absent in the case (i.e. z1= z2= 0). We de-termine spatio-temporal distributions of concentrations of point radiation defects by solving of the following system of equations [21,22] ( ) ( ) ( ) ( ) ( ) + I x y z t ¶ ¶ ¶ ¶ + I x y z t ¶ ¶ ¶ ¶ = I x y z t ¶ ¶ y D x y z T x y D x y z T t x I I , , , , , , , , , , , , , , , ( ) ( ) − ( ) ( ) ( )− I x y z t + k x y z T I x y z t V x y z t z I I V , , , , , , , , , ¶ ¶ ¶ ¶ z D x y z T , , , , , , , k (x y z T )I (x y z t ) I I , , , , , , 2 , − (4) ( ) ( ) ( ) ( ) ( ) + V x y z t ¶ ¶ ¶ ¶ + V x y z t ¶ ¶ ¶ ¶ = V x y z t ¶ ¶ y D x y z T x y D x y z T t x V V , , , , , , , , , , , , , , , ( ) ( ) − ( ) ( ) ( )− V x y z t + k x y z T I x y z t V x y z t z V I V , , , , , , , , , ¶ ¶ ¶ ¶ z D x y z T , , , , , , , k (x y z T )V (x y z t ) V V , , , , , , 2 , − with initial r (x,y,z,0)=fr (x,y,z) (5a) and boundary conditions ( ) 0 r x , y , z , t 0 = ¶ ¶ x= x , ( ) 0 r x , y , z , t = ¶ ¶ x=Lx x , ( ) 0 r x , y , z , t 0 = ¶ ¶ y= y , ( ) 0 r x , y , z , t = ¶ ¶ y=Ly y , ( ) 0 r x , y , z , t 0 = ¶ ¶ z= z , ( ) 0 r x , y , z , t = ¶ ¶ z=Lz z . (5b) Here r =I,V; I (x,y,z,t) is the spatio-temporal distribution of concentrations of interstitials; Dr(x, y,z,T) are the diffusion coefficients of interstitials and vacancies; terms V2(x,y,z,t) and I2(x,y,z,t) correspond to generation of divacancies and diinterstitials; kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y, z,T) are the parameters of recombination of point radiation defects and generation appropriate their complexes, respectively. We determine spatio-temporal distributions of concentrations of divacancies FV (x, y,z,t) and diin-terstitials FI (x,y,z,t) by solving the following system of equations [21,22]
  • 4. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 x y z t r , + l (8) 28 ( ) F ¶ , , , ¶ ¶ x y z t I ( ) ( ) F ( ) ( ) + + = F x y z t D x y z T x y z t F x y F y D x y z T t x I I I I ¶ ¶ ¶ ¶ ¶ ¶ ¶ , , , , , , , , , , , , F ( ) ( ) ( ) ( ) − + , , , x y z t ¶ , , , I 2 ¶ + F k x y z T I x y z t I , , , , , , ¶ z , D x y z T z I I ¶ k (x y z T )I (x y z t ) I − , , , , , , (6) ( ) F ¶ , , , ¶ ¶ x y z t V ( ) ( ) F ( ) ( ) + + = F x y z t D x y z T x y z t F x y F y D x y z T t x V V V V ¶ ¶ ¶ ¶ ¶ ¶ ¶ , , , , , , , , , , , , F ( ) ( ) ( ) ( )− + , , , x y z t ¶ , , , V 2 ¶ + F k x y z T V x y z t V , , , , , , ¶ z , D x y z T z V V ¶ k (x y z T )V (x y z t ) V − , , , , , , with boundary and initial conditions ( ) x y z t r 0 , , , , 0 = ¶ ¶F x= x ( ) x y z t r , 0 , , , = ¶ ¶F x=Lx x ( ) x y z t r 0 , , , , 0 = ¶ ¶F y= y ( ) 0 , , , = ¶ ¶F y=Ly y ( ) x y z t r 0 , , , , 0 = ¶ ¶F z= z ( ) I Fx y z t r 0 , , , , = ¶ ¶F z=Lz z (x,y,z,0)=fFI (x,y,z), FV (x,y,z,0)=fFV (x,y,z). (7) Here DFI(x,y,z,T) and DFV(x,y,z,T) are the diffusion coefficients of simplest complexes of radia-tion defects; kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of simplest complexes of radi-ation defects. We described distribution of temperature by the second law of Fourier [23] ( ) ( ) ( ) ( ) ( ) ( ) + T x y z t ¶ ¶ ¶ ¶ + T x y z t ¶ ¶ ¶ ¶ = T x y z t ¶ ¶ y x y z T x y x y z T t x c T , , , , , , , , , , , , , , , l l ( ) T ( x y z t ) p(x y z t ) z x y z T ¶ z , , , , , , , , , + ¶ ¶ ¶ with boundary and initial conditions ( ) 0 , , , 0 = T x y z t ¶ ¶ x= x , ( ) 0 , , , = T x y z t ¶ ¶ x=Lx x , ( ) 0 , , , 0 = T x y z t ¶ ¶ y= y , (9) ( ) 0 , , , = T x y z t ¶ ¶ x=Ly y , ( ) 0 , , , 0 = T x y z t ¶ ¶ z= z , ( ) 0 , , , = T x y z t ¶ ¶ x=Lz z , T (x,y,z,0)=fT (x,y,z), where T(x,y,z,t) is the spatio-temporal distribution of temperature; c (T)=cass[1-h exp(-T(x,y,z,t)/ Td)] is the heat capacitance (in the most interesting case, when temperature of annealing is ap-proximately equal or larger, than Debay temperature Td, one can assume c (T)»cass [23]); l is the heat conduction coefficient, which depends on properties of materials and current temperature of annealing; temperature dependence of heat conduction coefficient in the most interesting tem-perature interval could be approximated by the following function l(x,y,z,T)=lass(x,y,z) [1+μ (Td/T(x,y,z,t))j] (see, for example, [23]); p(x,y,z,t) is the volumetric density of heat power, gener-
  • 5. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 ated in heterostructure during annealing; a (x,y,z,T)=l(x,y,z,T)/c (T) is the heat diffusivity. First of all we determine spatio-temporal distribution of temperature. To calculate the distribution of tem-perature we used recently introduced approach [24-26]. Framework the approach we transform approximation of heat diffusivity to the following form: a ass (x,y,z) =lass(x,y,z)/cas s=a0ass[1+eT gT(x,y,z)]. Farther we determine solution of Eq.(8) as the following power series i j T T x y z t e μ T x y z t . (10) 29 ¥ ( , , , )= ( , , , ) = ¥ 0 =0 i j ij Substitution of the series into Eq.(8) gives us possibility to obtain system of equations for the ini-tial- order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i³1, j³1). The equations are presented in the Appendix. Substitution of the series (9) into boundary and ini-tial conditions for temperature gives us possibility to obtain the same conditions for all functions Tij(x,y,z,t) (i³0, j³0). The conditions are presented in the Appendix. The equations for the func-tions Tij(x,y,z,t) (i³0, j³0) with account boundary and initial conditions have been solved by using standard approaches [27,28] for the second-order approximation of the temperature T (x,y,z,t) on the parameters e and μ. The solutions are presented in the Appendix. The second- order is usually enough good approximation to make qualitative analysis and to obtain some quantitative results (see, for example, [24-26]). Analytical results give us possibility to make more demonstrative analysis in comparison with numerical one. To calculate the obtained result with higher exactness and checking the obtain results by independent approaches we used numerical approaches. To calculate spatio-temporal distributions of concentrations of point of radiation defects we used recently introduced approach [24-26] and transform approximations of diffusion coefficients in the following form: Dr(x,y,z,T)=D0r[1+ergr(x,y,z,T)], where D0r are the average values of diffu-sion coefficients, 0£er 1, |gr(x,y,z,T)|£1, r =I,V. The same transformations have been used for approximations of parameters of recombination of point radiation defects and generation of their complexes: kI,V(x,y,z,T)=k0I,V [1+ eI,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I[1+ eI,I gI,I(x,y,z,T)] and kV,V(x,y,z,T) = k0V,V [1+eV,V gV,V(x,y,z,T)], where k0r1,r2 are the appropriate average values of these parameters, 0£ eI,V 1, 0£ eI,I 1, 0£eV,V 1, |gI,V(x,y,z,T)|£1, | gI,I(x,y,z,T)|£1, |gV,V(x,y,z,T)|£1. Let us introduce the following dimensionless variables: ( ) ( ) * , , , , , , ~ I x y z t = I x y z t I , c = x/Lx, h = y/Ly, f ~ V x y z t =V x y z t V , I V I V L k D D0 , 0 0 = z/Lz, ( ) ( ) * , , , , , , w = 2 , L 2 k D D0 , 0 I 0 V r r r W = , 2 0 0 D D t L I V J = . The introduction leads to the following transformation of equations (4) and conditions (5) ( ) [ ( )] ( ) I c h f J I D 0 + ×
  • 6. ¶ ¶ 0 , , , + ¶ ¶ c h f J I D = ¶ ¶ I V I I I I V D D g T D D 0 0 0 0 ~ 1 , , , , , , ~ c e c h f J c [ ( )] I ( ) D ¶ 0 I {[ + e ( c h f )] × × g T g T 1 , , , I I I I h ¶ f +
  • 7. ¶ ¶ + ¶ ¶ D D I V , , , ~ 1 , , , 0 0 c h f J e c h f h ( c h f J ) )− [ + ( )] ( ) ( − ¶ × w e c h f c h f J c h f J f ¶ , , , ~ , , , ~ 1 , , , , , , ~ , , g T I V I I V I V ~ [ 1 e (c , h , f , )] 2 (c ,h ,f ,J ) , , g T I I I I I I −W + (11) ( ) [ ( )] ( ) 0 V c h f J V D + ×
  • 8. 0 , , , ¶ ¶ + ¶ ¶ c h f J V D = ¶ ¶ I V V V V I V D D g T D D 0 0 0 0 ~ 1 , , , , , , ~ c e c h f J c
  • 9. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 r c h f J r f = . (12) i j k r c h f J e w r c h f J r r . (13) ~ 000 I and 30 [ ( )] V ( ) D ¶ 0 V {[ + e ( c h f )]× + g T g T 1 , , , V V V V h ¶ f +
  • 10. ¶ ¶ + ¶ ¶ D D I V , , , ~ 1 , , , 0 0 c h f J e c h f h ( c h f J ) )− [ + ( )] ( ) ( − ¶ × w e c h f c h f J c h f J f ¶ , , , ~ , , , ~ 1 , , , , , , ~ , , g T I V V I V I V ~ [ 1 e (c , h , f , )] 2 (c ,h,f ,J ) , , g T V I V V V V −W + ( ) 0 ~ , , , 0 = r c h f J ¶ ¶ c = c , ( ) 0 ~ , , , 1 = r c h f J ¶ ¶ c = c , ( ) 0 ~ , , , 0 = r c h f J ¶ ¶ h = h , ( ) 0 ~ , , , 1 = r c h f J ¶ ¶ h = h , ( ) 0 ~ , , , 0 = r c h f J ¶ ¶ f = f , ( ) 0 ~ , , , 1 = r c h f J ¶ ¶ f = f , ( ) ( c , h , f , J ) * ~ , , , r We determine solutions of Eqs.(11) as the following power series (see [24-26]) ¥ ~ , , , ~ , , , ( ) = W ( ) = ¥ = ¥ 0 0 =0 i j k ijk Substitution of the series (13) into Eqs. (11) and conditions (12) gives us possibility to obtain eq-uations for initial-order approximations of concentrations of point defects (c,h,f,J) ~ V (c,h,f,J) and corrections for them (c,h,f,J) 000 ~ ijk I and (c ,h,f,J) ~ ijk V , i ³1, j ³1, k ³1. The equa-tions and conditions for them are presented in the Appendix. The equations have been solved by standard approaches (see, for example Fourier approach, [27,28]). The equations are presented in the Appendix. Farther we determine spatio-temporal distributions of concentrations of complexes of radiation defects. First of all we transform approximations of diffusion coefficients into the following form: DFr(x,y,z,T)=D0Fr[1+eFrgFr(x,y,z,T)], where D0Fr are the average values of diffusion coefficients. In this situation Eqs.(6) will be transformed to the following form
  • 11. ( ) ¶ [ ( )] ( ) ¶ [ ( )] I 1 , , , + + ×
  • 12. F = + F x y z t F F F F F g x y z T x y g x y z T x D x y z t t I I I I I I , , , 1 , , , , , , 0 e ¶ ¶ ¶ e ¶ ¶ ¶ ( ) [ ( )] ( ) +
  • 13. ¶ , , , F ¶ x y z t I + + F × F F F F x y z t z g x y z T z D D y I I I I I ¶ ¶ e ¶ ¶ 1 , , , , , , 0 0 [ g (x y z T )] k (x y z T ) I (x y z t ) k (x y z T )I (x y z t ) I I I I I 1 , , , , , , , , , , , , , , , 2 , + − × + F F e ( )
  • 14. [ )] ( ) ( ¶ [ ( )] ¶ V 1 , , , + + ×
  • 15. F = + F x y z t F F F F F g x y z T x y g x y z T x D x y z t t V V V V V V , , , 1 , , , , , , 0 e ¶ ¶ ¶ e ¶ ¶ ¶ ( ) [ ( )] ( ) +
  • 16. F ¶ , , , ¶ x y z t V + + F x y z t × D D g x y z T y F V F V z F V F V z V ¶ ¶ e ¶ ¶ 1 , , , , , , 0 0 [ g (x y z T )] k (x y z T ) V (x y z t ) k (x y z T )V (x y z t ) V V V V V 1 , , , , , , , , , , , , , , , 2 , + − × + F F e .
