SlideShare a Scribd company logo
1 of 23
Download to read offline
www.ajms.com 10
ISSN 2581-3463
RESEARCH ARTICLE
On Approach to Increase Integration Rate of Elements of a Switched-capacitor
Step-down DC-DC Converter
E. L. Pankratov1,2
1
Department of Mathematics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod,
603950, Russia, 2
Department of Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street,
Nizhny Novgorod, 603950, Russia
Received: 15-05-2020; Revised: 01-06-2020; Accepted: 20-07-2020
ABSTRACT
In this paper, we introduce an approach to increase integration rate of elements of a switched-
capacitor step-down DC–DC converter. Framework the approach, we consider a heterostructure with
special configuration. Several specific areas of the heterostructure should be doped by diffusion or ion
implantation. Annealing of dopant and/or radiation defects should be optimized.
Key words: Switched-capacitor step-down DC–DC converter, optimization of manufacturing,
analytical approach for modeling
INTRODUCTION
An actual and intensively solving problem of solid-state electronics is increasing of integration rate of
elements of integrated circuits (p-n-junctions, their systems et al.).[1-8]
Increasing of the integration rate
leads to necessity to decrease their dimensions. To decrease, the dimensions are using several approaches.
They are widely using laser and microwave types of annealing of infused dopants. These types of
annealing are also widely using for annealing of radiation defects, generated during ion implantation.[9-17]
Using the approaches gives a possibility to increase integration rate of elements of integrated circuits
through inhomogeneity of technological parameters due to generating inhomogenous distribution of
temperature. In this situation, one can obtain decreasing dimensions of elements of integrated circuits[18]
with account Arrhenius law.[1,3]
Another approach to manufacture elements of integrated circuits with
smaller dimensions is doping of heterostructure by diffusion or ion implantation.[1-3]
However, in this
case, optimization of dopant and/or radiation defects is required.[18]
In this paper, we consider a heterostructure. The heterostructure consists of a substrate and several epitaxial
layers. Some sections have been manufactured in the epitaxial layers. Further, we consider doping of these
sectionsbydiffusionorionimplantation.Thedopinggivesapossibilitytomanufacturefield-effecttransistors
framework a cascaded inverter circuit so as it is shown in Figure 1. The manufacturing gives a possibility to
increase density of elements of the switched-capacitor step-down DC-DC converter.[4]
After the considered
doping, dopant and/or radiation defects should be annealed. Framework the paper, we analyzed dynamics
of redistribution of dopant and/or radiation defects during their annealing. We introduce an approach to
decrease dimensions of the element. However, it is necessary to complicate technological process.
METHOD OF SOLUTION
In this section, we determine spatiotemporal distributions of concentrations of infused and implanted
dopants. To determine these distributions, we calculate appropriate solutions of the second Fick’s law.[1,3,18]
Address for correspondence:
E. L. Pankratov
E-mail: elp2004@mail.ru
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 11










C x y z t
t x
D
C x y z t
x y
D
C x y z t
y
C C
, , , , , , , , ,
( )
=
( )





 +
( )






 +
( )










z
D
C x y z t
z
C
, , ,
(1)
Boundary and initial conditions for the equations are
∂ ( )
∂
=
=
C x y z t
x x
, , ,
0
0 ,
∂ ( )
∂
=
=
C x y z t
x x Lx
, , ,
0 ,
∂ ( )
∂
=
=
C x y z t
y y
, , ,
0
0,
∂ ( )
∂
=
=
C x y z t
y x Ly
, , ,
0 ,
∂ ( )
∂
=
=
C x y z t
z z
, , ,
0
0 ,
( )
, , ,
0
z
x L
C x y z t
z =
∂
=
∂
, C (x,y,z,0)=f (x,y,z).(2)
The function C (x,y,z,t) describes the spatiotemporal distribution of concentration of dopant; T is the
temperature of annealing; DС
is the dopant diffusion coefficient. Value of dopant diffusion coefficient could
be changed with changing materials of heterostructure, with changing temperature of materials (including
annealing), with changing concentrations of dopant and radiation defects. We approximate dependences of
dopant diffusion coefficient on parameters by the following relation with account results in Refs.[20-22]
D D x y z T
C x y z t
P x y z T
V x y z t
C L
= ( ) +
( )
( )





 +
(
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
)
)
+
( )
( )








V
V x y z t
V
* *
, , ,
ς2
2
2
 (3)
Here, the function DL
(x,y,z,T) describes the spatial (in heterostructure) and temperature (due toArrhenius
law) dependences of diffusion coefficient of dopant. The function P (x,y,z,T) describes the limit of
solubility of dopant. Parameter γ ∈[1,3]
describes average quantity of charged defects interacted with
atom of dopant.[20]
The function V (x,y,z,t) describes the spatiotemporal distribution of concentration of
radiation vacancies. Parameter V* describes the equilibrium distribution of concentration of vacancies.
The considered concentrational dependence of dopant diffusion coefficient has been described in details
in.[20]
It should be noted that using diffusion type of doping did not generation radiation defects. In this
situation, ζ1
= ζ2
= 0. We determine spatiotemporal distributions of concentrations of radiation defects by
solving the following system of equations.[21,22]
∂ ( )
∂
=
∂
∂
( )
∂ ( )
∂





 +
∂
∂
I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, , ,
,
, , ,
T
I x y z t
y
( )
∂ ( )
∂





 +
Figure 1: The considered cascaded inverter[4]
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 12
+
∂
∂
( )
∂ ( )
∂





 − ( ) ( )
z
D x y z T
I x y z t
z
k x y z T I x y z t
I I V
, , ,
, , ,
, , , , , ,
, V
V x y z t
, , ,
( )−
− ( ) ( )
k x y z T I x y z t
I I
, , , , , , ,
2
(4)
∂ ( )
∂
=
∂
∂
( )
∂ ( )
∂





 +
∂
∂
V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, , ,
,
, , ,
T
V x y z t
y
( )
∂ ( )
∂





 +
+
∂
∂
( )
∂ ( )
∂





 − ( ) ( )
z
D x y z T
V x y z t
z
k x y z T I x y z t
V I V
, , ,
, , ,
, , , , , ,
, V
V x y z t
, , ,
( )+
+ ( ) ( )
k x y z T V x y z t
V V
, , , , , , ,
2
.
Boundary and initial conditions for these equations are
∂ ( )
∂
=
=
 x y z t
x x
, , ,
0
0 ,
∂ ( )
∂
=
=
 x y z t
x x Lx
, , ,
0 ,
∂ ( )
∂
=
=
 x y z t
y y
, , ,
0
0,
∂ ( )
∂
=
=
 x y z t
y y Ly
, , ,
0 ,
∂ ( )
∂
=
=
 x y z t
z z
, , ,
0
0 ,
∂ ( )
∂
=
=
 x y z t
z z Lz
, , ,
0, ρ (x,y,z,0)=fρ
(x,y,z).(5)
Here ρ = I,V. The function I (x,y,z,t) describes the spatiotemporal distribution of concentration of
radiation interstitials; Dρ
(x,y,z,T) is the diffusion coefficients of point radiation defects; terms V2
(x,y,z,t)
and I2
(x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V
(x,y,z,T) is the parameter of
recombination of point radiation defects; kI,I
(x,y,z,T) and kV,V
(x,y,z,T) are the parameters of generation
of simplest complexes of point radiation defects.
Further, we determine distributions in space and time of concentrations of divacancies ΦV
(x,y,z,t) and
diinterstitials ΦI
(x,y,z,t) by solving the following system of equations.[21,22]








Φ Φ
Φ Φ
I
I
I
I
x y z t
t x
D x y z T
x y z t
x y
D x
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )





 +


Φ
+ ( )
( )





 + ( )




z
D x y z T
x y z t
z
k x y z T I x y z
I
I
I I
Φ
Φ
, , ,
, , ,
, , , , , ,
,
2
t
t k x y z T I x y z t
I
( )− ( ) ( )
, , , , , , (6)








Φ Φ
Φ Φ
V
V
V
V
x y z t
t x
D x y z T
x y z t
x y
D x
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )





 +


Φ
+ ( )
( )





 + ( )




z
D x y z T
x y z t
z
k x y z T V x y z
V
V
V V
Φ
Φ
, , ,
, , ,
, , , , , ,
,
2
t
t k x y z T V x y z t
V
( )− ( ) ( )
, , , , , , .
Boundary and initial conditions for these equations are
∂ ( )
∂
=
=
Φ x y z t
x x
, , ,
0
0,
∂ ( )
∂
=
=
Φ x y z t
x x Lx
, , ,
0,
∂ ( )
∂
=
=
Φ x y z t
y y
, , ,
0
0 ,
∂ ( )
∂
=
=
Φ x y z t
y y Ly
, , ,
0 ,
∂ ( )
∂
=
=
Φ x y z t
z z
, , ,
0
0,
∂ ( )
∂
=
=
Φ x y z t
z z Lz
, , ,
0 ,
ΦI
(x,y,z,0)=fΦI
(x,y,z), ΦV
(x,y,z,0)=fΦV
(x,y,z).(7)
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 13
Here, DΦρ
(x,y,z,T) is the diffusion coefficients of the above complexes of radiation defects; kI
(x,y,z,T)
and kV
(x,y,z,T) are the parameters of decay of these complexes.
We calculate distributions of concentrations of point radiation defects in space and time by recently
elaborated approach.[18]
The approach based on transformation of approximations of diffusion
coefficients in the following form: Dρ
(x,y,z,T)=D0ρ
[1+ερ
gρ
(x,y,z,T)], where D0ρ
is the average values
of diffusion coefficients, 0≤ερ
1, |gρ
(x,y,z,T)|≤1, ρ =I,V. We also used analogous transformation of
approximations of parameters of recombination of point defects and parameters of generation of their
complexes: kI,V
(x,y,z,T)=k0I,V
[1+εI,V
gI,V
(x,y,z,T)], kI,I
(x,y,z,T)=k0I,I
[1+εI,I
gI,I
(x,y,z,T)] and kV,V
(x,y,z,T)=k0V,V
[1+εV,V
gV,V
(x,y,z,T)], where k0ρ1,ρ2
is the their average values, 0≤εI,V
1, 0≤εI,I
1, 0≤εV,V
1, |gI,V
(x,y,z,T)|≤1,
|gI,I
(x,y,z,T)|≤1, |gV,V
(x,y,z,T)| ≤1. Let us introduce the following dimensionless variables:

I x y z t I x y z t I
, , , , , , *
( ) = ( ) , 
V x y z t
, , ,
( ) = = ( )
V x y z t V
, , , *
,  = L k D D
I V I V
2
0 0 0
, ,
Ω  
= L k D D
I V
2
0 0 0
, ,  = D D t L
I V
0 0
2
, χ = x/Lx
, η = y /Ly
, φ = z/Lz
. The introduction leads to
transformation of Equation (4) and conditions (5) to the following form
∂ ( )
∂
=
∂
∂
+ ( )

 

∂ ( )
 
I D
D D
g T
I
I
I V
I I
χ η ϕ ϑ
ϑ χ
ε χ η ϕ
χ η ϕ ϑ
, , ,
, , ,
, , ,
0
0 0
1
∂
∂






+
∂
∂
+ ( )

 
 ×
{
χ η
ε χ η ϕ
1 I I
g T
, , ,
×
∂ ( )
∂



+
∂
∂
+ ( )

 

I D
D D
D
D D
g T
I
I V
I
I V
I I
χ η ϕ ϑ
η ϕ
ε χ η ϕ
, , ,
, , ,
0
0 0
0
0 0
1 

∂ ( )
∂






− ( ) ×


I
I
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
, , ,
, , ,
× + ( )

 
 ( )− + ( )
ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
1 1
I V I V I I I I I
g T V g T
, , , ,
, , , , , , , , ,
 Ω 

 
 ( )

I 2
χ η ϕ ϑ
, , , (8)
∂ ( )
∂
=
∂
∂
+ ( )

 

∂ ( )
 
V D
D D
g T
V
V
I V
V V
χ η ϕ ϑ
ϑ χ
ε χ η ϕ
χ η ϕ ϑ
, , ,
, , ,
, , ,
0
0 0
1
∂
∂






+
∂
∂
+ ( )

 
 ×
{
χ η
ε χ η ϕ
1 V V
g T
, , ,
×
∂ ( )
∂



+
∂
∂
+ ( )

 

V D
D D
D
D D
g T
V
I V
V
I V
V V
χ η ϕ ϑ
η ϕ
ε χ η ϕ
, , ,
, , ,
0
0 0
0
0 0
1 

∂ ( )
∂






− ( ) ×


V
I
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
, , ,
, , ,
× + ( )

 
 ( )− + ( )
ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
1 1
I V I V V V V V V
g T V g T
, , , ,
, , , , , , , , ,
 Ω 

 
 ( )

V 2
χ η ϕ ϑ
, , ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ χ
, , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ χ
, , ,
1
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
, , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
, , ,
1
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
, , ,
0
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
, , ,
1
0 , 
ρ χ η ϕ ϑ
χ η ϕ ϑ
ρ
ρ
, , ,
, , ,
*
( ) =
( )
f
(9)
We determine solutions of Equation (8) with conditions (9) framework recently introduced approach,[18]
that is, as the power series
 
ρ χ η ϕ ϑ ε ω ρ χ η ϕ ϑ
ρ ρ
, , , , , ,
( ) = ( )
=
∞
=
∞
=
∞
∑
∑
∑ i j k
ijk
k
j
i
Ω
0
0
0
.(10)
Substitution of the series (10) into Equation (8) and conditions (9) gives us possibility to obtain equations
for initial order approximations of concentration of point defects 
I000 χ η ϕ ϑ
, , ,
( ) and 
V000 χ η ϕ ϑ
, , ,
( ) and
corrections for them 
Iijk χ η ϕ ϑ
, , ,
( ) and 
Vijk χ η ϕ ϑ
, , ,
( ), i ≥1, j ≥1, k ≥1. The equations are presented in
the Appendix. Solutions of the equations could be obtained by standard Fourier approach.[24,25]
The
solutions are presented in the Appendix.
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 14
Now, we calculate distributions of concentrations of simplest complexes of point radiation defects in
space and time. To determine the distributions, we transform approximations of diffusion coefficients in
the following form: DΦρ
(x,y,z,T)=D0Φρ
[1+ εΦρ
gΦρ
(x,y,z,T)], where D0Φρ
is the average values of diffusion
coefficients. In this situation, the Equation (6) could be written as
∂
∂
∂
∂
ε
∂
∂
Φ Φ
Φ Φ Φ
I
I I I
I
x y z t
t
D
x
g x y z T
x y z t
x
, , ,
, , ,
, , ,
( )
= + ( )

 

( )

0 1






+ ( ) ( )+
k x y z T I x y z t
I I
, , , , , , ,
2
+ + ( )

 

( )






+
D
y
g x y z T
x y z t
y
D
z
I I I
I
I
0 0
1 1
Φ Φ Φ Φ
Φ
∂
∂
ε
∂
∂
∂
∂
, , ,
, , ,
+
+ ( )

 

( )






