SlideShare a Scribd company logo
1 of 19
Download to read offline
www.ajms.com 54
ISSN 2581-3463
RESEARCH ARTICLE
On Approach to Increase Integration Rate of Elements of an Operational
Amplifier Circuit
E. L. Pankratov1,2
1
Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 2
Nizhny Novgorod
State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia
Received: 12-08-2018; Revised: 20-09-2018; Accepted: 05-12-2018
ABSTRACT
In this paper, we introduce an approach to optimize manufacturing of an operational amplifier circuit
based on field-effect transistors. Main aims of the optimization are (i) decreasing dimensions of
elements of the considered operational amplifier and (ii) increasing of performance and reliability of the
considered field-effect transistors. Dimensions of considered field-effect transistors will be decreased
due to manufacture of these transistors framework heterostructure with specific structure, doping of
required areas of the heterostructure by diffusion or ion implantation, and optimization of annealing of
dopant and/or radiation defects. Performance and reliability of the above field-effect transistors could
be increased by optimization of annealing of dopant and/or radiation defects and using inhomogeneity
of properties of heterostructure. Choosing of inhomogeneity of properties of heterostructure leads to
increasing of compactness of distribution of concentration of dopant. At the same time, one can obtain
increasing of homogeneity of the above concentration. In this paper, we also introduce an analytical
approach for prognosis of technological process of manufacturing of the considered operational amplifier.
The approach gives a possibility to take into account variation of parameters of processes in space and
at the same time in space. At the same time, one can take into account nonlinearity of the considered
processes.
Key words: Integrator operational amplifier, increasing integration rate of field-effect heterotransistors,
optimization of manufacturing
INTRODUCTION
An actual and intensively solving problems of solid-
state electronics are increasing of integration rate of
elements of integrated circuits (p-n junctions).[1-8]
Increasing of the integration rate leads to necessity
to decrease their dimensions. To decrease, the
dimensions are using several approaches. They are
widelyusinglaserandmicrowavetypesofannealing
of infused dopants. These types of annealing are
also widely using for annealing of radiation defects,
generated during ion implantation.[9-17]
Using the
approaches leads to generating inhomogeneous
distribution of temperature. In this situation several
parameters (such as diffusion coefficient and other)
became inhomogeneous. Due to the inhomogenety
Address for correspondence:
E. L. Pankratov
E-mail: elp2004@mail.ru
one can obtain a possibility to increase integration
rateofelementsofintegratedcircuitsduetochanging
of diffusion speed with coordinate. In this situation,
one can obtain decreasing dimensions of elements
of integrated circuits[18]
with account Arrhenius
law.[1,3]
Another approach to manufacture elements
of integrated circuits with smaller dimensions
is doping of heterostructure by diffusion or ion
implantation.[1-3]
However, in this case, optimization
of dopant and/or radiation defects is required.[18]
In this paper, we consider a heterostructure.
The heterostructure consists of a substrate and
several epitaxial layers. Some sections have been
manufactured in the epitaxial layers. Further, we
consider doping of these sections by diffusion or
ion implantation. The doping gives a possibility
to manufacture field-effect transistors framework
an integrator circuit so as it is shown in Figure 1.
The manufacturing gives a possibility to increase
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 55
density of elements of the operational amplifier
circuit.[4]
After the considered doping, dopant
and/or radiation defects should be annealed.
Framework the paper, we analyzed the dynamics
of redistribution of dopant and/or radiation defects
during their annealing.We introduce an approach to
decrease the dimensions of the element. However,
it is necessary to complicate technological process.
Method of solution
In this section, we determine spatiotemporal
distributions of concentrations of infused
and implanted dopants. To determine these
distributions, we calculate appropriate solutions
of the second Fick’s law.[1,3,18-23]


C x y z t
t
, , ,
( )
	
=
( )






+
( )






+











x
D
C x y z t
x
y
D
C x y z t
y
z
D
C
C
C
C
, , ,
, , ,
x
x y z t
z
, , ,
( )







 (1)
Boundary and initial conditions for the equations are
	
∂ ( )
∂
=
=
C x y z t
x x
, , ,
0
0 ,
∂ ( )
∂
=
=
C x y z t
x x Lx
, , ,
0 , 	
	
∂ ( )
∂
=
=
C x y z t
y y
, , ,
0
0,
∂ ( )
∂
=
=
C x y z t
y x Ly
, , ,
0 ,	
∂ ( )
∂
=
=
C x y z t
z z
, , ,
0
0 ,
∂ ( )
∂ =
C x y z t
z x Lz
, , ,
,
	 	
	
= =
0 0
, ( , , , ) ( , , )
C f
x y z x y z  (2)
The function C(x,y,z,t) describes the spatiotemporal
distribution of concentration of dopant; T is the
temperature of annealing; DС
is the dopant diffusion
coefficient.Valueofdopantdiffusioncoefficientcould
bechangedwithchangingmaterialsofheterostructure,
with changing temperature of materials (including
annealing), with changing concentrations of dopant
and radiation defects. We approximate dependences
of dopant diffusion coefficient on parameters by the
following relation with account results.[20-22]
	
D D x y z T
C x y z t
P x y z T
V x y z t
C L
= ( ) +
( )
( )






+
(
, , ,
, , ,
, , ,
, , ,
1
1 1
ξ
ς
γ
γ
)
)
+
( )
( )








V
V x y z t
V
* *
, , ,
ς2
2
2
 (3)
Figure 1: The considered amplifier circuit[4]
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 56
Here, the function DL
(x,y,z,T) describes the
spatial (in heterostructure) and temperature
(due to Arrhenius law) dependences of diffusion
coefficient of dopant. The function P (x,y,z,T)
describes the limit of solubility of dopant.
Parameter γ ∈[1,3] describes average quantity
of charged defects interacted with atom of
dopant.[20]
The function V (x,y,z,t) describes the
spatiotemporal distribution of the concentration
of radiation vacancies. Parameter V*
describes
the equilibrium distribution of concentration
of vacancies. The considered concentrational
dependence on dopant diffusion coefficient has
been described in details[20]
. It should be noted that
using diffusion type of doping did not generation
radiation defects. In this situation ζ1
= ζ2
= 0,
we determine spatiotemporal distributions of
concentrations of radiation defects by solving the
following system of equations.[21,22]
∂ ( )
∂
=
∂
∂
( )
∂ ( )
∂






+
∂
∂
I x y z t
t x
D x y z T
I x y z t
x
y
D x y z
I
I
, , ,
, , ,
, , ,
, , ,
,
, , ,
T
I x y z t
y
( )
∂ ( )
∂






+
∂
∂
( )
∂ ( )
∂






− ( ) ( )
z
D x y z T
I x y z t
z
k x y z T I x y z t
I
I V
, , ,
, , ,
, , , , , ,
, V
V x y z t
, , ,
( )
	 − ( ) ( )
k x y z T I x y z t
I I
, , , , , , ,
2
 (4)
∂ ( )
∂
=
∂
∂
( )
∂ ( )
∂






+
∂
∂
V x y z t
t x
D x y z T
V x y z t
x
y
D x y z
V
V
, , ,
, , ,
, , ,
, , ,
,
, , ,
T
V x y z t
y
( )
∂ ( )
∂






+
∂
∂
( )
∂ ( )
∂






− ( ) ( )
z
D x y z T
V x y z t
z
k x y z T I x y z t
V
I V
, , ,
, , ,
, , , , , ,
, V
V x y z t
, , ,
( )
+ ( ) ( )
k x y z T V x y z t
V V
, , , , , , ,
2
Boundary and initial conditions for these equations
are
	
∂ ( )
∂
=
=
 x y z t
x x
, , ,
0
0 ,
∂ ( )
∂
=
=
 x y z t
x x Lx
, , ,
0 , 	
	
∂ ( )
∂
=
=
 x y z t
y y
, , ,
0
0,
∂ ( )
∂
=
=
 x y z t
y y Ly
, , ,
0 ,
	
∂ ( )
∂
=
=
 x y z t
z z
, , ,
0
0 ,
∂ ( )
∂ =
 x y z t
z z Lz
, , ,
		
	
= =
0 0
, ( , , , ) ( , , )
r x y z x y z
fr  (5)
Here, ρ =I,V. The function I (x,y,z,t) describes the
spatiotemporal distribution of the concentration of
radiation interstitials; Dρ
(x,y,z,T) is the diffusion
coefficientsofpointradiationdefects;termsV2
(x,y,z,t)
and I2
(x,y,z,t) correspond to generation divacancies
and di-interstitials; kI,V
(x,y,z,T) is the parameter of
recombination of point radiation defects; kI,I
(x,y,z,T)
and kV,V
(x,y,z,T) are the parameters of the generation
of simplest complexes of point radiation defects.
Further, we determine distributions in space and
time of concentrations of divacancies ΦV
(x,y,z,t)
and di-interstitials ΦI
(x,y,z,t) by solving the
following system of equations.[21,22]
∂
∂
∂
∂
∂
∂
∂
∂
ΦI
I
I
I
x y z t
t
x
D x y z T
x y z t
x
y
D x
, , ,
, , ,
, , ,
( )
= ( )
( )