  • 17. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 i x y z t x y z t r r r e . (11) 31 Farther we determine solutions of the above equations as the following power series ¥ F ( , , , ) = F ( , , , ) = F 0 i i Substitution of the series (14) into Eqs. (6) and appropriate boundary and initial conditions gives us possibility to obtain equations for initial-order approximations of concentrations of complexes of radiation defects Fr0(x,y,z,t) and corrections for them Fri(x,y,z,t) (i ³1) and appropriate condi-tions for all functions Fri(x,y,z,t) (i ³0). The equations and conditions are presented in the Appen-dix. The obtained equations have been solved by standard approaches (see, for example, [27,28]) with account boundary and initial conditions. The solutions are presented in the Appendix. We calculate spatio-temporal distribution of dopant concentration by using the same approach, which have been used for calculation spatio-temporal distribution of concentrations of radiation defects. In this situation we transform approximation of dopant diffusion coefficient to the fol-lowing form: DL(x,y,z,T)=D0L[1+eLgL(x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0£eL 1, |gL(x,y,z,T)|£1. Farther we determine solution of Eq.(1) in the following form ¥ ( ) = ( ) C x , y , z , t e i x j C x , y , z , t . L = ¥ 0 =1 i j ij Substitution of the series into Eq.(1) and conditions (2) gives us possibility to obtain equation for initial-order approximation of the concentration of dopant C00(x,y,z,t) and corrections for them Cij(x,y,z,t) (i ³1, j ³1) and boundary and initial conditions for them. The equations and conditions are presented in the Appendix. The solutions have been calculated by standard approaches (see, for example, [27,28]). The solutions are presented in the Appendix. Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects have been done analytically by using the second-order approximations on all parameters, which are used in appropriate series. The approximation is usually enough good approximation to make qu-alitative analysis and to obtain some quantitative results. Results of analytical calculations have been checked with comparison with numerical one. 3.Discussion In this section we analyzed redistribution of dopant and radiation defects by using relations, cal-culated in the previous section. Typical distributions of concentrations of dopant near interface between materials of hetero structure are presented on Figs. 2 and 3 for diffusion and ion types of doping, respectively. The distributions have been calculated for the case, when value of dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest areas. The figures show, that presents of interface between materials gives us possibility to in-crease sharpness of p-n-junctions, which included into the considered heterobipolar transistor. At the same time homogeneity of distribution of concentration of dopant increases. Increasing of sharpness of p-n-junctions gives us possibility to decrease their switching time. Increasing of ho-mogeneity of distribution of concentration of dopant gives us possibility to decrease value of lo-cal overheats during functioning of the p-n-junctions or to decrease dimensions of p-n-junctions with fixed maximal value of the overheats. To accelerate transport of charge carriers it is attracted an interest inhomogenous distribution of dopant in base. In this case it is electrical field has been generated in the base. This electrical field gives us possibility to accelerate transport of charge carriers in base of transistors. To manufacture in homogenous distribution of dopant in base it is practicably to dope required area (section) of the first (nearest to the substrate) epitaxial layer. After that it is practicably to anneal dopant and/or radiation defects. Farther they are attracted an
  • 18. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 interest the following steps: (i) manufacturing of the second epitaxial layer with section, manufac-tured by using another materials; (ii) doping the section of the second epitaxial layer by diffusion or ion implantation; (iii) manufacturing of the third epitaxial layer with section, manufactured by using another materials; (iv) doping the section of the third epitaxial layer by diffusion or ion im-plantation. After that we consider microwave annealing of dopant and/or radiation defects. Ad-vantage of the approach of annealing is formation of inhomogenous distribution of temperature. In this situation it is practicably to choose parameters of annealing so, that thickness of scin-layer became larger, than thickness of the third (external) epitaxial layer and smaller, than total of thickness of the third and the second epitaxial layers. In this case dopant diffusion in nearest to the substrate side became slower, than in farther side. This is a reason to inhomogeneity of distri-bution of concentration of dopant in depth of hetero structure. After finishing of manufacturing of bipolar transistor the section of the average epitaxial layer with inhomogenous distribution of concentration of dopant assumes function of base. Fig. 2. Distributions of concentrations of infused dopant in hetero structure from Fig. 1 in direc-tion, which is perpendicular to interface between layers of heterostructure. Increasing of number of curves corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure. The curves have been calculated under condition, when dopant diffu-sion 32 coefficient in doped layer is larger, than in nearest layer. Epitaxial layer Substrate x 2.0 1.5 1.0 0.5 0.0 C(x,Q) 2 3 4 1 0 L/4 L/2 3L/4 L
  • 19. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 Fig. 3. Spatial distributions of implanted dopant concentration after annealing with continuous Q = 0.0048(Lx 33 2+Ly 2+Lz 2)/D0 (curves 1 and 3) and Q = 0.0057(Lx 2+Ly 2+Lz 2)/ D0 (curves 2 and 4). Curves 1 and 2 are calculated distributions of dopant concentration in homogenous structure. Curves 3 and 4 are calculated distributions of dopant concentration in hetero structure under con-dition, when dopant diffusion coefficient in doped layer is larger, than in nearest layer. Using of the considered approach to manufacture of transistors leads to necessity of optimization of annealing time. To optimize the annealing time we used recently introduced criterion [24,26,29-33]. Framework the approach we approximate real distributions of concentration of dopant by step-wise function. Farther we determine the required optimal values of annealing time by minimization of the following mean- squared error Lx y z L L = [ ( Q)− ( )] x y z C x y z x y z d z d y d x L L L U 0 0 0 , , , , , 1 y , (15) where y (x) is the approximation function, Q is the required value of annealing time. 0.0 0.1 0.2 0.3 0.4 0.5 a/L, x, e, g 0.5 0.4 0.3 0.2 0.1 0.0 Q D0 L-2 3 2 4 1 Fig.4. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the de-pendence of dimensionless optimal annealing time on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of hetero structure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L=1/2 and x = g = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L=1/2 and e = g = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter g for a/L=1/2 and e = x = 0
  • 20. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 34 0.0 0.1 0.2 0.3 0.4 0.5 a/L, x, e, g 0.12 0.08 0.04 0.00 Q D0 L-2 3 2 4 1 Fig.5. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and x = g = 0 for equal to each other values of dopant diffusion coefficient in all parts of hetero structure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter e for a/L=1/2 and x = g = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter x for a/L=1/2 and e = g = 0. Curve 4 is the dependence of dimensionless optimal an-nealing time on value of parameter g for a/L=1/2 and e = x = 0 Dependences of optimal values of annealing time are presented in Fig. 4 for diffusion type of doping. Using ion implantation leads to necessity of annealing of radiation defects. In the ideal case after finishing of annealing of radiation defects dopant achieves interface between materials of hetero structure. If the dopant did not achieves the interface during the annealing, it is practica-bly to use additional annealing of dopant. Dependences of optimal values of additional annealing time are presented in Fig. 5. Optimal value of time of additional annealing of implanted dopant is smaller, than in optimal value of infused dopant. Reason of this difference is necessity of anneal-ing of radiation defects. 4. CONCLUSIONS In this paper we introduce an approach to manufacture a heterobipolar transistor with inhomo-genous doping of base. At the same time the introduced approach to manufacture of bipolar tran-sistors gives us possibility to increase their compactness and to increase sharpness of p-n-junctions, which included into the transistor. The approach based on manufacturing of a hetero-structure with special construction, doping of special areas of the hetero structure and optimiza-tion of annealing of dopant and/or radiation defects. ACKNOWLEDGEMENTS This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, grant of Scientific School of Russia, the agreement of August 27, 2013 02..49.21.0003 be-tween The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Nov-gorod State University of Architecture and Civil Engineering.