−
ε
∂
∂
Φ Φ
Φ
I I
I
g x y z T
x y z t
z
, , ,
, , ,
− ( ) ( )
k x y z T I x y z t
I , , , , , ,
∂
∂
∂
∂
ε
∂
∂
Φ Φ
Φ Φ Φ
V
V V V
V
x y z t
t
D
x
g x y z T
x y z t
x
, , ,
, , ,
, , ,
( )
= + ( )

 

( )

0 1






+ ( ) ( )+
k x y z T I x y z t
I I
, , , , , , ,
2
+ + ( )

 

( )






+
D
y
g x y z T
x y z t
y
D
z
V V V
V
V
0 0
1 1
Φ Φ Φ Φ
Φ
∂
∂
ε
∂
∂
∂
∂
, , ,
, , ,
+
+ ( )

 

( )






−
ε
∂
∂
Φ Φ
Φ
V V
V
g x y z T
x y z t
z
, , ,
, , ,
− ( ) ( )
k x y z T I x y z t
I , , , , , , .
Farther, we determine solutions of above equations as the following power series
Φ Φ
Φ
ρ ρ ρ
ε
x y z t x y z t
i
i
i
, , , , , ,
( ) = ( )
=
∞
∑
0
.(11)
Now, we used the series (11) into Equation (6) and appropriate boundary and initial conditions. The using
gives the possibility to obtain equations for initial order approximations of concentrations of complexes
of defects Φρ0
(x,y,z,t), corrections for them Φρi
(x,y,z,t) (for them i ≥1) and boundary and initial conditions
for them. We remove equations and conditions to the Appendix. Solutions of the equations have been
calculated by standard approaches[24,25]
and presented in the Appendix.
Now, we calculate distribution of concentration of dopant in space and time using the approach, which
was used for analysis of radiation defects. To use the approach, we consider following transformation
of approximation of dopant diffusion coefficient: DL
(x,y,z,T)=D0L
[1+ εL
gL
(x,y,z,T)], where D0L
is the
average value of dopant diffusion coefficient, 0≤εL
 1, |gL
(x,y,z,T)|≤1. Farther, we consider solution of
Equation (1) as the following series:
C x y z t C x y z t
L
i j
ij
j
i
, , , , , ,
( ) = ( )
=
∞
=
∞
∑
∑ε ξ
1
0
.
Using the relation into Equation (1) and conditions (2) leads to obtaining equations for the functions
Cij
(x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions for them. The equations are presented in the
Appendix.Solutionsoftheequationshavebeencalculatedbystandardapproaches(see,forexample,[24,25]
).
The solutions are presented in the Appendix.
We analyzed distributions of concentrations of dopant and radiation defects in space and time
analytically using the second-order approximations on all parameters, which have been used in
appropriate series. Usually, the second-order approximations are enough good approximations to
make qualitative analysis and to obtain quantitative results. All analytical results have been checked
by numerical simulation.
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 15
DISCUSSION
In this section, we analyzed spatiotemporal distributions of concentrations of dopants. Figure 2 shows
typical spatial distributions of concentrations of dopants in neighborhood of interfaces of heterostructures.
We calculate these distributions of concentrations of dopants under the following condition: Value of
dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest
areas. In this situation, one can find increasing of compactness of field-effect transistors with increasing
of homogeneity of distribution of concentration of dopant at 1 time. Changing relation between values
of dopant diffusion coefficients leads to opposite result [Figure 3].
It should be noted that framework the considered approach one shall optimize annealing of dopant and/
or radiation defects. To do the optimization, we used recently introduced criterion.[26-33]
The optimization
based on approximation real distribution by step-wise function ψ (x,y,z) [Figure 4]. Farther, the required
values of optimal annealing time have been calculated by minimization the following mean-squared error.
U
L L L
C x y z x y z d z d y d x
x y z
L
L
L z
y
x
= ( )− ( )

 

∫
∫
∫
1
0
0
0
, , , , ,
Θ  .(12)
Figure 2: (a) Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in direction,
which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion
coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient
in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate
a
Figure 2: (b) Dependences of concentration of dopant, implanted in heterostructure from Figure 1, on coordinate in
direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant
diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion
coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate. Curve 1 corresponds
to homogenous sample and annealing time Θ = 0.0048 (Lx
2
+Ly
2
+Lz
2
)/D0
. Curve 2 corresponds to homogenous sample
and annealing time Θ = 0.0057 (Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 3 and 4 correspond to heterostructure from Figure 1; annealing
times Θ = 0.0048 (Lx
2
+Ly
2
+Lz
2
)/D0 and Θ = 0.0057 (Lx
2
+Ly
2
+Lz
2
)/D0
, respectively
b
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 16
Figure 3: (b) Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial
distributions of implanted dopant in system of two epitaxial layers. Dashed lines are spatial distributions of implanted
dopant in one epitaxial layer. Annealing time increases with increasing of number of curves
Figure 3: (a) Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from
Figure 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between
values of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient
in this section is smaller, than value of dopant diffusion coefficient in nearest sections
a
b
Figure 4: (a) Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different values
of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds
to increasing of annealing time
a
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 17
Figure 4: (b) Distributions of concentration of implanted dopant in depth of heterostructure from Figure 1 for different
values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve
corresponds to increasing of annealing time
b
Figure 5: (a) Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1
describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant
diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of
parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter
ξ for a/L=1/2 and ε =γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2
and ε = ξ = 0
a
Figure 5: (b) Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes
the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion
coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε
for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and
ε =γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
b
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 18
We show optimal values of annealing time as functions of parameters on Figure 5. It is known that
standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal case
after finishing the annealing, dopant achieves interface between layers of heterostructure. If the dopant
has no enough time to achieve the interface, it is practicably to anneal the dopant additionally. Figure 5b
shows the described dependences of optimal values of additional annealing time for the same parameters
as for Figure 5a. Necessity to anneal radiation defects leads to smaller values of optimal annealing of
implanted dopant in comparison with optimal annealing time of infused dopant.[19-23]
CONCLUSIONS
In this paper, we introduce an approach to increase integration rate of element of a switched-capacitor
step-down DC–DC converter. The approach gives us possibility to decrease area of the elements with
smaller increasing of the element’s thickness.
REFERENCES
1.	 Lachin VI, Savelov NS. Electronics. Phoenix: Rostov-na-Donu; 2001.
2.	 Alexenko AG, Shagurin II. Microcircuitry. Moscow: Radio and Communication; 1990.
3.	 Avaev NA, Naumov YE, Frolkin VT. Basis of Microelectronics. Moscow: Radio and Communication; 1991.
4.	 Ghiasi RR, SahafiA, Geshlaghi JS, Kouzekanani ZD.A2: 1 switched-capacitor DC-DC converter for low power circuits.
Analog Integr Circ Sig Process 2015;84:215-22.
5.	 Fathi D, Forouzandeh B, Masoumi N. New enhanced noise analysis in active mixers in nanoscale technologies. Nano
2009;4:233-8.
6.	 Chachuli SA, Fasyar PN, Soin N, Kar NM, Yusop N. On approach to increase integration rate of elements. Mat Sci Sem
Proc 2014;24:9-14.
7.	 Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudryk YY, et al. Technologies dependencies.
Semiconductors 2009;43:897-903.
8.	 Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF Jr., Chow TP. Monolithic integration of light-emitting diodes and
power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits
in GaN on sapphire substrate. Appl Phys Lett 2013;102:192107-9.
9.	 Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor.
Semiconductors 2009;43:971-4.
10.	 Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers upon
annealing of dysprosium-and holmiumimplanted silicon. Semiconductors 1998;32:1029-32.
11.	 Kumar MJ, Singh TV. Quantum confinement effects in strained silicon mosfets. Int J Nanosci 2008;7:81-4.
12.	 Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Band alignment of SnS/Zn (O, S) heterojunctions
in SnS thin film solar cells. Appl Phys Lett 2013;102:53901-5.
13.	 Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in p-type
ZnO. Appl Phys Lett 2013;102:152114-8.
14.	 Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the
maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4.
15.	 Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901-5.
16.	 Shishiyanu ST, Shishiyanu TS, Railyan SK. Shallow pn-junctions in Si prepared by pulse photon annealing.
Semiconductors 2002;36:611-7.
17.	 Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in
semiconductor structures during microwave annealing. Radiophys Quant Electron 2003;43:836-43.
18.	 Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical
approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci
2013;1:58-82.
19.	 Erofeev YN. Pulse Devices. Moscow: Higher School; 1989.
20.	 Kozlivsky VV. Modification of Semiconductors by Proton Beams. Sant-Peterburg: Nauka; 2003.
21.	 Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991.
22.	 Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979.
23.	 Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289-388.
24.	 Tikhonov AN, Samarskii AA. The Mathematical Physics Equations. Moscow: Nauka; 1972.
25.	 Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford: Oxford University Press; 1964.
26.	 Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity.
Russ Micro Electron 2007;36:33-9.
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 19
27.	 Pankratov EL. Redistribution of a dopant during annealing of radiation defects in a multilayer structure by laser scans for
production of an implanted-junction rectifier. Int J Nanosci 2008;7:187-97.
28.	 Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational
amplifier to increase their integration rate. Influence mismatch-induced stress. J Comput Theor Nanosci 2017;14:4885-99.
29.	 Pankratov EL. On optimization of manufacturing of two-phase logic circuit based on heterostructures to increase density
of their elements. Influence of miss-match induced stress. Adv Sci Eng Med 2017;9:787-801.
30.	 Pankratov EL, Bulaeva EA. On increasing of density of transistors in a hybrid cascaded multilevel inverter. Multidiscip
Mod Mater Struct 2017;13:664-77.
31.	 Pankratov EL, Bulaeva EA.An approach to manufacture a heterobipolar transistors in thin film structures. On the method
of optimization. Int J Micro Nano Scale Trans 2014;4:17-31.
32.	 Pankratov EL, Bulaeva EA. An analytical approach for analysis and optimization of formation of field-effect
heterotransistors. Multidiscip Mod Mater Struct 2016;12:578-604.
33.	 Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater
Sci Semicond Proc 2015;34:260-8.
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 20
APPENDIX
Equations for the functions 
Iijk χ η ϕ ϑ
, , ,
( ) and 
Vijk χ η ϕ ϑ
, , ,
( ), i ≥0, j ≥0, k ≥0 and conditions for them
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
000 0
0
2
000
2
2
000
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
000
2

I , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
000 0
0
2
000
2
2
000
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
000
2

V , , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
  
I D
D
I I
i I
V
i i
00 0
0
2
00
2
2
00
χ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
η
, , , , , , ,
2
2
2
00
2
0
0
+
∂ ( )
∂





 + ×

I D
D
i I
V
χ η ϕ ϑ
ϕ
, , ,
×
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
−
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
g T
I
g T
I
I
i
I
, , ,
, , ,
, , ,
 
100 i
i− ( )
∂





 +





100 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











−
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
g T
I
I
i
, , ,
, , ,

100
, i ≥1,
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
  
V D
D
V V
i V
I
i i
00 0
0
2
00
2
2
00
χ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
η
, , , , , , ,
2
2
2
00
2
+
∂ ( )
∂





 +
∂
∂
( ) ×




V
g T
i
V
χ η ϕ ϑ
ϕ χ
χ η ϕ
, , ,
, , ,
×
∂ ( )
∂


 +
∂
∂
( )
∂
− −
 
V D
D
D
D
g T
V
i V
I
V
I
V
i
100 0
0
0
0
100
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
χ
χ η ϕ ϑ
η ϕ
χ η ϕ
, , ,
, , ,
( )
∂





 +
∂
∂
( ) ×


g T
V
×
∂ ( )
∂



−

V D
D
i V
I
100 0
0
χ η ϕ ϑ
ϕ
, , ,
, i ≥1,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
010 0
0
2
010
2
2
010
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
010
2

I , , ,
− + ( )

 
 ( ) ( )
1 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V
, , , , , , , , , , ,
 
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
010 0
0
2
010
2
2
010
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
010
2

V , , ,
− + ( )

 
 ( ) ( )
1 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V
, , , , , , , , , , ,
  ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
020 0
0
2
020
2
2
020
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
020
2

I , , ,
− + ( )

 
 ( ) ( )+
1 010 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V I
, , , , , , , , , , ,
   χ
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 


V010
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 21
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
I
V
020 0
0
2
020
2
2
020
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
020
2

V , , ,
− + ( )

 
 ( ) ( )+
1 010 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V I
, , , , , , , , , , ,
   χ
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 


V010 ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
001 0
0
2
001
2
2
001
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
001
2

I , , ,
− + ( )

 
 ( )
1 000
2
ε χ η ϕ χ η ϕ ϑ
I I I I
g T I
, , , , , , , ,

∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
001 0
0
2
001
2
2
001
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
001
2

V , , ,
− + ( )

 
 ( )
1 000
2
ε χ η ϕ χ η ϕ ϑ
I I I I
g T V
, , , , , , , ,
 ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
110 0
0
2
110
2
2
110
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 + ×
η
χ η ϕ ϑ
ϕ
2
2
110
2
0
0

I D
D
I
V
, , ,
×
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
g T
I
g T
I
I I
, , ,
, , ,
, , ,
 
010 010
0 χ η ϕ ϑ
η ϕ
χ η ϕ
, , ,
, , ,
( )
∂





 +
∂
∂
( ) ×







g T
I
×
∂ ( )
∂








− ( ) ( )+

  
I
I V I
010
100 000
χ η ϕ ϑ
ϕ
χ η ϕ ϑ χ η ϕ ϑ
, , ,
, , , , , , 0
000 100
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 
 ×

V
× + ( )

 

1 ε χ η ϕ
I I I I
g T
, , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
110 0
0
2
110
2
2
110
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
110
2

V , , ,
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
V
g T
V
I
V V
0
0
010
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






V010 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











− +
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η
g T
V
g
V V V V V
, , ,
, , ,
, ,
, ,

010
1 ϕ
ϕ,T
( )

 
 ×
× ( ) ( )+ ( ) ( )
   
V I V I
100 000 000 100
χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ
, , , , , , , , , , , ,


 
 ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
002 0
0
2
002
2
2
002
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
002
2

I , , ,
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 22
− + ( )

 
 ( ) ( )
1 001 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I I I I
g T I I
, , , , , , , , , , ,
 
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
002 0
0
2
002
2
2
002
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
002
2

V , , ,
− + ( )

 
 ( ) ( )
1 001 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
V V V V
g E V V
, , , , , , , , , , ,
  ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
101 0
0
2
101
2
2
101
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
101
2

I , , ,
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
I
g T
I
V
I I
0
0
001
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






I001 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











− + (
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
I
g T
I I I
, , ,
, , ,
, , ,

001
1 )
)

 
 ( ) ( )
 
I V
100 000
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
101 0
0
2
101
2
2
101
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
101
2

V , , ,
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
V
g T
V
I
V V
0
0
001
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






V001 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











− + (
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
V
g T
V V V
, , ,
, , ,
, , ,

001
1 )
)

 
 ( ) ( )
 
I V
000 100
χ η ϕ ϑ χ η ϕ ϑ
, , , , , , ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
011 0
0
2
011
2
2
011
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 − ( ) ×
η
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
2
2
011
2 010


I
I
, , ,
, , ,
× + ( )

 
 ( )− + ( )
1 1
000
ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
I I I I I V I V
g T I g T
, , , ,
, , , , , , , , ,
 

