SlideShare a Scribd company logo
1 of 12
Download to read offline
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
DOI : 10.14810/ijrap.2015.4103 43
OPTIMIZATION OF DOPANT DIFFUSION AND ION
IMPLANTATION TO INCREASE INTEGRATION RATE
OF FIELD-EFFECT HETEROTRANSISTORS. AN AP-
PROACH TO SIMPLIFY CONSTRUCTION OF THE HET-
EROTRANSISTORS
E.L. Pankratov1,3
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
3
Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi-
novskoe Shosse, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this work we introduce an approach to decrease dimensions of a field-effect heterotransistors. The ap-
proach based on manufacturing field-effect transistors in heterostructures and optimization of technologi-
cal processes. At the same time we consider possibility to simplify their constructions.
KEYWORDS
Field-effect heterotransistors; simplification of construction of heterotransistors; increasing integration
rate of transistors; optimization of manufacturing of heterotransistors; analytical modelling of technologi-
cal process
1. INTRODUCTION
One of the actual questions of the solid state electronics is increasing of integration rate of ele-
ments of integrated circuits [1-14]. At the same time with decreasing of integration rate of ele-
ments of integrated circuits one can find decreasing of dimensions of the elements. In the present
time it is known several approaches to decrease dimensions of elements of integrated circuits and
their discrete analogs. Two of them are laser and microwave types of annealing of dopants and
radiation defects [15-17]. Using this approaches leads to generation inhomogenous distribution of
temperature in annealed materials. Just this inhomogeneity leads to decreasing dimensions of
elements of integrated circuits and their discrete analogs. Another approach to decrease the above
dimensions is doping required areas of epitaxial layers of heterostructures by dopant diffusion or
ion implantation. However optimization of annealing of dopant and/or radiation defects is re-
quired in this case [18,19]. It is also attracted an interest radiation processing of doped materials.
The processing leads to changing distribution of concentration of dopants [20]. The changing
could also leads to decrease dimensions of elements of integrated circuits and their discrete ana-
logs [21-23].
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
44
Source Source
Gate Gate
Drain
Substrate
Fig. 1. Heterostructure, which consist of a substrate and epitaxial layer with several sections. Structure in
deep of heterostructure
In this paper we analysed redistribution of concentration of dopant with account redistribution of
radiation defects in the considered heterostructure, which is presented in Fig. 1. Some sections
have been manufactured in epitaxial layer so, as it is shown in the Fig. 1. Dopants have been in-
fused or implanted in the sections to produce required types of conductivity (n or p). Farther an-
nealing of dopant and/or radiation defects should be annealed. Main aim of our paper is analysis
of dynamic of redistribution of dopant and radiation defects in considered heterostructure during
annealing.
2. METHOD OF SOLUTION
To solve our aims we determine spatio-temporal distribution of concentration of dopant. To de-
termine the distribution one shall solve the following equation [1,3-5]
( ) ( ) ( ) ( )






+






+






=
z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
t
t
z
y
x
C
C
C
C
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
. (1)
Boundary and initial conditions for the equation are
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= y
L
x
y
t
z
y
x
C
, (2)
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= z
L
x
z
t
z
y
x
C
, C(x,y,z,0)=f (x,y,z).
The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is
the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coeffi-
cient is different in different materials. The diffusion coefficient is also depends on tem-
perature of annealing with account Arrhenius law. Dependences of dopant diffusion coef-
ficients could be approximated by the following function [3,24-26]
( ) ( )
( )
( ) ( )
( ) 







+
+








+
= 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
D L
C ς
ς
ξ γ
γ
. (3)
The multiplier DL (x,y,z,T) depends on coordinate and temperature (due to Arrhenius law); P
(x,y,z,T) is the limit of solubility of dopant; the parameter γ is different in different materials and
should be integer in the following interval γ ∈[1,3] [3]; the function V(x,y,z,t) describes the spa-
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
45
tio-temporal distribution of concentration of radiation vacancies; parameter V*
describes the equi-
librium concentration of vacancies. Dependence of dopant diffusion coefficient on concentration
has been described in details in [3]. It should be noted, that diffusive type of doping did not leads
to radiation damage of materials and ζ1=ζ2=0. We determine spatio-temporal distributions of con-
centrations point radiation defects by solving the following system of equations [25,26]
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )















−






∂
∂
∂
∂
+
×
×
−






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
−






∂
∂
∂
∂
+
×
×
−






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
t
z
y
x
V
T
z
y
x
k
t
z
y
x
I
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
t
z
y
x
V
T
z
y
x
k
t
z
y
x
I
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
V
V
V
V
I
V
V
I
I
I
V
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
,
,
2
,
,
(4)
with boundary and boundary conditions
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= y
L
y
y
t
z
y
x
ρ
, (5)
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= z
L
z
z
t
z
y
x
ρ
, ρ(x,y,z,0)=fρ(x,y,z).
Here ρ =I,V; the function I (x,y,z,t) describes the spatio-temporal distribution of concentration of
interstitials; Dρ(x,y,z,T) are the diffusion coefficients of vacancies and interstitials; terms
V2
(x,y,z,t) and I2
(x,y,z,t) corresponds to generation of divacancies and diinterstitials, respectively;
kI,V(x,y,z,T), kI,I(x,y,z, T) and kV,V(x,y,z,T) are the parameters of recombination of point radiation
defects and generation their complexes, respectively.
Spatio-temporal distributions of concentrations of simplest complexes of radiation defects (diva-
cancies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z,t)) have been determine by solving by solving the
following system of equations [25,26]
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )















−
+





 Φ
+
+





 Φ
+





 Φ
=
Φ
−
+





 Φ
+
+





 Φ
+





 Φ
=
Φ
Φ
Φ
Φ
Φ
Φ
Φ
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V
V
V
V
V
V
I
I
I
I
I
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
,
2
,
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
(6)
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
46
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )















−
+





 Φ
+
+





 Φ
+





 Φ
=
Φ
−
+





 Φ
+
+





 Φ
+





 Φ
=
Φ
Φ
Φ
Φ
Φ
Φ
Φ
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V
V
V
V
V
V
I
I
I
I
I
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
,
2
,
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
with boundary and initial conditions
( )
0
,
,
,
0
=
∂
Φ
∂
=
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= x
L
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= y
L
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
z
z
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= z
L
z
z
t
z
y
x
ρ
, ΦI(x,y,z,0)=fΦI(x,y,z), ΦV(x,y,z,0)=fΦV(x,y,z). (7)
Here DΦI(x,y,z,T) and DΦV(x,y,z,T) are diffusion coefficients of diinterstitials and divacancies; kI
(x,y,z,T) and kV (x,y,z,T) are parameters of decay of complexes.
It should be noted, that nonlinear equations with space and time varying coefficients are usually
used to describe physical processes. Although the equations are usually solved in different limit-
ing cases [27-30]. Spatio-temporal distribution of concentration of dopant have been calculated
by using method of averaging of function corrections [21,31] with decreased quantity of iteration
steps [32]. Framework this approach we used solutions of the above differential equations without
any nonlinearity and with averaged values of diffusion coefficients and thermal diffusivity D0L,
D0I, D0V, D0ΦI, D0ΦV, α0. The solutions could be written as
( ) ( ) ( ) ( ) ( )
∑
+
=
∞
=1
1
2
1
,
,
,
n
nC
n
n
n
nC
z
y
x
z
y
x
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x
C ,
( ) ( ) ( ) ( ) ( )
∑
+
=
∞
=1
1
2
1
,
,
,
n
nI
n
n
n
nI
z
y
x
z
y
x
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x
I ,
( ) ( ) ( ) ( ) ( )
∑
+
=
∞
=1
1
2
1
,
,
,
n
nV
n
n
n
nC
z
y
x
z
y
x
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x
V ,
( ) ( ) ( ) ( ) ( )
∑
+
=
Φ
∞
=
Φ
Φ
1
1
2
1
,
,
,
n
n
n
n
n
n
z
y
x
z
y
x
I t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x I
I
,
( ) ( ) ( ) ( ) ( )
∑
+
=
Φ
∞
=
Φ
Φ
1
1
2
1
,
,
,
n
n
n
n
n
n
z
y
x
z
y
x
V t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x V
V
,
where ( )
