  • 21. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 35 APPENDIX Equations for the functions Tij(x,y,z,t) (i³0, j³0) have been obtained by substitution the power se-ries (10) in the equation (8) and equating terms with equal powers of parameters eT and μ. The equations could be written as ( , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , ) ass 00 ass + p x y z t T x y z t z T x y z t y T x y z t x T x y z t t n a 2 00 2 2 00 2 2 00 2 0 ¶ ¶ + ¶ ¶ + ¶ ¶ = ¶ ¶ ( ) ( ) ( ) ( ) a a × + 0 , , , , , , , , , , , , T x y z t ¶ ¶ + T x y z t ¶ ¶ + T x y z t ¶ ¶ = T x y z t ¶ ¶ ass i i i ass i z y x t 2 0 0 2 2 0 2 2 0 2 0 ( ) ( ) ( ) ( )
  • 22. + 2 , , , T x y z t ¶ ¶ g x y z T i + T x y z t ¶ ¶ × − − 2 10 2 2 10 , , , , , , , , , y g x y z T x T i T ( ) ( ) T x y z t + − ¶ ¶ ¶ ¶ z g x y z T z i T , , , , , , 10 , i ³1 ( , , , ) ( , , , ) ( , , , ) ( , , , ) j a T x y z t T ass d + × ( ) T x y z t ¶ ¶ + T x y z t ¶ ¶ + T x y z t ¶ ¶ = ¶ ¶ T x y z t z y x t ass , , , 00 0 2 01 2 2 01 2 2 01 2 0 01 j a ( ) ( ) ( ) j ja 2 , , , T x y z t T ass d ( ) ( )
  • 23. + T x y z t ¶ ¶ − T x y z t ¶ ¶ + T x y z t ¶ ¶ + ¶ ¶ × + 2 00 1 00 0 2 00 2 2 00 2 2 00 , , , , , , , , , , , , x T x y z t z y x j ( ) ( ) T x y z t ¶ ¶ + T x y z t ¶ ¶ + 2 00 2 00 , , , , , , z y ( , , , ) ( , , , ) ( , , , ) ( , , , ) j a T x y z t T ass d + × ( ) T x y z t ¶ ¶ + T x y z t ¶ ¶ + T x y z t ¶ ¶ = ¶ ¶ T x y z t z y x t ass , , , 00 0 2 02 2 2 02 2 2 02 2 0 02 j a ( ) ( ) ( ) j ja T x y z t ass d , , , , , , , , , , , , , , , T 00 01 ( ) ( ) ( ) + T x y z t ¶ ¶ T x y z t ¶ ¶ − T x y z t ¶ ¶ + T x y z t ¶ ¶ + ¶ ¶ × x y z T + x y z t x x , , , 1 00 0 2 01 2 2 01 2 2 01 2 j ( ) ( ) ( ) ( ) T x, y, z, t , , , , , , , , , 00 01 00 01 T x y z t ¶ ¶ T x y z t ¶ ¶ + T x y z t ¶ ¶ ¶ ¶ + z z y y ( ) ( ) ( ) , , , , , , T x , y , z , t , , , , , , 11 ( ) ( ) ( ) ( )
  • 24. × T x y z t ¶ ¶ + T x y z t ¶ ¶ + T x y z t ¶ ¶ = T x y z t ¶ ¶ 2 00 2 2 00 2 01 00 2 0 11 2 0 , , , , , , y x g x y z T T x y z t x t ass ass T a a ¶ ( ) ( ) ( ) ( ) ( )
  • 25. + 00 a g x y z T T T ass T T x y z t ¶ ¶ ¶ ¶ + T x y z t ¶ ¶ ¶ × + x g x y z T z x g x y z T z , , , , , , , , , , , , , , , 01 0 ( ) [ ( )] ( ) [ ( )] ( ) + 2 , , , ¶ + 2 T x y z t ¶ ¶ + + T x y z t ¶ ¶ + + T x y z t ¶ 01 2 2 01 2 2 01 1 , , , , , , 1 , , , , , , z g x y z T y g x y z T x T T ( ) ( ) ( , , , ) T ( x , y , z , t ) , , , 10 10 10 Tass d , , , ( ) ( ) ( ) T x y z t + × T x y z t T x y z t T x y z t ( ) 0 j j j ¶ ¶ + ¶ ¶ + T + x y z t x T + x y z t y T + x y z t , , , , , , , , , , , , 1 00 2 00 2 1 00 2 00 2 1 00 j a
  • 26. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 36 ( ) j a 2 , , , , , , , , , ¶ T x y z t T × ass d 2 ( ) ( ) ( ) ( ) + T x y z t ¶ ¶ + T x y z t ¶ ¶ + T x y z t ¶ ¶ + ¶ 10 2 2 10 2 2 10 2 00 0 2 00 , , , , , , z y x T x y z t z j ( ) ( ) ( ) ( ) ( )
  • 27. × + g x y z T T T T , , , T x y z t ¶ ¶ ¶ ¶ + T x y z t ¶ ¶ + g x y z T z g x y z T x z , , , , , , , , , , , , 00 2 10 2 j a Tass d , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) × T x y z t ¶ ¶ + T x y z t ¶ ¶ T x y z t ¶ ¶ − T x y z t ¶ ¶ × y x x y T x y z t 10 00 10 2 10 2 00 0 j ( ) ( ) ( ) ¶ T x y z t T × 00 10 00 0 T + T + x y z t ( ) ( ) ( ) , , , × − T x y z t ¶ ¶ T x y z t ¶ ¶ + ¶ g x y z T T T x y z t z z y ass d ass d , , , , , , , , , , , , , , , 1 00 1 0 00 j j j j a j ja ( ) ( ) ( )
  • 28. T x y z t ¶ ¶ + T x y z t ¶ ¶ + T x y z t ¶ ¶ × 2 00 2 00 2 00 , , , , , , , , , z y x . Conditions for the functions Tij(x,y,z,t) (i³0, j³0) have been obtained by the same procedure as appropriate equations and could be written as ( ) 0 , , , 0 = T x y z t ¶ ¶ x= ij x , ( ) 0 , , , = T x y z t ¶ ¶ x=Lx ij x , ( ) 0 , , , 0 = T x y z t ¶ ¶ y= ij y , ( ) 0 , , , = T x y z t ¶ ¶ x=Ly ij y , ( ) 0 , , , 0 = T x y z t ¶ ¶ z= ij z , ( ) 0 , , , = T x y z t ¶ ¶ x=Lz ij z , T00(x,y,z,0)=fT(x,y,z), Tij(x,y,z,0)=0, i ³1, j ³1. Solutions of the equations for the functions Tij(x,y,z,t) (i³0, j³0) with account boundary and initial conditions have been obtained by standard Fourier approach. By using the approach one can ob-tain the functions Tij(x,y,z,t) in the following form ¥ ( ) = ( ) + ( ) ( ) ( ) ( ) ( ) × 0 0 0 =1 0 00 2 , , 1 , , , n L n n n nT n x y z L L L T x y z x y z x c x c y c z e t c u L L L f u v w d wd v d u L L L T x y z t ( ) ( ) ( ) ( ) y z 1 x y z p u , v , w , 2 × + + × x y z t L L L x y z ass L L d wd v d u d , , n n T L L L L L L c v c w f u v w d wd v d u 0 0 0 0 0 0 t n t ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ¥ x y z × − =1 0 0 0 0 , , , n t L L L ass n n n nT nT n n n d wd v d u d p u v w c x c y c z e t e c u c v c w t n t t , where cn(c) = cos (p nc/L), ( ) e t p n a t ; 2 2 1 1 1 = − + + 0 2 2 2 nT ass L L L exp x y z ¥ p a ( ) = ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) ( )× T x y z t t =1 0 0 0 0 2 0 ass 0 , , , 2 , , , n t L L L n n n nT nT n n n T x y z i x y z n c x c y c z e t e s u c v c w g u v w T L L L ( ) + ( ) ( ) ( ) ( ) (− ) ( ) ( )× T u v w 10 0 2 i ass ¶ ¶ × ¥ = − 1 0 0 0 2 , , , n t L L n n n nT nT n n x y z x y n c x c y c z e t e c u s v L L L d wd v d u d u t p a t t
  • 29. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 37 z p a ( ) ( ) ( , , , ) T u v w + ( ) ( ) ( )× ¶ ¶ × ¥ = − 1 ass 2 0 0 10 2 , , , n n n n x y z L i n T n c x c y c z L L L d wd v d u d v c w g u v w T t t t L L L x y z ( ) ( ) ( ) ( ) ( ) ( ) ( ) t , i ³1, T u v w ¶ ¶ × − i − nT nT n n n T d wd v d u d w e t e c u c v s w g u v w T 0 0 0 0 t 10 , , , , , , t where sn(c) = sin (p n c/L); ¥ p 2 T ( ) = ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( )× T x y z t t =1 0 0 0 0 , , , 01 0 2 n t L L L n n n nT nT n n n d x y z ass x y z nc x c y c z e t e s u c v c w L L L a j ( ) t t j 2 2 d wd v d u d ( ) T + ( ) ( ) ( ) ( ) (− ) ( )× T u v w ¶ ¶ × ¥ =1 0 0 0 2 00 2 00 , , , , , , n t L n n n nT nT n d x y z ass x c x c y c z e t e c u L L L T u v w u t p a t j ( ) ( ) ( ) 2 2 T t d wd v d u d t T u v w y z + ( ) ( ) ( ) ( )× ( ) ¶ ¶ × ¥ =1 d 0 2 2 00 0 0 00 , , , , , , n n n n nT x y z ass L L n n c x c y c z e t L L L T u v w v n s v c w j j p a t 2 ( ) ( ) ( ) ( ) ( ) x y z ja t d wd v d u d t T u v w t − j ( )× ( ) ¶ ¶ × − ¥ =1 0 2 00 0 0 0 0 00 2 , , , , , , n n ass x y z d t L L L nT n n n c x L L L T T u v w u n e c u c v s w t j t L L L ( ) ( ) ( ) ( ) x ( ) y ( ) z ( ) ( ) t d wd v d u d t T u v w − ( ) ¶ ¶ × − n n nT nT n n n + T u v w u c y c z e t e c u c v c w 0 0 0 0 1 00 2 00 , , , , , , t t j ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ¥ T u v w × ¶ ¶ ass − − =1 0 0 0 0 2 0 00 , , , 2 n t L L L n n n nT nT n n n x y z x y z v c x c y c z e t e c u c v c w L L L t t ja d wd v d u d t j × T − ( ) ( ) ( ) ( ) (− t ) ( ) ( )× ( ) ¥ = + 1 0 0 0 0 1 00 2 ass , , , n t L L n n n nT nT n n x y z d d x y c x c y c z e t e c u c v L L L T T u v w ja t j j ( ) ( ) t d wd v d u d t j ; ( ) Lz T u v w ¶ ¶ × + n w T u v w c w 0 1 00 2 00 , , , , , , t ¥ p 2 T ( ) = ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( )× T x y z t t =1 0 0 0 0 , , , 02 0 2 n t L L L n n n nT nT n n n d x y z ass x y z nc x c y c z e t e s u c v c w L L L a j ( ) t t j 2 2 d wd vd u d ( ) T + ( ) ( ) ( ) ( ) (− ) ( )× T u v w ¶ ¶ × ¥ =1 0 0 0 2 00 2 01 , , , , , , n t L n n n nT nT n d x y z ass x nc x c y c z e t e c u L L L T u v w u t p a t j ( ) ( ) ( ) 2 2 T t d wd v d u d t T u v w y z + ( ) ( ) ( ) ( )× ( ) ¶ ¶ × ¥ =1 d 0 2 2 01 0 0 00 , , , , , , n n n n nT x y z ass L L n n nc x c y c z e t L L L T u v w v s v c w j j p a t 2 ( ) ( ) ( ) ( ) ( ) x y z p a t d wd v d u d t T u v w t − j ( ) × ( ) ¶ ¶ × − ¥ =1 2 0 2 01 0 0 0 0 00 2 , , , , , , n n ass x y z d t L L L nT n n n c x L L L T T u v w w e c u c v s w t j t L L L ( ) ( ) x ( ) y ( ) z ( ) ( ) ( ) t T u v w t d wd v d u d t T u v w × ( ) ¶ ¶ ¶ ¶ × − n nT n n n + T u v w u u c y e c u c v c w 0 0 0 0 1 00 00 01 , , , , , , , , , t t j ¥ p a j × c ( z ) e ( t )− T ( ) ( ) ( ) ( ) (− t ) ( ) ( ) ( )× =1 0 0 0 0 0 2 2 n t L L L n n n nT nT n n n ass x y z n nT d x y z c x c y c z e t e c u c v c w L L L