+
Φ
Φ
Φ
,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )






∂
∂
Φ
	
+ ( )
( )






+ ( )
∂
∂
∂
∂
z
D x y z T
x y z t
z
k x y z T I x y z
I
I
I I
Φ
Φ
, , ,
, , ,
, , , , , ,
,
2
t
t
k x y z T I x y z t
I
( )
− ( ) ( )
, , , , , ,  (6)
∂
∂
∂
∂
∂
∂
∂
∂
Φ
Φ
Φ
Φ
V
V
V
V
x y z t
t
x
D x y z T
x y z t
x
y
D x
, , ,
, , ,
, , ,
( )
= ( )
( )






+ ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )






∂
∂
Φ
+ ( )
( )






+ ( )
∂
∂
∂
∂
z
D x y z T
x y z t
z
k x y z T V x y z
V
V
V V
Φ
Φ
, , ,
, , ,
, , , , , ,
,
2
t
t
k x y z T V x y z t
V
( )
− ( ) ( )
, , , , , ,
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 57
Boundary and initial conditions for these equations
are
	
∂ ( )
∂
=
=
Φρ x y z t
x x
, , ,
0
0 ,
∂ ( )
∂
=
=
Φρ x y z t
x x Lx
, , ,
0, 	
∂ ( )
∂
=
=
Φρ x y z t
y y
, , ,
0
0 ,
∂ ( )
∂
=
=
Φρ x y z t
y y Ly
, , ,
0,
∂ ( )
∂
=
=
Φρ x y z t
z z
, , ,
0
0 ,
∂ ( )
∂
=
=
Φρ x y z t
z z Lz
, , ,
0,
ΦI
(x,y,z,0) = fΦI
(x,y,z), ΦV
(x,y,z,0)=fΦV
(x,y,z)(7)
Here, DΦρ
(x,y,z,T) is the diffusion coefficients
of the above complexes of radiation defects;
kI
(x,y,z,T) and kV
(x,y,z,T) are the parameters of
decay of these complexes.
We calculate distributions of concentrations of
point radiation defects in space and time by
recently elaborated approach.[18]
The approach
based on transformation of approximations of
diffusion coefficients in the following form:
Dρ
(x,y,z,T)=D0ρ
[1+ερ
gρ
(x,y,z,T)], where D0ρ
is the
average values of diffusion coefficients, 0≤ερ
1,
|gρ
(x,y,z,T)|≤1, ρ=I,V. We also used analogous
transformation of approximations of parameters
of recombination of point defects and parameters
of generation of their complexes:
kI,V
(x,y,z,T)=k0I,V
[1+εI,V
gI,V
(x,y,z,T)], kI,I
(x,y,z,T)
=k0I,I
[1+εI,I
gI, I
(x,y,z,T)] and kV, V
(x,y,z,T)=k0V,V
[1+εV,V
gV,V
(x,y,z,T)], where k0ρ1,ρ2
is the their
average values, 0≤ εI,V
 1, 0≤εI,I
1, 0≤εV,V
 1, |
gI,V
(x,y,z,T)| ≤ 1, |gI,I
(x,y,z,T)| ≤ 1, |gV,V
(x,y,z,T)| ≤ 1.
Let us introduce the following dimensionless
variables: 
I x y z t I x y z t I
, , , , , , *
( ) = ( ) ,

V x y z t V x y z t V
, , , , , , *
( ) = ( ) ,
 = L k D D
I V I V
2
0 0 0
, , Ω  
= L k D D
I V
2
0 0 0
, ,
 = D D t L
I V
0 0
2
, χ = x/Lx
, η = y/Ly
, φ = z/Lz
. The
introductionleadstotransformationofEquations (4)
and conditions (5) to the following form:
∂ ( )
∂
=
∂
∂
+ ( )

 

∂ ( )


I
D
D D
g T
I
I
I V
I I
χ η ϕ ϑ
ϑ
χ
ε χ η ϕ
χ η ϕ ϑ
, , ,
, , ,
, , ,
0
0 0
1
∂
∂










+
∂
∂
+ ( )

 

{
χ
η
ε χ η ϕ
1 I I
g T
, , ,
×
∂ ( )
∂



+
∂
∂
+ ( )

 

I D
D D
D
D D
g T
I
I V
I
I V
I I
χ η ϕ ϑ
η
ϕ
ε χ η ϕ
, , ,
, , ,
0
0 0
0
0 0
1 

∂ ( )
∂










− ( )


I
I
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
, , ,
, , ,
× + ( )

 
 ( )
− + ( )
ω ε χ η ϕ χ η ϕ ϑ
ε χ η ϕ
1
1
I V I V
I I I I I
g T V
g T
, ,
, ,
, , , , , ,
, , ,

Ω 

 
 ( )

I 2
χ η ϕ ϑ
, , , 	 (8)
∂ ( )
∂
=
∂
∂
+ ( )

 

∂ ( )


V
D
D D
g T
V
V
I V
V V
χ η ϕ ϑ
ϑ
χ
ε χ η ϕ
χ η ϕ ϑ
, , ,
, , ,
, , ,
0
0 0
1
∂
∂










+
∂
∂
+ ( )

 

{
χ
η
ε χ η ϕ
1 V V
g T
, , ,
×
∂ ( )
∂



+
∂
∂
+ ( )

 

V D
D D
D
D D
g T
V
I V
V
I V
V V
χ η ϕ ϑ
η
ϕ
ε χ η ϕ
, , ,
, , ,
0
0 0
0
0 0
1 

∂ ( )
∂










− ( )


V
I
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
, , ,
, , ,
× + ( )

 
 ( )
− + ( )
ω ε χ η ϕ χ η ϕ ϑ
ε χ η ϕ
1
1
I V I V
V V V V V
g T V
g T
, ,
, ,
, , , , , ,
, , ,

Ω 

 
 ( )

V 2
χ η ϕ ϑ
, , ,
	
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ χ
, , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ χ
, , ,
1
0, 	
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
, , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
, , ,
1
0,
	
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
, , ,
0
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
, , ,
1
0 , 	
	 
ρ χ η ϕ ϑ
χ η ϕ ϑ
ρ
ρ
, , ,
, , ,
*
( ) =
( )
f
 (9)
We determine solutions of Equations (8) with
conditions (9) framework recently introduced
approach,[18]
i.e., as the power series
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 58
 
ρ χ η ϕ ϑ ε ω ρ χ η ϕ ϑ
ρ ρ
, , , , , ,
( ) = ( )
=
∞
=
∞
=
∞
∑
∑
∑ i j k
ijk
k
j
i
Ω
0
0
0
 (10)
Substitution of the series (10) into Equations (8)
and conditions (9) gives us possibility to obtain
equations for initial order approximations of
concentration of point defects 
I000 χ η ϕ ϑ
, , ,
( ) and

V000 χ η ϕ ϑ
, , ,
( ) and corrections for them

Iijk χ η ϕ ϑ
, , ,
( ) and 
Vijk χ η ϕ ϑ
, , ,
( ), i ≥ 1, j ≥ 1,
k ≥ 1. The equations are presented in theAppendix.
Solutions of the equations could be obtained by
standard Fourier approach.[24,25]
The solutions are
presented in the Appendix.
Now, we calculate distributions of concentrations
of simplest complexes of point radiation defects in
space and time. To determine the distributions, we
transform approximations of diffusion coefficients
in the following form: DΦρ
(x,y,z,T)=D0Φρ
[1+
εΦρ
gΦρ
(x,y,z,T)], where D0Φρ
is the average values
of diffusion coefficients. In this situation, the
Equation (6) could be written as
∂
∂
∂
∂
ε
∂
∂
Φ
Φ
Φ
Φ Φ
I
I
I I
I
x y z t
t
D
x
g x y z T
x y z t
x
, , ,
, , ,
, , ,
( )
=
+ ( )

 

( )

0
1










+ ( ) ( )+
k x y z T I x y z t
I I
, , , , , , ,
2
+
+ ( )

 

( )










+
D
y
g x y z T
x y z t
y
D
I
I I
I
I
0
0
1
Φ
Φ Φ
Φ
Φ
∂
∂
ε
∂
∂
, , ,
, , ,
∂
∂
∂
ε
∂
∂
z
g x y z T
x y z t
z
I I
I
1+ ( )

 

( )










Φ Φ
Φ
, , ,
, , ,
− ( ) ( )
k x y z T I x y z t
I , , , , , ,
∂
∂
∂
∂
ε
∂
∂
Φ
Φ
Φ
Φ Φ
V
V
V V
V
x y z t
t
D
x
g x y z T
x y z t
x
, , ,
, , ,
, , ,
( )
=
+ ( )

 

( )

0
1










+ ( ) ( )
k x y z T I x y z t
I I
, , , , , , ,
2
+
+ ( )

 

( )










+
D
y
g x y z T
x y z t
y
D
V
V V
V
V
0
0
1
Φ
Φ Φ
Φ
Φ
∂
∂
ε
∂
∂
, , ,
, , ,
∂
∂
∂
ε
∂
∂
z
g x y z T
x y z t
z
V V
V
1+ ( )