 
 ( ) ( )
 
I V
001 000
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
011 0
0
2
011
2
2
011
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 − ( ) ×
η
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
2
2
011
2 010


V
V
, , ,
, , ,
( ) ( ) ( ) ( ) ( )
, , 000 , , 000 001
1 , , , , , , 1 , , , , , , , , ,
V V V V I V I V
g T V g t I V
ε χ η ϕ χ η ϕ ϑ ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
   
× + − +
   
   ;
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ
ijk
x
, , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ
ijk
x
, , ,
1
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
ijk , , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
ijk , , ,
1
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
ijk , , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
ijk , , ,
1
0 (i ≥0, j ≥0, k ≥0);
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 23

ρ χ η ϕ χ η ϕ ρ
ρ
000 0
, , , , , *
( ) = ( )
f , 
ρ χ η ϕ
ijk , , ,0 0
( ) = (i ≥1, j ≥1, k ≥1).
Solutions of the above equations could be written as

ρ χ η ϕ ϑ χ η ϕ ϑ
ρ ρ
000
1
1 2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
L L
F c c c e
n n
n
,
where F nu nv n w f u v w d wd vd u
n n
ρ ρ
ρ
π π π
= ( ) ( ) ( ) ( )
∫
∫
∫
1
0
1
0
1
0
1
*
cos cos cos , , , cn
(χ) = cos (π n χ),
e n D D
nI V I
ϑ π ϑ
( ) = −
( )
exp 2 2
0 0 , e n D D
nV I V
ϑ π ϑ
( ) = −
( )
exp 2 2
0 0 ;

I
D
D
nc c c e e s u c
i
I
V
n nI nI n n
00
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) v
v
I u v w
u
i
n
( )
∂ ( )
∂
×
−
=
∞
∫
∫
∫
∫
∑

100
0
1
0
1
0
1
0
1
, , ,τ
ϑ
× ( ) ( ) − ( ) ( ) ( ) ( ) −
c w g u v w T d wd vd u d
D
D
nc c c e e
n I
I
V
n nI nI
, , , τ π χ η ϕ ϑ
2 0
0
τ
τ
ϑ
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
c u s v
n n
n 0
1
0
1
0
1
× ( ) ( )
∂ ( )
∂
−
−
∫c w g u v w T
I u v w
v
d wd vd u d
D
D
nc
n I
i I
V
, , ,
, , ,

100
0
1
0
0
2
τ
τ π n
n nI nI
n
c c e e
χ η ϕ ϑ τ
ϑ
( ) ( ) ( ) ( ) −
( ) ×
∫
∑
=
∞
0
1
× ( ) ( ) ( ) ( )
∂ ( )
∂
−
∫
c u c v s w g u v w T
I u v w
w
d wd vd u d
n n n I
i
, , ,
, , ,

100
0
1
0


1
1
0
1
∫
∫ , i ≥1,

V
D
D
nc c c e e s u c
i
V
I
n nV nI n n
00
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) v
v g u v w T
V
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) ( ) ( ) ( )
−
c w
V u
u
d wd vd u d
D
D
nc c c e e
n
i V
I
n nV n

100 0
0
,τ
τ χ η ϕ ϑ I
I n n
n
c u s v
−
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
τ
ϑ
0
1
0
1
0
1
× ( ) ( )
∂ ( )
∂
−
−
∫
2 2
100
0
1
0
0
π
τ
τ π χ
c w g u v w T
V u
v
d wd vd u d
D
D
nc
n V
i V
I
n
, , ,
,

(
( ) ( ) ( ) ( ) ×
=
∞
∑ c c enV
n
η ϕ ϑ
1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u c v s w g u v w T
V u
w
d wd vd u d
nI n n n V
i
τ
τ
τ
, , ,
,

100
0
1
1
0
1
0
1
0
∫
∫
∫
∫
ϑ
, i ≥1,
where sn
(χ) = sin (π n χ);

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
010 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
× + ( )

 
 ( ) ( )
1 000 000
ε τ τ
I V I V
g u v w T I u v w V u v w d wd vd u
, , , , , , , , , , ,
  d
d τ ;
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 24

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
020
0
0
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( )
D
D
c c c e e c u c
I
V
n n n n n n n v
v c w
n I V
n
( ) ( ) +

 ×
∫
∫
∫
∫
∑
=
∞
1
0
1
0
1
0
1
0
1
ε
ϑ
,
× ( )
 ( ) ( )+ (
g u v w T I u v w V u v w I u v w
I V
, , , , , , , , , , , , ,
  
010 000 000
   )
) ( )

 


V u v w d wd vd u d
010 , , ,  ;

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
001 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
× + ( )

 
 ( )
1 000
2
ε ρ τ τ
ρ ρ ρ ρ
, , , , , , , ,
g u v w T u v w d wd vd u d
 ;

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
002 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
× + ( )

 
 ( ) ( )
1 001 000
ε ρ τ ρ τ
ρ ρ ρ ρ
, , , , , , , , , , ,
g u v w T u v w u v w d wd vd u
  d
d τ ;

I
D
D
nc c c e e s u
I
V
n n n nI nI n
110
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v c u
n n
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) (
−
g u v w T
I u v w
u
d wd vd u d
D
D
nc c
I
i I
V
n n
, , ,
, , ,

100 0
0
2
τ
τ π χ η)
) ( ) ( ) ×
=
∞
∑ c e
n nI
n
ϕ ϑ
1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u s v c u g u v w T
I u v w
v
d wd vd
nI n n n I
i
τ
τ
, , ,
, , ,

100
u
u d
D
D
I
V
τ π
ϑ
0
1
0
1
0
1
0
0
0
2
∫
∫
∫
∫ − ×
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
−
n e e c u c v s u g u v w T
I u v w
nI nI n n n I
i
ϑ τ
τ
, , ,
, , ,

100
∂
∂
×
∫
∫
∫
∫
∑
=
∞
w
d wd vd u d
n
τ
ϑ
0
1
0
1
0
1
0
1
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c c e c c e c u c v c
n n n n nI n n nI n n n
χ η ϕ χ ϑ η ϕ τ
2 v
v I V
n
( ) + ×


∫
∫
∫
∫
∑
=
∞
1
0
1
0
1
0
1
0
1
ε
ϑ
,
× ( )
 ( ) ( )+ (
g u v w T I u v w V u v w I u v w
I V
, , , , , , , , , , , , ,
  
100 000 000
   )
) ( )

 


V u v w d wd vd u d
100 , , , 

V
D
D
nc c c e e s u
V
I
n n n nV nV n
110
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v c u
n n
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) (
−
g u v w T
V u v w
u
d wd vd u d
D
D
nc c
V
i V
I
n n
, , ,
, , ,

100 0
0
2
τ
τ π χ η)
) ( ) ( ) ×
=
∞
∑ c e
n nV
n
ϕ ϑ
1
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 25
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u s v c u g u v w T
V u v w
v
d wd vd
nV n n n V
i
τ
τ
, , ,
, , ,

100
u
u d
D
D
V
I
τ π
ϑ
0
1
0
1
0
1
0
0
0
2
∫
∫
∫
∫ − ×
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
−
ne e c u c v s u g u v w T
V u v w
nV nV n n n V
i
ϑ τ
τ
, , ,
, , ,

100
∂
∂
×
∫
∫
∫
∫
∑
=
∞
w
d wd vd u d
n
τ
ϑ
0
1
0
1
0
1
0
1
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( ) +
c c c c e c c e c u c v
n n n n nI n n nV n n
χ η ϕ χ ϑ η ϕ τ
2 1 ε
ε
ϑ
I V I V
n
g u v w T
, , , , ,
( )

 
 ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
× ( ) ( ) ( )+ ( )
c w I u v w V u v w I u v w V u v
n
   
100 000 000 100
, , , , , , , , , , ,
   w
w d wd vd u d
, 
( )

 
 ;

I
D
D
nc c c e e s u
I
V
n n n nI nI n
101
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v g u v w T
n I
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) ( ) ( )
c w
I u v w
u
d wd vd u d
D
D
nc c c e
n
I
V
n n n n

001 0
0
2
, , ,τ
τ π χ η ϕ I
I
n
ϑ
( ) ×
=
∞
∑
1
× ( ) ( ) ( )
∂ ( )
∂
−
∫
∫s v c w g u v w T
I u v w
v
d wd vd u d
D
n n I , , ,
, , ,

001
0
1
0
1
0
2
τ
τ π I
I
V
nI n n n
n
D
ne c c c
0 1
ϑ χ η ϕ
( ) ( ) ( ) ( ) ×
=
∞
∑
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u c v s w g u v w T
I u v w
w
d wd vd u d
nI n n n I
τ
τ
, , ,
, , ,

001
τ
τ χ η ϕ
ϑ
0
1
0
1
0
1
0 1
2
∫
∫
∫
∫ ∑
− ( ) ( ) ( ) ×
=
∞
c c c
n n n
n
× ( ) −
( ) ( ) ( ) ( )
+
( )






e e c u c v c w
g
u v w T
I
nI nI n n n
I V I V
ϑ τ
ε
1
10
, ,
, , ,

0
0 000
0
1
0
1
0
1
0
u v w V u v w d wd vd u d
, , , , , ,
τ τ τ
ϑ
( ) ( )
∫
∫
∫
∫ 

V
D
D
nc c c e e s u
V
I
n n n nV nV n
101
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v g u v w T
n V
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) ( ) ( )
c w
V u v w
u
d wd vd u d
D
D
nc c c e
n
V
I
n n n n

001 0
0
2
, , ,τ
τ π χ η ϕ I
I nV n
n
e c u
ϑ τ
ϑ
( ) −
( ) ( ) ×
∫
∫
∑
=
∞
0
1
0
1
× ( ) ( ) ( )
∂ ( )
∂
−
∫
∫s v c w g u v w T
I u v w
v
d wd vd u d
D
n n I , , ,
, , ,

001
0
1
0
1
0
2
τ
τ π I
I
V
nI n n n
n
D
ne c c c
0 1
ϑ χ η ϕ
( ) ( ) ( ) ( ) ×
=
∞
∑
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u c v s w g u v w T
V u v w
w
d wd vd u d
nV n n n V
τ
τ
, , ,
, , ,

001
τ
τ χ η ϕ
ϑ
0
1
0
1
0
1
0 1
2
∫
∫
∫
∫ ∑
− ( ) ( ) ( ) ×
=
∞
c c c
n n n
n
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 26
× ( ) −
( ) ( ) ( ) ( )
+
( )






e e c u c v c w
g
u v w T
I
nV nV n n n
I V I V
ϑ τ
ε
1
10
, ,
, , ,

0
0 000
0
1
0
1
0
1
0
u v w V u v w d wd vd u d
, , , , , ,
τ τ τ
ϑ
( ) ( )
∫
∫
∫
∫  ;

I c c c e e c u c v c w
n n n nI nI n n n
011 2
χ η ϕ ϑ χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( ) (
( ) ( )
{ ×
∫
∫
∫
∫
∑
=
∞

I u v w
n
000
0
1
0
1
0
1
0
1
, , ,τ
ϑ
× + ( )

 
 ( )+
+
( )
1
1
010
ε τ
ε
I I I I
I V I V
g u v w T I u v w
g
u v w T
, ,
, ,
, , , , , ,
, , ,







 ( ) ( )





 
I u v w V u v w d wd vd u d
001 000
, , , , , ,
τ τ τ

V c c c e e c u c v c w
n n n nV nV n n n
011 2
χ η ϕ ϑ χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( ) (
( ) ( )
{ ×
∫
∫
∫
∫
∑
=
∞

I u v w
n
000
0
1
0
1
0
1
0
1
, , ,τ
ϑ
× + ( )

 
 ( )+
+
( )
1
1
010
ε τ
ε
I I I I
I V I V
g u v w T I u v w
g
u v w T
, ,
, ,
, , , , , ,
, , ,







 ( ) ( )





 
I u v w V u v w d wd vd u d
001 000
, , , , , ,
τ τ τ .
Equations for functions Φρi
(x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radiation
defects.







Φ Φ Φ
Φ
I
I
I I
x y z t
t
D
x y z t
x
x y z t
y
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+
Φ
ΦI x y z t
z
0
2
, , ,
( )





 +

+ ( ) ( )− ( ) ( )
k x y z T I x y z t k x y z T I x y z t
I I I
, , , , , , , , , , , , ,
2







Φ Φ Φ
Φ
V
V
V V
x y z t
t
D
x y z t
x
x y z t
y
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+
Φ
ΦV x y z t
z
0
2
, , ,
( )





 +

+ ( ) ( )− ( ) ( )
k x y z T V x y z t k x y z T V x y z t
V V V
, , , , , , , , , , , , ,
2
;







Φ Φ Φ
Φ
I i
I
I i I i
x y z t
t
D
x y z t
x
x y z t
y
, , , , , , , , ,
( )
=
( )
+
( )
+
0
2
2
2
2
2
Φ
ΦI i x y z t
z
, , ,
( )








+
 2
+ ( )
( )





 + (
−
D
x
g x y z T
x y z t
x y
g x y z T
I I
I i
I
0
1
Φ Φ Φ
Φ






, , ,
, , ,
, , , )
)
( )





 +





−


ΦI i x y z t
y
1 , , ,
+ ( )
( )











−




z
g x y z T
x y z t
z
I
I i
Φ
Φ
, , ,
, , ,
1
, i≥1,







Φ Φ Φ
Φ
V i
V
V i V i
x y z t
t
D
x y z t
x
x y z t
y
, , , , , , , , ,
( )
=
( )
+
( )
+
0
2
2
2
2
2
Φ
ΦV i x y z t
z
, , ,
( )








+
 2
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 27
+ ( )
( )





 + (
−
D
x
g x y z T
x y z t
x y
g x y z T
V V
V i
V
0
1
Φ Φ Φ
Φ






, , ,
, , ,
, , , )
)
( )





 +





−


ΦV i x y z t
y
1 , , ,
+ ( )
( )











−




z
g x y z T
x y z t
z
V
V i
Φ
Φ
, , ,
, , ,
1
, i≥1;
Boundary and initial conditions for the functions take the form
∂ ( )
∂
=
=
Φi
x
x y z t
x
, , ,
0
0 ,
∂ ( )
∂
=
=
Φi
x L
x y z t
x
x
, , ,
0 ,
∂ ( )
∂
=
=
Φi
y
x y z t
y
, , ,
0
0 ,
∂ ( )
∂
=
=
Φi
y L
x y z t
y
y
, , ,
0 ,
∂ ( )
∂
=
=
Φi
z
x y z t
z
, , ,
0
0 ,
∂ ( )
∂
=
=
Φi
z L
x y z t
z
z
, , ,
0 , i≥0; Φρ
0(x,y,z,0)=fΦρ
(x,y,z),
Φρi
(x,y,z,0)=0, i≥1.
Solutions of the above equations could be written as
Φ Φ Φ
  