  • 30. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 38 ( ) ( ) T u v w p a t T u v w t t 00 01 2 ( ) − ( ) ( ) ( ) ( )× ¶ ¶ ¶ ¶ × ¥ ass c x c y c z e t = + 1 2 0 1 T u v w L L L 00 , , , , , , , , , n n n n nT x y z d wd v d u d v v t j ( ) ( ) ( ) ( ) ( ) ( ) t t d wd v d u d t j ; ( ) t L L L x y z T u v w ¶ ¶ T u v w ¶ ¶ × − d nT n n n + T u v w w w T e c u c v c w 0 0 0 0 1 00 00 01 , , , , , , , , , t t j ¥ a 2 ( ) = ( ) ( ) ( ) ( ) (− ) ( ) ( ) { ( ) × T x y z t t =1 0 0 0 0 0 ass , , , , , , 11 n t L L L n n n nT nT n n T x y z x y z c x c y c z e t e c u c v g u v w T L L L ( ) ( ) ( ) ( ) ( ) ( )× ¶ × c w t , , ,t , , ,t , , , 00 T u v w ¶ ¶ ¶ ¶ + T u v w ¶ ¶ + T u v w ¶ w g w v w , , , g u v w T w T T n 2 00 2 2 00 2 ( ) ( ) ¥ t , , , 2 01 T u v w × + ( ) ( ) ( ) ( ) (− ) ( ) ( )× =1 0 0 0 0 00 , , , n t L L n n n nT nT n n ass x y z x y c x c y c z e t e c u c v L L L d wd vd u d T u v w t a t t ( ) [ ( )] ( ) [ ( )] ( )
  • 31. + 2 , , , , , ,t t T u v w t ¶ ¶ + + T u v w ¶ ¶ + + T u v w ¶ ¶ × Lz g u v w T T u T v g u v w T u 0 2 01 2 2 01 2 2 01 1 , , , , , , 1 , , , ( ) T ( u v w ) ( ) T + ( ) ( ) ( ) × T n c x c y c z , , , ¶ ¶ ¶ ¶ + ¥ =1 01 0 2 , , , n n n n ass d L L L x y z c w d wd v d u d w g u v w T w j a t t ( ) ( ) ( ) ( ) ( ) T ( u , v , w , t ) t j j ( ) ( ) ( ) t L L L x y z t t , , , T u , v , w , T u v w 10 10 + × ¶ ( ) ¶ × − nT nT n n n + + T u v w u T u v w e t e c u c v c w 0 0 0 0 1 00 2 00 2 1 00 , , , , , , t t ( , , , t ) T ( u , v , w , t ) ( ) ( ) + ( ) ( ) ( )× T u v w ¶ ¶ + T u v w ¶ ¶ × ¥ n n n d wd v d u d c x c y c z = 10 + 1 2 00 2 1 00 2 00 2 2 , , , , , , n w T u v w v t t t j ( ) ( ) ( ) ( ) ( ) ( ) ( ) t L L L x y z 2 T u , v , w ,t T u , v , w ,t T u , v , w ,t × ¶ ¶ + ¶ ¶ + ¶ ¶ × − nT n n n w v u e c u c v c w 0 0 0 0 2 10 2 2 10 2 2 10 t a T d wd v d u d t T j × e ( t ) 0 + 2 ( ) ( ) ( ) ( ) (− t ) ( ) ( )× ( ) ¥ =1 0 0 0 0 00 ass d , , , n t L L n n n nT nT n n x y z ass d x y z nT x y c x c y c z e t e c u c v L L L T u v w L L L a t j j
  • 32. ( ) ( ) ( ) ( ) ( ) ( ) × + T u v w ¶ ¶ ¶ ¶ + T u v w ¶ ¶ × Lz n T T T g u v w T w g u v w T u w c w g u v w T 0 00 2 00 2 , , , , , , , , , , , , , , , t t ( ) t d wd v d u d t j ( ) T − ( ) ( ) ( ) ( ) (− ) ( )× T u v w ¶ ¶ × ¥ =1 0 0 0 00 2 00 2 2 , , , , , , n t L n n n nT nT n ass d x y z x c x c y c z e t e c u L L L T u v w v t a j t j ( ) ( ) ( ) ( ) ( ) ( ) L L × T u v w ¶ ¶ + T u v w ¶ ¶ T u v w ¶ ¶ + T u v w ¶ ¶ T u v w ¶ ¶ × y z n u u v v w c v 0 0 10 00 10 00 10 , , ,t , , ,t , , ,t , , ,t , , ,t ( ) ( ) ( ) ( ) ( ) ( ) ( )× − − t t j ( ) d wd v d u d T u v w 00 2 ( ) ¶ ¶ × ¥ = + 1 0 0 0 1 00 , , , , , , n t L n n n nT nT n T ass d x y z n x c x c y c z e t e c u L L L T u v w c w w t a j t j ( ) ( ) ( ) ( ) ( )
  • 33. L L y z t T u v w t T u v w t d wd v d u d t T u v w ( ) ¶ ¶ + ¶ ¶ + ¶ ¶ × + n n u v w T u v w c v c w 0 0 1 00 2 00 2 00 2 00 , , , , , , , , , , , , t j .
  • 34. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 39 ~ ijk I and (c ,h,f ,J ) Equations for the functions (c ,h,f ,J ) ~ ijk V , i ³0, j ³0, k ³0 and conditions for them have been obtain by the same procedure as for the functions Tij(x,y,z,t) ( ) ( ) ( ) ( c h f J ) ¶ c h f J c h f J c h f J I 000 0 , , , 2 000 2 0 I D 0 2 000 2 0 I D 0 2 000 2 I D 0 ~ , , , ~ , , , ~ , , , ~ f h c J ¶ ¶ + ¶ ¶ + ¶ ¶ = ¶ D D D I V I V I V ( ) ( ) ( ) ( c h f J ) ¶ c h f J c h f J c h f J V 000 0 , , , V ; 2 000 2 0 V 0 V D 2 000 2 0 V 0 V D 2 000 2 0 ~ , , , ~ , , , ~ , , , ~ f h c V D J ¶ ¶ + ¶ ¶ + ¶ ¶ = ¶ D D D I I I ( ) ( ) ( ) ( ) + c h f J c J c h f J c h f J i i i 00 0 , , , I D i I I I I ¶ ¶ + ¶ ¶ + ¶ ¶ = ¶ ¶ 2 00 2 2 00 2 2 00 2 0 ~ , , , ~ , , , ~ , ~ f h c J V D I I ( ) ( ) ( ) ( ) + c h f J I D D + 0 − i − c h f J ¶ ¶ ¶ ¶ 100 0 i I + ¶ ¶ ¶ ¶ h c h f c h c h f c , , , ~ , , , , , , ~ , , , 100 0 0 I V I V g T D g T D I I ( ) ( ) D + 0 i − c h f J ¶ ¶ ¶ ¶ f c h f f , , , ~ , , , 100 0 I V g T D , i ³1, ( ) ( ) ( ) ( ) + c h f J c J c h f J c h f J i i i 00 0 , , , V D i V V V V ¶ ¶ + ¶ ¶ + ¶ ¶ = ¶ ¶ 2 00 2 2 00 2 2 00 2 0 ~ , , , ~ , , , ~ , ~ f h c J I D V V ( ) ( ) ( ) ( ) + c h f J V D D + 0 − i − c h f J ¶ ¶ ¶ ¶ 100 0 i V + ¶ ¶ ¶ ¶ h c h f c h c h f c , , , ~ , , , , , , ~ , , , 100 0 0 V I V I g T D g T D ( ) ( ) V V D + 0 i − c h f J ¶ ¶ ¶ ¶ f c h f f , , , ~ , , , 100 0 V I g T D , i ³1; ( ) ( ) ( ) ( ) − c h f J c h f J I c h f J I c h f J I 010 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ I D = ¶ ¶ 2 010 2 2 010 2 2 010 2 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I V ~ [ e (c h f )] (c , h , f , J ) (c ,h,f ,J ) ~ 1 , , , , , 000 000 g T I V I V I V − + ( ) ( ) ( ) ( ) − c h f J c h f J V c h f J V c h f J V 010 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ V D = ¶ ¶ 2 010 2 2 010 2 2 010 2 V 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I ~ [ e (c h f )] (c , h , f , J ) (c ,h,f ,J ) ~ 1 , , , , , 000 000 g T I V I V I V − + ; ( ) ( ) ( ) ( ) − c h f J c h f J I c h f J I c h f J I 020 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ I D = ¶ ¶ 2 020 2 2 020 2 2 020 2 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I V [ ()] [ ~ ~ ~ ~ e c h f (c , h , f , J ) (c , h , f , J ) (c , h , f , J ) (c ,h,f ,J )] 1 , , , , , 010 000 000 010 g T I V I V I V I V − + + ( ) ( ) ( ) ( ) − c h f J c h f J V c h f J V c h f J V 020 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ V D = ¶ ¶ 2 020 2 2 020 2 2 020 2 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I V [ ()][ ~ ~ ~ ~ e c h f (c , h , f , J ) (c , h , f , J ) (c , h , f , J ) (c ,h,f ,J )] 1 , , , , , 010 000 000 010 g T I V I V I V I V − + + ;
  • 35. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 40 ( ) ( ) ( ) ( ) − c h f J c h f J I c h f J I c h f J I 001 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ I D = ¶ ¶ 2 001 2 2 001 2 2 001 2 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I V ~ [ 1 e (c , h , f , )] 2 (c ,h,f ,J ) , , 000 g T I I I I I − + ( ) ( ) ( ) ( ) − c h f J c h f J V c h f J V c h f J V 001 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ V D = ¶ ¶ 2 001 2 2 001 2 2 001 2 V 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I ~ [ 1 e (c , h , f , )] 2 (c ,h,f ,J ) , , 000 g T V I I I I − + ; ( ) ( ) ( ) ( ) + c h f J c h f J I c h f J I c h f J I 110 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ I D = ¶ ¶ 2 110 2 2 110 2 2 110 2 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I V ( ) ( ) ( ) ( )
  • 36. + D 0 I c h f J ¶ ¶ ¶ ¶ + c h f J ¶ ¶ ¶ ¶ + h c h f c h c h f c , , , ~ , , , , , , ~ , , , 010 010 0 g T I g T D I I I V ( ) ( ) − [ + ( )][ ( ) ( ) + c h f J 010 g T I V I + e c h f c h f J c h f J ¶ ¶ ¶ ¶ f c h f f , , , ~ , , , ~ 1 , , , , , , ~ , , , , , 100 000 g T I I I I I (c h f J ) (c ,h ,f ,J )] ~ ~ + I , , , V 000 100 ( ) ( ) ( ) ( ) + c h f J c h f J V c h f J V c h f J V 110 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ V D = ¶ ¶ 2 110 2 2 110 2 2 110 2 V 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I ( ) ( ) ( ) ( )