+
+
−
= 2
2
2
0
2
2 1
1
1
exp
z
y
x
n
L
L
L
t
D
n
t
e ρ
ρ π , ( ) ( ) ( ) ( )
∫ ∫ ∫
=
x y z
L L L
n
n
n
n u
d
v
d
w
d
w
v
u
f
w
c
v
c
u
c
F
0 0 0
,
,
ρ
ρ , cn(χ)
=cos(πnχ/Lχ).
The second-order approximations and approximations with higher orders of concentration of do-
pant, concentrations of radiation defects and temperature have been calculated framework stan-
dard iteration procedure of method of averaging of function corrections [21,31,32]. Framework
the approach to calculate n-th-order approximations of the above concentrations and temperature
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
47
we replace the required functions C (x,y,z,t), I (x,y,z,t), V (x,y,z,t), ΦI (x,y,z,t) and ΦV (x,y,z,t) in the
right sides of Eqs. (1), (4), (6) on the following sums αnρ+ρn-1(x,y,z,t). The replacement gives us
possibility to obtain the following equations for the second-order approximation of above concen-
trations
( )
( )
( ) ( )
( )
( )
[ ]
( )





×









 +
+








+
+
=
∗
∗
T
z
y
x
P
t
z
y
x
C
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
C C
L
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
, 1
2
2
2
2
1
2
γ
γ
α
ξ
ς
ς
∂
∂
∂
∂
( ) ( ) ( ) ( )
( )
( )
[ ]
( )
( )





+









 +
+








+
+
+




×
∗
∗
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
C C
L
∂
∂
α
ξ
ς
ς
∂
∂
∂
∂
γ
γ
,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
, 1
1
2
2
2
2
1
1
(8)
( )
( ) ( )
[ ]
( )
( )
( )
( )


















+
+









 +
+
+ ∗
∗ V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
z
t
z
y
x
C
T
z
y
x
D
z
C
L
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
, 1
2
2
2
1
2
1
ς
ς
α
ξ
∂
∂
∂
∂
γ
γ
( )
( )
( )
( )
( )
( )
( )
( ) ( )
[ ] ( )
[ ]
( ) ( )
[ ]
( )
( )
( )
( )
( )
( )
( )
( ) ( )
[ ] ( )
[ ]
( ) ( )
[ ]



















+
−
−
+
+
−






+
+






+






=
+
−
−
+
+
−






+
+






+






=
2
1
2
,
1
2
1
2
,
1
1
1
2
2
1
2
,
1
2
1
2
,
1
1
1
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
V
V
V
V
I
V
I
V
V
V
I
I
I
V
I
V
I
I
I
I
α
α
α
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
α
α
α
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
(9)
( )
( )
( )
( )
( )
( )
( )
( ) ( ) ( ) ( )
( )
( )
( )
( )
( )
( )
( )
( ) ( ) ( ) ( )















−
+





 Φ
+
+





 Φ
+





 Φ
=
Φ
−
+





 Φ
+
+





 Φ
+





 Φ
=
Φ
Φ
Φ
Φ
Φ
Φ
Φ
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
x
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
x
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V
V
V
V
V
V
I
I
I
I
I
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
,
1
1
1
2
2
,
1
1
1
2
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
(10)
Farther we obtain the second-order approximations of concentrations of dopant and radiation de-
fects by integration of the left and right sides of the Eqs. (8)-(10)
( ) ( ) ( ) ( )
( )
( )
[ ]
( )




∫ ×









 +
+








+
=
∗
∗
t
C
L
T
z
y
x
P
z
y
x
C
V
z
y
x
V
V
z
y
x
V
T
z
y
x
D
x
t
z
y
x
C
0
1
2
2
2
2
1
2
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
, γ
γ
τ
α
ξ
τ
ς
τ
ς
∂
∂
( ) ( ) ( )
( )
( )
[ ]
( )





∫ ×









 +
+








+
+




×
∗
∗
t
C
T
z
y
x
P
z
y
x
C
V
z
y
x
V
V
z
y
x
V
y
d
x
z
y
x
C
0
1
2
2
2
2
1
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
γ
γ
τ
α
ξ
τ
ς
τ
ς
∂
∂
τ
∂
τ
∂
( ) ( ) ( ) ( )
( )
( )





∫ ×








+
+




×
∗
∗
t
L
y
z
y
x
C
V
z
y
x
V
V
z
y
x
V
z
y
z
y
x
C
T
z
y
x
D
0
1
2
2
2
1
1 ,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
∂
τ
∂
τ
ς
τ
ς
∂
∂
∂
τ
∂
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
48
( )
( )
[ ]
( )
( )
z
y
x
f
T
z
y
x
P
z
y
x
C
T
z
y
x
D C
C
L ,
,
,
,
,
,
,
,
1
,
,
, 1
2
+













 +
+
× γ
γ
τ
α
ξ (8a)
( ) ( )
( )
( )
( )
( )
( )
( ) ( )
[ ] ( )
( ) ( )
[ ] ( )
[ ]
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
[ ] ( )
( ) ( )
[ ] ( )
[ ]





















∫ +
+
−
−
+
∫ +
−






∫
+
+






∫
+






∫
=
∫ +
+
−
−
+
∫ +
−






∫
+
+






∫
+






∫
=
t
V
I
V
I
V
t
V
V
V
t
V
t
V
t
V
t
V
I
V
I
I
t
I
I
I
t
I
t
I
t
I
d
z
y
x
V
z
y
x
I
T
z
y
x
k
z
y
x
f
d
z
y
x
V
T
z
y
x
k
d
z
z
y
x
V
T
z
y
x
D
z
d
y
z
y
x
V
T
z
y
x
D
y
d
x
z
y
x
V
T
z
y
x
D
x
t
z
y
x
V
d
z
y
x
V
z
y
x
I
T
z
y
x
k
z
y
x
f
d
z
y
x
I
T
z
y
x
k
d
z
z
y
x
I
T
z
y
x
D
z
d
y
z
y
x
I
T
z
y
x
D
y
d
x
z
y
x
I
T
z
y
x
D
x
t
z
y
x
I
0
1
2
1
2
,
0
2
1
2
,
0
1
0
1
0
1
2
0
1
2
1
2
,
0
2
1
2
,
0
1
0
1
0
1
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
τ
τ
α
τ
α
τ
τ
α
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
τ
τ
α
τ
α
τ
τ
α
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
(9a)
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )





















∫
−
−
∫
+
+






∫
Φ
+
+






∫
Φ
+






∫
Φ
=
Φ
∫
−
−
∫
+
+






∫
Φ
+
+






∫
Φ
+






∫
Φ
=
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
t
V
t
V
V
V
t
V
V
t
V
V
t
V
V
V
t
I
t
I
I
I
t
I
I
t
I
I
t
I
I
I
d
z
y
x
V
T
z
y
x
k
d
z
y
x
V
T
z
y
x
k
z
y
x
f
d
z
z
y
x
T
z
y
x
D
z
d
y
z
y
x
T
z
y
x
D
y
d
x
z
y
x
T
z
y
x
D
x
t
z
y
x
d
z
y
x
I
T
z
y
x
k
d
z
y
x
I
T
z
y
x
k
z
y
x
f
d
z
z
y
x
T
z
y
x
D
z
d
y
z
y
x
T
z
y
x
D
y
d
x
z
y
x
T
z
y
x
D
x
t
z
y
x
0
0
2
,
0
1
0
1
0
1
2
0
0
2
,
0
1
0
1
0
1
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
τ
τ
τ
τ
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
τ
τ
τ
τ
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
(10a)
We determine average values of the second-order approximations of the required functions by
using the following standard relations [21,31,32]
( ) ( )
[ ]
∫ ∫ ∫ ∫ −
Θ
=
Θ
0 0 0 0
1
2
2 ,
,
,
,
,
,
1 x y z
L L L
z
y
x
t
d
x
d
y
d
z
d
t
z
y
x
t
z
y
x
L
L
L
ρ
ρ
α ρ . (11)
Relations for the average values α2ρ could be obtain by substitution of the second-order approxi-
mations of the considered concentrations (8a)-(10a) and their the first-order approximations into
the relation (11)
( )
∫ ∫ ∫
=
x y z
L L L
C
z
y
x
С x
d
y
d
z
d
z
y
x
f
L
L
L 0 0 0
2 ,
,
1
α , (12)
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
49
( ) ( )
]}
( )