 

( )










Φ Φ
Φ
, , ,
, , ,
− ( ) ( )
k x y z T I x y z t
I , , , , , , .
Farther, we determine solutions of above equations
as the following power series:
	 Φ Φ
ρ ρ ρ
ε
x y z t x y z t
i
i
i
, , , , , ,
( ) = ( )
=
∞
∑ Φ
0
 (11)
Now, we used the series (11) into Equation (6) and
appropriate boundary and initial conditions. The
using gives the possibility to obtain equations for
initial order approximations of concentrations of
complexes of defects Φρ0
(x,y,z,t), corrections for
them Φρi
(x,y,z,t) (for them i ≥1), and boundary and
initial conditions for them. We remove equations
and conditions to the Appendix. Solutions of
the equations have been calculated by standard
approaches[24,25]
and presented in the Appendix.
Now, we calculate distribution of concentration of
dopant in space and time using the approach, which
wasusedforanalysisofradiationdefects.Tousethe
approach,weconsiderthefollowingtransformation
of approximation of dopant diffusion coefficient:
DL
(x,y,z,T) = D0L
[1 + εL
gL
(x,y,z,T)], where D0L
is
the average value of dopant diffusion coefficient,
0 ≤ εL
 1, |gL
(x,y,z,T)| ≤ 1. Farther, we consider
solution of Equation (1) as the following series:
C x y z t C x y z t
L
i j
ij
j
i
, , , , , ,
( ) = ( )
=
∞
=
∞
∑
∑ε ξ
1
0
.
Using the relation into Equation (1) and
conditions (2) leads to obtain equations for the
functionsCij
(x,y,z,t)(i≥1,j≥1),boundaryandinitial
conditions for them. The equations are presented
in the Appendix. Solutions of the equations have
been calculated by standard approaches.[24,25]
The
solutions are presented in the Appendix.
We analyzed distributions of concentrations of dopant
and radiation defects in space and time analytically
using the second-order approximations on all
parameters,whichhavebeenusedinappropriateseries.
Usually, the second-order approximations are enough
good approximations to make qualitative analysis and
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 59
to obtain quantitative results. All analytical results
have been checked by numerical simulation.
DISCUSSION
In this section, we analyzed spatiotemporal
distributions of concentrations of dopants. Figure 2
shows typical spatial distributions of concentrations
of dopants in neighborhood of interfaces of
heterostructures. We calculate these distributions
of concentrations of dopants under the following
condition: Value of dopant diffusion coefficient
in doped area is larger than the value of dopant
diffusion coefficient in nearest areas. In this situation,
one can find increasing of compactness of field-
effect transistors with increasing of homogeneity of
distribution of concentration of dopant at one time.
Changingrelationbetweenvaluesofdopantdiffusion
coefficients leads to opposite result [Figure 3].
It should be noted that framework the considered
Figure 2: (a) Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in
direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant
diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion
coefficient in the epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate. (b) Dependences
of concentration of dopant, implanted in heterostructure from Figure 1, on coordinate in direction, which is perpendicular
to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of
heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer
is larger than the value of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogeneous sample and
annealing time Θ = 0.0048 (Lx
2
+Ly
2
+Lz
2
)/D0
. Curve 2 corresponds to homogeneous sample and annealing time Θ = 0.0057
(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 3 and 4 correspond to heterostructure from Figure 1; annealing times Θ = 0.0048 (Lx
2
+Ly
2
+Lz
2
)/D0
and Θ = 0.0057 (Lx
2
+Ly
2
+Lz
2
)/D0
, respectively
a b
Figure 3: (a) Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from
Figure 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between
values of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient
in this section is smaller than the value of dopant diffusion coefficient in the nearest sections. (b) Calculated distributions
of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial distributions of implanted dopant in system
of two epitaxial layers. Dashed lines are spatial distributions of implanted dopant in one epitaxial layer. Annealing time
increases with increasing of number of curves
a b
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 60
approach one should optimize annealing of dopant
and/or radiation defects. To do the optimization,
we used recently introduced criterion.[26-34]
The optimization based on approximation real
distribution by step-wise function ψ(x,y,z)
[Figure 4]. Farther, the required values of
optimal annealing time have been calculated by
minimization the following mean squared error:
U
L L L
C x y z
x y z
dzdydx
x y z
L
L
L z
y
x
=
( )
− ( )








∫
∫
∫
1
0
0
0
, , ,
, ,
Θ

 (12)
We show optimal values of annealing time as
functions of parameters on Figure 5. It is known that
standard step of manufactured ion-doped structures
is annealing of radiation defects. In the ideal case,
after finishing the annealing dopant achieves
interface between layers of heterostructure. If the
dopant has no enough time to achieve the interface,
it is practicable to anneal the dopant additionally.
Figure 
5b shows the described dependences of
optimal values of additional annealing time for the
sameparametersasforFigure 5b.Necessitytoanneal
radiation defects leads to smaller values of optimal
Figure 4: (a) Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different
values of annealing time (curves 2–4) and idealized step-wise approximation (curve 1). Increasing of the number of
curve corresponds to increasing of annealing time. (b) Distributions of concentration of implanted dopant in depth of
heterostructure from Figure 1 for different values of annealing time (curves 2–4) and idealized step-wise approximation
(curve 1). Increasing of number of curve corresponds to increasing of annealing time
a b
Figure 5: (a) Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes
the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion
coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter
ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2
and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ =
0. (b) Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes
the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion
coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε
for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and
ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L = 1/2 and ε = ξ = 0
a b
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 61
annealing of implanted dopant in comparison with
optimal annealing time of infused dopant.
CONCLUSIONS
In this paper, we introduce an approach to increase
integration rate of element of an operational
amplifier circuit. The approach gives us possibility
to decrease area of the elements with smaller
increasing of the element’s thickness.
REFERENCES
1.	 Lachin VI, Savelov NS. Electronics. Phoenix, Rostov-
na-Donu: Phoenix; 2001.
2.	 Alexenko AG, Shagurin II. Microcircuitry. Moscow:
Radio and Communication; 1990.
3.	 Avaev NA, Naumov YE, Frolkin VT. Basis of Microe-
lectronics. Moscow: Radio and Communication; 1991.
4.	 Zhou X, Jiang J, Liu J, Wang J. High-accuracy and low
signal distortion on-chip auto-calibrating architecture
for continuous-time filters. Analog Integr Circ Sig
Process 2014;80:565.
5.	 Fathi D, Forouzandeh B, Masoumi N. New enhanced
noiseanalysisinactivemixersinnanoscaletechnologies.
Nano 2009;4:233.
6.	 Chachuli SA, Fasyar PN, Soin N, Kar NM, Yusop N.
Pareto ANOVA analysis for CMOS 0.18 µm two -stage
Op-amp. Mat Sci Sem Proc 2014;24:9.
7.	 Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN,
Konakova RV, Kudrik YY, et al. Au-TiB x -n-6H-SiC
Schottky barrier diodes: Specific features of charge
transport in rectifying and nonrectifying contacts.
Semiconductors 2009;43:897.
8.	 Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF,
Chow TP Jr. Monolithic integration of light-emitting
diodes and power metal-oxide-semiconductor channel
high-electron-mobility transistors for light-emitting
power integrated circuits in GaN on sapphire substrate.
Appl Phys Lett 2013;102:192107.
9.	 Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance
InGaP/GaAs pnp δ-doped heterojunction bipolar
transistor. Semiconductors 2009;43:971.
10.	 Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI,
Makoviychuk MM, Parshin EO. Formation of donor
centers upon annealing of dysprosium-and holmium-
implanted silicon. Semiconductors 1998;32:1029.
11.	 Kumar MJ, Singh TV. Quantum confinement effects in
strained silicon MOSFETs MOSFETs. Int J Nanosci
2008;7:81.
12.	 Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L,
Park HH, et al. Enhancing the efficiency of SnS solar
cells via band-offset engineering with a zinc oxysulfide
buffer layer. Appl Phys Lett 2013;102:053901.
13.	 Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF,
Rowe JE, Everitt HO, et al. Shallow acceptor complexes
in p-type ZnO. Appl Phys Lett 2013;102:152114.
14.	 Ong KK, Pey KL, Lee PS, Wee AT, Wang XC,
Chong YF. Dopant distribution in the recrystallization
transient at the maximum melt depth induced by laser
annealing. Appl Phys Lett 2006;89:172111.
15.	 Wang HT, Tan LS, Chor EF. Pulsed laser annealing of
Be-implanted GaN. J Appl Phys 2006;98:094901.
16.	 Shishiyanu ST, Shishiyanu TS, Railyan SK. Shallow
p−n junctions in Si prepared by pulse photon annealing.
Semiconductors 2002;36:611.
17.	 Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV,
Rybakov KI, Drozdov MN, et al. Diffusion processes in
semiconductor structures during microwave annealing.
Radiophys Quantum Electron 2003;43:836.
18.	 Pankratov EL, Bulaeva EA. Doping of materials during
manufacture p-n-junctions and bipolar transistors.
Analytical approaches to model technological
approaches and ways of optimization of distributions of
dopants. Rev Theor Sci 2013;1:58.
19.	 Erofeev YN. Pulse Devices, Higher School. Moscow:
Higher School; 1989
20.	 Kozlivsky VV. Modification of Semiconductors by
Proton Beams. Sant-Peterburg: Nauka Publication; 2003.
21.	 Gotra ZY. Technology of Microelectronic Devices.
Moscow: Radio and Communication; 1991.
22.	 Vinetskiy VL, Kholodar GA. Radiative Physics of
Semiconductors. Kiev: Naukova Dumka; 1979.
23.	 Fahey PM, Griffin PB, Plummer JD. Point defects and
dopant diffusion in silicon. Rev Mod Phys 1989;61:289.
24.	 Tikhonov AN, Samarskii AA. The Mathematical
Physics Equations. Moscow: Nauka; 1972.
25.	 Carslaw HS, Jaeger JC. Conduction of Heat in Solids.
New York: Oxford University Press; 1964.
26.	 Pankratov EL. Dopant diffusion dynamics and optimal
diffusion time as influenced by diffusion-coefficient
nonuniformity. Russ Microelectron 2007;36:33.
27.	 Pankratov EL. Redistribution of dopant during
annealing of radiative defects in a multilayer structure
by laser scans for production an implanted-junction
rectifiers. Int J Nanosci 2008;7:187.
28.	 Pankratov EL. On approach to optimize manufacturing
of bipolar heterotransistors framework circuit of an
operational amplifier to increase their integration rate.
Influence mismatch-induced stress. J Comp Theor
Nanosci 2017;14:4885.
29.	 Pankratov EL. On prognosis of technological process to
optimize manufacturing of a heterodiodes framework a
full-wave rectifier framework, to increase their density
and performance. Adv Sci Eng Med 2017;9:787.
30.	 Pankratov EL, Bulaeva EA. An approach to decrease
dimensions of field-effect transistors. Univ J Mater Sci
2013;1:6.
31.	 Pankratov EL, Bulaeva EA. An approach to manufacture
of bipolar transistors in thin film structures. On the method
of optimization. Int J Micro Nano Scale Transp 2014;4:17.
32.	Pankratov EL, Bulaeva EA. Application of native
inhomogeneities to increase compactness of vertical
field-effecttransistors.JNanoengNanoman2012;2:275.
33.	 Pankratov EL, Bulaeva EA.An approach to increase the
integration rate of pla-nar drift heterobipolar transistors.
Mat Sci Sem Proc 2015;34:260.
34.	 Pankratov EL. Influence of radiation processing of
material on concentration of charge carriers in a
diffusion-junction rectifiers. J Comput Theor Nanosci
2018;15:1915-23.
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 62
APPENDIX
Equations for the functions 
Iijk χ η ϕ ϑ
, , ,
( ) and 
Vijk χ η ϕ ϑ
, , ,
( ), i ≥0, j ≥0, k ≥0 and conditions for them
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
000 0
0
2
000
2
2
000
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
000
2

I , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
000 0
0
2
000
2
2
000
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
000
2

V , , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
  
I D
D
I I
i I
V
i i
00 0
0
2
00
2
2
00
χ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
η
, , , , , , ,
2
2
2
00
2
0
0
+
∂ ( )
∂





 +

I D
D
i I
V
χ η ϕ ϑ
ϕ
, , ,
×
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
−
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
g T
I
g T
I
I
i
I
, , ,
, , ,
, , ,
 
100 i
i− ( )
∂











100 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











−
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
g T
I
I
i
, , ,
, , ,

100
, i ≥1,
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
  
V D
D
V V
i V
I
i i
00 0
0
2
00
2
2
00
χ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
η
, , , , , , ,
2
2
2
00
2
+
∂ ( )
∂





 +
∂
∂
( )



V
g T
i
V
χ η ϕ ϑ
ϕ χ
χ η ϕ
, , ,
, , ,
×
∂ ( )
∂


 +
∂
∂
( )
∂
− −
 
V D
D
D
D
g T
V
i V
I
V
I
V
i
100 0
0
0
0
100
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
χ
χ η ϕ ϑ
η ϕ
χ η ϕ
, , ,
, , ,
( )
∂





 +
∂
∂
( )

g T
V
×
∂ ( )
∂



−

V D
D
i V
I
100 0
0
χ η ϕ ϑ
ϕ
, , ,
, i ≥1,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
010 0
0
2
010
2
2
010
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
010
2

I , , ,
− + ( )

 
 ( ) ( )
1 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V
, , , , , , , , , , ,
 
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
010 0
0
2
010
2
2
010
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
010
2

V , , ,
− + ( )

 
 ( ) ( )
1 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V
, , , , , , , , , , ,
  ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
020 0
0
2
020
2
2
020
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
020
2

I , , ,
− + ( )

 
 ( ) ( )+
1 010 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V I
, , , , , , , , , , ,
   χ
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 


V010
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
I
V
020 0
0
2
020
2
2
020
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
020
2

V , , ,
− + ( )

 
 ( ) ( )+
1 010 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V I
, , , , , , , , , , ,
   χ
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 


V010 ;
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 63
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
001 0
0
2
001
2
2
001
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
001
2

I , , ,
− + ( )

 
 ( )
1 000
2
ε χ η ϕ χ η ϕ ϑ
I I I I
g T I
, , , , , , , ,

∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
001 0
0
2
001
2
2
001
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
001
2

V , , ,
− + ( )

 
 ( )
1 000
2
ε χ η ϕ χ η ϕ ϑ
I I I I
g T V
, , , , , , , ,
 ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
110 0
0
2
110
2
2
110
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
110
2
0
0

I D
D
I
V
, , ,
×
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
g T
I
g T
I
I I
, , ,
, , ,
, , ,
 
010 010
0 χ η ϕ ϑ
η ϕ
χ η ϕ
, , ,
, , ,
( )
∂





 +
∂
∂
( )







g T
I
×
∂ ( )
∂








− ( ) ( )+

  
I
I V I
010
100 000
χ η ϕ ϑ
ϕ
χ η ϕ ϑ χ η ϕ ϑ
, , ,
, , , , , , 0
000 100
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 
 ×

V
× + ( )

 

1 ε χ η ϕ
I I I I
g T
, , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
110 0
0
2
110
2
2
110
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
110
2

V , , ,
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
V
g T
V
I
V V
0
0
010
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






V010 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











− +
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η
g T
V
g
V V V V V
, , ,
, , ,
, ,
, ,

010
1 ϕ
ϕ,T
( )

 
 ×
× ( ) ( )+ ( ) ( )
   
V I V I
100 000 000 100
χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ
, , , , , , , , , , , ,


 
 ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
002 0
0
2
002
2
2
002
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
002
2

I , , ,
− + ( )

 
 ( ) ( )
1 001 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I I I I
g T I I
, , , , , , , , , , ,
 
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
002 0
0
2
002
2
2
002
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
002
2

V , , ,
− + ( )

 
 ( ) ( )
1 001 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
V V V V
g E V V
, , , , , , , , , , ,
  ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
101 0
0
2
101
2
2
101
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
101
2

I , , ,
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 64
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
I
g T
I
V
I I
0
0
001
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






I001 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











− + (
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
I
g T
I I I
, , ,
, , ,
, , ,

001
1 )
)

 
 ( ) ( )
 
I V
100 000
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
101 0
0
2
101
2
2
101
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
101
2

V , , ,
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
V
g T
V
I
V V
0
0
001
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






V001 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











− + (
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
V
g T
V V V
, , ,
, , ,
, , ,

001
1 )
)

 
 ( ) ( )
 
I V
000 100
χ η ϕ ϑ χ η ϕ ϑ
, , , , , , ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
011 0
0
2
011
2
2
011
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 − ( ) ×
η
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
2
2
011
2 010


I
I
, , ,
, , ,
× + ( )

 
 ( )− + ( )
1 1
000
ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
I I I I I V I V
g T I g T
, , , ,
, , , , , , , , ,
 

 
 ( ) ( )
 
I V
001 000
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
011 0
0
2
011
2
2
011
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 − ( ) ×
η
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
2
2
011
2 010


V
V
, , ,
, , ,
× + ( )

 
 ( )− + ( )
1 1
000
ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
V V V V I V I V
g T V g t
, , , ,
, , , , , , , , ,
 

 
 ( ) ( )
 
I V
000 001
χ η ϕ ϑ χ η ϕ ϑ
, , , , , , ;
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ
ijk
x
, , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ
ijk
x
, , ,
1
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
ijk , , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
ijk , , ,
1
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
ijk , , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
ijk , , ,
1
0 (i ≥0, j ≥0, k ≥0);

ρ χ η ϕ χ η ϕ ρ
ρ
000 0
, , , , , ,
*
( ) = ( )
f 
ρ χ η ϕ
ijk , , ,0 0
( ) = (i ≥1, j ≥1, k ≥1).
Solutions of the above equations could be written as