  • 37. + 0 V c h f J ¶ ¶ ¶ ¶ + c h f J ¶ ¶ ¶ ¶ + h c h f c h c h f c , , , ~ , , , , , , ~ , , , 010 010 V 0 g T V g T D D V V I ( ) V ( c h f J ) 010 − [ + g ( T )][ V ( ) × + e c h f c h f J ¶ ¶ ¶ ¶ f c h f f , , , ~ 1 , , , , , , ~ , , , , , 100 g T V V V V V (c h f J ) (c h f J ) (c ,h,f ,J )] ~ ~ ~ × I , , , +V , , , I ; 000 000 100 ( ) ( ) ( ) ( ) − c h f J c h f J I c h f J I c h f J I 002 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ I D = ¶ ¶ 2 002 2 2 002 2 2 002 2 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I V ~ [ e (c h f )] (c , h , f , J ) (c ,h,f ,J ) ~ 1 , , , , , 001 000 g T I I I I I I − + ( ) ( ) ( ) ( ) − c h f J c h f J V c h f J V c h f J V 002 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ V D = ¶ ¶ 2 002 2 2 002 2 2 002 2 V 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I ~ [ e (c h f )] (c , h , f , J ) (c ,h,f ,J ) ~ 1 , , , , , 001 000 g V V V V V V − + ; ( ) ( ) ( ) ( ) + c h f J c h f J I c h f J I c h f J I 101 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ I D = ¶ ¶ 2 101 2 2 101 2 2 101 2 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I V ( ) ( ) ( ) ( )
  • 38. + D 0 I c h f J ¶ ¶ ¶ ¶ + c h f J ¶ ¶ ¶ ¶ + h c h f c h c h f c , , , ~ , , , , , , ~ , , , 001 001 0 g T I g T D I I I V
  • 39. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 J f h c rijk , 41 ( ) ( c h f J ) [ e (c h f )] (c h f J ) (c h f J ) 001 g T I V g T I I I − + f c h f ¶ f , , , ~ , , , ~ 1 , , , , , , ~ I , , , 100 000 ¶ ¶ ¶ + ( ) ( ) ( ) ( ) + c h f J c h f J V c h f J V c h f J V 101 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ V D = ¶ ¶ 2 101 2 2 101 2 2 101 2 V 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I ( ) ( ) ( ) ( )
  • 40. + 0 V c h f J ¶ ¶ ¶ ¶ + c h f J ¶ ¶ ¶ ¶ + h c h f c h c h f c , , , ~ , , , , , , ~ , , , 001 001 V 0 g T V g T D D V V I ( ) ( ) [ e (c h f )] (c h f J ) (c h f J ) c h f J V 001 g T I V + ; g T V V V − + f c h f ¶ f , , , ~ , , , ~ 1 , , , , , , ~ , , , 000 100 ¶ ¶ ¶ ( ) ( ) ( ) ( ) − c h f J c h f J I c h f J I c h f J I 011 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ I D = ¶ ¶ 2 011 2 2 011 2 2 011 2 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I V ~ −[ + g ( T )] I ( , , , )I ( , , , )− [ 1 + g ( , , , T )] × I I I I I V I V ~ 1 , , , , , 000 010 , , e c h f c h f J c h f J e c h f ~ ~ × I V 001 000 (c , h , f , J ) (c ,h,f ,J ) ( ) ( ) ( ) ( ) − c h f J c h f J V c h f J V c h f J V 011 0 , , , ¶ ¶ + ¶ ¶ + ¶ ¶ V D = ¶ ¶ 2 011 2 2 011 2 2 011 2 V 0 ~ , , , ~ , , , ~ , , , ~ f h c J D I ~ −[ + g ( T )]V ( , , , )V ( , , , )− [ 1 + g ( , , , t )]× V V V V I V I V ~ 1 , , , , , 000 010 , , e c h f c h f J c h f J e c h f ~ ~ × I (c , h , f , J ) V (c ,h,f ,J ) ; 000 001 ( ) 0 ~ , , , 0 = r c h f J ¶ ¶ x= ijk c , ( ) 0 ~ , , , 1 = r c h f J ¶ ¶ x= ijk c , ( ) i c h f J jk 0 , r~ , , , 0 = ¶ ¶ h = h ( ) 0 ~ , , , 1 = ¶ ¶ h= h ( ) J f h c ri jk , 0 ~ , , , 0 = ¶ ¶ f = f ( ) J f h c ri jk (i ³0, j ³0, k ³0); 0 ~ , , , 1 = ¶ ¶ f = f i r~ ( c ,h,f ,0 ) = f ( c ,h,f ) r * , ~ ( c , h , f , 0 ) = 0 000 r rjk (i ³1, j ³1, k ³1). Solutions of the above equations have been obtained by standard Fourier approach and could be written as ¥ ( ) = + ( ) ( ) ( ) ( ) r c h f J c h f J r r , =1 000 1 2 ~ , , , n n n F c c c e L L 1 where = ( ) ( ) ( ) ( ) * cos cos cos , , 0 1 0 1 0 1 F nu nv nw f u v w d wd vd u nr nr p p p r , cn(c) = cos (p n c), ( ) ( ) nI V I e n D D0 0 2 2 J = exp −p J , ( ) ( ) nV I V e n D D0 0 2 2 J = exp −p J ; ¥ D ( ) = − I ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × 00 , , , 2 , , , i nc c c e e s u c v g u v w T =1 0 1 0 1 0 1 0 0 0 ~ n n nI nI n n I V D I J c h f J p c h f J t ( ) I ( u v w ) D i 100 − 2 0 I ( ) ( ) ( ) ( ) (− ) ( ) × n nc c c e e c u ¶ ¶ × ¥ = − 1 0 1 0 0 , , , ~ n n nI nI n V D d wd v d u d u c w J t c h f J t t
  • 41. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 42 ( ) ( ) ( ) I ( u v w ) D s v c w g u v w T i t − p I ( c ) ( h ) ( f ) × n n I nc c c ¶ ¶ × ¥ = − 1 0 0 1 0 1 0 , , , 100 2 ~ , , , n n V D d wd v d u d v t p J ( ) ( ) ( ) ( ) ( ) ( ) ( ) e e c u c v s w g u v w T i , i ³1, nI nI n n n I I u v w ¶ ¶ × − − t t J t 0 1 0 1 0 1 0 100 , , , ~ , , , d wd v d u d w ¥ D ( ) = − V ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × 00 , , , 2 , , , i nc c c e e s u c v g u v w T =1 0 1 0 1 0 1 0 0 0 ~ n n nV nI n n V I D V J c h f J p c h f J t ( ) V ( u , ) D i 100 − 0 V ( ) ( ) ( ) ( ) (− ) ( ) ( ) × n nc c c e e c u s v ¶ ¶ × ¥ = − 1 0 1 0 1 0 0 ~ n n nV nI n n I D d wd v d u d u c w J t c h f J t t V ( u ) D c ( w ) g ( u v w T ) i t − p V ( c ) ( h ) ( f ) ( J ) × n V nc c c e ¶ ¶ × ¥ = − 1 0 0 1 0 , 100 2 ~ 2 , , , n n nV I D d wd v d u d v t p ( ) ( ) ( ) ( ) ( ) ( ) J e c u c v s w g u v w T i nI n n n V , i ³1, V u ¶ ¶ × − − t t t 0 1 0 1 0 1 0 100 , ~ , , , d wd v d u d w where sn(c) = sin (p n c); ¥ J ( )= − ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( )× r r r c h f J c h f J t =1 0 1 0 1 0 1 0 010 ~ , , , 2 n n n n n n n n n c c c e e c u c v c w ~ [ e g (u v w T )] I (u , v , w, t )V (u , v , w, t )d wd vd u dt I V I V ~ 1 , , , , , 000 000 × + ; D ¥ J ( ) = − I c ( ) c ( ) c ( ) e ( ) e (− ) c ( u ) c ( v ) c ( w ) × r r r c h f J c h f J t =1 0 1 0 1 0 1 0 0 0 020 ~ , , , 2 n n n n n n n n n V D [ ~ ( ~ ~ ~ × I u , v , w , t ) V ( u , v , w , t )+ I ( u , v , w , t ) V ( u , v , w ,t )]× 010 000 000 010 [ e g (u v w T )] d wd v d u dt I V I V 1 , , , , , × + ; ¥ J ( )= − ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × r r r c h f J c h f J t =1 0 1 0 1 0 1 0 001 ~ , , , 2 n n n n n n n n n c c c e e c u c v c w [ e ( )]r ( t ) t r r r r 1 g u,v,w,T ~ u,v,w, d wd vd u d 2 , , 000 × + ; ¥ J ( )= − ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × r r r c h f J c h f J t =1 0 1 0 1 0 1 0 002 ~ , , , 2 n n n n n n n n n c c c e e c u c v c w [ e ( )]r ( t )r ( t ) t r r r r 1 g u,v,w,T ~ u,v,w, ~ u,v,w, d wd vd u d , , 001 000 × + ; ¥ D ( ) = − I nc ( ) c ( ) c ( ) e ( ) e (− ) s ( u ) c ( v ) c ( u ) × =1 0 1 0 1 0 1 0 0 0 ~ 110 , , , 2 n n n n nI nI n n n V D I J c h f J p c h f J t ( ) I ( u v w ) D i 100 − 2 0 I ( ) ( ) ( ) ( ) × g u v w T t p c h f J I nc c c e ¶ ¶ × ¥ = − 1 0 , , , ~ , , , n n n n nI V D d wd vd u d u t ( ) ( ) ( ) ( ) ( ) ( ) D t , , , I u v w i − 0 I × ¶ ¶ × − − V d wd v d u d nI n n n I v D e c u s v c u g u v w T 0 0 1 0 1 0 1 0 100 2 ~ , , , t p t J ( ) ( ) ( ) ( ) ( ) ( ) ( ) ¥ I u v w J × ¶ ¶ × − = − 1 0 1 0 1 0 1 0 100 , , , ~ , , , n i nI nI n n n I d wd v d u d w n e e c u c v s u g u v w T t t J t