0
1
1 2
x y z t
L L L L L L
F c x c y c z e t
x y z x y z
n n n n n
n
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
∑ ∑
+ ( ) ( ) ( ) ×
=
∞
2
1
L
n c x c y c z
n n n
n
× ( ) −
( ) ( ) ( ) ( ) ( ) ( )−


e t e c u c v c w k u v w T I u v w
n n n n n I I
Φ Φ
ρ ρ
τ τ
, , , , , , ,
2
0
0
0
0
0
L
L
L
t z
y
x
∫
∫
∫
∫
− ( ) ( )

k u v w T I u v w d wd vd u d
I , , , , , ,  ,
where F c u c v c w f u v w d wd vd u
n n n n
L
L
L z
y
x
Φ Φ
 
= ( ) ( ) ( ) ( )
∫
∫
∫ , ,
0
0
0
, e t n D t L L L
n x y z
Φ Φ
ρ ρ
π
( ) = − + +
( )




− − −
exp 2 2
0
2 2 2
,
cn
(x) = cos (π n x/Lx
);
Φ Φ Φ
ρ
π
τ
ρ ρ
i
x y z
n n n n n n
x y z t
L L L
nc x c y c z e t e s u
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) (
2
2 )
) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v g u v w T
n
L
L
L
t
n
z
y
x
Φρ
, , ,
0
0
0
0
1
× ( )
( )
− ( ) ( ) ( )
−
c w
u v w
u
d wd vd u d
L L L
nc x c y c z
n
I i
x y z
n n n
∂ τ
∂
τ
π
ρ
Φ 1
2
2
, , ,
e
e t e
n n
t
n
Φ Φ
ρ ρ
τ
( ) −
( ) ×
∫
∑
=
∞
0
1
× −
( ) ( ) ( ) ( ) ( )
( )
−
e c u s v c w g u v w T
u v w
v
d wd v
n n n n
I i
Φ Φ
Φ
ρ ρ
ρ
τ
∂ τ
∂
, , ,
, , ,
1
d
d u d
L L L
n
L
L
L
t
x y z n
z
y
x
τ
π
0
0
0
0
2
1
2
∫
∫
∫
∫ ∑
− ×
=
∞
× ( ) −
( ) ( ) ( ) ( )
( )
−
e t e c u c v s w
u v w
w
g u v w
n n n n n
I i
Φ Φ Φ
Φ
ρ ρ
ρ
ρ
τ
∂ τ
∂
1 , , ,
, , ,T
T d wd vd u d
L
L
L
t z
y
x
( ) ×
∫
∫
∫
∫ τ
0
0
0
0
× ( ) ( ) ( )
c x c y c z
n n n , i ≥1,
where sn
(x) = sin (π n x/Lx
).
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 28
Equations for the functions Cij
(x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be written as
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
00
0
2
00
2 0
2
00
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
00
2
∂ ( )
∂
, , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
C x y z t
t
D
C x y z t
x
C x y z t
y
C
i
L
i i
0
0
2
0
2
2
0
2
2
, , , , , , , , , i
i x y z t
z
0
2
, , ,
( )
∂





 +
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
−
D
x
g x y z T
C x y z t
x
D
y
g x y z T
L L
i
L L
0
10
0
, , ,
, , ,
, , , )
)
∂ ( )
∂





 +
−
C x y z t
y
i 10 , , ,
+
∂
∂
( )
∂ ( )
∂






−
D
z
g x y z T
C x y z t
z
L L
i
0
10
, , ,
, , ,
, i ≥1;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
01
0
2
01
2 0
2
01
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
01
2
∂ ( )
∂
+
, , ,
+
∂
∂
( )
( )
∂ ( )
∂





 +
∂
∂
D
x
C x y z t
P x y z T
C x y z t
x
D
L L
0
00 00
0


, , ,
, , ,
, , ,
y
y
C x y z t
P x y z T
C x y z t
y
00 00


, , ,
, , ,
, , ,
( )
( )
∂ ( )
∂





 +
+
∂
∂
( )
( )
∂ ( )
∂






D
z
C x y z t
P x y z T
C x y z t
z
L
0
00 00


, , ,
, , ,
, , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
02
0
2
02
2 0
2
02
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
02
2
∂ ( )
∂
+
, , ,
+
∂
∂
( )
( )
( )
∂ ( )
−
D
x
C x y z t
C x y z t
P x y z T
C x y z t
L
0 01
00
1
00
, , ,
, , ,
, , ,
, , ,


∂
∂





 +
∂
∂
( )
( )
( )
×






−
x y
C x y z t
C x y z t
P x y z T
01
00
1
, , ,
, , ,
, , ,





×
∂ ( )
∂


 +
∂
∂
( )
( )
−
C x y z t
y z
C x y z t
C x y z t
P x y z
00
01
00
1
, , ,
, , ,
, , ,
, , ,


T
T
C x y z t
z
( )
∂ ( )
∂











+
00 , , ,
×
∂ ( )
∂


 +
∂
∂
( )
( )
−
C x y z t
y z
C x y z t
C x y z t
P x y z
00
01
00
1
, , ,
, , ,
, , ,
, , ,


T
T
C x y z t
z
D
x
C x y z t
P x y z
L
( )
∂ ( )
∂











+
∂
∂
( )
00
0
00
, , , , , ,
, , ,


T
T
( )
×








×
∂ ( )
∂


 +
∂
∂
( )
( )
∂
C x y z t
x y
C x y z t
P x y z T
C x y z t
01 00 01
, , , , , ,
, , ,
, , ,


(
( )
∂





 +
∂
∂
( )
( )
∂ ( )
∂




y z
C x y z t
P x y z T
C x y z t
z
00 01


, , ,
, , ,
, , ,








;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
11
0
2
11
2 0
2
11
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
11
2
∂ ( )
∂
+
, , ,
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 29
+
∂
∂
( )
( )
( )
∂ ( )
∂
 −
x
C x y z t
C x y z t
P x y z T
C x y z t
x
10
00
1
00
, , ,
, , ,
, , ,
, , ,







 +
∂
∂
( )
( )
( )
×








−
y
C x y z t
C x y z t
P x y z T
10
00
1
, , ,
, , ,
, , ,


×
∂ ( )
∂


 +
∂
∂
( )
( )
−
C x y z t
y z
C x y z t
C x y z t
P x y z
00
10
00
1
, , ,
, , ,
, , ,
, , ,


T
T
C x y z t
z
D L
( )
∂ ( )
∂











+
00
0
, , ,
( )
( )
( ) ( )
( )
( )
00 10 00 10
0
, , , , , , , , , , , ,
, , , , , ,
L
C x y z t C x y z t C x y z t C x y z t
D
x P x y z T x y P x y z T y
γ γ
γ γ
    
∂ ∂
∂ ∂

+ + +
   

∂ ∂ ∂ ∂
   
    

+
∂
∂
( )
( )
∂ ( )
∂











+
z
C x y z t
P x y z T
C x y z t
z
D L
00 10
0


, , ,
, , ,
, , , ∂
∂
∂
( )
∂ ( )
∂





 +




 x
g x y z T
C x y z t
x
L , , ,
, , ,
01
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
y
g x y z T
C x y z t
y z
g x y z T
C x y
L L
, , ,
, , ,
, , ,
,
01 01 ,
, ,
z t
z
( )
∂











;


C x y z t
x
ij
x
, , ,
( )
=
=0
0,


C x y z t
x
ij
x Lx
, , ,
( )
=
=
0,


C x y z t
y
ij
y
, , ,
( )
=
=0
0 ,


C x y z t
y
ij
y Ly
, , ,
( )
=
=
0 ,


C x y z t
z
ij
z
, , ,
( )
=
=0
0,


C x y z t
z
ij
z Lz
, , ,
( )
=
=
0 , i ≥0, j ≥0;
C00
(x,y,z,0)=fC
(x,y,z), Cij
(x,y,z,0)=0, i ≥1, j ≥1.
Functions Cij
(x,y,z,t) (i ≥0, j ≥0) could be approximated by the following series during solutions of the
above equations
C x y z t
F
L L L L L L
F c x c y c z e t
C
x y z x y z
nC n n n nC
n
00
0
1
2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
∑ .
Here ( ) 2 2
0 2 2 2
1 1 1
nC C
x y z
e t exp n D t
L L L

 
 
= − + +
 
 
 
 
 
, ( ) ( ) ( ) ( )
0 0 0
, ,
y
x z
L
L L
nC n n C n
F c u c v f u v w c w d wd vd u
= ∫ ∫ ∫ ;
C x y z t
L L L
n F c x c y c z e t e s u
i
x y z
nC n n n nC nC n
0 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v g u v w T
n L
L
L
L
t
n
z
y
x
, , ,
0
0
0
0
1
× ( )
∂ ( )
∂
− ( ) ( )
−
c w
C u v w
u
d wd vd u d
L L L
n F c x c y c z
n
i
x y z
nC n n n
10
2
2
, , ,τ
τ
π
(
( ) ( ) −
( ) ×
∫
∑
=
∞
e t e
nC nC
t
n
τ
0
1
× ( ) ( ) ( ) ( )
∂ ( )
∂
−
∫
c u s v c v g u v w T
C u v w
v
d wd vd u d
n n n L
i
L
L z
, , ,
, , ,
10
0
0
τ
τ
y
y
x
L
x y z
nC nC
n
L L L
n F e t
∫
∫ ∑
− ( ) ×
=
∞
0
2
1
2π
× ( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
∂ −
c x c y c z e c u c v s v g u v w T
C u v
n n n nC n n n L
i
 , , ,
,
10 ,
, ,
w
w
d wd vd u d
L
L
L
t z
y
x


( )
∂
∫
∫
∫
∫ 0
0
0
0
, i ≥1;
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 30
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
01 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( )×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
×
( )
( )
∂ ( )
∂
−
C u v w
P u v w T
C u v w
u
d wd vd u d
L L L
x y z
00 00
2
2
γ
γ
τ τ
τ
π
, , ,
, , ,
, , ,
n
n F c x c y c z e t
nC n n n nC
n
( ) ( ) ( ) ( ) ×
=
∞
∑
1
× −
( ) ( ) ( ) ( )
( )
( )
∂
e c u s v c w
C u v w
P u v w T
C u v w
nC n n n
τ
τ τ
γ
γ
00 00
, , ,
, , ,
, , ,
(
( )
∂
− ( )×
∫
∫
∫
∫ ∑
=
∞
v
d wd vd u d
L L L
n e t
L
L
L
t
x y z
nC
n
z
y
x
τ
π
0
0
0
0
2
1
2
× ( ) ( ) ( ) −
( ) ( ) ( ) ( )
( )
F c x c y c z e c u c v s w
C u v w
P u
nC n n n nC n n n
τ
τ
γ
γ
00 , , ,
,v
v w T
C u v w
w
d wd vd u d
L
L
L
t z
y
x
, ,
, , ,
( )
∂ ( )
∂
∫
∫
∫
∫
00
0
0
0
0
τ
τ ;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
02 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
× ( )
( )
( )
∂ ( )
∂
−
C u v w
C u v w
P u v w T
C u v w
u
d wd v
01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ τ
γ
γ
d
d u d
L L L
F c x c y
x y z
nC n n
n
τ
π
− ( ) ( )×
=
∞
∑
2
2
1
× ( ) ( ) −
( ) ( ) ( ) ( )
( )
−
nc z e t e c u s v C u v w
C u v w
P
n nC nC n n
τ τ
τ
γ
01
00
1
, , ,
, , ,
γ
γ
τ
u v w T
C u v w
v
L
L
L
t z
y
x
, , ,
, , ,
( )
∂ ( )
∂
×
∫
∫
∫
∫
00
0
0
0
0
× ( ) − ( ) ( ) ( ) ( ) −
( )
c w d wd vd u d
L L L
n F c x c y c z e t e c
n
x y z
nC n n n nC nC n
τ
π
τ
2
2
u
u c v
n
L
L
t
n
y
x
( ) ( ) ×
∫
∫
∫
∑
=
∞
0
0
0
1
× ( ) ( )
( )
( )
∂ ( )
∂
−
s w C u v w
C u v w
P u v w T
C u v w
n 01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ τ
γ
γ
w
w
d wd vd u d
L L L
n c x
L
x y z
n
n
z
τ
π
0
2
1
2
∫ ∑
− ( ) ×
=
∞
× ( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
∂
F c y c z e t e s u c v c w C u v w
C
nC n n nC nC n n n
 
01
00
, , ,
u
u v w
u
L
L
L
t z
y
x
, , ,
( )
∂
×
∫
∫
∫
∫ 0
0
0
0
×
( )
( )
− ( ) (
−
C u v w
P u v w T
d wd vd u d
L L L
n F c x c y
x y z
nC n n
00
1
2
2
γ
γ
τ
τ
π
, , ,
, , ,
)
) ( ) ( ) −
( ) ( ) ×
∫
∫
∑
=
∞
c z e t e c u
n nC nC n
L
t
n
x
τ
0
0
1
× ( ) ( ) ( )
( )
( )
∂
−
s v c w C u v w
C u v w
P u v w T
C u v w
n n 01
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,τ
τ
π
( )
∂
− ×
∫
∫ ∑
=
∞
v
d wd vd u d
L L L
n
L
L
x y z n
z
y
0
0
2
1
2
× ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( ) (
F c x c y c z e t e c u c v s w C u v w
nC n n n nC nC n n n
τ τ
01 , , , )
)
( )
( )
×
−
∫
∫
∫
∫
C u v w
P u v w T
L
L
L
t z
y
x
00
1
0
0
0
0
γ
γ
τ
, , ,
, , ,
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 31
×
∂ ( )
∂
− ( ) ( ) ( ) ( )
C u v w
w
d wd vd u d
L L L
F c x c y c z e t
x y z
nC n n n nC
00
2
2
, , ,τ
τ
π
e
e s u
nC n
L
t
n
x
−
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
× ( ) ( )
( )
( )
∂ ( )
∂
n c v c w
C u v w
P u v w T
C u v w
u
d wd vd u d
n n
00 01
γ
γ
τ τ
, , ,
, , ,
, , ,
τ
τ
π
0
0
2
1
2
L
L
x y z
n nC
n
z
y
L L L
c x e t
∫
∫ ∑
− ( ) ( ) ×
=
∞
× ( ) −
( ) ( ) ( ) ( )
( )
( )
∂
F c y e c u s v c w
C u v w
P u v w T
C
nC n nC n n n
τ
τ
γ
γ
00 0
, , ,
, , ,
1
1
0
0
0
0
u v w
v
d wd vd u d
L
L
L
t z
y
x
, , ,τ
τ
( )
∂
×
∫
∫
∫
∫
× ( )− ( ) ( ) ( ) ( ) −
( ) ( ) (
n c z
L L L
n F c x c y c z e t e c u c v
n
x y z
nC n n n nC nC n n
2
2
π
τ )
) ( ) ×
∫
∫
∫
∫
∑
=
∞
s w
n
L
L
L
t
n
z
y
x
0
0
0
0
1
×
( )
( )
∂ ( )
∂
C u v w
P u v w T
C u v w
w
d wd vd u d
00 01
γ
γ
τ τ
τ
, , ,
, , ,
, , ,
;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
11 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
× ( )
∂ ( )
∂
− ( ) (
g u v w T
C u v w
u
d wd vd u d
L L L
n F c x c y
L
x y z
nC n n
, , ,
, , ,
01
2
2
τ
τ
π
)
) ( ) ( ) ×
=
∞
∑ c z e t
n nC
n 1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u s v c w g u v w T
C u v w
v
d wd vd u d
nC n n n L
τ
τ
τ
, , ,
, , ,
01
0
L
L
L
L
t
x y z
z
y
x
L L L
∫
∫
∫
∫ − ×
0
0
0
2
2π
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
n e t e c u c v s w g u v w T
C u v w
w
d w
nC nC n n n L