+
−





 −
+
−
+
=
+
+
+
−
+









+
−
∫ ∫ ∫
−
−
+
+
+
=
,
4
4
4
2
1
2
1
,
,
1
4
1
2
1
4
3
1
3
4
2
3
4
2
00
00
2
10
01
2
1
11
20
0 0 0
10
2
00
2
00
2
10
01
00
2
B
A
B
A
B
y
B
y
B
A
B
B
A
A
A
A
A
A
x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
A
A
A
A
V
II
IV
V
II
IV
IV
II
L L L
I
z
y
x
IV
V
II
IV
V
II
IV
II
I
x y z
α
α
α
α
α
(13)
where ( ) ( ) ( ) ( )
∫ ∫ ∫ ∫
−
Θ
Θ
=
Θ
0 0 0 0
1
1
, ,
,
,
,
,
,
,
,
,
1 x y z
L L L
j
i
b
a
z
y
x
abij t
d
x
d
y
d
z
d
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
t
L
L
L
A , ×
= 2
00
4 IV
A
B
( )2
00
00
2
00
2
00 2 VV
II
IV
IV A
A
A
A −
−
× , ( +
+
+
+
= 00
00
2
00
10
00
3
00
01
2
00
00
3 4 VV
II
IV
II
IV
IV
IV
IV
IV A
A
A
A
A
A
A
A
A
B
) ( ) ( )
[ ] +
−
+
+
−
+
+
+
+ 2
00
00
10
10
10
00
10
01
00
00
01
2
00 4
1
2
1
2
2 IV
II
IV
VV
IV
II
II
IV
IV
IV
IV
IV A
A
A
A
A
A
A
A
A
A
A
A
2
00
01
00
2 IV
IV
IV A
A
A
+ , ( )





×








∫ ∫ ∫
−
−
−
=
x y z
L L L
I
z
y
x
II
IV
IV
IV x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
A
A
B
0 0 0
20
11
2
01
2
00
2 ,
,
1
4
( ) ( )} [
{ +
+
−
+
+
+
+
+
× 00
01
2
00
00
00
10
10
00
01
00
01
00
2
10
01
00 2
4
2
1
4 IV
IV
IV
IV
II
IV
II
IV
IV
IV
IV
IV
II
IV
II A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
( ) ( )] ( ) (




+
+
∫ ∫ ∫
+
+
+
−
+
+
+ 10
01
0 0 0
2
10
10
00
10
01
00 ,
,
2
2
1
2
1
2 II
IV
L L L
V
z
y
x
VV
IV
II
II
IV
IV A
A
x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
A
A
A
A
x y z
] ( ) ( )] ( ) ( )
[ +
+
+
−
+
+
+
+
+
−
−
+
+ 1
2
1
2
1
2
1 10
10
00
10
01
00
10
01
01
11
20
00
01 VV
IV
II
II
IV
IV
II
IV
IV
IV
VV
II
IV A
A
A
A
A
A
A
A
A
A
A
A
A
]}
00
01
2 IV
IV A
A
+ , ( ) ( )




−
∫ ∫ ∫
−
−
+
+
=
x y z
L L L
I
z
y
x
IV
II
IV
IV
IV x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
A
A
A
B
0 0 0
11
2
10
01
01
00
1 ,
,
1
8
1
2
] ( ) ( )




+
∫ ∫ ∫
−
−
+
+
+
−
x y z
L L L
I
z
y
x
II
II
IV
II
IV
IV
IV
IV
IV
II
IV
IV
II x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
A
A
A
A
A
A
A
A
A
A
A
0 0 0
00
00
10
10
00
01
00
00
2
01
00
01
00
20 ,
,
2
2
4
( ) ( ) ( )] ( )
[ −
+
+
+
+
+
−
−
+
+
+ 10
01
00
10
01
01
11
20
00
10
01
01 1
2
1
2
1 II
IV
IV
II
IV
IV
IV
VV
II
II
IV
IV A
A
A
A
A
A
A
A
A
A
A
A
( ) ]
00
01
10
10
00 2
1
2 IV
IV
VV
IV
II A
A
A
A
A +
+
+
− , ( )




−
∫ ∫ ∫
=
x y z
L L L
I
z
y
x
II
IV x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
B
0 0 0
00
2
01
0 ,
,
1
4
] ( ) ( ) ( )




×
+
+
+
∫ ∫ ∫
−
+
+
+
+
− 10
01
0 0 0
00
2
10
01
2
01
20
11 1
,
,
2
1 II
IV
L L L
V
z
y
x
II
II
IV
IV
II
IV A
A
x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
A
A
A
A
x y z
( ) ( )]2
10
01
01
11
20
00
01 1
2 II
IV
IV
IV
VV
II
IV A
A
A
A
A
A
A +
+
+
−
−
× ,
6
2
3 3
2
3 3
2 B
q
p
q
q
p
q
y +
+
+
−
−
+
= ,
( ) ( )
48
8
2
8
4
216
2
0
3
1
2
1
2
3
2
0
3
2 B
B
B
B
B
B
B
B
B
q −
+
−
−
+
= ,
36
3
12
2
2
0
3
1 B
B
B
B
p −
−
= , 2
2
3 4
8 B
B
y
A −
+
= ,
( ) ( ) ( )
( )
( ) ( ) ( )
( )