  • 42. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 43 ¥ ( ) ( × ) ( )− ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( )[ + × , 2 1 n n n n nI n n nI n n n I V c c c c e c c e c u c v c v =1 0 1 0 1 0 1 0 n J c h f c J h f t e ~ ~ ~ ~ g (u v w T )][I (u , v , w, t )V (u , v , w, t ) I (u , v , w, t )V (u , v , w, t )]d wd v d u dt I V , , , , 100 000 000 100 × + ¥ D ( ) = − V nc ( ) c ( ) c ( ) e ( ) e (− ) s ( u ) c ( v ) c ( u ) × =1 0 1 0 1 0 1 0 0 0 ~ 110 , , , 2 n n n n nV nV n n n I D V J c h f J p c h f J t ( ) V ( u v w ) D i 100 − 2 0 V ( ) ( ) ( ) ( ) × g u v w T t p c h f J V nc c c e ¶ ¶ × ¥ = − 1 0 , , , ~ , , , n n n n nV I D d wd vd u d u t ( ) ( ) ( ) ( ) ( ) ( ) D t , , , V u v w i − 0 V × ¶ ¶ × − − I d wd v d u d nV n n n V v D e c u s v c u g u v w T 0 0 1 0 1 0 1 0 100 2 ~ , , , t p t J ( ) ( ) ( ) ( ) ( ) ( ) ( ) ¥ V u v w J × ¶ ¶ × − = − 1 0 1 0 1 0 1 0 100 , , , ~ , , , n i nV nV n n n V d wd v d u d w ne e c u c v s u g u v w T t t J t ¥ × ( ) ( ) ( )− ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( )[ + × , 2 1 n n n n nI n n nV n n n I V c c c c e c c e c u c v c v =1 0 1 0 1 0 1 0 n J c h f c J h f t e ~ ~ ~ ~ g (u v w T)][I (u , v , w, t )V (u , v , w, t ) I (u , v , w, t )V (u , v , w, t )]d wd vd u dt I V , , , , 100 000 000 100 × + ; ¥ D ( ) = − I nc ( ) c ( ) c ( ) e ( ) e (− ) s ( u ) c ( v ) c ( w ) × =1 0 1 0 1 0 1 0 0 0 ~ 101 , , , 2 n n n n nI nI n n n V D I J c h f J p c h f J t ( ) I ( u v w ) D 001 − 2 0 ( ) ( ) ( ) ( ) × g u v w T t p c h f J I nc c c e ¶ ¶ × ¥ =1 0 , , , ~ , , , n n n n nI I V D d wd v d u d u t ~ ( ) ( ) ( ) ( ) ( ) ( ) D t , , , I u v w − × ¶ ¶ × − I 0 V d wd vd u d nI n n n I v D e c u s v c w g u v w T 0 0 1 0 1 0 1 0 001 2 , , , t p t J ~ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ¥ I u v w J × ¶ ¶ × − =1 0 1 0 1 0 1 0 001 , , , , , , n nI nI n n n I d wd v d u d w ne e c u c v s w g u v w T t t J t ¥ × ( ) ( ) ( )− ( ) ( ) ( ) ( ) (− ) [ + ( )] × , , 2 1 , , , n n n n n n nI nI I V I V c c c c c c e e g u v w T =1 0 1 0 n J c h f c h f J t e ~ ~ × 100 000 c (u)I (u , v , w, t )V (u , v , w, t )d wd v d u dt n ¥ D ( ) = − V nc ( ) c ( ) c ( ) e ( ) e (− ) s ( u ) c ( v ) c ( w ) × =1 0 1 0 1 0 1 0 0 0 ~ 101 , , , 2 n n n n nV nV n n n I D V J c h f J p c h f J t ( ) V ( u v w ) D 001 − 2 0 ( ) ( ) ( ) ( ) × g u v w T t p c h f J V nc c c e ¶ ¶ × ¥ =1 V 0 , , , ~ , , , n n n n nV I D d wd v d u d u t ~ ( ) ( ) ( ) ( ) ( ) ( ) D t , , , V u v w − × ¶ ¶ × − 0 V I d wd vd u d nV n n n V v D e c u s v c w g u v w T 0 0 1 0 1 0 1 0 001 2 , , , t p t J ~ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ¥ V u v w J × ¶ ¶ × − =1 0 1 0 1 0 1 0 001 , , , , , , n nV nV n n n V d wd v d u d w ne e c u c v s w g u v w T t t J t
  • 43. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 44 ¥ ( ) ( × ) ( )− ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( )[ + × , 2 1 n n n n n n nV nV n n n I V c c c c c c e e c u c v c w =1 0 1 0 1 0 1 0 n J c h f c h f J t e ~ g (u v w T )] I (u , v , w, t )V (u , v , w, t )d wd v d u dt I V ~ , , , , 000 100 × ; ¥ ( ) = − ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × n n n nI nI n n n I c c c e e c u c v c w =1 0 1 0 1 0 1 0 ~ 011 , , , 2 n J c h f J c h f J t ×{[ ()]~ ~ + g u v w T I (u , v , w , )I (u , v , w , )+ [ 1 + g (u , v , w , T )]× I I I I I V I V 1 , , , , , 000 010 , , e t t e I (u v w t )V (u, v,w,t )} d wd v d u dt ~ ~ × , , , 001 000 ¥ ( ) = − ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × n n n nV nV n n n V c c c e e c u c v c w =1 0 1 0 1 0 1 0 ~ 011 , , , 2 n J c h f J c h f J t ×{[ ~ ~ 1 + e g (u , v , w , T )]V (u , v , w , t )V (u , v , w , t )+ [ 1 + e g (u , v , w , T )]× V , V V , V 000 010 I , V I , V I (u v wt )V (u,v,w,t )}d wd v d u dt ~ ~ × , , , . 000 001 Equations for initial-order approximations of distributions of concentrations of simplest complex-es of radiation defects Fr0(x,y,z,t) and corrections for them Fri(x,y, z,t), i ³1 and boundary and initial conditions for them have been obtained as the functions Tij(x,y,z,t) and takes the form ( ) ( ) ( ) ( ) + F x , y , z , t , , , , , , , , , 0 I I I + F + F = F 0 2 x y z t x y z t x y z t F 2 2 0 2 2 0 2 0 z y x D t I I ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ k (x y z T )I (x y z t ) k (x y z T )I (x y z t ) I I I , , , , , , , , , , , , 2 , + − ( ) ( ) ( ) ( ) + F x , y , z , t , , , , , , , , , 0 V V V + F + F = F 0 2 x y z t x y z t x y z t F 2 2 0 2 2 0 2 0 z y x D t V V ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ k (x y z T )V (x y z t ) k (x y z T )V (x y z t ) V V V , , , , , , , , , , , , 2 , + − ; ( ) ( ) ( ) ( ) + F , , , , , , , , , , , , x y z t I i I i I i + F + F = F 2 x y z t x y z t x y z t F 2 2 2 2 2 0 z y x D t I I i ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ F ¶ , , , ( ) ( ) F ( ) ( )
  • 44. + x y z t ¶ ¶ + D I i − + g x y z T F − x y z t F F y x y g x y z T x I I i I I ¶ ¶ ¶ ¶ ¶ , , , , , , , , , 1 1 0 ¶ , , , ( ) ( ) F ¶ + − x y z t g x y z T F z z I i I ¶ ¶ , , , 1 , i³1, ( ) ( ) ( ) ( ) + F , , , , , , , , , , , , x y z t V i V i V i + F + F = F 2 x y z t x y z t x y z t F 2 2 2 2 2 0 z y x D t V V i ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ F ¶ , , , ( ) ( ) F ( ) ( )
  • 45. + x y z t ¶ ¶ + D V i − + g x y z T F − x y z t F F x y y g x y z T x V V i V V ¶ ¶ ¶ ¶ ¶ , , , , , , , , , 1 1 0 F ¶ , , , ( ) ( ) ¶ + − x y z t g x y z T F z z V i V ¶ ¶ , , , 1 , i³1;
  • 46. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 p , 45 ( ) x y z t r 0 , , , , 0 = ¶ ¶F x= i x ( ) x y z t r 0 , , , , = ¶ ¶F x=Lx i x ( ) x y z t r 0 , , , , 0 = ¶ ¶F y= i y ( ) x y z t r 0 , , , , = ¶ ¶F y=Ly i y ( ) x y z t r 0 , , , , 0 = ¶ ¶F z= i z ( ) x y z t r , i³0; 0 , , , = ¶ ¶F z=Lz i z Fr0(x,y,z,0)=fFr (x,y,z), Fri(x,y,z,0)=0, i³1. Solutions of the above equations could be written as ¥ F ( ) = + ( ) ( ) ( ) ( )+ ( ) ( ) ( ) × = ¥ = F F 1 1 0 1 2 2 , , , n n n n n n n n n n x y z x y z nc x c y c z L F c x c y c z e t L L L L L L x y z t r r r t L L L ( )x y z × e t e (− ) c ( u ) c ( v ) c ( w )[ k ( u v w T ) I ( u v w )− k ( u v w T ) × F n F n n n n I I I 0 0 0 0 2 , t , , , , , ,t , , , r r × I (u, v,w,t )]d wd v d u dt , Lx y z L L where = ( ) ( ) ( ) ( ) F F n n n n F c u c v c w f u v w dwd vdu 0 0 0 , , r r , ( ) 2 2 1 1 1 = − + + F 0F 2 2 2 n L L L exp x y z e t n D t r r cn(x) = cos (p n x/Lx); ¥ p F ( x y z t ) = − ( ) ( ) ( ) ( ) (− t ) ( ) ( ) ( ) × r r r = F F 1 0 0 0 0 2 2 , , , n t L L L n n n n n n n n x y z i x y z nc x c y c z e t e s u c v c w L L L ( ) ( ) − ( ) ( ) ( ) ( ) × ¶ F t × ¥ = F − F 1 2 1 , , , 2 , , , n n n n n x y z I i nc x c y c z e t L L L d wd v d u d u v w u g u v w T r r r p t ¶ ¶ t x y z p ( ) ( ) ( ) ( ) ( ) ( ) F × − − u v w − × F F x y t L L L I i d wd vd u d n n n n v L L e c u s v c w g u v w T t ¶ t r r r , , , 2 , , , 0 0 0 0 1 ¶ t 1 , , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) F ¥ u v w t r × × − = − F F 1 0 0 0 0 1 2 n t L L L I i n n n n n n n n z x y z w nc x c y c z e t e c u c v s w L ¶ r r ( ) t r g u,v,w,T d wd v d u d F × , i³1, where sn(x) = sin (p n x/Lx). Equations for initial-order approximation of dopant concentration C00(x,y,z,t), corrections for them Cij(x,y,z,t) (i ³1, j ³1) and boundary and initial conditions take the form ( ) ( ) ( ) ¶ ( ) 00 , , , , , , , , , , , , C x y z t 2 00 2 C x y z t + 2 0 00 2 C x y z t 2 0 00 2 0 z D y D x D C x y z t t L L ¶ L ¶ ¶ + ¶ ¶ = ¶ ¶ ; ( ) ( ) ( ) ( ) + 0 , , , , , , , , , , , , C x y z t i C x y z t ¶ ¶ + C x y z t ¶ ¶ + C x y z t ¶ ¶ = ¶ ¶ 2 0 2 2 0 0 2 2 0 0 2 0 z D y D x D t L i L i L i ( ) ( ) ( ) ( ) + C x y z t C x y z t + D − i − ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ y g x y z T y D x g x y z T x L L i L L , , , , , , , , , , , , 10 0 10 0