, , ,
, , ,
01
d
d vd u d
L
L
L
t
n
z
y
x

0
0
0
0
1
∫
∫
∫
∫
∑
=
∞
×
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
F c x c y c z
L L L
F c x c y c z e t e
nC n n n
x y z
nC n n n nC nC
2
2
π
τ
(
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
s u c v
n n
L
L
t
n
y
x
0
0
0
1
× ( )
( )
( )
∂ ( )
∂
∫
n c w
C u v w
P u v w T
C u v w
u
d wd vd u d
n
Lz
00 10
0
γ
γ
τ τ
τ
, , ,
, , ,
, , ,
−
− ( ) ( )×
=
∞
∑
2
2
1
π
L L L
n F c x c y
x y z
nC n n
n
× ( ) ( ) −
( ) ( ) ( ) ( )
( )
( )
c z e t e c u s v c w
C u v w
P u v w T
n nC nC n n n
τ
τ
γ
γ
00 , , ,
, , ,
∂
∂ ( )
∂
−
∫
∫
∫
∫
C u v w
v
d wd vd u d
L
L
L
t z
y
x
10
0
0
0
0
, , ,τ
τ
− ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( )
2
2
π
τ
L L L
n F c x c y c z e t e c u c v s w
C
x y z
nC n n n nC nC n n n
0
00
0
0
0
0
1
γ
γ
τ
u v w
P u v w T
L
L
L
t
n
z
y
x
, , ,
, , ,
( )
( )
×
∫
∫
∫
∫
∑
=
∞
Pankratov: On approach to increase integration rate of elements
AJMS/Jul-Sep-2020/Vol 4/Issue 3 32
×
∂ ( )
∂
− ( ) ( ) ( ) (
C u v w
w
d wd vd u d
L L L
n F c x c y c z e t
x y z
nC n n n nC
10
2
2
, , ,τ
τ
π
)
) −
( ) ( ) ×
∫
∫
∑
=
∞
e s u
nC n
L
t
n
x
τ
0
0
1
× ( ) ( ) ( )
( )
( )
∂
−
c v c w C u v w
C u v w
P u v w T
C u v w
n n 10
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,τ
τ
π
( )
∂
− ×
∫
∫ ∑
=
∞
u
d wd vd u d
L L L
n
L
L
x y z n
z
y
0
0
2
1
2
× ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( )
−
F c x c y c z e t e c u s v c w
C u v w
nC n n n nC nC n n n
τ
γ
00
1
, , ,
,
, , ,
, , ,
τ τ
γ
( )
( )
∂ ( )
∂
×
∫
∫
∫
∫ P u v w T
C u v w
v
L
L
L
t z
y
x
00
0
0
0
0
× ( ) − ( ) ( ) ( ) ( )
C u v w d wd vd u d
L L L
n F c x c y c z e t e
x y z
nC n n n nC n
10 2
2
, , ,τ τ
π
C
C n
L
t
n
c u
x
−
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
× ( ) ( ) ( )
( )
( )
∂
−
c v s w C u v w
C u v w
P u v w T
C u v w
n n 10
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,
.
τ
τ
( )
∂
∫
∫ w
d wd vd u d
L
L z
y
0
0

More Related Content

What's hot

ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...BRNSS Publication Hub
 
Differential equations and its applications
Differential equations and its applicationsDifferential equations and its applications
Differential equations and its applicationsDr.Jagadish Tawade
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsDr.Jagadish Tawade
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Komal Goyal
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...antjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
How to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfaceHow to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfacetr1987
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
Principal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationPrincipal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationTatsuya Yokota
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionPedro222284
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 

What's hot (18)

ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
Differential equations and its applications
Differential equations and its applicationsDifferential equations and its applications
Differential equations and its applications
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
Presentation
PresentationPresentation
Presentation
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
How to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfaceHow to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surface
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
Principal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationPrincipal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classification
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability Distribution
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 

Similar to On Approach to Increase Integration Rate of Elements of a Switched-capacitor Step-down DC-DC Converter

On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopBRNSS Publication Hub
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ijmejournal
 

Similar to On Approach to Increase Integration Rate of Elements of a Switched-capacitor Step-down DC-DC Converter (20)

02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...BRNSS Publication Hub
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHSBRNSS Publication Hub
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRABRNSS Publication Hub
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERSBRNSS Publication Hub
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationBRNSS Publication Hub
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...BRNSS Publication Hub
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseBRNSS Publication Hub
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...BRNSS Publication Hub
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...BRNSS Publication Hub
 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
 

Recently uploaded

Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 

Recently uploaded (20)

Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 

On Approach to Increase Integration Rate of Elements of a Switched-capacitor Step-down DC-DC Converter