ρ χ η ϕ ϑ χ η ϕ ϑ
ρ ρ
000
1
1 2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
L L
F c c c e
n n
n
,
Where, F nu nv n w f u v w dwdvdu
n n
ρ ρ
ρ
π π π
= ( ) ( ) ( ) ( )
∫
∫
∫
1
0
1
0
1
0
1
*
cos cos cos , , , cn
(χ) = cos (π n χ),
e n D D
nI V I
ϑ π ϑ
( ) = −
( )
exp 2 2
0 0 , e n D D
nV I V
ϑ π ϑ
( ) = −
( )
exp 2 2
0 0 ;

I
D
D
nc c c e e s u c
i
I
V
n nI nI n n
00
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) v
v
I u v w
u
i
n
( )
∂ ( )
∂
×
−
=
∞
∫
∫
∫
∫
∑

100
0
1
0
1
0
1
0
1
, , ,τ
ϑ
c w g u v w T dwdvdud
D
D
nc c c e e
n I
I
V
n nI nI
( ) ( ) − ( ) ( ) ( ) ( ) −
, , , τ π χ η ϕ ϑ τ
2 0
0
(
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
c u s v
n n
n 0
1
0
1
0
1
ϑ
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 65
× ( ) ( )
∂ ( )
∂
−
−
∫c w g u v w T
I u v w
v
dw dv du d
D
D
n I
i I
, , ,
, , ,

100
0
1
0
0
2
τ
τ π
V
V
n nI nI
n
nc c c e e
χ η ϕ ϑ τ
ϑ
( ) ( ) ( ) ( ) −
( )
∫
∑
=
∞
0
1
× ( ) ( ) ( ) ( )
∂ ( )
∂
−
∫
c u c v s w g u v w T
I u v w
w
dwdvdu d
n n n I
i
, , ,
, , ,

100
0
1
0


1
1
0
1
∫
∫ , i ≥1,

V
D
D
nc c c e e s u c
i
V
I
n nV nI n n
00
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) v
v g u v w T
V
n
( ) ( )
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) ( ) ( ) ( )
−
c w
V u
u
d wd vd u d
D
D
nc c c e e
n
i V
I
n nV n

100 0
0
,τ
τ χ η ϕ ϑ I
I n n
n
c u s v
−
( ) ( ) ( )
∫
∫
∫
∑
=
∞
τ
ϑ
0
1
0
1
0
1
× ( ) ( )
∂ ( )
∂
−
−
∫
2 2
100
0
1
0
0
π
τ
τ π
c w g u v w T
V u
v
dw dv du d
D
D
n
n V
i V
I
, , ,
,

c
c c c e
n nV
n
χ η ϕ ϑ
( ) ( ) ( ) ( )
=
∞
∑
1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u c v s w g u v w T
V u
w
d wd vd u d
nI n n n V
i
τ
τ
τ
, , ,
,

100
0
1
1
0
1
0
1
0
∫
∫
∫
∫
ϑ
, i ≥1,
Where, sn
(χ) = sin (π n χ);

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
010 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( )
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
× + ( )

 
 ( ) ( )
1 000 000
ε τ τ
I V I V
g u v w T I u v w V u v w d wd vd u
, , , , , , , , , , ,
  d
d τ ;

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
020
0
0
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( )
D
D
c c c e e c u c
I
V
n n n n n n n v
v c w
n I V
n
( ) ( ) +


∫
∫
∫
∫
∑
=
∞
1
0
1
0
1
0
1
0
1
ε
ϑ
,
× ( )
 ( ) ( )+ (
g u v w T I u v w V u v w I u v w
I V
, , , , , , , , , , , , ,
  
010 000 000
   )
) ( )

 


V u v w d wd vd u d
010 , , ,  ;

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
001 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( )
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
× + ( )

 
 ( )
1 000
2
ε ρ τ τ
ρ ρ ρ ρ
, , , , , , , ,
g u v w T u v w d wd vd u d
 ;

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
002 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( )
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
× + ( )

 
 ( ) ( )
1 001 000
ε ρ τ ρ τ
ρ ρ ρ ρ
, , , , , , , , , , ,
g u v w T u v w u v w d wd vd u
  d
d τ ;

I
D
D
nc c c e e s u
I
V
n n n nI nI n
110
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v c u
n n
n
( ) ( )
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( )
−
g u v w T
I u v w
u
dw dv du d
D
D
nc c
I
i I
V
n
, , ,
, , ,

100 0
0
2
τ
τ π χ n
n n nI
n
c e
η ϕ ϑ
( ) ( ) ( )
=
∞
∑
1
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 66
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u s v c u g u v w T
I u v w
v
d wd vd
nI n n n I
i
τ
τ
, , ,
, , ,

100
u
u d
D
D
I
V
τ π
ϑ
0
1
0
1
0
1
0
0
0
2
∫
∫
∫
∫ −
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
−
n e e c u c v s u g u v w T
I u v w
nI nI n n n I
i
ϑ τ
τ
, , ,
, , ,

100
∂
∂
∫
∫
∫
∫
∑
=
∞
w
d wd vd u d
n
τ
ϑ
0
1
0
1
0
1
0
1
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c c e c c e c u c v c
n n n n nI n n nI n n n
χ η ϕ χ ϑ η ϕ τ
2 v
v I V
n
( ) +


∫
∫
∫
∫
∑
=
∞
1
0
1
0
1
0
1
0
1
ε
ϑ
,
× ( )
 ( ) ( )+ (
g u v w T I u v w V u v w I u v w
I V
, , , , , , , , , , , , ,
  
100 000 000
   )
) ( )

 


V u v w d wd vd u d
100 , , , 

V
D
D
nc c c e e s u
V
I
n n n nV nV n
110
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v c u
n n
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) (
−
g u v w T
V u v w
u
d wd vd u d
D
D
nc c
V
i V
I
n n
, , ,
, , ,

100 0
0
2
τ
τ π χ η)
) ( ) ( ) ×
=
∞
∑ c e
n nV
n
ϕ ϑ
1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u s v c u g u v w T
V u v w
v
d wd vd
nV n n n V
i
τ
τ
, , ,
, , ,

100
u
u d
D
D
V
I
τ π
ϑ
0
1
0
1
0
1
0
0
0
2
∫
∫
∫
∫ − ×
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
−
ne e c u c v s u g u v w T
V u v w
nV nV n n n V
i
ϑ τ
τ
, , ,
, , ,

100
∂
∂
×
∫
∫
∫
∫
∑
=
∞
w
d wd vd u d
n
τ
ϑ
0
1
0
1
0
1
0
1
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( ) +
c c c c e c c e c u c v
n n n n nI n n nV n n
χ η ϕ χ ϑ η ϕ τ
2 1 ε
ε
ϑ
I V I V
n
g u v w T
, , , , ,
( )

 
 ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
× ( ) ( ) ( )+ ( )
c w I u v w V u v w I u v w V u v
n
   
100 000 000 100
, , , , , , , , , , ,
   w
w d wd vd u d
, 
( )

 
 ;

I
D
D
nc c c e e s u
I
V
n n n nI nI n
101
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v g u v w T
n I
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) ( ) ( )
c w
I u v w
u
d wd vd u d
D
D
nc c c e
n
I
V
n n n n

001 0
0
2
, , ,τ
τ π χ η ϕ I
I
n
ϑ
( ) ×
=
∞
∑
1
× ( ) ( ) ( )
∂ ( )
∂
−
∫
∫s v c w g u v w T
I u v w
v
d wd vd u d
D
n n I , , ,
, , ,

001
0
1
0
1
0
2
τ
τ π I
I
V
nI n n n
n
D
ne c c c
0 1
ϑ χ η ϕ
( ) ( ) ( ) ( ) ×
=
∞
∑
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u c v s w g u v w T
I u v w
w
d wd vd u d
nI n n n I
τ
τ
, , ,
, , ,

001
τ
τ χ η ϕ
ϑ
0
1
0
1
0
1
0 1
2
∫
∫
∫
∫ ∑
− ( ) ( ) ( ) ×
=
∞
c c c
n n n
n
× ( ) −
( ) ( ) ( ) ( ) + ( )

 

∫
∫
e e c u c v c w g u v w T
nI nI n n n I V I V
ϑ τ ε
1
0
1
0
1
, , , , ,
0
0
1
0
100 000
∫
∫
( ) ( )
ϑ
τ τ τ
 
I u v w V u v w d wd vd u d
, , , , , ,

V
D
D
nc c c e e s u
V
I
n n n nV nV n
101
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v g u v w T
n V
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 67
× ( )
∂ ( )
∂
− ( ) ( ) ( )
c w
V u v w
u
d wd vd u d
D
D
nc c c e
n
V
I
n n n n

001 0
0
2
, , ,τ
τ π χ η ϕ I
I nV n
n
e c u
ϑ τ
ϑ
( ) −
( ) ( ) ×
∫
∫
∑
=
∞
0
1
0
1
× ( ) ( ) ( )
∂ ( )
∂
−
∫
∫s v c w g u v w T
I u v w
v
d wd vd u d
D
n n I , , ,
, , ,