∫ ∫ ∫
+
+
∫ ∫ ∫ ∫
−
Θ
Θ
−
=
∫ ∫ ∫
+
+
∫ ∫ ∫ ∫
−
Θ
Θ
−
=
Φ
Θ
Φ
Φ
Θ
Φ
x y z
x y z
V
x y z
x y z
I
L L L
V
z
y
x
L L L
V
z
y
x
VV
L L L
I
z
y
x
L L L
I
z
y
x
II
x
d
y
d
z
d
z
y
x
f
L
L
L
t
d
x
d
y
d
z
d
t
z
y
x
V
T
z
y
x
k
t
L
L
L
A
x
d
y
d
z
d
z
y
x
f
L
L
L
t
d
x
d
y
d
z
d
t
z
y
x
I
T
z
y
x
k
t
L
L
L
A
0 0 0
0 0 0 0
20
2
0 0 0
0 0 0 0
20
2
,
,
1
,
,
,
,
,
,
1
,
,
1
,
,
,
,
,
,
1
α
α
(14)
Value of the parameter α2C and final form of the appropriate equation depend on value of the pa-
rameter γ.
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
50
Farther we analyzed spatio-temporal distributions of concentrations of dopant and radiation de-
fects by using their the second-order approximations. Usually the second-order approximations of
calculated values gives us possibility to obtain main physical results.
3. DISCUSSION
In this section we analyzed dynamics of redistribution of dopant and radiation defects during an-
nealing. The Figs. 2 and 3 show distributions of concentrations of infused and implanted dopants
in heterostructure, which consist of two layers, respectively. In this case we consider doping of
sections of epitaxial layer in situation, when dopant diffusion coefficient in doped materials is
larger, than in nearest areas. The Figs. 2 and 3 show, that presents of interface between materials
of heterostructure gives us possibility to manufacture more compact field-effect transistor in
comparison with field-effect transistor in homogenous materials.
To increase compactness the considered field-effect transistor it is attracted an interest optimiza-
tion of annealing of dopant and/or radiation defects. Reason of this optimization is rather ho-
mogenous distribution of dopant and unnecessary doping of materials of heterostructure outside
the considered sections. During short-time annealing dopant can not achieves interface between
materials of heterostructure. We optimize annealing time framework recently introduced criterion
[18,19,21-23]. Framework the criterion we approximate real distributions of concentrations of
dopants by step-wise functions. We minimize the following mean-squared error to estimate opti-
mal values of annealing time
Fig.2. Typical distributions of concentration of dopant.
The dopant has been infused in the heterostructure from Fig. 1. The direction of the infusion is
perpendicular to interface between epitaxial layer substrate. The distributions have been calcu-
lated under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than
value of dopant diffusion coefficient in substrate. Increasing of number of curves corresponds to
increasing of difference between values of dopant diffusion coefficient in layers of heterostruc-
ture
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
51
x
0.0
0.5
1.0
1.5
2.0
C(x,
Θ
)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.3. Typical distributions of concentration of dopant.
The dopant has been implanted in the heterostructure from Fig. 1. The direction of the implanted
is perpendicular to interface between epitaxial layer substrate. The distributions have been calcu-
lated under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than
value of dopant diffusion coefficient in substrate. Increasing of number of curves corresponds to
increasing of difference between values of dopant diffusion coefficient in layers of heterostruc-
ture. Curves 1 and 3 corresponds to annealing time Θ = 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 2 and 4
corresponds to annealing time Θ=0.0057(Lx
2
+ Ly
2
+Lz
2
)/D0.
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.0
0.1
0.2
0.3
0.4
0.5
Θ
D
0
L
-2
3
2
4
1
Fig.4. Optimized annealing time of infused dopant as functions of parameters.
Curve 1 describes dependence of annealing time on the relation a/L for ξ=γ=0 for equal to each
other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes de-
pendence of annealing time on the parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes de-
pendence of annealing time on the parameter ξ for a/L=1/2 and ξ = γ = 0. Curve 4 describes de-
pendence of annealing time on the parameter γ for a/L=1/2 and ε =ξ=0
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
52
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.00
0.04
0.08
0.12
Θ
D
0
L
-2
3
2
4
1
Fig.5. Optimized annealing time of implanted dopant as functions of parameters.
Curve 1 describes dependence of annealing time on the relation a/L for ξ=γ=0 for equal to each
other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes de-
pendence of annealing time on the parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes de-
pendence of annealing time on the parameter ξ for a/L=1/2 and ξ = γ = 0. Curve 4 describes de-
pendence of annealing time on the parameter γ for a/L=1/2 and ε =ξ=0
( ) ( )
[ ]
∫ ∫ ∫ −
Θ
=
x y z
L L L
z
y
x
x
d
y
d
z
d
z
y
x
z
y
x
C
L
L
L
U
0 0 0
,
,
,
,
,
1
ψ . (15)
Here ψ (x,y,z) is the idealised step-wise distribution of concentration of dopant, which would like
to obtain for maximal decreasing of dimensions of transistors. Dependences of optimal values of
annealing time are presented on Figs. 4 and 5 for diffusion and ion types of doping, respectively.
It should be noted, that after finishing implantation of ions of dopant it is necessary to anneal of
radiation of defects. It could be find spreading of distribution of dopant during the annealing. In
the ideal case distribution of dopant achieves interface between materials of heterostructure dur-
ing annealing of radiation defects. It is necessary to anneal dopant after finishing of annealing of
radiation defects in the case, when the dopant did not achieves the interface between layers of
heterostructure during annealing of radiation defects. In this situation optimal value of continu-
ance of additional annealing is smaller, than continuance of annealing of infused dopant. It should
be noted, that introduced approach to increase integration rate of field-effect transistors gives us
possibility to simplify their common construction.
4. CONCLUSIONS
In this paper we introduce an approach to increase integration rate of field-effect heterotransis-
tors. Framework the approach one should manufacture a heterostructure with special construction.
After that appropriate areas of the heterostructure with account construction should be doped by
diffusion or ion implantation. After the doping dopant and/or radiation defects should be an-
nealed. It has been formulated a recommendation to optimize annealing to
The approach based on manufacture heterostructure with special construction, doping of required
areas of heterostructure by dopant diffusion or ion implantation and optimization of annealing of
dopant and/or radiation defects. The optimization of annealing gives us possibility to decrease
dimensions of transistors with increasing their integration rate. At the same time one can obtain
simplification of construction of integrated circuits.
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
53
ACKNOWLEDGMENTS
This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government,
grant of Scientific School of Russia, the agreement of August 27, 2013 № 02.В.49.21.0003 be-
tween The Ministry of education and science of the Russian Federation and Lobachevsky State
University of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Nov-
gorod State University of Architecture and Civil Engineering.
REFERENCES
[1] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980).
[2] A.G. Alexenko, I.I. Shagurin. Microcircuitry. Moscow: Radio and communication, 1990.
[3] Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[4] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,
Mos-cow, 1991).
[5] V.I. Lachin, N.S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001.
[6] A. Polishscuk. "Ultrashallow p+−n junctions in silicon: electron-beam diagnostics of sub-surface re-
gion.". Modern Electronics. Issue 12. P. 8-11 (2004).
[7] G. Volovich. "Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum
dots for high-throughput testing". Modern Electronics. Issue 2. P. 10-17 (2006).
[8] A. Kerentsev, V. Lanin. Design and technological features of MOSFETs, Power Electronics. Issue 1.
P. 34 (2008).
[9] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit-
vin, V.V. Milenin, A.V. Sachenko. "Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of cur-
rent flow in rectifying and nonrectifying contacts". Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[10] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. "Au–TiBx−n-6H-SiC Schottky
barrier diodes: the features of current flow in rectifying and nonrectifying contacts.". Semiconduc-
tors. Vol. 43 (7). P. 971-974 (2009).
[11] E.I. Gol’dman, N.F. Kukharskaya, V.G. Naryshkina, G.V. Chuchueva. "The manifestation of exces-
sive centers of the electron-hole pair generation, appeared as a result to field and thermal stresses, and
their subsequent annihilation in the dynamic current-voltage characteristics of Si-MOS-structures with
the ultrathin oxide". Semiconductors. Vol. 45 (7). P. 974-979 (2011).
[12] T.Y. Peng, S.Y. Chen, L.C. Hsieh C.K. Lo, Y.W. Huang, W.C. Chien, Y.D. Yao. "Impedance behav-
ior of spin-valve transistor". J. Appl. Phys. Vol. 99 (8). P. 08H710-08H712 (2006).
[13] W. Ou-Yang, M. Weis, D. Taguchi, X. Chen, T. Manaka, M. Iwamoto. "Modeling of threshold volt-
age in pentacene organic field-effect transistors". J. Appl. Phys. Vol. 107 (12). P. 124506-124510
(2010).
[14] J. Wang, L. Wang, L. Wang, Z. Hao, Yi Luo, A. Dempewolf, M. M ller, F. Bertram, J rgen Christen.
"An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop
origin of InGaN based light-emitting diodes". J. Appl. Phys. Vol. 112 (2). P. 023107-023112 (2012).
[15] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. "Dopant distribution in the re-
crystallization transient at the maximum melt depth induced by laser annealing". Appl. Phys. Lett. 89
(17), 172111-172114 (2006).
[16] H.T. Wang, L.S. Tan, E. F. Chor. "Pulsed laser annealing of Be-implanted GaN". J. Appl. Phys. 98
(9), 094901-094905 (2006).
[17] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.
Drozdov, V.D. Skupov. "Diffusion processes in semiconductor structures during microwave anneal-
ing". Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
[18] E.L. Pankratov. "Dopant Diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity". Russian Microelectronics. 2007. V.36 (1). P. 33-39.
[19] E.L. Pankratov. "Redistribution of a dopant during annealing of radiation defects in a multilayer struc-
ture by laser scans for production of an implanted-junction rectifier". Int. J. Nanoscience. Vol. 7 (4-5).
P. 187–197 (2008).
[20] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in
Russian).
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015
54
[21] E.L. Pankratov, E.A. Bulaeva. "Doping of materials during manufacture p–n-junctions and bipolar
transistors. analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants". Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
[22] E.L. Pankratov, E.A. Bulaeva. "Optimization of manufacture of field-effect heterotransistors without
p-n-junctions to decrease their dimensions". International Journal of Recent Advances in Physics.
Vol. 3 (3). P. 1-16 (2014).
[23] E.L. Pankratov, E.A. Bulaeva. "Analytical approach to model mass transport in a heterostructure dur-
ing manufacturing an implanted-junction rectifiers". Quantum matter. Vol. 3 (5). P. 454-459 (2014).
[24] E.I. Zorin, P.V. Pavlov and D.I. Tetelbaum. Ion doping of semiconductors. Moscow: Energy, 1975.
[25] P.M. Fahey, P.B. Griffin, J.D. Plummer. "Point defects and dopant diffusion in silicon". Rev. Mod.
Phys. 1989. V. 61. № 2. P. 289-388.
[26] V.L. Vinetskiy, G.A. Kholodar'. Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[27] W.-X. Ni, G.V. Hansson, J.-E. Sundgren, L. Hultman, L.R. Wallenberg, J.-Y. Yao, L.C. Markert, J.E.
Greene, Phys. Rev. B. Vol. 46 (12). P. 7551-7558 (1992)
[28] B.A. Zon, S.B. Ledovsky, A.N. Likholet. Tech. Phys. Vol. 45 (4). P. 419-424 (2000).
[29] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Ratzke, H. R. Schober, S.K. Sharma,
H. Teichler. Reviews of modern physics. Vol. 75 (1). P. 237-280 (2003).
[30] S.A. Bahrani, Y. Jannot, A. Degiovanni. J. Appl. Phys. Vol. 114 (14). P. 143509-143516 (2014).
[31] Yu.D. Sokolov. "On the determination of the dynamic forces in mine hoist ropes". Applied Mechan-
ics. Vol.1 (1). P. 23-35 (1955).
[32] E.L. Pankratov. "Dynamics of delta-dopant redistribution during heterostructure growth". The
Europe-an Physical Journal B. 2007. V. 57, №3. P. 251-256.
Authors:
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor
course in Radiophysical Department of Nizhny Novgorod State University. He has 110 published papers in
area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2).
She has 63 published papers in area of her researches.