  • 1. www.ajms.com 10 ISSN 2581-3463 RESEARCH ARTICLE On Approach to Increase Integration Rate of Elements of a Switched-capacitor Step-down DC-DC Converter E. L. Pankratov1,2 1 Department of Mathematics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 2 Department of Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia Received: 15-05-2020; Revised: 01-06-2020; Accepted: 20-07-2020 ABSTRACT In this paper, we introduce an approach to increase integration rate of elements of a switched- capacitor step-down DC–DC converter. Framework the approach, we consider a heterostructure with special configuration. Several specific areas of the heterostructure should be doped by diffusion or ion implantation. Annealing of dopant and/or radiation defects should be optimized. Key words: Switched-capacitor step-down DC–DC converter, optimization of manufacturing, analytical approach for modeling INTRODUCTION An actual and intensively solving problem of solid-state electronics is increasing of integration rate of elements of integrated circuits (p-n-junctions, their systems et al.).[1-8] Increasing of the integration rate leads to necessity to decrease their dimensions. To decrease, the dimensions are using several approaches. They are widely using laser and microwave types of annealing of infused dopants. These types of annealing are also widely using for annealing of radiation defects, generated during ion implantation.[9-17] Using the approaches gives a possibility to increase integration rate of elements of integrated circuits through inhomogeneity of technological parameters due to generating inhomogenous distribution of temperature. In this situation, one can obtain decreasing dimensions of elements of integrated circuits[18] with account Arrhenius law.[1,3] Another approach to manufacture elements of integrated circuits with smaller dimensions is doping of heterostructure by diffusion or ion implantation.[1-3] However, in this case, optimization of dopant and/or radiation defects is required.[18] In this paper, we consider a heterostructure. The heterostructure consists of a substrate and several epitaxial layers. Some sections have been manufactured in the epitaxial layers. Further, we consider doping of these sectionsbydiffusionorionimplantation.Thedopinggivesapossibilitytomanufacturefield-effecttransistors framework a cascaded inverter circuit so as it is shown in Figure 1. The manufacturing gives a possibility to increase density of elements of the switched-capacitor step-down DC-DC converter.[4] After the considered doping, dopant and/or radiation defects should be annealed. Framework the paper, we analyzed dynamics of redistribution of dopant and/or radiation defects during their annealing. We introduce an approach to decrease dimensions of the element. However, it is necessary to complicate technological process. METHOD OF SOLUTION In this section, we determine spatiotemporal distributions of concentrations of infused and implanted dopants. To determine these distributions, we calculate appropriate solutions of the second Fick’s law.[1,3,18] Address for correspondence: E. L. Pankratov E-mail: elp2004@mail.ru
  • 2. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 11           C x y z t t x D C x y z t x y D C x y z t y C C , , , , , , , , , ( ) = ( )       + ( )        + ( )           z D C x y z t z C , , , (1) Boundary and initial conditions for the equations are ∂ ( ) ∂ = = C x y z t x x , , , 0 0 , ∂ ( ) ∂ = = C x y z t x x Lx , , , 0 , ∂ ( ) ∂ = = C x y z t y y , , , 0 0, ∂ ( ) ∂ = = C x y z t y x Ly , , , 0 , ∂ ( ) ∂ = = C x y z t z z , , , 0 0 , ( ) , , , 0 z x L C x y z t z = ∂ = ∂ , C (x,y,z,0)=f (x,y,z).(2) The function C (x,y,z,t) describes the spatiotemporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient could be changed with changing materials of heterostructure, with changing temperature of materials (including annealing), with changing concentrations of dopant and radiation defects. We approximate dependences of dopant diffusion coefficient on parameters by the following relation with account results in Refs.[20-22] D D x y z T C x y z t P x y z T V x y z t C L = ( ) + ( ) ( )       + ( , , , , , , , , , , , , 1 1 1 ξ ς γ γ ) ) + ( ) ( )         V V x y z t V * * , , , ς2 2 2 (3) Here, the function DL (x,y,z,T) describes the spatial (in heterostructure) and temperature (due toArrhenius law) dependences of diffusion coefficient of dopant. The function P (x,y,z,T) describes the limit of solubility of dopant. Parameter γ ∈[1,3] describes average quantity of charged defects interacted with atom of dopant.[20] The function V (x,y,z,t) describes the spatiotemporal distribution of concentration of radiation vacancies. Parameter V* describes the equilibrium distribution of concentration of vacancies. The considered concentrational dependence of dopant diffusion coefficient has been described in details in.[20] It should be noted that using diffusion type of doping did not generation radiation defects. In this situation, ζ1 = ζ2 = 0. We determine spatiotemporal distributions of concentrations of radiation defects by solving the following system of equations.[21,22] ∂ ( ) ∂ = ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , , , , , , T I x y z t y ( ) ∂ ( ) ∂       + Figure 1: The considered cascaded inverter[4]
  • 3. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 12 + ∂ ∂ ( ) ∂ ( ) ∂       − ( ) ( ) z D x y z T I x y z t z k x y z T I x y z t I I V , , , , , , , , , , , , , V V x y z t , , , ( )− − ( ) ( ) k x y z T I x y z t I I , , , , , , , 2 (4) ∂ ( ) ∂ = ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , , , , , , T V x y z t y ( ) ∂ ( ) ∂       + + ∂ ∂ ( ) ∂ ( ) ∂       − ( ) ( ) z D x y z T V x y z t z k x y z T I x y z t V I V , , , , , , , , , , , , , V V x y z t , , , ( )+ + ( ) ( ) k x y z T V x y z t V V , , , , , , , 2 . Boundary and initial conditions for these equations are ∂ ( ) ∂ = =  x y z t x x , , , 0 0 , ∂ ( ) ∂ = =  x y z t x x Lx , , , 0 , ∂ ( ) ∂ = =  x y z t y y , , , 0 0, ∂ ( ) ∂ = =  x y z t y y Ly , , , 0 , ∂ ( ) ∂ = =  x y z t z z , , , 0 0 , ∂ ( ) ∂ = =  x y z t z z Lz , , , 0, ρ (x,y,z,0)=fρ (x,y,z).(5) Here ρ = I,V. The function I (x,y,z,t) describes the spatiotemporal distribution of concentration of radiation interstitials; Dρ (x,y,z,T) is the diffusion coefficients of point radiation defects; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V (x,y,z,T) is the parameter of recombination of point radiation defects; kI,I (x,y,z,T) and kV,V (x,y,z,T) are the parameters of generation of simplest complexes of point radiation defects. Further, we determine distributions in space and time of concentrations of divacancies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z,t) by solving the following system of equations.[21,22]         Φ Φ Φ Φ I I I I x y z t t x D x y z T x y z t x y D x , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )       +   Φ + ( ) ( )       + ( )     z D x y z T x y z t z k x y z T I x y z I I I I Φ Φ , , , , , , , , , , , , , 2 t t k x y z T I x y z t I ( )− ( ) ( ) , , , , , , (6)         Φ Φ Φ Φ V V V V x y z t t x D x y z T x y z t x y D x , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )       +   Φ + ( ) ( )       + ( )     z D x y z T x y z t z k x y z T V x y z V V V V Φ Φ , , , , , , , , , , , , , 2 t t k x y z T V x y z t V ( )− ( ) ( ) , , , , , , . Boundary and initial conditions for these equations are ∂ ( ) ∂ = = Φ x y z t x x , , , 0 0, ∂ ( ) ∂ = = Φ x y z t x x Lx , , , 0, ∂ ( ) ∂ = = Φ x y z t y y , , , 0 0 , ∂ ( ) ∂ = = Φ x y z t y y Ly , , , 0 , ∂ ( ) ∂ = = Φ x y z t z z , , , 0 0, ∂ ( ) ∂ = = Φ x y z t z z Lz , , , 0 , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z).(7)
  • 4. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 13 Here, DΦρ (x,y,z,T) is the diffusion coefficients of the above complexes of radiation defects; kI (x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes. We calculate distributions of concentrations of point radiation defects in space and time by recently elaborated approach.[18] The approach based on transformation of approximations of diffusion coefficients in the following form: Dρ (x,y,z,T)=D0ρ [1+ερ gρ (x,y,z,T)], where D0ρ is the average values of diffusion coefficients, 0≤ερ 1, |gρ (x,y,z,T)|≤1, ρ =I,V. We also used analogous transformation of approximations of parameters of recombination of point defects and parameters of generation of their complexes: kI,V (x,y,z,T)=k0I,V [1+εI,V gI,V (x,y,z,T)], kI,I (x,y,z,T)=k0I,I [1+εI,I gI,I (x,y,z,T)] and kV,V (x,y,z,T)=k0V,V [1+εV,V gV,V (x,y,z,T)], where k0ρ1,ρ2 is the their average values, 0≤εI,V 1, 0≤εI,I 1, 0≤εV,V 1, |gI,V (x,y,z,T)|≤1, |gI,I (x,y,z,T)|≤1, |gV,V (x,y,z,T)| ≤1. Let us introduce the following dimensionless variables:  I x y z t I x y z t I , , , , , , * ( ) = ( ) ,  V x y z t , , , ( ) = = ( ) V x y z t V , , , * ,  = L k D D I V I V 2 0 0 0 , , Ω   = L k D D I V 2 0 0 0 , ,  = D D t L I V 0 0 2 , χ = x/Lx , η = y /Ly , φ = z/Lz . The introduction leads to transformation of Equation (4) and conditions (5) to the following form ∂ ( ) ∂ = ∂ ∂ + ( )     ∂ ( )   I D D D g T I I I V I I χ η ϕ ϑ ϑ χ ε χ η ϕ χ η ϕ ϑ , , , , , , , , , 0 0 0 1 ∂ ∂       + ∂ ∂ + ( )     × { χ η ε χ η ϕ 1 I I g T , , , × ∂ ( ) ∂    + ∂ ∂ + ( )     I D D D D D D g T I I V I I V I I χ η ϕ ϑ η ϕ ε χ η ϕ , , , , , , 0 0 0 0 0 0 1   ∂ ( ) ∂       − ( ) ×   I I χ η ϕ ϑ ϕ χ η ϕ ϑ , , , , , , × + ( )     ( )− + ( ) ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ 1 1 I V I V I I I I I g T V g T , , , , , , , , , , , , ,  Ω      ( )  I 2 χ η ϕ ϑ , , , (8) ∂ ( ) ∂ = ∂ ∂ + ( )     ∂ ( )   V D D D g T V V I V V V χ η ϕ ϑ ϑ χ ε χ η ϕ χ η ϕ ϑ , , , , , , , , , 0 0 0 1 ∂ ∂       + ∂ ∂ + ( )     × { χ η ε χ η ϕ 1 V V g T , , , × ∂ ( ) ∂    + ∂ ∂ + ( )     V D D D D D D g T V I V V I V V V χ η ϕ ϑ η ϕ ε χ η ϕ , , , , , , 0 0 0 0 0 0 1   ∂ ( ) ∂       − ( ) ×   V I χ η ϕ ϑ ϕ χ η ϕ ϑ , , , , , , × + ( )     ( )− + ( ) ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ 1 1 I V I V V V V V V g T V g T , , , , , , , , , , , , ,  Ω      ( )  V 2 χ η ϕ ϑ , , , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ χ , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ χ , , , 1 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η , , , 1 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ , , , 0 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ , , , 1 0 ,  ρ χ η ϕ ϑ χ η ϕ ϑ ρ ρ , , , , , , * ( ) = ( ) f (9) We determine solutions of Equation (8) with conditions (9) framework recently introduced approach,[18] that is, as the power series   ρ χ η ϕ ϑ ε ω ρ χ η ϕ ϑ ρ ρ , , , , , , ( ) = ( ) = ∞ = ∞ = ∞ ∑ ∑ ∑ i j k ijk k j i Ω 0 0 0 .(10) Substitution of the series (10) into Equation (8) and conditions (9) gives us possibility to obtain equations for initial order approximations of concentration of point defects  I000 χ η ϕ ϑ , , , ( ) and  V000 χ η ϕ ϑ , , , ( ) and corrections for them  Iijk χ η ϕ ϑ , , , ( ) and  Vijk χ η ϕ ϑ , , , ( ), i ≥1, j ≥1, k ≥1. The equations are presented in the Appendix. Solutions of the equations could be obtained by standard Fourier approach.[24,25] The solutions are presented in the Appendix.
  • 5. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 14 Now, we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To determine the distributions, we transform approximations of diffusion coefficients in the following form: DΦρ (x,y,z,T)=D0Φρ [1+ εΦρ gΦρ (x,y,z,T)], where D0Φρ is the average values of diffusion coefficients. In this situation, the Equation (6) could be written as ∂ ∂ ∂ ∂ ε ∂ ∂ Φ Φ Φ Φ Φ I I I I I x y z t t D x g x y z T x y z t x , , , , , , , , , ( ) = + ( )     ( )  0 1       + ( ) ( )+ k x y z T I x y z t I I , , , , , , , 2 + + ( )     ( )       + D y g x y z T x y z t y D z I I I I I 0 0 1 1 Φ Φ Φ Φ Φ ∂ ∂ ε ∂ ∂ ∂ ∂ , , , , , , + + ( )     ( )       − ε ∂ ∂ Φ Φ Φ I I I g x y z T x y z t z , , , , , , − ( ) ( ) k x y z T I x y z t I , , , , , , ∂ ∂ ∂ ∂ ε ∂ ∂ Φ Φ Φ Φ Φ V V V V V x y z t t D x g x y z T x y z t x , , , , , , , , , ( ) = + ( )     ( )  0 1       + ( ) ( )+ k x y z T I x y z t I I , , , , , , , 2 + + ( )     ( )       + D y g x y z T x y z t y D z V V V V V 0 0 1 1 Φ Φ Φ Φ Φ ∂ ∂ ε ∂ ∂ ∂ ∂ , , , , , , + + ( )     ( )       − ε ∂ ∂ Φ Φ Φ V V V g x y z T x y z t z , , , , , , − ( ) ( ) k x y z T I x y z t I , , , , , , . Farther, we determine solutions of above equations as the following power series Φ Φ Φ ρ ρ ρ ε x y z t x y z t i i i , , , , , , ( ) = ( ) = ∞ ∑ 0 .(11) Now, we used the series (11) into Equation (6) and appropriate boundary and initial conditions. The using gives the possibility to obtain equations for initial order approximations of concentrations of complexes of defects Φρ0 (x,y,z,t), corrections for them Φρi (x,y,z,t) (for them i ≥1) and boundary and initial conditions for them. We remove equations and conditions to the Appendix. Solutions of the equations have been calculated by standard approaches[24,25] and presented in the Appendix. Now, we calculate distribution of concentration of dopant in space and time using the approach, which was used for analysis of radiation defects. To use the approach, we consider following transformation of approximation of dopant diffusion coefficient: DL (x,y,z,T)=D0L [1+ εL gL (x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0≤εL 1, |gL (x,y,z,T)|≤1. Farther, we consider solution of Equation (1) as the following series: C x y z t C x y z t L i j ij j i , , , , , , ( ) = ( ) = ∞ = ∞ ∑ ∑ε ξ 1 0 . Using the relation into Equation (1) and conditions (2) leads to obtaining equations for the functions Cij (x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions for them. The equations are presented in the Appendix.Solutionsoftheequationshavebeencalculatedbystandardapproaches(see,forexample,[24,25] ). The solutions are presented in the Appendix. We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically using the second-order approximations on all parameters, which have been used in appropriate series. Usually, the second-order approximations are enough good approximations to make qualitative analysis and to obtain quantitative results. All analytical results have been checked by numerical simulation.
  • 6. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 15 DISCUSSION In this section, we analyzed spatiotemporal distributions of concentrations of dopants. Figure 2 shows typical spatial distributions of concentrations of dopants in neighborhood of interfaces of heterostructures. We calculate these distributions of concentrations of dopants under the following condition: Value of dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest areas. In this situation, one can find increasing of compactness of field-effect transistors with increasing of homogeneity of distribution of concentration of dopant at 1 time. Changing relation between values of dopant diffusion coefficients leads to opposite result [Figure 3]. It should be noted that framework the considered approach one shall optimize annealing of dopant and/ or radiation defects. To do the optimization, we used recently introduced criterion.[26-33] The optimization based on approximation real distribution by step-wise function ψ (x,y,z) [Figure 4]. Farther, the required values of optimal annealing time have been calculated by minimization the following mean-squared error. U L L L C x y z x y z d z d y d x x y z L L L z y x = ( )− ( )     ∫ ∫ ∫ 1 0 0 0 , , , , , Θ  .(12) Figure 2: (a) Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate a Figure 2: (b) Dependences of concentration of dopant, implanted in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogenous sample and annealing time Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 . Curve 2 corresponds to homogenous sample and annealing time Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 3 and 4 correspond to heterostructure from Figure 1; annealing times Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 and Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0 , respectively b
  • 7. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 16 Figure 3: (b) Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial distributions of implanted dopant in system of two epitaxial layers. Dashed lines are spatial distributions of implanted dopant in one epitaxial layer. Annealing time increases with increasing of number of curves Figure 3: (a) Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from Figure 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between values of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient in this section is smaller, than value of dopant diffusion coefficient in nearest sections a b Figure 4: (a) Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time a