001
0
1
0
1
0
2
τ
τ π I
I
V
nI n n n
n
D
ne c c c
0 1
ϑ χ η ϕ
( ) ( ) ( ) ( ) ×
=
∞
∑
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u c v s w g u v w T
V u v w
w
d wd vd u d
nV n n n V
τ
τ
, , ,
, , ,

001
τ
τ χ η ϕ
ϑ
0
1
0
1
0
1
0 1
2
∫
∫
∫
∫ ∑
− ( ) ( ) ( ) ×
=
∞
c c c
n n n
n
× ( ) −
( ) ( ) ( ) ( ) + ( )

 

e e c u c v c w g u v w T I u
nV nV n n n I V I V
ϑ τ ε
1 100
, , , , ,  ,
, , ,
, , ,
v w
V u v w d wd vd u d
τ
τ τ
ϑ
( )
( )
∫
∫
∫
∫ 0
1
0
1
0
1
0
000
 ;

I c c c e e c u c v c w
n n n nI nI n n n
011 2
χ η ϕ ϑ χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( ) (
( ) ( )
{ ×
∫
∫
∫
∫
∑
=
∞

I u v w
n
000
0
1
0
1
0
1
0
1
, , ,τ
ϑ
× + ( )

 
 ( )
+ + ( )
1
1
010
ε τ
ε
I I I I
I V I V
g u v w T I u v w
g u v w T
, ,
, ,
, , , , , ,
, , ,



 
 ( ) ( )





 
I u v w V u v w
d wd vd u d
001 000
, , , , , ,
τ τ
τ

V c c c e e c u c v c w
n n n nV nV n n n
011 2
χ η ϕ ϑ χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( ) (
( ) ( )
{ ×
∫
∫
∫
∫
∑
=
∞

I u v w
n
000
0
1
0
1
0
1
0
1
, , ,τ
ϑ
× + ( )

 
 ( )
+ + ( )
1
1
010
ε τ
ε
I I I I
I V I V
g u v w T I u v w
g u v w T
, ,
, ,
, , , , , ,
, , ,



 
 ( ) ( )





 
I u v w V u v w
d wd vd u d
001 000
, , , , , ,
τ τ
τ
Equations for functions Φρi
(x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radiation
defects.







Φ Φ Φ
Φ
I
I
I I
x y z t
t
D
x y z t
x
x y z t
y
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+
Φ
ΦI x y z t
z
0
2
, , ,
( )





 +

+ ( ) ( )− ( ) ( )
k x y z T I x y z t k x y z T I x y z t
I I I
, , , , , , , , , , , , ,
2







Φ Φ Φ
Φ
V
V
V V
x y z t
t
D
x y z t
x
x y z t
y
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+
Φ
ΦV x y z t
z
0
2
, , ,
( )





 +

+ ( ) ( )− ( ) ( )
k x y z T V x y z t k x y z T V x y z t
V V V
, , , , , , , , , , , , ,
2
;







Φ Φ Φ
Φ
I i
I
I i I i
x y z t
t
D
x y z t
x
x y z t
y
, , , , , , , , ,
( )
=
( )
+
( )
+
0
2
2
2
2
2
Φ
ΦI i x y z t
z
, , ,
( )








+
 2
+ ( )
( )





 + (
−
D
x
g x y z T
x y z t
x y
g x y z T
I I
I i
I
0
1
Φ Φ Φ
Φ






, , ,
, , ,
, , , )
)
( )





 +





−


ΦI i x y z t
y
1 , , ,
+ ( )
( )











−




z
g x y z T
x y z t
z
I
I i
Φ
Φ
, , ,
, , ,
1
, i≥1,
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 68







Φ Φ Φ
Φ
V i
V
V i V i
x y z t
t
D
x y z t
x
x y z t
y
, , , , , , , , ,
( )
=
( )
+
( )
+
0
2
2
2
2
2
Φ
ΦV i x y z t
z
, , ,
( )








+
 2
+ ( )
( )





 + (
−
D
x
g x y z T
x y z t
x y
g x y z T
V V
V i
V
0
1
Φ Φ Φ
Φ






, , ,
, , ,
, , , )
)
( )





 +





−


ΦV i x y z t
y
1 , , ,
+ ( )
( )











−




z
g x y z T
x y z t
z
V
V i
Φ
Φ
, , ,
, , ,
1
, i≥1;
Boundary and initial conditions for the functions takes the form
∂ ( )
∂
=
=
Φi
x
x y z t
x
, , ,
0
0 ,
∂ ( )
∂
=
=
Φi
x L
x y z t
x
x
, , ,
0 ,
∂ ( )
∂
=
=
Φi
y
x y z t
y
, , ,
0
0 ,
∂ ( )
∂
=
=
Φi
y L
x y z t
y
y
, , ,
0 ,
∂ ( )
∂
=
=
Φi
z
x y z t
z
, , ,
0
0 ,
∂ ( )
∂
=
=
Φi
z L
x y z t
z
z
, , ,
0 , i≥0; Φρ0
(x,y,z,0)=fΦρ
(x,y,z),
Φρi
(x,y,z,0)=0, i≥1.
Solutions of the above equations could be written as
Φ Φ Φ
  
0
1
1 2
x y z t
L L L L L L
F c x c y c z e t
x y z x y z
n n n n n
n
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
∑ ∑
+ ( ) ( ) ( ) ×
=
∞
2
1
L
n c x c y c z
n n n
n
× ( ) −
( ) ( ) ( ) ( ) ( ) ( )−


e t e c u c v c w k u v w T I u v w
n n n n n I I
Φ Φ
ρ ρ
τ τ
, , , , , , ,
2
0
0
0
0
0
L
L
L
t z
y
x
∫
∫
∫
∫
− ( ) ( )

k u v w T I u v w d wd vd u d
I , , , , , ,  ,
Where, F c u c v c w f u v w d wd vd u
n n n n
L
L
L z
y
x
Φ Φ
 
= ( ) ( ) ( ) ( )
∫
∫
∫ , ,
0
0
0
,
e t n D t L L L
n x y z
Φ Φ
ρ ρ
π
( ) = − + +
( )




− − −
exp 2 2
0
2 2 2
, cn
(x) = cos (π n x/Lx
);
Φ Φ Φ
ρ
π
τ
ρ ρ
i
x y z
n n n n n n
x y z t
L L L
nc x c y c z e t e s u
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) (
2
2 )
) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v g u v w T
n
L
L
L
t
n
z
y
x
Φρ
, , ,
0
0
0
0
1
× ( )
( )
− ( ) ( ) ( )
−
c w
u v w
u
d wd vd u d
L L L
nc x c y c z
n
I i
x y z
n n n
∂ τ
∂
τ
π
ρ
Φ 1
2
2
, , ,
e
e t e
n n
t
n
Φ Φ
ρ ρ
τ
( ) −
( ) ×
∫
∑
=
∞
0
1
× −
( ) ( ) ( ) ( ) ( )
( )
−
e c u s v c w g u v w T
u v w
v
d wd v
n n n n
I i
Φ Φ
Φ
ρ ρ
ρ
τ
∂ τ
∂
, , ,
, , ,
1
d
d u d
L L L
n
L
L
L
t
x y z n
z
y
x
τ
π
0
0
0
0
2
1
2
∫
∫
∫
∫ ∑
− ×
=
∞
× ( ) −
( ) ( ) ( ) ( )
( )
−
e t e c u c v s w
u v w
w
g u v w
n n n n n
I i
Φ Φ Φ
Φ
ρ ρ
ρ
ρ
τ
∂ τ
∂
1 , , ,
, , ,T
T d wd vd u d
L
L
L
t z
y
x
( ) ×
∫
∫
∫
∫ τ
0
0
0
0
× ( ) ( ) ( )
c x c y c z
n n n , i ≥1,
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 69
where sn
(x) = sin (π n x/Lx
).
Equations for the functions Cij
(x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be written as
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
00
0
2
00
2 0
2
00
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
00
2
∂ ( )
∂
, , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
C x y z t
t
D
C x y z t
x
C x y z t
y
C
i
L
i i
0
0
2
0
2
2
0
2
2
, , , , , , , , , i
i x y z t
z
0
2
, , ,
( )
∂





 +
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
−
D
x
g x y z T
C x y z t
x
D
y
g x y z T
L L
i
L L
0
10
0
, , ,
, , ,
, , , )
)
∂ ( )
∂





 +
−
C x y z t
y
i 10 , , ,
+
∂
∂
( )
∂ ( )
∂






−
D
z
g x y z T
C x y z t
z
L L
i
0
10
, , ,
, , ,
, i ≥1;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
01
0
2
01
2 0
2
01
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
01
2
∂ ( )
∂
+
, , ,
+
∂
∂
( )
( )
∂ ( )
∂