More Related Content

What's hot

OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...BRNSS Publication Hub
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET Journal
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformRadix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformIJERA Editor
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlineareSAT Publishing House
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableAlexander Decker
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...msejjournal
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Sciencetheijes
 

What's hot (15)

OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformRadix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier Transform
 
Maths ms
Maths msMaths ms
Maths ms
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinear
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Science
 

Similar to OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS. AN APPROACH TO SIMPLIFY CONSTRUCTION OF THE HETEROTRANSISTORS

OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...BRNSS Publication Hub
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ijmejournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 

Similar to OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS. AN APPROACH TO SIMPLIFY CONSTRUCTION OF THE HETEROTRANSISTORS (20)

OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 

More from ijrap

Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...ijrap
 
Dark Energy Discriminant Theory
Dark Energy Discriminant TheoryDark Energy Discriminant Theory
Dark Energy Discriminant Theoryijrap
 
International Journal on Soft Computing, Artificial Intelligence and Applicat...
International Journal on Soft Computing, Artificial Intelligence and Applicat...International Journal on Soft Computing, Artificial Intelligence and Applicat...
International Journal on Soft Computing, Artificial Intelligence and Applicat...ijrap
 
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURESSOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURESijrap
 
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCHMASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCHijrap
 
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...ijrap
 
3rd International Conference on Integrating Technology in Education (ITE 2022)
3rd International Conference on Integrating Technology in Education (ITE 2022)3rd International Conference on Integrating Technology in Education (ITE 2022)
3rd International Conference on Integrating Technology in Education (ITE 2022)ijrap
 
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESSA SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESSijrap
 
9320ijrap01.pdf
9320ijrap01.pdf9320ijrap01.pdf
9320ijrap01.pdfijrap
 
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVETHE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVEijrap
 
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...ijrap
 
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVETHE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVEijrap
 
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)ijrap
 
The Concept of Space and Time: An African Perspective
The Concept of Space and Time: An African PerspectiveThe Concept of Space and Time: An African Perspective
The Concept of Space and Time: An African Perspectiveijrap
 
IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?ijrap
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)ijrap
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)ijrap
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)ijrap
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)ijrap
 
IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?ijrap
 

More from ijrap (20)

Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
 
Dark Energy Discriminant Theory
Dark Energy Discriminant TheoryDark Energy Discriminant Theory
Dark Energy Discriminant Theory
 
International Journal on Soft Computing, Artificial Intelligence and Applicat...
International Journal on Soft Computing, Artificial Intelligence and Applicat...International Journal on Soft Computing, Artificial Intelligence and Applicat...
International Journal on Soft Computing, Artificial Intelligence and Applicat...
 
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURESSOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
 
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCHMASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
 
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
 
3rd International Conference on Integrating Technology in Education (ITE 2022)
3rd International Conference on Integrating Technology in Education (ITE 2022)3rd International Conference on Integrating Technology in Education (ITE 2022)
3rd International Conference on Integrating Technology in Education (ITE 2022)
 
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESSA SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
 
9320ijrap01.pdf
9320ijrap01.pdf9320ijrap01.pdf
9320ijrap01.pdf
 
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVETHE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
 
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
 
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVETHE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
 
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
 
The Concept of Space and Time: An African Perspective
The Concept of Space and Time: An African PerspectiveThe Concept of Space and Time: An African Perspective
The Concept of Space and Time: An African Perspective
 
IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
 
IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?
 

Recently uploaded

Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 

Recently uploaded (20)

Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 

OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS. AN APPROACH TO SIMPLIFY CONSTRUCTION OF THE HETEROTRANSISTORS

  • 1. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 DOI : 10.14810/ijrap.2015.4103 43 OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS. AN AP- PROACH TO SIMPLIFY CONSTRUCTION OF THE HET- EROTRANSISTORS E.L. Pankratov1,3 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia 3 Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi- novskoe Shosse, Nizhny Novgorod, 603950, Russia ABSTRACT In this work we introduce an approach to decrease dimensions of a field-effect heterotransistors. The ap- proach based on manufacturing field-effect transistors in heterostructures and optimization of technologi- cal processes. At the same time we consider possibility to simplify their constructions. KEYWORDS Field-effect heterotransistors; simplification of construction of heterotransistors; increasing integration rate of transistors; optimization of manufacturing of heterotransistors; analytical modelling of technologi- cal process 1. INTRODUCTION One of the actual questions of the solid state electronics is increasing of integration rate of ele- ments of integrated circuits [1-14]. At the same time with decreasing of integration rate of ele- ments of integrated circuits one can find decreasing of dimensions of the elements. In the present time it is known several approaches to decrease dimensions of elements of integrated circuits and their discrete analogs. Two of them are laser and microwave types of annealing of dopants and radiation defects [15-17]. Using this approaches leads to generation inhomogenous distribution of temperature in annealed materials. Just this inhomogeneity leads to decreasing dimensions of elements of integrated circuits and their discrete analogs. Another approach to decrease the above dimensions is doping required areas of epitaxial layers of heterostructures by dopant diffusion or ion implantation. However optimization of annealing of dopant and/or radiation defects is re- quired in this case [18,19]. It is also attracted an interest radiation processing of doped materials. The processing leads to changing distribution of concentration of dopants [20]. The changing could also leads to decrease dimensions of elements of integrated circuits and their discrete ana- logs [21-23].
  • 2. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 44 Source Source Gate Gate Drain Substrate Fig. 1. Heterostructure, which consist of a substrate and epitaxial layer with several sections. Structure in deep of heterostructure In this paper we analysed redistribution of concentration of dopant with account redistribution of radiation defects in the considered heterostructure, which is presented in Fig. 1. Some sections have been manufactured in epitaxial layer so, as it is shown in the Fig. 1. Dopants have been in- fused or implanted in the sections to produce required types of conductivity (n or p). Farther an- nealing of dopant and/or radiation defects should be annealed. Main aim of our paper is analysis of dynamic of redistribution of dopant and radiation defects in considered heterostructure during annealing. 2. METHOD OF SOLUTION To solve our aims we determine spatio-temporal distribution of concentration of dopant. To de- termine the distribution one shall solve the following equation [1,3-5] ( ) ( ) ( ) ( )       +       +       = z t z y x C D z y t z y x C D y x t z y x C D x t t z y x C C C C ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , . (1) Boundary and initial conditions for the equation are ( ) 0 , , , 0 = ∂ ∂ = x x t z y x C , ( ) 0 , , , = ∂ ∂ = x L x x t z y x C , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x C , ( ) 0 , , , = ∂ ∂ = y L x y t z y x C , (2) ( ) 0 , , , 0 = ∂ ∂ = z z t z y x C , ( ) 0 , , , = ∂ ∂ = z L x z t z y x C , C(x,y,z,0)=f (x,y,z). The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coeffi- cient is different in different materials. The diffusion coefficient is also depends on tem- perature of annealing with account Arrhenius law. Dependences of dopant diffusion coef- ficients could be approximated by the following function [3,24-26] ( ) ( ) ( ) ( ) ( ) ( )         + +         + = 2 * 2 2 * 1 , , , , , , 1 , , , , , , 1 , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D D L C ς ς ξ γ γ . (3) The multiplier DL (x,y,z,T) depends on coordinate and temperature (due to Arrhenius law); P (x,y,z,T) is the limit of solubility of dopant; the parameter γ is different in different materials and should be integer in the following interval γ ∈[1,3] [3]; the function V(x,y,z,t) describes the spa-
  • 3. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 45 tio-temporal distribution of concentration of radiation vacancies; parameter V* describes the equi- librium concentration of vacancies. Dependence of dopant diffusion coefficient on concentration has been described in details in [3]. It should be noted, that diffusive type of doping did not leads to radiation damage of materials and ζ1=ζ2=0. We determine spatio-temporal distributions of con- centrations point radiation defects by solving the following system of equations [25,26] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                −       ∂ ∂ ∂ ∂ + × × −       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ −       ∂ ∂ ∂ ∂ + × × −       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ t z y x V T z y x k z t z y x V T z y x D z t z y x V T z y x k t z y x I y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V t z y x I T z y x k z t z y x I T z y x D z t z y x V T z y x k t z y x I y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I V V V V I V V I I I V I I I , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2 , , 2 , , (4) with boundary and boundary conditions ( ) 0 , , , 0 = ∂ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ ∂ = y L y y t z y x ρ , (5) ( ) 0 , , , 0 = ∂ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ ∂ = z L z z t z y x ρ , ρ(x,y,z,0)=fρ(x,y,z). Here ρ =I,V; the function I (x,y,z,t) describes the spatio-temporal distribution of concentration of interstitials; Dρ(x,y,z,T) are the diffusion coefficients of vacancies and interstitials; terms V2 (x,y,z,t) and I2 (x,y,z,t) corresponds to generation of divacancies and diinterstitials, respectively; kI,V(x,y,z,T), kI,I(x,y,z, T) and kV,V(x,y,z,T) are the parameters of recombination of point radiation defects and generation their complexes, respectively. Spatio-temporal distributions of concentrations of simplest complexes of radiation defects (diva- cancies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z,t)) have been determine by solving by solving the following system of equations [25,26] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                − +       Φ + +       Φ +       Φ = Φ − +       Φ + +       Φ +       Φ = Φ Φ Φ Φ Φ Φ Φ t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z y t z y x T z y x D y x t z y x T z y x D x t t z y x t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V V V V V V I I I I I I I I I I , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2 , 2 , ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ (6)
  • 4. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 46 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                − +       Φ + +       Φ +       Φ = Φ − +       Φ + +       Φ +       Φ = Φ Φ Φ Φ Φ Φ Φ t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z y t z y x T z y x D y x t z y x T z y x D x t t z y x t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V V V V V V I I I I I I I I I I , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2 , 2 , ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ with boundary and initial conditions ( ) 0 , , , 0 = ∂ Φ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = z L z z t z y x ρ , ΦI(x,y,z,0)=fΦI(x,y,z), ΦV(x,y,z,0)=fΦV(x,y,z). (7) Here DΦI(x,y,z,T) and DΦV(x,y,z,T) are diffusion coefficients of diinterstitials and divacancies; kI (x,y,z,T) and kV (x,y,z,T) are parameters of decay of complexes. It should be noted, that nonlinear equations with space and time varying coefficients are usually used to describe physical processes. Although the equations are usually solved in different limit- ing cases [27-30]. Spatio-temporal distribution of concentration of dopant have been calculated by using method of averaging of function corrections [21,31] with decreased quantity of iteration steps [32]. Framework this approach we used solutions of the above differential equations without any nonlinearity and with averaged values of diffusion coefficients and thermal diffusivity D0L, D0I, D0V, D0ΦI, D0ΦV, α0. The solutions could be written as ( ) ( ) ( ) ( ) ( ) ∑ + = ∞ =1 1 2 1 , , , n nC n n n nC z y x z y x t e z c y c x c F L L L L L L t z y x C , ( ) ( ) ( ) ( ) ( ) ∑ + = ∞ =1 1 2 1 , , , n nI n n n nI z y x z y x t e z c y c x c F L L L L L L t z y x I , ( ) ( ) ( ) ( ) ( ) ∑ + = ∞ =1 1 2 1 , , , n nV n n n nC z y x z y x t e z c y c x c F L L L L L L t z y x V , ( ) ( ) ( ) ( ) ( ) ∑ + = Φ ∞ = Φ Φ 1 1 2 1 , , , n n n n n n z y x z y x I t e z c y c x c F L L L L L L t z y x I I , ( ) ( ) ( ) ( ) ( ) ∑ + = Φ ∞ = Φ Φ 1 1 2 1 , , , n n n n n n z y x z y x V t e z c y c x c F L L L L L L t z y x V V , where ( )                 + + − = 2 2 2 0 2 2 1 1 1 exp z y x n L L L t D n t e ρ ρ π , ( ) ( ) ( ) ( ) ∫ ∫ ∫ = x y z L L L n n n n u d v d w d w v u f w c v c u c F 0 0 0 , , ρ ρ , cn(χ) =cos(πnχ/Lχ). The second-order approximations and approximations with higher orders of concentration of do- pant, concentrations of radiation defects and temperature have been calculated framework stan- dard iteration procedure of method of averaging of function corrections [21,31,32]. Framework the approach to calculate n-th-order approximations of the above concentrations and temperature