  • 8. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 17 Figure 4: (b) Distributions of concentration of implanted dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time b Figure 5: (a) Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε =γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 a Figure 5: (b) Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε =γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 b
  • 9. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 18 We show optimal values of annealing time as functions of parameters on Figure 5. It is known that standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal case after finishing the annealing, dopant achieves interface between layers of heterostructure. If the dopant has no enough time to achieve the interface, it is practicably to anneal the dopant additionally. Figure 5b shows the described dependences of optimal values of additional annealing time for the same parameters as for Figure 5a. Necessity to anneal radiation defects leads to smaller values of optimal annealing of implanted dopant in comparison with optimal annealing time of infused dopant.[19-23] CONCLUSIONS In this paper, we introduce an approach to increase integration rate of element of a switched-capacitor step-down DC–DC converter. The approach gives us possibility to decrease area of the elements with smaller increasing of the element’s thickness. REFERENCES 1. Lachin VI, Savelov NS. Electronics. Phoenix: Rostov-na-Donu; 2001. 2. Alexenko AG, Shagurin II. Microcircuitry. Moscow: Radio and Communication; 1990. 3. Avaev NA, Naumov YE, Frolkin VT. Basis of Microelectronics. Moscow: Radio and Communication; 1991. 4. Ghiasi RR, SahafiA, Geshlaghi JS, Kouzekanani ZD.A2: 1 switched-capacitor DC-DC converter for low power circuits. Analog Integr Circ Sig Process 2015;84:215-22. 5. Fathi D, Forouzandeh B, Masoumi N. New enhanced noise analysis in active mixers in nanoscale technologies. Nano 2009;4:233-8. 6. Chachuli SA, Fasyar PN, Soin N, Kar NM, Yusop N. On approach to increase integration rate of elements. Mat Sci Sem Proc 2014;24:9-14. 7. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudryk YY, et al. Technologies dependencies. Semiconductors 2009;43:897-903. 8. Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF Jr., Chow TP. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl Phys Lett 2013;102:192107-9. 9. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors 2009;43:971-4. 10. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers upon annealing of dysprosium-and holmiumimplanted silicon. Semiconductors 1998;32:1029-32. 11. Kumar MJ, Singh TV. Quantum confinement effects in strained silicon mosfets. Int J Nanosci 2008;7:81-4. 12. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Band alignment of SnS/Zn (O, S) heterojunctions in SnS thin film solar cells. Appl Phys Lett 2013;102:53901-5. 13. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 2013;102:152114-8. 14. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4. 15. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:94901-5. 16. Shishiyanu ST, Shishiyanu TS, Railyan SK. Shallow pn-junctions in Si prepared by pulse photon annealing. Semiconductors 2002;36:611-7. 17. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quant Electron 2003;43:836-43. 18. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58-82. 19. Erofeev YN. Pulse Devices. Moscow: Higher School; 1989. 20. Kozlivsky VV. Modification of Semiconductors by Proton Beams. Sant-Peterburg: Nauka; 2003. 21. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 22. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 23. Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289-388. 24. Tikhonov AN, Samarskii AA. The Mathematical Physics Equations. Moscow: Nauka; 1972. 25. Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford: Oxford University Press; 1964. 26. Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity. Russ Micro Electron 2007;36:33-9.
  • 10. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 19 27. Pankratov EL. Redistribution of a dopant during annealing of radiation defects in a multilayer structure by laser scans for production of an implanted-junction rectifier. Int J Nanosci 2008;7:187-97. 28. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. J Comput Theor Nanosci 2017;14:4885-99. 29. Pankratov EL. On optimization of manufacturing of two-phase logic circuit based on heterostructures to increase density of their elements. Influence of miss-match induced stress. Adv Sci Eng Med 2017;9:787-801. 30. Pankratov EL, Bulaeva EA. On increasing of density of transistors in a hybrid cascaded multilevel inverter. Multidiscip Mod Mater Struct 2017;13:664-77. 31. Pankratov EL, Bulaeva EA.An approach to manufacture a heterobipolar transistors in thin film structures. On the method of optimization. Int J Micro Nano Scale Trans 2014;4:17-31. 32. Pankratov EL, Bulaeva EA. An analytical approach for analysis and optimization of formation of field-effect heterotransistors. Multidiscip Mod Mater Struct 2016;12:578-604. 33. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater Sci Semicond Proc 2015;34:260-8.
  • 11. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 20 APPENDIX Equations for the functions  Iijk χ η ϕ ϑ , , , ( ) and  Vijk χ η ϕ ϑ , , , ( ), i ≥0, j ≥0, k ≥0 and conditions for them ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 000 0 0 2 000 2 2 000 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 000 2  I , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 000 0 0 2 000 2 2 000 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 000 2  V , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂    I D D I I i I V i i 00 0 0 2 00 2 2 00 χ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ η , , , , , , , 2 2 2 00 2 0 0 + ∂ ( ) ∂       + ×  I D D i I V χ η ϕ ϑ ϕ , , , × ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ − χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ g T I g T I I i I , , , , , , , , ,   100 i i− ( ) ∂       +      100 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − ϕ χ η ϕ χ η ϕ ϑ ϕ g T I I i , , , , , ,  100 , i ≥1, ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂    V D D V V i V I i i 00 0 0 2 00 2 2 00 χ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ η , , , , , , , 2 2 2 00 2 + ∂ ( ) ∂       + ∂ ∂ ( ) ×     V g T i V χ η ϕ ϑ ϕ χ χ η ϕ , , , , , , × ∂ ( ) ∂    + ∂ ∂ ( ) ∂ − −   V D D D D g T V i V I V I V i 100 0 0 0 0 100 χ η ϕ ϑ χ η χ η ϕ , , , , , , χ χ η ϕ ϑ η ϕ χ η ϕ , , , , , , ( ) ∂       + ∂ ∂ ( ) ×   g T V × ∂ ( ) ∂    −  V D D i V I 100 0 0 χ η ϕ ϑ ϕ , , , , i ≥1, ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 010 0 0 2 010 2 2 010 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 010 2  I , , , − + ( )     ( ) ( ) 1 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V , , , , , , , , , , ,   ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 010 0 0 2 010 2 2 010 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 010 2  V , , , − + ( )     ( ) ( ) 1 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V , , , , , , , , , , ,   ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 020 0 0 2 020 2 2 020 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 020 2  I , , , − + ( )     ( ) ( )+ 1 010 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V I , , , , , , , , , , ,    χ χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )      V010
  • 12. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 21 ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V I V 020 0 0 2 020 2 2 020 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 020 2  V , , , − + ( )     ( ) ( )+ 1 010 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V I , , , , , , , , , , ,    χ χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )      V010 ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 001 0 0 2 001 2 2 001 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 001 2  I , , , − + ( )     ( ) 1 000 2 ε χ η ϕ χ η ϕ ϑ I I I I g T I , , , , , , , ,  ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 001 0 0 2 001 2 2 001 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 001 2  V , , , − + ( )     ( ) 1 000 2 ε χ η ϕ χ η ϕ ϑ I I I I g T V , , , , , , , ,  ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 110 0 0 2 110 2 2 110 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + × η χ η ϕ ϑ ϕ 2 2 110 2 0 0  I D D I V , , , × ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ g T I g T I I I , , , , , , , , ,   010 010 0 χ η ϕ ϑ η ϕ χ η ϕ , , , , , , ( ) ∂       + ∂ ∂ ( ) ×        g T I × ∂ ( ) ∂         − ( ) ( )+     I I V I 010 100 000 χ η ϕ ϑ ϕ χ η ϕ ϑ χ η ϕ ϑ , , , , , , , , , 0 000 100 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )     ×  V × + ( )     1 ε χ η ϕ I I I I g T , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 110 0 0 2 110 2 2 110 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 110 2  V , , , + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T V g T V I V V 0 0 010 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       V010 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − + ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η g T V g V V V V V , , , , , , , , , ,  010 1 ϕ ϕ,T ( )     × × ( ) ( )+ ( ) ( )     V I V I 100 000 000 100 χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ , , , , , , , , , , , ,      ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 002 0 0 2 002 2 2 002 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 002 2  I , , ,
  • 13. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 22 − + ( )     ( ) ( ) 1 001 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I I I I g T I I , , , , , , , , , , ,   ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 002 0 0 2 002 2 2 002 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 002 2  V , , , − + ( )     ( ) ( ) 1 001 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ V V V V g E V V , , , , , , , , , , ,   ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 101 0 0 2 101 2 2 101 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 101 2  I , , , + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T I g T I V I I 0 0 001 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       I001 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − + ( ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T I g T I I I , , , , , , , , ,  001 1 ) )     ( ) ( )   I V 100 000 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 101 0 0 2 101 2 2 101 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 101 2  V , , , + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T V g T V I V V 0 0 001 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       V001 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − + ( ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T V g T V V V , , , , , , , , ,  001 1 ) )     ( ) ( )   I V 000 100 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 011 0 0 2 011 2 2 011 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − ( ) × η χ η ϕ ϑ ϕ χ η ϕ ϑ 2 2 011 2 010   I I , , , , , , × + ( )     ( )− + ( ) 1 1 000 ε χ η ϕ χ η ϕ ϑ ε χ η ϕ I I I I I V I V g T I g T , , , , , , , , , , , , ,       ( ) ( )   I V 001 000 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 011 0 0 2 011 2 2 011 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − ( ) × η χ η ϕ ϑ ϕ χ η ϕ ϑ 2 2 011 2 010   V V , , , , , , ( ) ( ) ( ) ( ) ( ) , , 000 , , 000 001 1 , , , , , , 1 , , , , , , , , , V V V V I V I V g T V g t I V ε χ η ϕ χ η ϕ ϑ ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ     × + − +        ; ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ ijk x , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ ijk x , , , 1 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η ijk , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η ijk , , , 1 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ ijk , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ ijk , , , 1 0 (i ≥0, j ≥0, k ≥0);
  • 14. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 23  ρ χ η ϕ χ η ϕ ρ ρ 000 0 , , , , , * ( ) = ( ) f ,  ρ χ η ϕ ijk , , ,0 0 ( ) = (i ≥1, j ≥1, k ≥1). Solutions of the above equations could be written as  ρ χ η ϕ ϑ χ η ϕ ϑ ρ ρ 000 1 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ L L F c c c e n n n , where F nu nv n w f u v w d wd vd u n n ρ ρ ρ π π π = ( ) ( ) ( ) ( ) ∫ ∫ ∫ 1 0 1 0 1 0 1 * cos cos cos , , , cn (χ) = cos (π n χ), e n D D nI V I ϑ π ϑ ( ) = − ( ) exp 2 2 0 0 , e n D D nV I V ϑ π ϑ ( ) = − ( ) exp 2 2 0 0 ;  I D D nc c c e e s u c i I V n nI nI n n 00 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) v v I u v w u i n ( ) ∂ ( ) ∂ × − = ∞ ∫ ∫ ∫ ∫ ∑  100 0 1 0 1 0 1 0 1 , , ,τ ϑ × ( ) ( ) − ( ) ( ) ( ) ( ) − c w g u v w T d wd vd u d D D nc c c e e n I I V n nI nI , , , τ π χ η ϕ ϑ 2 0 0 τ τ ϑ ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ c u s v n n n 0 1 0 1 0 1 × ( ) ( ) ∂ ( ) ∂ − − ∫c w g u v w T I u v w v d wd vd u d D D nc n I i I V , , , , , ,  100 0 1 0 0 2 τ τ π n n nI nI n c c e e χ η ϕ ϑ τ ϑ ( ) ( ) ( ) ( ) − ( ) × ∫ ∑ = ∞ 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − ∫ c u c v s w g u v w T I u v w w d wd vd u d n n n I i , , , , , ,  100 0 1 0   1 1 0 1 ∫ ∫ , i ≥1,  V D D nc c c e e s u c i V I n nV nI n n 00 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) v v g u v w T V n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) ( ) − c w V u u d wd vd u d D D nc c c e e n i V I n nV n  100 0 0 ,τ τ χ η ϕ ϑ I I n n n c u s v − ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ τ ϑ 0 1 0 1 0 1 × ( ) ( ) ∂ ( ) ∂ − − ∫ 2 2 100 0 1 0 0 π τ τ π χ c w g u v w T V u v d wd vd u d D D nc n V i V I n , , , ,  ( ( ) ( ) ( ) ( ) × = ∞ ∑ c c enV n η ϕ ϑ 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u c v s w g u v w T V u w d wd vd u d nI n n n V i τ τ τ , , , ,  100 0 1 1 0 1 0 1 0 ∫ ∫ ∫ ∫ ϑ , i ≥1, where sn (χ) = sin (π n χ);  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 010 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n × + ( )     ( ) ( ) 1 000 000 ε τ τ I V I V g u v w T I u v w V u v w d wd vd u , , , , , , , , , , ,   d d τ ;
  • 15. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 24  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 020 0 0 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) D D c c c e e c u c I V n n n n n n n v v c w n I V n ( ) ( ) +   × ∫ ∫ ∫ ∫ ∑ = ∞ 1 0 1 0 1 0 1 0 1 ε ϑ , × ( )  ( ) ( )+ ( g u v w T I u v w V u v w I u v w I V , , , , , , , , , , , , ,    010 000 000    ) ) ( )      V u v w d wd vd u d 010 , , ,  ;  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 001 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n × + ( )     ( ) 1 000 2 ε ρ τ τ ρ ρ ρ ρ , , , , , , , , g u v w T u v w d wd vd u d  ;  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 002 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n × + ( )     ( ) ( ) 1 001 000 ε ρ τ ρ τ ρ ρ ρ ρ , , , , , , , , , , , g u v w T u v w u v w d wd vd u   d d τ ;  I D D nc c c e e s u I V n n n nI nI n 110 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v c u n n n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( − g u v w T I u v w u d wd vd u d D D nc c I i I V n n , , , , , ,  100 0 0 2 τ τ π χ η) ) ( ) ( ) × = ∞ ∑ c e n nI n ϕ ϑ 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u s v c u g u v w T I u v w v d wd vd nI n n n I i τ τ , , , , , ,  100 u u d D D I V τ π ϑ 0 1 0 1 0 1 0 0 0 2 ∫ ∫ ∫ ∫ − × × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) − n e e c u c v s u g u v w T I u v w nI nI n n n I i ϑ τ τ , , , , , ,  100 ∂ ∂ × ∫ ∫ ∫ ∫ ∑ = ∞ w d wd vd u d n τ ϑ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c c e c c e c u c v c n n n n nI n n nI n n n χ η ϕ χ ϑ η ϕ τ 2 v v I V n ( ) + ×   ∫ ∫ ∫ ∫ ∑ = ∞ 1 0 1 0 1 0 1 0 1 ε ϑ , × ( )  ( ) ( )+ ( g u v w T I u v w V u v w I u v w I V , , , , , , , , , , , , ,    100 000 000    ) ) ( )      V u v w d wd vd u d 100 , , ,   V D D nc c c e e s u V I n n n nV nV n 110 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v c u n n n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( − g u v w T V u v w u d wd vd u d D D nc c V i V I n n , , , , , ,  100 0 0 2 τ τ π χ η) ) ( ) ( ) × = ∞ ∑ c e n nV n ϕ ϑ 1