  • 47. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 46 ( ) ( ) C x y z t + D i − ¶ ¶ ¶ L L ¶ z g x y z T z , , , , , , 10 0 , i ³1; ( ) ( ) ( ) ( ) + 01 , , , , , , , , , , , , C x y z t ¶ ¶ + C x y z t ¶ ¶ + C x y z t ¶ ¶ = C x y z t ¶ ¶ 2 01 2 2 0 01 2 2 0 01 2 0 z D y D x D t L L L ( ) ( ) ( ) g ( ) , , , , , , C x , y , z , t 00 00 ( ) ( ) + C x y z t ¶ ¶ ¶ ¶ + g D L L C x y z t ¶ ¶ ¶ ¶ + y P x y z T y D x C x y z t P x y z T x , , , , , , , , , 0 00 00 0 g g ( ) ( ) ( ) g , , , 00 00 C x y z t ¶ ¶ ¶ ¶ + z C x y z t P x y z T z D L , , , , , , 0 g ; ( ) ( ) ( ) ( ) + 02 , , , , , , , , , , , , C x y z t ¶ ¶ + C x y z t ¶ ¶ + C x y z t ¶ ¶ = C x y z t ¶ ¶ 2 02 2 2 0 02 2 2 0 02 2 0 z D y D x D t L L L g ( ) C ( x , y , z , t ) ( ) ( )
  • 48. ( ) ( ) ( ) × ¶ ¶ + , , , C x y z t ¶ ¶ ¶ ¶ + − − , , , g C x y z t P x y z T , , , C x y z t x y P x y z T C x y z t x , , , , , , , , , 1 00 01 00 1 00 01 g g ( ) g ( ) ( ) C x , y , z , t , , , 00 ( ) ( ) + C x y z t ¶ ¶ ¶ ¶ + C x y z t ¶ ¶ × − L D z P x y z T C x y z t y z 0 00 1 00 01 , , , , , , , , , g ( ) ( ) ( ) ( ) g , , , , , , C x , y , z , t 00 01 00 01 ( ) ( )
  • 49. + C x y z t ¶ ¶ ¶ 0 g ¶ + C x y z t ¶ ¶ ¶ ¶ + y P x y z T x y C x y z t P x y z T x D L , , , , , , , , , g g ( ) ( ) ( ) , , , 00 01 g C x y z t ¶ ¶ ¶ ¶ + z C x y z t P x y z T z , , , , , , g ; ( ) ( ) ( ) ( ) + 11 , , , , , , , , , , , , C x y z t ¶ ¶ + C x y z t ¶ ¶ + C x y z t ¶ ¶ = C x y z t ¶ ¶ 2 11 2 2 0 11 2 2 0 11 2 0 z D y D x D t L L L g ( ) C ( x , y , z , t ) ( ) ( )
  • 50. ( ) ( ) ( ) × ¶ ¶ + , , , C x y z t ¶ ¶ ¶ ¶ + − − , , , g C x y z t P x y z T , , , C x y z t x y P x y z T C x y z t x , , , , , , , , , 1 00 10 00 1 00 10 g g ( ) g ( ) ( ) C x , y , z , t , , , 00 ( ) ( ) + C x y z t ¶ ¶ ¶ ¶ + C x y z t ¶ ¶ × − L D z P x y z T C x y z t y z 0 00 1 00 10 , , , , , , , , , g ( ) ( ) ( ) ( ) g , , , , , , C x , y , z , t 00 10 00 10 ( ) ( )
  • 51. + C x y z t ¶ ¶ ¶ 0 g ¶ + C x y z t ¶ ¶ ¶ ¶ + y P x y z T x y C x y z t P x y z T x D L , , , , , , , , , g g ( ) ( )
  • 52. ( ) ( ) ( ) + , , , 01 C x y z t ¶ ¶ ¶ g z L L ¶ + C x y z t ¶ ¶ ¶ ¶ + x g x y z T x D z C x y z t P x y z T , , , , , , , , , , , , 0 00 10 g ( ) ( ) ( ) ( ) C x y z t ¶ ¶ ¶ ¶ + C x y z t ¶ ¶ ¶ ¶ + z g x y z T y z g x y z T y L L , , , , , , , , , , , , 01 01 ; ( ) 0 , , , 0 = x= C x y z t ij ¶ x ¶ , ( ) 0 , , , = x=Lx C x y z t ij ¶ x ¶ , ( ) 0 , , , 0 = y= C x y z t ij y ¶ ¶ ,
  • 53. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 47 ( ) 0 , , , = y=Ly C x y z t ij y ¶ ¶ , ( ) 0 , , , 0 = z= C x y z t ij ¶ z ¶ , ( ) 0 , , , = z=Lz C x y z t ij ¶ z ¶ , i ³0, j ³0; C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i ³1, j ³1. Solutions of the above equations with account boundary and initial conditions could be written as ¥ ( ) = + ( ) ( ) ( ) ( ) C x y z t , =1 00 1 2 , , , n nC n n n nC x y z x y z F c x c y c z e t L L L L L L Lx y z L L where = ( ) ( ) ( ) ( ) F nC n n n F c u c v c w f u v w dwdvdu 0 0 0 , , r , ( ) p ; 2 2 1 1 1 = − + + 0F 2 2 2 nC L L L exp x y z e t n D t r ¥ p ( )= − ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × C x y z t t 0 2 , , , =1 0 0 0 0 2 , , , n t L L L nC n n n nC nC n n L x y z i x y z n F c x c y c z e t e s u c v g u v w T L L L ( ) ( ) − ( ) ( ) ( ) ( ) (− ) ( ) × C u v w c v t ¶ ¶ × ¥ = − 1 0 0 2 10 , , , 2 n t L nC n n n nC nC n x y z i n x n F c x c y c z e t e c u L L L d wd v d u d u p t t y z p ( ) ( ) ( ) ( ) C u v w − ( ) ( ) ( ) × ¶ ¶ × ¥ = − 1 2 0 0 10 , , , 2 , , , n nC n n n x y z L L i n n L n F c x c y c z L L L d wd v d u d v s v c v g u v w T t t t L L L x y z ( ) ( ) ( ) ( ) ( ) ( ) ( ) t , i ³1; C u v w ¶ ¶ × − i − nC nC n n n L d wd v d u d w e t e c u c v s v g u v w T 0 0 0 0 t 10 , , , , , , t 2 ¥ , , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) C u v w = − − × C x y z t g =1 0 0 0 0 00 , , , 01 2 n , , , t L L L nC n n n nC nC n n x y z x y z P u v w T n F c x c y c z e t e s u c v L L L g t t p ( ) ( ) − ( ) ( ) ( ) ( ) (− ) × C u v w c w t n n F c x c y c z e t e ¶ ¶ × ¥ =1 0 2 00 , , , 2 n t nC n n n nC nC L L L x y z d wd v d u d u p t t g x y z p ( ) ( ) ( ) ( ) ( ) ( ) , , , C u v w C u v w − ( )× ¶ ¶ × ¥ =1 2 0 0 0 00 00 , , , 2 , , , n nC nC x y z L L L n n n n F e t L L L d wd v d u d v P u v w T c u s v c w t t t g t L L L x y z ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) C u v w ¶ ¶ × − n n n nC n n n d wd v d u d w , , , g C u v w P u v w T c x c y c z e c u c v s w 0 0 0 0 00 00 , , , , , , t t t t g ; ¥ p ( ) = − ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × C x y z t t =1 0 0 0 0 02 2 2 , , , n t L L L nC n n n nC nC n n n x y z x y z nF c x c y c z e t e s u c v c w L L L C g ( ) ( u , v , w , ) ( ) ( ) ( ) ( )× − ¶ ¶ × ¥ = − 1 2 C u v w 00 1 00 01 , , , 2 , , , , , , n nC n n x y z F c x c y L L L d wd v d u d u P u v w T C u v w p t t t t g t L L L C g − ( ) ( ) ( ) ( ) ( ) ( ) ( u , v , w , ) ( ) ( ) x y z C u v w × ¶ ¶ × − n nC nC n n v P u v w T nc z e t e c u s v C u v w 0 0 0 0 00 1 00 01 , , , , , , , , , t t t t g ¥ p × c ( w ) d wd v d u d − ( ) ( ) ( ) ( ) (− t ) ( ) ( ) × =1 0 0 0 2 2 n t L L nC n n n nC nC n n x y z n x y n F c x c y c z e t e c u c v L L L t
  • 54. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 48 g z ( ) ( ) C ( u , v , w , ) ( ) p − ( ) × ( ) C u v w ¶ ¶ × ¥ = − 1 2 0 00 1 00 01 , , , 2 , , , , , , n n x y z L n n c x L L L d wd v d u d w P u v w T s w C u v w t t t t g t L L x y L ( ) ( ) ( ) ( ) ( ) ( ) z ( ) ( ) C ( u v w ) × ¶ ¶ × − nC n n nC nC n n n u F c y c z e t e s u c v c w C u v w 0 0 0 0 00 01 , , , , , , t t t ( ) ( ) ¥ , , , g C u v w × − ( ) ( ) ( ) ( ) (− ) ( ) × = − 1 0 0 2 1 00 2 , , , n t L nC n n n nC nC n x y z x n F c x c y c z e t e c u L L L d wd v d u d P u v w T t p t t g g ( ) ( ) ( ) ( ) y z C u , v , w , p ( ) ( ) C u v w − × ¶ ¶ × ¥ = − 1 2 0 0 00 1 00 01 , , , 2 , , , , , , n x y z L L n n n L L L d wd v d u d v P u v w T s v c w C u v w t t t t g L L g − ( ) ( ) ( ) ( ) t ( ) x ( ) y L ( ) z ( ) ( ) C ( u , v , w , t ) × − × ( ) t t nC n n n nC nC n n n , , , g P u v w T F c x c y c z e t e c u c v s w C u v w 0 0 0 0 1 00 01 , , , ( ) 00 , , , 2 − ( ) ( ) ( ) ( ) (− ) ( )× C u v w ¶ ¶ × ¥ =1 0 0 2 n t L nC n n n nC nC n x y z x F c x c y c z e t e s u L L L d wd vd u d w t p t t g y ( ) z ( ) C ( u , v , w , ) ( ) p − ( ) ( ) × ( ) C u v w ¶ ¶ × ¥ =1 2 0 0 00 01 , , , 2 , , , n n nC x y z L L n n c x e t L L L d wd v d u d u P u v w T n c v c w t t t g g ( ) ( ) ( ) ( ) ( ) C ( u , v , w , ) ( ) ( ) t L L L x y z C u v w × ¶ ¶ × − nC n nC n n n d wd v d u d v P u v w T F c y e c u s v c w 0 0 0 0 00 01 , , , , , , t t t t g ¥ p × n c ( z )− ( ) ( ) ( ) ( ) (− t ) ( ) ( ) ( ) × =1 0 0 0 0 2 2 n t L L L nC n n n nC nC n n n x y z n x y z nF c x c y c z e t e c u c v s w L L L ( ) ( ) ( ) , , , 00 01 ; t t t g C u v w g d wd v d u d C u v w w P u v w T ¶ ¶ × , , , , , , ¥ p ( ) = − ( ) ( ) ( ) ( ) (− ) ( ) ( ) ( ) × C x y z t t =1 0 0 0 0 11 2 2 , , , n t L L L nC n n n nC nC n n n x y z x y z nF c x c y c z e t e s u c v c w L L L ( ) ( ) − ( ) ( ) ( ) ( ) × C u v w L nF c x c y c z e t ¶ ¶ × ¥ =1 2 01 , , , 2 , , , n nC n n n nC L L L x y z d wd v d u d u g u v w T p t t ( ) ( ) ( ) ( ) ( ) ( ) x y z C u v w p − × ¶ ¶ × − 2 0 0 0 0 01 , , , 2 , , , x y z t L L L d wd v d u d nC n n n L v L L L e c u s v c w g u v w T t t t ( ) ( ) ( ) ( ) ( ) ( ) ( ) ¥ x y z C u v w n e t e c u c v s w g u v w T t × ¶ ¶ × − =1 0 0 0 0 01 , , , , , , n t L L L nC nC n n n L d wd v d u d w t t ¥ p × F c ( x ) c ( y ) c ( z )− ( ) ( ) ( ) ( ) (− t ) ( ) ( ) × =1 0 0 0 2 2 n t L L nC n n n nC nC n n x y z nC n n n x y F c x c y c z e t e s u c v L L L g z ( ) C ( u , v , w , ) ( ) p − ( ) ( )× ( ) C u v w ¶ ¶ × ¥ =1 2 0 00 10 , , , 2 , , , n nC n n x y z L n nF c x c y L L L d wd v d u d u P u v w T n c w t t t g g ( ) ( ) ( ) ( ) ( ) ( ) C ( u , v , w , ) ( ) ( ) t L L L x y z C u v w − ¶ ¶ × − n nC nC n n n d wd v d u d v P u v w T c z e t e c u s v c w 0 0 0 0 00 10 , , , , , , t t t t g