  • 5. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 47 we replace the required functions C (x,y,z,t), I (x,y,z,t), V (x,y,z,t), ΦI (x,y,z,t) and ΦV (x,y,z,t) in the right sides of Eqs. (1), (4), (6) on the following sums αnρ+ρn-1(x,y,z,t). The replacement gives us possibility to obtain the following equations for the second-order approximation of above concen- trations ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( )      ×           + +         + + = ∗ ∗ T z y x P t z y x C V t z y x V V t z y x V T z y x D x t t z y x C C L , , , , , , 1 , , , , , , 1 , , , , , , 1 2 2 2 2 1 2 γ γ α ξ ς ς ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )      +           + +         + + +     × ∗ ∗ y t z y x C T z y x P t z y x C V t z y x V V t z y x V T z y x D y x t z y x C C L ∂ ∂ α ξ ς ς ∂ ∂ ∂ ∂ γ γ , , , , , , , , , 1 , , , , , , 1 , , , , , , 1 1 2 2 2 2 1 1 (8) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( )                   + +           + + + ∗ ∗ V t z y x V V t z y x V T z y x P t z y x C z t z y x C T z y x D z C L , , , , , , 1 , , , , , , 1 , , , , , , 1 2 2 2 1 2 1 ς ς α ξ ∂ ∂ ∂ ∂ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] ( ) ( ) [ ]                    + − − + + −       + +       +       = + − − + + −       + +       +       = 2 1 2 , 1 2 1 2 , 1 1 1 2 2 1 2 , 1 2 1 2 , 1 1 1 2 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , t z y x V T z y x k t z y x V t z y x I T z y x k z t z y x V T z y x D z y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V t z y x I T z y x k t z y x V t z y x I T z y x k z t z y x I T z y x D z y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I V V V V I V I V V V I I I V I V I I I I α α α ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ α α α ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ (9) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                − +       Φ + +       Φ +       Φ = Φ − +       Φ + +       Φ +       Φ = Φ Φ Φ Φ Φ Φ Φ t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z x t z y x T z y x D y x t z y x T z y x D x t t z y x t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z x t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V V V V V V I I I I I I I I I I , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2 , 1 1 1 2 2 , 1 1 1 2 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ (10) Farther we obtain the second-order approximations of concentrations of dopant and radiation de- fects by integration of the left and right sides of the Eqs. (8)-(10) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( )     ∫ ×           + +         + = ∗ ∗ t C L T z y x P z y x C V z y x V V z y x V T z y x D x t z y x C 0 1 2 2 2 2 1 2 , , , , , , 1 , , , , , , 1 , , , , , , γ γ τ α ξ τ ς τ ς ∂ ∂ ( ) ( ) ( ) ( ) ( ) [ ] ( )      ∫ ×           + +         + +     × ∗ ∗ t C T z y x P z y x C V z y x V V z y x V y d x z y x C 0 1 2 2 2 2 1 1 , , , , , , 1 , , , , , , 1 , , , γ γ τ α ξ τ ς τ ς ∂ ∂ τ ∂ τ ∂ ( ) ( ) ( ) ( ) ( ) ( )      ∫ ×         + +     × ∗ ∗ t L y z y x C V z y x V V z y x V z y z y x C T z y x D 0 1 2 2 2 1 1 , , , , , , , , , 1 , , , , , , ∂ τ ∂ τ ς τ ς ∂ ∂ ∂ τ ∂
  • 6. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 48 ( ) ( ) [ ] ( ) ( ) z y x f T z y x P z y x C T z y x D C C L , , , , , , , , 1 , , , 1 2 +               + + × γ γ τ α ξ (8a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) [ ] ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) [ ] ( ) [ ]                      ∫ + + − − + ∫ + −       ∫ + +       ∫ +       ∫ = ∫ + + − − + ∫ + −       ∫ + +       ∫ +       ∫ = t V I V I V t V V V t V t V t V t V I V I I t I I I t I t I t I d z y x V z y x I T z y x k z y x f d z y x V T z y x k d z z y x V T z y x D z d y z y x V T z y x D y d x z y x V T z y x D x t z y x V d z y x V z y x I T z y x k z y x f d z y x I T z y x k d z z y x I T z y x D z d y z y x I T z y x D y d x z y x I T z y x D x t z y x I 0 1 2 1 2 , 0 2 1 2 , 0 1 0 1 0 1 2 0 1 2 1 2 , 0 2 1 2 , 0 1 0 1 0 1 2 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , τ τ α τ α τ τ α τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ τ τ α τ α τ τ α τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ (9a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                      ∫ − − ∫ + +       ∫ Φ + +       ∫ Φ +       ∫ Φ = Φ ∫ − − ∫ + +       ∫ Φ + +       ∫ Φ +       ∫ Φ = Φ Φ Φ Φ Φ Φ Φ Φ Φ t V t V V V t V V t V V t V V V t I t I I I t I I t I I t I I I d z y x V T z y x k d z y x V T z y x k z y x f d z z y x T z y x D z d y z y x T z y x D y d x z y x T z y x D x t z y x d z y x I T z y x k d z y x I T z y x k z y x f d z z y x T z y x D z d y z y x T z y x D y d x z y x T z y x D x t z y x 0 0 2 , 0 1 0 1 0 1 2 0 0 2 , 0 1 0 1 0 1 2 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , τ τ τ τ τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ τ τ τ τ τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ (10a) We determine average values of the second-order approximations of the required functions by using the following standard relations [21,31,32] ( ) ( ) [ ] ∫ ∫ ∫ ∫ − Θ = Θ 0 0 0 0 1 2 2 , , , , , , 1 x y z L L L z y x t d x d y d z d t z y x t z y x L L L ρ ρ α ρ . (11) Relations for the average values α2ρ could be obtain by substitution of the second-order approxi- mations of the considered concentrations (8a)-(10a) and their the first-order approximations into the relation (11) ( ) ∫ ∫ ∫ = x y z L L L C z y x С x d y d z d z y x f L L L 0 0 0 2 , , 1 α , (12)
  • 7. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 49 ( ) ( ) ]} ( )            + −       − + − + = + + + − +          + − ∫ ∫ ∫ − − + + + = , 4 4 4 2 1 2 1 , , 1 4 1 2 1 4 3 1 3 4 2 3 4 2 00 00 2 10 01 2 1 11 20 0 0 0 10 2 00 2 00 2 10 01 00 2 B A B A B y B y B A B B A A A A A A x d y d z d z y x f L L L A A A A A A V II IV V II IV IV II L L L I z y x IV V II IV V II IV II I x y z α α α α α (13) where ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ − Θ Θ = Θ 0 0 0 0 1 1 , , , , , , , , , , 1 x y z L L L j i b a z y x abij t d x d y d z d t z y x V t z y x I T z y x k t L L L A , × = 2 00 4 IV A B ( )2 00 00 2 00 2 00 2 VV II IV IV A A A A − − × , ( + + + + = 00 00 2 00 10 00 3 00 01 2 00 00 3 4 VV II IV II IV IV IV IV IV A A A A A A A A A B ) ( ) ( ) [ ] + − + + − + + + + 2 00 00 10 10 10 00 10 01 00 00 01 2 00 4 1 2 1 2 2 IV II IV VV IV II II IV IV IV IV IV A A A A A A A A A A A A 2 00 01 00 2 IV IV IV A A A + , ( )      ×         ∫ ∫ ∫ − − − = x y z L L L I z y x II IV IV IV x d y d z d z y x f L L L A A A A B 0 0 0 20 11 2 01 2 00 2 , , 1 4 ( ) ( )} [ { + + − + + + + + × 00 01 2 00 00 00 10 10 00 01 00 01 00 2 10 01 00 2 4 2 1 4 IV IV IV IV II IV II IV IV IV IV IV II IV II A A A A A A A A A A A A A A A ( ) ( )] ( ) (     + + ∫ ∫ ∫ + + + − + + + 10 01 0 0 0 2 10 10 00 10 01 00 , , 2 2 1 2 1 2 II IV L L L V z y x VV IV II II IV IV A A x d y d z d z y x f L L L A A A A A A x y z ] ( ) ( )] ( ) ( ) [ + + + − + + + + + − − + + 1 2 1 2 1 2 1 10 10 00 10 01 00 10 01 01 11 20 00 01 VV IV II II IV IV II IV IV IV VV II IV A A A A A A A A A A A A A ]} 00 01 2 IV IV A A + , ( ) ( )     − ∫ ∫ ∫ − − + + = x y z L L L I z y x IV II IV IV IV x d y d z d z y x f L L L A A A A A B 0 0 0 11 2 10 01 01 00 1 , , 1 8 1 2 ] ( ) ( )     + ∫ ∫ ∫ − − + + + − x y z L L L I z y x II II IV II IV IV IV IV IV II IV IV II x d y d z d z y x f L L L A A A A A A A A A A A A A 0 0 0 00 00 10 10 00 01 00 00 2 01 00 01 00 20 , , 2 2 4 ( ) ( ) ( )] ( ) [ − + + + + + − − + + + 10 01 00 10 01 01 11 20 00 10 01 01 1 2 1 2 1 II IV IV II IV IV IV VV II II IV IV A A A A A A A A A A A A ( ) ] 00 01 10 10 00 2 1 2 IV IV VV IV II A A A A A + + + − , ( )     − ∫ ∫ ∫ = x y z L L L I z y x II IV x d y d z d z y x f L L L A A B 0 0 0 00 2 01 0 , , 1 4 ] ( ) ( ) ( )     × + + + ∫ ∫ ∫ − + + + + − 10 01 0 0 0 00 2 10 01 2 01 20 11 1 , , 2 1 II IV L L L V z y x II II IV IV II IV A A x d y d z d z y x f L L L A A A A A A x y z ( ) ( )]2 10 01 01 11 20 00 01 1 2 II IV IV IV VV II IV A A A A A A A + + + − − × , 6 2 3 3 2 3 3 2 B q p q q p q y + + + − − + = , ( ) ( ) 48 8 2 8 4 216 2 0 3 1 2 1 2 3 2 0 3 2 B B B B B B B B B q − + − − + = , 36 3 12 2 2 0 3 1 B B B B p − − = , 2 2 3 4 8 B B y A − + = , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                ∫ ∫ ∫ + + ∫ ∫ ∫ ∫ − Θ Θ − = ∫ ∫ ∫ + + ∫ ∫ ∫ ∫ − Θ Θ − = Φ Θ Φ Φ Θ Φ x y z x y z V x y z x y z I L L L V z y x L L L V z y x VV L L L I z y x L L L I z y x II x d y d z d z y x f L L L t d x d y d z d t z y x V T z y x k t L L L A x d y d z d z y x f L L L t d x d y d z d t z y x I T z y x k t L L L A 0 0 0 0 0 0 0 20 2 0 0 0 0 0 0 0 20 2 , , 1 , , , , , , 1 , , 1 , , , , , , 1 α α (14) Value of the parameter α2C and final form of the appropriate equation depend on value of the pa- rameter γ.
  • 8. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 50 Farther we analyzed spatio-temporal distributions of concentrations of dopant and radiation de- fects by using their the second-order approximations. Usually the second-order approximations of calculated values gives us possibility to obtain main physical results. 3. DISCUSSION In this section we analyzed dynamics of redistribution of dopant and radiation defects during an- nealing. The Figs. 2 and 3 show distributions of concentrations of infused and implanted dopants in heterostructure, which consist of two layers, respectively. In this case we consider doping of sections of epitaxial layer in situation, when dopant diffusion coefficient in doped materials is larger, than in nearest areas. The Figs. 2 and 3 show, that presents of interface between materials of heterostructure gives us possibility to manufacture more compact field-effect transistor in comparison with field-effect transistor in homogenous materials. To increase compactness the considered field-effect transistor it is attracted an interest optimiza- tion of annealing of dopant and/or radiation defects. Reason of this optimization is rather ho- mogenous distribution of dopant and unnecessary doping of materials of heterostructure outside the considered sections. During short-time annealing dopant can not achieves interface between materials of heterostructure. We optimize annealing time framework recently introduced criterion [18,19,21-23]. Framework the criterion we approximate real distributions of concentrations of dopants by step-wise functions. We minimize the following mean-squared error to estimate opti- mal values of annealing time Fig.2. Typical distributions of concentration of dopant. The dopant has been infused in the heterostructure from Fig. 1. The direction of the infusion is perpendicular to interface between epitaxial layer substrate. The distributions have been calcu- lated under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate. Increasing of number of curves corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostruc- ture