  • 16. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 25 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u s v c u g u v w T V u v w v d wd vd nV n n n V i τ τ , , , , , ,  100 u u d D D V I τ π ϑ 0 1 0 1 0 1 0 0 0 2 ∫ ∫ ∫ ∫ − × × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) − ne e c u c v s u g u v w T V u v w nV nV n n n V i ϑ τ τ , , , , , ,  100 ∂ ∂ × ∫ ∫ ∫ ∫ ∑ = ∞ w d wd vd u d n τ ϑ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) + c c c c e c c e c u c v n n n n nI n n nV n n χ η ϕ χ ϑ η ϕ τ 2 1 ε ε ϑ I V I V n g u v w T , , , , , ( )     × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )+ ( ) c w I u v w V u v w I u v w V u v n     100 000 000 100 , , , , , , , , , , ,    w w d wd vd u d ,  ( )     ;  I D D nc c c e e s u I V n n n nI nI n 101 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v g u v w T n I n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) c w I u v w u d wd vd u d D D nc c c e n I V n n n n  001 0 0 2 , , ,τ τ π χ η ϕ I I n ϑ ( ) × = ∞ ∑ 1 × ( ) ( ) ( ) ∂ ( ) ∂ − ∫ ∫s v c w g u v w T I u v w v d wd vd u d D n n I , , , , , ,  001 0 1 0 1 0 2 τ τ π I I V nI n n n n D ne c c c 0 1 ϑ χ η ϕ ( ) ( ) ( ) ( ) × = ∞ ∑ × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u c v s w g u v w T I u v w w d wd vd u d nI n n n I τ τ , , , , , ,  001 τ τ χ η ϕ ϑ 0 1 0 1 0 1 0 1 2 ∫ ∫ ∫ ∫ ∑ − ( ) ( ) ( ) × = ∞ c c c n n n n × ( ) − ( ) ( ) ( ) ( ) + ( )       e e c u c v c w g u v w T I nI nI n n n I V I V ϑ τ ε 1 10 , , , , ,  0 0 000 0 1 0 1 0 1 0 u v w V u v w d wd vd u d , , , , , , τ τ τ ϑ ( ) ( ) ∫ ∫ ∫ ∫   V D D nc c c e e s u V I n n n nV nV n 101 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v g u v w T n V n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) c w V u v w u d wd vd u d D D nc c c e n V I n n n n  001 0 0 2 , , ,τ τ π χ η ϕ I I nV n n e c u ϑ τ ϑ ( ) − ( ) ( ) × ∫ ∫ ∑ = ∞ 0 1 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ − ∫ ∫s v c w g u v w T I u v w v d wd vd u d D n n I , , , , , ,  001 0 1 0 1 0 2 τ τ π I I V nI n n n n D ne c c c 0 1 ϑ χ η ϕ ( ) ( ) ( ) ( ) × = ∞ ∑ × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u c v s w g u v w T V u v w w d wd vd u d nV n n n V τ τ , , , , , ,  001 τ τ χ η ϕ ϑ 0 1 0 1 0 1 0 1 2 ∫ ∫ ∫ ∫ ∑ − ( ) ( ) ( ) × = ∞ c c c n n n n
  • 17. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 26 × ( ) − ( ) ( ) ( ) ( ) + ( )       e e c u c v c w g u v w T I nV nV n n n I V I V ϑ τ ε 1 10 , , , , ,  0 0 000 0 1 0 1 0 1 0 u v w V u v w d wd vd u d , , , , , , τ τ τ ϑ ( ) ( ) ∫ ∫ ∫ ∫  ;  I c c c e e c u c v c w n n n nI nI n n n 011 2 χ η ϕ ϑ χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ( ) ( ) { × ∫ ∫ ∫ ∫ ∑ = ∞  I u v w n 000 0 1 0 1 0 1 0 1 , , ,τ ϑ × + ( )     ( )+ + ( ) 1 1 010 ε τ ε I I I I I V I V g u v w T I u v w g u v w T , , , , , , , , , , , , ,         ( ) ( )        I u v w V u v w d wd vd u d 001 000 , , , , , , τ τ τ  V c c c e e c u c v c w n n n nV nV n n n 011 2 χ η ϕ ϑ χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ( ) ( ) { × ∫ ∫ ∫ ∫ ∑ = ∞  I u v w n 000 0 1 0 1 0 1 0 1 , , ,τ ϑ × + ( )     ( )+ + ( ) 1 1 010 ε τ ε I I I I I V I V g u v w T I u v w g u v w T , , , , , , , , , , , , ,         ( ) ( )        I u v w V u v w d wd vd u d 001 000 , , , , , , τ τ τ . Equations for functions Φρi (x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radiation defects.        Φ Φ Φ Φ I I I I x y z t t D x y z t x x y z t y 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + Φ ΦI x y z t z 0 2 , , , ( )       +  + ( ) ( )− ( ) ( ) k x y z T I x y z t k x y z T I x y z t I I I , , , , , , , , , , , , , 2        Φ Φ Φ Φ V V V V x y z t t D x y z t x x y z t y 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + Φ ΦV x y z t z 0 2 , , , ( )       +  + ( ) ( )− ( ) ( ) k x y z T V x y z t k x y z T V x y z t V V V , , , , , , , , , , , , , 2 ;        Φ Φ Φ Φ I i I I i I i x y z t t D x y z t x x y z t y , , , , , , , , , ( ) = ( ) + ( ) + 0 2 2 2 2 2 Φ ΦI i x y z t z , , , ( )         +  2 + ( ) ( )       + ( − D x g x y z T x y z t x y g x y z T I I I i I 0 1 Φ Φ Φ Φ       , , , , , , , , , ) ) ( )       +      −   ΦI i x y z t y 1 , , , + ( ) ( )            −     z g x y z T x y z t z I I i Φ Φ , , , , , , 1 , i≥1,        Φ Φ Φ Φ V i V V i V i x y z t t D x y z t x x y z t y , , , , , , , , , ( ) = ( ) + ( ) + 0 2 2 2 2 2 Φ ΦV i x y z t z , , , ( )         +  2
  • 18. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 27 + ( ) ( )       + ( − D x g x y z T x y z t x y g x y z T V V V i V 0 1 Φ Φ Φ Φ       , , , , , , , , , ) ) ( )       +      −   ΦV i x y z t y 1 , , , + ( ) ( )            −     z g x y z T x y z t z V V i Φ Φ , , , , , , 1 , i≥1; Boundary and initial conditions for the functions take the form ∂ ( ) ∂ = = Φi x x y z t x , , , 0 0 , ∂ ( ) ∂ = = Φi x L x y z t x x , , , 0 , ∂ ( ) ∂ = = Φi y x y z t y , , , 0 0 , ∂ ( ) ∂ = = Φi y L x y z t y y , , , 0 , ∂ ( ) ∂ = = Φi z x y z t z , , , 0 0 , ∂ ( ) ∂ = = Φi z L x y z t z z , , , 0 , i≥0; Φρ 0(x,y,z,0)=fΦρ (x,y,z), Φρi (x,y,z,0)=0, i≥1. Solutions of the above equations could be written as Φ Φ Φ    0 1 1 2 x y z t L L L L L L F c x c y c z e t x y z x y z n n n n n n , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ ∑ ∑ + ( ) ( ) ( ) × = ∞ 2 1 L n c x c y c z n n n n × ( ) − ( ) ( ) ( ) ( ) ( ) ( )−   e t e c u c v c w k u v w T I u v w n n n n n I I Φ Φ ρ ρ τ τ , , , , , , , 2 0 0 0 0 0 L L L t z y x ∫ ∫ ∫ ∫ − ( ) ( )  k u v w T I u v w d wd vd u d I , , , , , ,  , where F c u c v c w f u v w d wd vd u n n n n L L L z y x Φ Φ   = ( ) ( ) ( ) ( ) ∫ ∫ ∫ , , 0 0 0 , e t n D t L L L n x y z Φ Φ ρ ρ π ( ) = − + + ( )     − − − exp 2 2 0 2 2 2 , cn (x) = cos (π n x/Lx ); Φ Φ Φ ρ π τ ρ ρ i x y z n n n n n n x y z t L L L nc x c y c z e t e s u , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( 2 2 ) ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v g u v w T n L L L t n z y x Φρ , , , 0 0 0 0 1 × ( ) ( ) − ( ) ( ) ( ) − c w u v w u d wd vd u d L L L nc x c y c z n I i x y z n n n ∂ τ ∂ τ π ρ Φ 1 2 2 , , , e e t e n n t n Φ Φ ρ ρ τ ( ) − ( ) × ∫ ∑ = ∞ 0 1 × − ( ) ( ) ( ) ( ) ( ) ( ) − e c u s v c w g u v w T u v w v d wd v n n n n I i Φ Φ Φ ρ ρ ρ τ ∂ τ ∂ , , , , , , 1 d d u d L L L n L L L t x y z n z y x τ π 0 0 0 0 2 1 2 ∫ ∫ ∫ ∫ ∑ − × = ∞ × ( ) − ( ) ( ) ( ) ( ) ( ) − e t e c u c v s w u v w w g u v w n n n n n I i Φ Φ Φ Φ ρ ρ ρ ρ τ ∂ τ ∂ 1 , , , , , ,T T d wd vd u d L L L t z y x ( ) × ∫ ∫ ∫ ∫ τ 0 0 0 0 × ( ) ( ) ( ) c x c y c z n n n , i ≥1, where sn (x) = sin (π n x/Lx ).
  • 19. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 28 Equations for the functions Cij (x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be written as ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 00 0 2 00 2 0 2 00 2 , , , , , , , , , D D C x y z t z L 0 2 00 2 ∂ ( ) ∂ , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ C x y z t t D C x y z t x C x y z t y C i L i i 0 0 2 0 2 2 0 2 2 , , , , , , , , , i i x y z t z 0 2 , , , ( ) ∂       + + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( − D x g x y z T C x y z t x D y g x y z T L L i L L 0 10 0 , , , , , , , , , ) ) ∂ ( ) ∂       + − C x y z t y i 10 , , , + ∂ ∂ ( ) ∂ ( ) ∂       − D z g x y z T C x y z t z L L i 0 10 , , , , , , , i ≥1; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 01 0 2 01 2 0 2 01 2 , , , , , , , , , D D C x y z t z L 0 2 01 2 ∂ ( ) ∂ + , , , + ∂ ∂ ( ) ( ) ∂ ( ) ∂       + ∂ ∂ D x C x y z t P x y z T C x y z t x D L L 0 00 00 0   , , , , , , , , , y y C x y z t P x y z T C x y z t y 00 00   , , , , , , , , , ( ) ( ) ∂ ( ) ∂       + + ∂ ∂ ( ) ( ) ∂ ( ) ∂       D z C x y z t P x y z T C x y z t z L 0 00 00   , , , , , , , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 02 0 2 02 2 0 2 02 2 , , , , , , , , , D D C x y z t z L 0 2 02 2 ∂ ( ) ∂ + , , , + ∂ ∂ ( ) ( ) ( ) ∂ ( ) − D x C x y z t C x y z t P x y z T C x y z t L 0 01 00 1 00 , , , , , , , , , , , ,   ∂ ∂       + ∂ ∂ ( ) ( ) ( ) ×       − x y C x y z t C x y z t P x y z T 01 00 1 , , , , , , , , ,      × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) − C x y z t y z C x y z t C x y z t P x y z 00 01 00 1 , , , , , , , , , , , ,   T T C x y z t z ( ) ∂ ( ) ∂            + 00 , , , × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) − C x y z t y z C x y z t C x y z t P x y z 00 01 00 1 , , , , , , , , , , , ,   T T C x y z t z D x C x y z t P x y z L ( ) ∂ ( ) ∂            + ∂ ∂ ( ) 00 0 00 , , , , , , , , ,   T T ( ) ×         × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) ∂ C x y z t x y C x y z t P x y z T C x y z t 01 00 01 , , , , , , , , , , , ,   ( ( ) ∂       + ∂ ∂ ( ) ( ) ∂ ( ) ∂     y z C x y z t P x y z T C x y z t z 00 01   , , , , , , , , ,         ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 11 0 2 11 2 0 2 11 2 , , , , , , , , , D D C x y z t z L 0 2 11 2 ∂ ( ) ∂ + , , ,
  • 20. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 29 + ∂ ∂ ( ) ( ) ( ) ∂ ( ) ∂  − x C x y z t C x y z t P x y z T C x y z t x 10 00 1 00 , , , , , , , , , , , ,         + ∂ ∂ ( ) ( ) ( ) ×         − y C x y z t C x y z t P x y z T 10 00 1 , , , , , , , , ,   × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) − C x y z t y z C x y z t C x y z t P x y z 00 10 00 1 , , , , , , , , , , , ,   T T C x y z t z D L ( ) ∂ ( ) ∂            + 00 0 , , , ( ) ( ) ( ) ( ) ( ) ( ) 00 10 00 10 0 , , , , , , , , , , , , , , , , , , L C x y z t C x y z t C x y z t C x y z t D x P x y z T x y P x y z T y γ γ γ γ      ∂ ∂ ∂ ∂  + + +      ∂ ∂ ∂ ∂           + ∂ ∂ ( ) ( ) ∂ ( ) ∂            + z C x y z t P x y z T C x y z t z D L 00 10 0   , , , , , , , , , ∂ ∂ ∂ ( ) ∂ ( ) ∂       +      x g x y z T C x y z t x L , , , , , , 01 + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ y g x y z T C x y z t y z g x y z T C x y L L , , , , , , , , , , 01 01 , , , z t z ( ) ∂            ;   C x y z t x ij x , , , ( ) = =0 0,   C x y z t x ij x Lx , , , ( ) = = 0,   C x y z t y ij y , , , ( ) = =0 0 ,   C x y z t y ij y Ly , , , ( ) = = 0 ,   C x y z t z ij z , , , ( ) = =0 0,   C x y z t z ij z Lz , , , ( ) = = 0 , i ≥0, j ≥0; C00 (x,y,z,0)=fC (x,y,z), Cij (x,y,z,0)=0, i ≥1, j ≥1. Functions Cij (x,y,z,t) (i ≥0, j ≥0) could be approximated by the following series during solutions of the above equations C x y z t F L L L L L L F c x c y c z e t C x y z x y z nC n n n nC n 00 0 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ ∑ . Here ( ) 2 2 0 2 2 2 1 1 1 nC C x y z e t exp n D t L L L      = − + +           , ( ) ( ) ( ) ( ) 0 0 0 , , y x z L L L nC n n C n F c u c v f u v w c w d wd vd u = ∫ ∫ ∫ ; C x y z t L L L n F c x c y c z e t e s u i x y z nC n n n nC nC n 0 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v g u v w T n L L L L t n z y x , , , 0 0 0 0 1 × ( ) ∂ ( ) ∂ − ( ) ( ) − c w C u v w u d wd vd u d L L L n F c x c y c z n i x y z nC n n n 10 2 2 , , ,τ τ π ( ( ) ( ) − ( ) × ∫ ∑ = ∞ e t e nC nC t n τ 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − ∫ c u s v c v g u v w T C u v w v d wd vd u d n n n L i L L z , , , , , , 10 0 0 τ τ y y x L x y z nC nC n L L L n F e t ∫ ∫ ∑ − ( ) × = ∞ 0 2 1 2π × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ∂ − c x c y c z e c u c v s v g u v w T C u v n n n nC n n n L i  , , , , 10 , , , w w d wd vd u d L L L t z y x   ( ) ∂ ∫ ∫ ∫ ∫ 0 0 0 0 , i ≥1;
  • 21. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 30 C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 01 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( )× ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ∂ ( ) ∂ − C u v w P u v w T C u v w u d wd vd u d L L L x y z 00 00 2 2 γ γ τ τ τ π , , , , , , , , , n n F c x c y c z e t nC n n n nC n ( ) ( ) ( ) ( ) × = ∞ ∑ 1 × − ( ) ( ) ( ) ( ) ( ) ( ) ∂ e c u s v c w C u v w P u v w T C u v w nC n n n τ τ τ γ γ 00 00 , , , , , , , , , ( ( ) ∂ − ( )× ∫ ∫ ∫ ∫ ∑ = ∞ v d wd vd u d L L L n e t L L L t x y z nC n z y x τ π 0 0 0 0 2 1 2 × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) F c x c y c z e c u c v s w C u v w P u nC n n n nC n n n τ τ γ γ 00 , , , ,v v w T C u v w w d wd vd u d L L L t z y x , , , , , ( ) ∂ ( ) ∂ ∫ ∫ ∫ ∫ 00 0 0 0 0 τ τ ; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 02 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ − C u v w C u v w P u v w T C u v w u d wd v 01 00 1 00 , , , , , , , , , , , , τ τ τ γ γ d d u d L L L F c x c y x y z nC n n n τ π − ( ) ( )× = ∞ ∑ 2 2 1 × ( ) ( ) − ( ) ( ) ( ) ( ) ( ) − nc z e t e c u s v C u v w C u v w P n nC nC n n τ τ τ γ 01 00 1 , , , , , , γ γ τ u v w T C u v w v L L L t z y x , , , , , , ( ) ∂ ( ) ∂ × ∫ ∫ ∫ ∫ 00 0 0 0 0 × ( ) − ( ) ( ) ( ) ( ) − ( ) c w d wd vd u d L L L n F c x c y c z e t e c n x y z nC n n n nC nC n τ π τ 2 2 u u c v n L L t n y x ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ 0 0 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − s w C u v w C u v w P u v w T C u v w n 01 00 1 00 , , , , , , , , , , , , τ τ τ γ γ w w d wd vd u d L L L n c x L x y z n n z τ π 0 2 1 2 ∫ ∑ − ( ) × = ∞ × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ∂ F c y c z e t e s u c v c w C u v w C nC n n nC nC n n n   01 00 , , , u u v w u L L L t z y x , , , ( ) ∂ × ∫ ∫ ∫ ∫ 0 0 0 0 × ( ) ( ) − ( ) ( − C u v w P u v w T d wd vd u d L L L n F c x c y x y z nC n n 00 1 2 2 γ γ τ τ π , , , , , , ) ) ( ) ( ) − ( ) ( ) × ∫ ∫ ∑ = ∞ c z e t e c u n nC nC n L t n x τ 0 0 1 × ( ) ( ) ( ) ( ) ( ) ∂ − s v c w C u v w C u v w P u v w T C u v w n n 01 00 1 00 , , , , , , , , , , , τ τ γ γ , ,τ τ π ( ) ∂ − × ∫ ∫ ∑ = ∞ v d wd vd u d L L L n L L x y z n z y 0 0 2 1 2 × ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( F c x c y c z e t e c u c v s w C u v w nC n n n nC nC n n n τ τ 01 , , , ) ) ( ) ( ) × − ∫ ∫ ∫ ∫ C u v w P u v w T L L L t z y x 00 1 0 0 0 0 γ γ τ , , , , , ,
  • 22. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 31 × ∂ ( ) ∂ − ( ) ( ) ( ) ( ) C u v w w d wd vd u d L L L F c x c y c z e t x y z nC n n n nC 00 2 2 , , ,τ τ π e e s u nC n L t n x − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ n c v c w C u v w P u v w T C u v w u d wd vd u d n n 00 01 γ γ τ τ , , , , , , , , , τ τ π 0 0 2 1 2 L L x y z n nC n z y L L L c x e t ∫ ∫ ∑ − ( ) ( ) × = ∞ × ( ) − ( ) ( ) ( ) ( ) ( ) ( ) ∂ F c y e c u s v c w C u v w P u v w T C nC n nC n n n τ τ γ γ 00 0 , , , , , , 1 1 0 0 0 0 u v w v d wd vd u d L L L t z y x , , ,τ τ ( ) ∂ × ∫ ∫ ∫ ∫ × ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( n c z L L L n F c x c y c z e t e c u c v n x y z nC n n n nC nC n n 2 2 π τ ) ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ s w n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ∂ ( ) ∂ C u v w P u v w T C u v w w d wd vd u d 00 01 γ γ τ τ τ , , , , , , , , , ; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 11 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 × ( ) ∂ ( ) ∂ − ( ) ( g u v w T C u v w u d wd vd u d L L L n F c x c y L x y z nC n n , , , , , , 01 2 2 τ τ π ) ) ( ) ( ) × = ∞ ∑ c z e t n nC n 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u s v c w g u v w T C u v w v d wd vd u d nC n n n L τ τ τ , , , , , , 01 0 L L L L t x y z z y x L L L ∫ ∫ ∫ ∫ − × 0 0 0 2 2π × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ n e t e c u c v s w g u v w T C u v w w d w nC nC n n n L   , , , , , , 01 d d vd u d L L L t n z y x  0 0 0 0 1 ∫ ∫ ∫ ∫ ∑ = ∞ × × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − F c x c y c z L L L F c x c y c z e t e nC n n n x y z nC n n n nC nC 2 2 π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ s u c v n n L L t n y x 0 0 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ ∫ n c w C u v w P u v w T C u v w u d wd vd u d n Lz 00 10 0 γ γ τ τ τ , , , , , , , , , − − ( ) ( )× = ∞ ∑ 2 2 1 π L L L n F c x c y x y z nC n n n × ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ( ) c z e t e c u s v c w C u v w P u v w T n nC nC n n n τ τ γ γ 00 , , , , , , ∂ ∂ ( ) ∂ − ∫ ∫ ∫ ∫ C u v w v d wd vd u d L L L t z y x 10 0 0 0 0 , , ,τ τ − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) 2 2 π τ L L L n F c x c y c z e t e c u c v s w C x y z nC n n n nC nC n n n 0 00 0 0 0 0 1 γ γ τ u v w P u v w T L L L t n z y x , , , , , , ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞
  • 23. Pankratov: On approach to increase integration rate of elements AJMS/Jul-Sep-2020/Vol 4/Issue 3 32 × ∂ ( ) ∂ − ( ) ( ) ( ) ( C u v w w d wd vd u d L L L n F c x c y c z e t x y z nC n n n nC 10 2 2 , , ,τ τ π ) ) − ( ) ( ) × ∫ ∫ ∑ = ∞ e s u nC n L t n x τ 0 0 1 × ( ) ( ) ( ) ( ) ( ) ∂ − c v c w C u v w C u v w P u v w T C u v w n n 10 00 1 00 , , , , , , , , , , , τ τ γ γ , ,τ τ π ( ) ∂ − × ∫ ∫ ∑ = ∞ u d wd vd u d L L L n L L x y z n z y 0 0 2 1 2 × ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) − F c x c y c z e t e c u s v c w C u v w nC n n n nC nC n n n τ γ 00 1 , , , , , , , , , , τ τ γ ( ) ( ) ∂ ( ) ∂ × ∫ ∫ ∫ ∫ P u v w T C u v w v L L L t z y x 00 0 0 0 0 × ( ) − ( ) ( ) ( ) ( ) C u v w d wd vd u d L L L n F c x c y c z e t e x y z nC n n n nC n 10 2 2 , , ,τ τ π C C n L t n c u x − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 × ( ) ( ) ( ) ( ) ( ) ∂ − c v s w C u v w C u v w P u v w T C u v w n n 10 00 1 00 , , , , , , , , , , , τ τ γ γ , , . τ τ ( ) ∂ ∫ ∫ w d wd vd u d L L z y 0 0