  • 55. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 49 g ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( t ) p 2 C u , v , w , − − × ( ) ¥ t =1 0 0 0 0 00 2 n , , , t L L L nC n n n nC nC n n n x y z x y z P u v w T nF c x c y c z e t e c u c v s w L L L g ( ) ( ) ( ) ( ) ( ) ( ) ( ) × − − ¶ ¶ × ¥ =1 0 0 10 , , , 2 2 n t L nC n n n nC nC n x y z x n F c x c y c z e t e s u L L L d wd v d u d C u v w w t p t t g ( ) ( ) ( ) ( ) y z C u , v , w , p ( ) ( ) C u v w − × ¶ ¶ × ¥ = − 1 2 0 0 00 1 00 10 , , , 2 , , , , , , n x y z L L n n n L L L d wd v d u d u P u v w T c v c w C u v w t t t t g L L L − ( ) ( ) ( ) ( ) t ( ) ( ) ( ) ( ) ( ) , , ,t t g C u v w ( ) ( ) x y z C u v w × ¶ ¶ × − nC n n n nC nC n n n v P u v w T F c x c y c z e t e c u s v c w 0 0 0 0 00 1 00 , , , , , , t g ¥ p 2 × C ( u v w ) d wd v d u d − ( ) ( ) ( ) ( ) (− t ) ( ) × =1 0 0 , , , 10 2 n t L nC n n n nC nC n x y z x n F c x c y c z e t e c u L L L t t g ( ) ( ) ( ) C ( u , v , w , ) , , , t ( ) ( ) C u v w ¶ ¶ × − y z L L n n d wd vd u d w P u v w T c v s w C u v w 0 0 00 1 00 10 , , , , , , t t t g . REFERENCES [1] I.P. Stepanenko (1980). Basis of Microelectronics, Soviet Radio, Moscow. [2] A.G. Alexenko, I.I. Shagurin (1990). Microcircuitry, Radio and communication, Moscow. [3] Z.Yu. Gotra (1991). Technology of microelectronic devices, Radio and communication, Moscow. [4] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin (1991). Basis of microelectronics, Radio and communica-tion, Moscow. [5] V.I. Lachin, N.S. Savelov (2001). Electronics, Phoenix, Rostov-na-Donu. [6] A. Polishscuk (2004), Ultrashallow p+−n junctions in silicon: electron-beam diagnostics of sub-surface region. Modern Electronics. 12, P. 8-11. [7] G. Volovich, Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing (2006). Modern Electronics. 2, P. 10-17. [8] A. Kerentsev, V. Lanin, Design and technological features of MOSFETs (2008). Power Electronics. Issue 1. P. 34. [9] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko, Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of current flow in rectifying and nonrectifying contacts (2009). Semiconductors. Vol. 43 (7). P. 897-903. [10] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo, High-performance InGaP/GaAs pnp -doped heterojunction bipolar transistor (2009). Semiconductors. Vol. 43 (7). P. 971-974. [11] E.I. Gol’dman, N.F. Kukharskaya, V.G. Naryshkina, G.V. Chuchueva, The manifestation of excessive centers of the electron-hole pair generation, appeared as a result to field and thermal stresses, and their subsequent annihilation in the dynamic current-voltage characteristics of Si-MOS-structures with the ultrathin oxide (2011). Semiconductors. Vol. 45 (7). P. 974-979. [12] T.Y. Peng, S.Y. Chen, L.C. Hsieh C.K. Lo, Y.W. Huang, W.C. Chien, Y.D. Yao, Impedance behavior of spin-valve transistor (2006). J. Appl. Phys. Vol. 99 (8). P. 08H710-08H712. [13] W. Ou-Yang, M. Weis, D. Taguchi, X. Chen, T. Manaka, M. Iwamoto, Modeling of threshold voltage in pentacene organic field-effect transistors (2010). J. Appl. Phys. Vol. 107 (12). P. 124506-124510. [14] J. Wang, L. Wang, L. Wang, Z. Hao, Yi Luo, A. Dempewolf, M. M ller, F. Bertram, J rgen, Christen, An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes (2012). J. Appl. Phys. Vol. 112 (2). P. 023107-023112.
  • 56. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 [15] O.V. Alexandrov, A.O. Zakhar’in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin, Forma-tion of donor centers after annealing of dysprosium and holmium implanted silicon (1998). Semicon-ductors. 50 Vol. 32 (9). P. 1029-1032. [16] I.B. Ermolovich, V.V. Milenin, R.A. Red’ko, S.M. Red’ko, Features of recombination processes in CdTe films, preparing at different temperature conditions and further annealing (2009). Semiconduc-tors. Vol. 43 (8). . 1016-1020. [17] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon, Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-sulfide buffer layer (2013). Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905. [18] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes, Shal-low acceptor complexes in p-type ZnO (2013). Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118. [19] A.E. Zhukov, L.V. Asryan, Yu.M. Shernyakov, M.V. Maksimov, F.I. Zubov, N.V. Kryzhanovskay, K. Yvind, E.S. Semenova, Effect of asymmetric barrier layers in the waveguide region on the temperature characteristics of quantum-well lasers (2012). Semiconductors. Vol. 46 (8). P. 1049-1053. [20] V.P. Konyaev, A.A. Marmalyuk, M.A. Ladugin, T.A. Bagaev, M.V. Zverkov, V.V. Krichevsky, A.A. Padalitsa, S.M. Sapozhnikov, V.A. Simakov, Laser diodes arrays based on epitaxial integrated hetero-structures with increased power and pulsed emission bright (2014). Semiconductors. Vol. 48 (1). P. 104-108. [21] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors (1979). Naukova Dumka, Kiev. [22] P.M. Fahey, P.B. Griffin, J.D. Plummer, point defects and dopant diffusion in silicon (1989). Rev. Mod. Phys. Vol. 61. 2. P. 289-388. [23] K.V. Shalimova, Physics of semiconductors (1985). Energoatomizdat, Moscow. [24] E.L. Pankratov, Dopant Diffusion Dynamics and Optimal Diffusion Time as Influenced by Diffusion- Coefficient Nonuniformity. Russian Microelectronics (2007). V.36 (1). P. 33-39. [25] E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using overlayers, Int. J. Micro-Nano Scale Transp (2012). Vol. 3 (3). P. 119-130. [26] E.L. Pankratov, E.A. Bulaeva, Doping of materials during manufacture p-n-junctions and bipolar tran-sistors. Analytical approaches to model technological approaches and ways of optimization of distribu-tions of dopants. Rev. Theor. Sci. Vol. 1 (1). P. 58-82 (2013). [27] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (1972). Moscow, Nauka (in Rus-sian). [28] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (1964). Oxford University Press. [29] E.L. Pankratov, Redistribution of dopant during microwave annealing of a multilayer structure for production p-n-junction (2008). J. Appl. Phys. Vol. 103 (6). P. 064320-064330. [30] E.L. Pankratov, Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers (2008). Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197. [31] E.L. Pankratov, Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J. Comp. Theor. Nanoscience (2010). Vol. 7 (1). P. 289-295. [32] E.L. Pankratov, E.A. Bulaeva, Application of native inhomogeneities to increase compactness of ver-tical field-effect transistors. J. Comp. Theor. Nanoscience (2013). Vol. 10 (4). P. 888-893. [33] E.L. Pankratov, E.A. Bulaeva, Optimization of doping of heterostructure during manufacturing of p-i-n- diodes. Nanoscience and Nanoengineering (2013). Vol. 1 (1). P. 7-14.
  • 57. International Journal on Computational Sciences Applications (IJCSA) Vol.4, No.5, October 2014 51 Authors Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 102 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant_ MK-548.2010.2). She has 50 published papers in area of her researches.