  • 9. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 51 x 0.0 0.5 1.0 1.5 2.0 C(x, Θ ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.3. Typical distributions of concentration of dopant. The dopant has been implanted in the heterostructure from Fig. 1. The direction of the implanted is perpendicular to interface between epitaxial layer substrate. The distributions have been calcu- lated under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate. Increasing of number of curves corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostruc- ture. Curves 1 and 3 corresponds to annealing time Θ = 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 2 and 4 corresponds to annealing time Θ=0.0057(Lx 2 + Ly 2 +Lz 2 )/D0. 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.0 0.1 0.2 0.3 0.4 0.5 Θ D 0 L -2 3 2 4 1 Fig.4. Optimized annealing time of infused dopant as functions of parameters. Curve 1 describes dependence of annealing time on the relation a/L for ξ=γ=0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes de- pendence of annealing time on the parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes de- pendence of annealing time on the parameter ξ for a/L=1/2 and ξ = γ = 0. Curve 4 describes de- pendence of annealing time on the parameter γ for a/L=1/2 and ε =ξ=0
  • 10. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 52 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.00 0.04 0.08 0.12 Θ D 0 L -2 3 2 4 1 Fig.5. Optimized annealing time of implanted dopant as functions of parameters. Curve 1 describes dependence of annealing time on the relation a/L for ξ=γ=0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes de- pendence of annealing time on the parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes de- pendence of annealing time on the parameter ξ for a/L=1/2 and ξ = γ = 0. Curve 4 describes de- pendence of annealing time on the parameter γ for a/L=1/2 and ε =ξ=0 ( ) ( ) [ ] ∫ ∫ ∫ − Θ = x y z L L L z y x x d y d z d z y x z y x C L L L U 0 0 0 , , , , , 1 ψ . (15) Here ψ (x,y,z) is the idealised step-wise distribution of concentration of dopant, which would like to obtain for maximal decreasing of dimensions of transistors. Dependences of optimal values of annealing time are presented on Figs. 4 and 5 for diffusion and ion types of doping, respectively. It should be noted, that after finishing implantation of ions of dopant it is necessary to anneal of radiation of defects. It could be find spreading of distribution of dopant during the annealing. In the ideal case distribution of dopant achieves interface between materials of heterostructure dur- ing annealing of radiation defects. It is necessary to anneal dopant after finishing of annealing of radiation defects in the case, when the dopant did not achieves the interface between layers of heterostructure during annealing of radiation defects. In this situation optimal value of continu- ance of additional annealing is smaller, than continuance of annealing of infused dopant. It should be noted, that introduced approach to increase integration rate of field-effect transistors gives us possibility to simplify their common construction. 4. CONCLUSIONS In this paper we introduce an approach to increase integration rate of field-effect heterotransis- tors. Framework the approach one should manufacture a heterostructure with special construction. After that appropriate areas of the heterostructure with account construction should be doped by diffusion or ion implantation. After the doping dopant and/or radiation defects should be an- nealed. It has been formulated a recommendation to optimize annealing to The approach based on manufacture heterostructure with special construction, doping of required areas of heterostructure by dopant diffusion or ion implantation and optimization of annealing of dopant and/or radiation defects. The optimization of annealing gives us possibility to decrease dimensions of transistors with increasing their integration rate. At the same time one can obtain simplification of construction of integrated circuits.
  • 11. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 53 ACKNOWLEDGMENTS This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, grant of Scientific School of Russia, the agreement of August 27, 2013 № 02.В.49.21.0003 be- tween The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Nov- gorod State University of Architecture and Civil Engineering. REFERENCES [1] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980). [2] A.G. Alexenko, I.I. Shagurin. Microcircuitry. Moscow: Radio and communication, 1990. [3] Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991). [4] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Mos-cow, 1991). [5] V.I. Lachin, N.S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001. [6] A. Polishscuk. "Ultrashallow p+−n junctions in silicon: electron-beam diagnostics of sub-surface re- gion.". Modern Electronics. Issue 12. P. 8-11 (2004). [7] G. Volovich. "Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing". Modern Electronics. Issue 2. P. 10-17 (2006). [8] A. Kerentsev, V. Lanin. Design and technological features of MOSFETs, Power Electronics. Issue 1. P. 34 (2008). [9] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit- vin, V.V. Milenin, A.V. Sachenko. "Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of cur- rent flow in rectifying and nonrectifying contacts". Semiconductors. Vol. 43 (7). P. 897-903 (2009). [10] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. "Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of current flow in rectifying and nonrectifying contacts.". Semiconduc- tors. Vol. 43 (7). P. 971-974 (2009). [11] E.I. Gol’dman, N.F. Kukharskaya, V.G. Naryshkina, G.V. Chuchueva. "The manifestation of exces- sive centers of the electron-hole pair generation, appeared as a result to field and thermal stresses, and their subsequent annihilation in the dynamic current-voltage characteristics of Si-MOS-structures with the ultrathin oxide". Semiconductors. Vol. 45 (7). P. 974-979 (2011). [12] T.Y. Peng, S.Y. Chen, L.C. Hsieh C.K. Lo, Y.W. Huang, W.C. Chien, Y.D. Yao. "Impedance behav- ior of spin-valve transistor". J. Appl. Phys. Vol. 99 (8). P. 08H710-08H712 (2006). [13] W. Ou-Yang, M. Weis, D. Taguchi, X. Chen, T. Manaka, M. Iwamoto. "Modeling of threshold volt- age in pentacene organic field-effect transistors". J. Appl. Phys. Vol. 107 (12). P. 124506-124510 (2010). [14] J. Wang, L. Wang, L. Wang, Z. Hao, Yi Luo, A. Dempewolf, M. M ller, F. Bertram, J rgen Christen. "An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes". J. Appl. Phys. Vol. 112 (2). P. 023107-023112 (2012). [15] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. "Dopant distribution in the re- crystallization transient at the maximum melt depth induced by laser annealing". Appl. Phys. Lett. 89 (17), 172111-172114 (2006). [16] H.T. Wang, L.S. Tan, E. F. Chor. "Pulsed laser annealing of Be-implanted GaN". J. Appl. Phys. 98 (9), 094901-094905 (2006). [17] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. "Diffusion processes in semiconductor structures during microwave anneal- ing". Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003). [18] E.L. Pankratov. "Dopant Diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity". Russian Microelectronics. 2007. V.36 (1). P. 33-39. [19] E.L. Pankratov. "Redistribution of a dopant during annealing of radiation defects in a multilayer struc- ture by laser scans for production of an implanted-junction rectifier". Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008). [20] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian).
  • 12. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 54 [21] E.L. Pankratov, E.A. Bulaeva. "Doping of materials during manufacture p–n-junctions and bipolar transistors. analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants". Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013). [22] E.L. Pankratov, E.A. Bulaeva. "Optimization of manufacture of field-effect heterotransistors without p-n-junctions to decrease their dimensions". International Journal of Recent Advances in Physics. Vol. 3 (3). P. 1-16 (2014). [23] E.L. Pankratov, E.A. Bulaeva. "Analytical approach to model mass transport in a heterostructure dur- ing manufacturing an implanted-junction rectifiers". Quantum matter. Vol. 3 (5). P. 454-459 (2014). [24] E.I. Zorin, P.V. Pavlov and D.I. Tetelbaum. Ion doping of semiconductors. Moscow: Energy, 1975. [25] P.M. Fahey, P.B. Griffin, J.D. Plummer. "Point defects and dopant diffusion in silicon". Rev. Mod. Phys. 1989. V. 61. № 2. P. 289-388. [26] V.L. Vinetskiy, G.A. Kholodar'. Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [27] W.-X. Ni, G.V. Hansson, J.-E. Sundgren, L. Hultman, L.R. Wallenberg, J.-Y. Yao, L.C. Markert, J.E. Greene, Phys. Rev. B. Vol. 46 (12). P. 7551-7558 (1992) [28] B.A. Zon, S.B. Ledovsky, A.N. Likholet. Tech. Phys. Vol. 45 (4). P. 419-424 (2000). [29] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Ratzke, H. R. Schober, S.K. Sharma, H. Teichler. Reviews of modern physics. Vol. 75 (1). P. 237-280 (2003). [30] S.A. Bahrani, Y. Jannot, A. Degiovanni. J. Appl. Phys. Vol. 114 (14). P. 143509-143516 (2014). [31] Yu.D. Sokolov. "On the determination of the dynamic forces in mine hoist ropes". Applied Mechan- ics. Vol.1 (1). P. 23-35 (1955). [32] E.L. Pankratov. "Dynamics of delta-dopant redistribution during heterostructure growth". The Europe-an Physical Journal B. 2007. V. 57, №3. P. 251-256. Authors: Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 110 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2). She has 63 published papers in area of her researches.