 +
∂
∂
D
x
C x y z t
P x y z T
C x y z t
x
D
L L
0
00 00
0


, , ,
, , ,
, , ,
y
y
C x y z t
P x y z T
C x y z t
y
00 00


, , ,
, , ,
, , ,
( )
( )
∂ ( )
∂





 +
+
∂
∂
( )
( )
∂ ( )
∂






D
z
C x y z t
P x y z T
C x y z t
z
L
0
00 00


, , ,
, , ,
, , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
02
0
2
02
2 0
2
02
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
02
2
∂ ( )
∂
+
, , ,
+
∂
∂
( )
( )
( )
∂ ( )
−
D
x
C x y z t
C x y z t
P x y z T
C x y z t
L
0 01
00
1
00
, , ,
, , ,
, , ,
, , ,


∂
∂





 +
∂
∂
( )
( )
( )
×






−
x y
C x y z t
C x y z t
P x y z T
01
00
1
, , ,
, , ,
, , ,





×
∂ ( )
∂


 +
∂
∂
( )
( )
−
C x y z t
y z
C x y z t
C x y z t
P x y z
00
01
00
1
, , ,
, , ,
, , ,
, , ,


T
T
C x y z t
z
( )
∂ ( )
∂











+
00 , , ,
×
∂ ( )
∂


 +
∂
∂
( )
( )
−
C x y z t
y z
C x y z t
C x y z t
P x y z
00
01
00
1
, , ,
, , ,
, , ,
, , ,


T
T
C x y z t
z
D
x
C x y z t
P x y z
L
( )
∂ ( )
∂











+
∂
∂
( )
00
0
00
, , , , , ,
, , ,


T
T
( )
×








×
∂ ( )
∂


 +
∂
∂
( )
( )
∂
C x y z t
x y
C x y z t
P x y z T
C x y z t
01 00 01
, , , , , ,
, , ,
, , ,


(
( )
∂





 +
∂
∂
( )
( )
∂ ( )
∂




y z
C x y z t
P x y z T
C x y z t
z
00 01


, , ,
, , ,
, , ,








;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
11
0
2
11
2 0
2
11
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
11
2
∂ ( )
∂
+
, , ,
+
∂
∂
( )
( )
( )
∂ ( )
∂
 −
x
C x y z t
C x y z t
P x y z T
C x y z t
x
10
00
1
00
, , ,
, , ,
, , ,
, , ,







 +
∂
∂
( )
( )
( )
×








−
y
C x y z t
C x y z t
P x y z T
10
00
1
, , ,
, , ,
, , ,


×
∂ ( )
∂


 +
∂
∂
( )
( )
−
C x y z t
y z
C x y z t
C x y z t
P x y z
00
10
00
1
, , ,
, , ,
, , ,
, , ,


T
T
C x y z t
z
D L
( )
∂ ( )
∂











+
00
0
, , ,
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 70
+
∂
∂
( )
( )
∂ ( )
∂





 +
∂
∂
D
x
C x y z t
P x y z T
C x y z t
x y
C
L
0
00 10 0


, , ,
, , ,
, , , 0
0 10


x y z t
P x y z T
C x y z t
y
, , ,
, , ,
, , ,
( )
( )
∂ ( )
∂





 +





+
∂
∂
( )
( )
∂ ( )
∂











+
z
C x y z t
P x y z T
C x y z t
z
D L
00 10
0


, , ,
, , ,
, , , ∂
∂
∂
( )
∂ ( )
∂





 +




 x
g x y z T
C x y z t
x
L , , ,
, , ,
01
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
y
g x y z T
C x y z t
y z
g x y z T
C x y
L L
, , ,
, , ,
, , ,
,
01 01 ,
, ,
z t
z
( )
∂











;


C x y z t
x
ij
x
, , ,
( )
=
=0
0,


C x y z t
x
ij
x Lx
, , ,
( )
=
=
0,


C x y z t
y
ij
y
, , ,
( )
=
=0
0 ,


C x y z t
y
ij
y Ly
, , ,
( )
=
=
0 ,


C x y z t
z
ij
z
, , ,
( )
=
=0
0,


C x y z t
z
ij
z Lz
, , ,
( )
=
=
0 , i ≥0, j ≥0;
C00
(x,y,z,0)=fC
(x,y,z), Cij
(x,y,z,0)=0, i ≥1, j ≥1.
Functions Cij
(x,y,z,t) (i ≥ 0, j ≥ 0) could be approximated by the following series during solutions of the
above equations:
C x y z t
F
L L L L L L
F c x c y c z e t
C
x y z x y z
nC n n n nC
n
00
0
1
2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
∑ .
Here, ( ) 2 2
0 2 2 2
1 1 1
 
 
= − + +
 
 
 
 
 
nC C
x y z
e t exp n D t
L L L
 , F c u c v f u v w c w d wd v d u
nC n n C n
L
L
L z
y
x
= ( ) ( ) ( ) ( )
∫
∫
∫ , ,
0
0
0
;
C x y z t
L L L
n F c x c y c z e t e s u
i
x y z
nC n n n nC nC n
0 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v g u v w T
n L
L
L
L
t
n
z
y
x
, , ,
0
0
0
0
1
× ( )
∂ ( )
∂
− ( ) ( )
−
c w
C u v w
u
d wd vd u d
L L L
n F c x c y c z
n
i
x y z
nC n n n
10
2
2
, , ,τ
τ
π
(
( ) ( ) −
( ) ×
∫
∑
=
∞
e t e
nC nC
t
n
τ
0
1
× ( ) ( ) ( ) ( )
∂ ( )
∂
−
∫
c u s v c v g u v w T
C u v w
v
d wd vd u d
n n n L
i
L
L z
, , ,
, , ,
10
0
0
τ
τ
y
y
x
L
x y z
nC nC
n
L L L
n F e t
∫
∫ ∑
− ( ) ×
=
∞
0
2
1
2π
× ( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
∂ −
c x c y c z e c u c v s v g u v w T
C u v
n n n nC n n n L
i
 , , ,
,
10 ,
, ,
w
w
d wd vd u d
L
L
L
t z
y
x


( )
∂
∫
∫
∫
∫ 0
0
0
0
, i ≥1;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
01 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( )×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
×
( )
( )
∂ ( )
∂
−
C u v w
P u v w T
C u v w
u
d wd vd u d
L L L
x y z
00 00
2
2
γ
γ
τ τ
τ
π
, , ,
, , ,
, , ,
n
n F c x c y c z e t
nC n n n nC
n
( ) ( ) ( ) ( ) ×
=
∞
∑
1
× −
( ) ( ) ( ) ( )
( )
( )
∂
e c u s v c w
C u v w
P u v w T
C u v w
nC n n n
τ
τ τ
γ
γ
00 00
, , ,
, , ,
, , ,
(
( )
∂
− ( )×
∫
∫
∫
∫ ∑
=
∞
v
d wd vd u d
L L L
n e t
L
L
L
t
x y z
nC
n
z
y
x
τ
π
0
0
0
0
2
1
2
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 71
× ( ) ( ) ( ) −
( ) ( ) ( ) ( )
( )
F c x c y c z e c u c v s w
C u v w
P u
nC n n n nC n n n
τ
τ
γ
γ
00 , , ,
,v
v w T
C u v w
w
d wd vd u d
L
L
L
t z
y
x
, ,
, , ,
( )
∂ ( )
∂
∫
∫
∫
∫
00
0
0
0
0
τ
τ ;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
02 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
× ( )
( )
( )
∂ ( )
∂
−
C u v w
C u v w
P u v w T
C u v w
u
d wd v
01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ τ
γ
γ
d
d u d
L L L
F c x c y
x y z
nC n n
n
τ
π
− ( ) ( )×
=
∞
∑
2
2
1
× ( ) ( ) −
( ) ( ) ( ) ( )
( )
−
nc z e t e c u s v C u v w
C u v w
P
n nC nC n n
τ τ
τ
γ
01
00
1
, , ,
, , ,
γ
γ
τ
u v w T
C u v w
v
L
L
L
t z
y
x
, , ,
, , ,
( )
∂ ( )
∂
×
∫
∫
∫
∫
00
0
0
0
0
× ( ) − ( ) ( ) ( ) ( ) −
( )
c w d wd vd u d
L L L
n F c x c y c z e t e c
n
x y z
nC n n n nC nC n
τ
π
τ
2
2
u
u c v
n
L
L
t
n
y
x
( ) ( ) ×
∫
∫
∫
∑
=
∞
0
0
0
1
× ( ) ( )
( )
( )
∂ ( )
∂
−
s w C u v w
C u v w
P u v w T
C u v w
n 01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ τ
γ
γ
w
w
d wd vd u d
L L L
n c x
L
x y z
n
n
z
τ
π
0
2
1
2
∫ ∑
− ( ) ×
=
∞
× ( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
∂
F c y c z e t e s u c v c w C u v w
C
nC n n nC nC n n n
 
01
00
, , ,
u
u v w
u
L
L
L
t z
y
x
, , ,
( )
∂
×
∫
∫
∫
∫ 0
0
0
0
×
( )
( )
− ( ) (
−
C u v w
P u v w T
d wd vd u d
L L L
n F c x c y
x y z
nC n n
00
1
2
2
γ
γ
τ
τ
π
, , ,
, , ,
)
) ( ) ( ) −
( ) ( ) ×
∫
∫
∑
=
∞
c z e t e c u
n nC nC n
L
t
n
x
τ
0
0
1
× ( ) ( ) ( )
( )
( )
∂
−
s v c w C u v w
C u v w
P u v w T
C u v w
n n 01
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,τ
τ
π
( )
∂
− ×
∫
∫ ∑
=
∞
v
d wd vd u d
L L L
n
L
L
x y z n
z
y
0
0
2
1
2
× ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( ) (
F c x c y c z e t e c u c v s w C u v w
nC n n n nC nC n n n
τ τ
01 , , , )
)
( )
( )
×
−
∫
∫
∫
∫
C u v w
P u v w T
L
L
L
t z
y
x
00
1
0
0
0
0
γ
γ
τ
, , ,
, , ,
×
∂ ( )
∂
− ( ) ( ) ( ) ( )
C u v w
w
d wd vd u d
L L L
F c x c y c z e t
x y z
nC n n n nC
00
2
2
, , ,τ
τ
π
e
e s u
nC n
L
t
n
x
−
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
× ( ) ( )
( )
( )
∂ ( )
∂
n c v c w
C u v w
P u v w T
C u v w
u
d wd vd u d
n n
00 01
γ
γ
τ τ
, , ,
, , ,
, , ,
τ
τ
π
0
0
2
1
2
L
L
x y z
n nC
n
z
y
L L L
c x e t
∫
∫ ∑
− ( ) ( ) ×
=
∞
× ( ) −
( ) ( ) ( ) ( )
( )
( )
∂
F c y e c u s v c w
C u v w
P u v w T
C
nC n nC n n n
τ
τ
γ
γ
00 0
, , ,
, , ,
1
1
0
0
0
0
u v w
v
d wd vd u d
L
L
L
t z
y
x
, , ,τ
τ
( )
∂
×
∫
∫
∫
∫
× ( )− ( ) ( ) ( ) ( ) −
( ) ( ) (
n c z
L L L
n F c x c y c z e t e c u c v
n
x y z
nC n n n nC nC n n
2
2
π
τ )
) ( ) ×
∫
∫
∫
∫
∑
=
∞
s w
n
L
L
L
t
n
z
y
x
0
0
0
0
1
×
( )
( )
∂ ( )
∂
C u v w
P u v w T
C u v w
w
d wd vd u d
00 01
γ
γ
τ τ
τ
, , ,
, , ,
, , ,
;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
11 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
Pankratov: On increasing of dencity of elements of an amplifier circuit
AJMS/Oct-Dec-2018/Vol 2/Issue 4 72
× ( )
∂ ( )
∂
− ( ) (
g u v w T
C u v w
u
d wd vd u d
L L L
n F c x c y
L
x y z
nC n n
, , ,
, , ,
01
2
2
τ
τ
π
)
) ( ) ( ) ×
=
∞
∑ c z e t
n nC
n 1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u s v c w g u v w T
C u v w
v
d wd vd u d
nC n n n L
τ
τ
τ
, , ,
, , ,
01
0
L
L
L
L
t
x y z
z
y
x
L L L
∫
∫
∫
∫ − ×
0
0
0
2
2π
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
n e t e c u c v s w g u v w T
C u v w
w
d w
nC nC n n n L


, , ,
, , ,
01
d
d vd u d
L
L
L
t
n
z
y
x

0
0
0
0
1
∫
∫
∫
∫
∑
=
∞
×
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
F c x c y c z
L L L
F c x c y c z e t e
nC n n n
x y z
nC n n n nC nC
2
2
π
τ
(
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
s u c v
n n
L
L
t
n
y
x
0
0
0
1
× ( )
( )
( )
∂ ( )
∂
∫
n c w
C u v w
P u v w T
C u v w
u
d wd vd u d
n
Lz
00 10
0
γ
γ
τ τ
τ
, , ,
, , ,
, , ,
−
− ( ) ( )×
=
∞
∑
2
2
1
π
L L L
n F c x c y
x y z
nC n n
n
× ( ) ( ) −
( ) ( ) ( ) ( )
( )
( )
c z e t e c u s v c w
C u v w
P u v w T
n nC nC n n n
τ
τ
γ
γ
00 , , ,
, , ,
∂
∂ ( )
∂
−
∫
∫
∫
∫
C u v w
v
d wd vd u d
L
L
L
t z
y
x
10
0
0
0
0
, , ,τ
τ
− ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( )
2
2
π
τ
L L L
n F c x c y c z e t e c u c v s w
C
x y z
nC n n n nC nC n n n
0
00
0
0
0
0
1
γ
γ
τ
u v w
P u v w T
L
L
L
t
n
z
y
x
, , ,
, , ,
( )
( )
×
∫
∫
∫
∫
∑
=
∞
×
∂ ( )
∂
− ( ) ( ) ( ) (
C u v w
w
d wd vd u d
L L L
n F c x c y c z e t
x y z
nC n n n nC
10
2
2
, , ,τ
τ
π
)
) −
( ) ( ) ×
∫
∫
∑
=
∞
e s u
nC n
L
t
n
x
τ
0
0
1
× ( ) ( ) ( )
( )
( )
∂
−
c v c w C u v w
C u v w
P u v w T
C u v w
n n 10
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,τ
τ
π
( )
∂
− ×
∫
∫ ∑
=
∞
u
d wd vd u d
L L L
n
L
L
x y z n
z
y
0
0
2
1
2
× ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( )
−
F c x c y c z e t e c u s v c w
C u v w
nC n n n nC nC n n n
τ
γ
00
1
, , ,
,
, , ,
, , ,
τ τ
γ
( )
( )
∂ ( )
∂
×
∫
∫
∫
∫ P u v w T
C u v w
v
L
L
L
t z
y
x
00
0
0
0
0
× ( ) − ( ) ( ) ( ) ( )
C u v w d wd vd u d
L L L
n F c x c y c z e t e
x y z
nC n n n nC n
10 2
2
, , ,τ τ
π
C
C n
L
t
n
c u
x
−
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
× ( ) ( ) ( )
( )
( )
∂
−
c v s w C u v w
C u v w
P u v w T
C u v w
n n 10
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,τ
τ
( )
∂
∫
∫ w
d wd vd u d
L
L z
y
0
0
.

More Related Content

What's hot

On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...YogeshIJTSRD
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopBRNSS Publication Hub
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of driftijcsa
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...jedt_journal
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distributionmathsjournal
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...antjjournal
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...IOSR Journals
 
Computational model to design circular runner
Computational model to design circular runnerComputational model to design circular runner
Computational model to design circular runnereSAT Publishing House
 

What's hot (18)

On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
Sub1567
Sub1567Sub1567
Sub1567
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
Computational model to design circular runner
Computational model to design circular runnerComputational model to design circular runner
Computational model to design circular runner
 

Similar to On Approach to Increase Integration Rate of Elements of an Operational Amplifier Circuit

On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...antjjournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ijmejournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 

Similar to On Approach to Increase Integration Rate of Elements of an Operational Amplifier Circuit (20)

01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...BRNSS Publication Hub
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHSBRNSS Publication Hub
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRABRNSS Publication Hub
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERSBRNSS Publication Hub
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationBRNSS Publication Hub
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...BRNSS Publication Hub
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseBRNSS Publication Hub
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...BRNSS Publication Hub
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...BRNSS Publication Hub
 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
 

Recently uploaded

Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 

On Approach to Increase Integration Rate of Elements of an Operational Amplifier Circuit

  • 1. www.ajms.com 54 ISSN 2581-3463 RESEARCH ARTICLE On Approach to Increase Integration Rate of Elements of an Operational Amplifier Circuit E. L. Pankratov1,2 1 Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 2 Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia Received: 12-08-2018; Revised: 20-09-2018; Accepted: 05-12-2018 ABSTRACT In this paper, we introduce an approach to optimize manufacturing of an operational amplifier circuit based on field-effect transistors. Main aims of the optimization are (i) decreasing dimensions of elements of the considered operational amplifier and (ii) increasing of performance and reliability of the considered field-effect transistors. Dimensions of considered field-effect transistors will be decreased due to manufacture of these transistors framework heterostructure with specific structure, doping of required areas of the heterostructure by diffusion or ion implantation, and optimization of annealing of dopant and/or radiation defects. Performance and reliability of the above field-effect transistors could be increased by optimization of annealing of dopant and/or radiation defects and using inhomogeneity of properties of heterostructure. Choosing of inhomogeneity of properties of heterostructure leads to increasing of compactness of distribution of concentration of dopant. At the same time, one can obtain increasing of homogeneity of the above concentration. In this paper, we also introduce an analytical approach for prognosis of technological process of manufacturing of the considered operational amplifier. The approach gives a possibility to take into account variation of parameters of processes in space and at the same time in space. At the same time, one can take into account nonlinearity of the considered processes. Key words: Integrator operational amplifier, increasing integration rate of field-effect heterotransistors, optimization of manufacturing INTRODUCTION An actual and intensively solving problems of solid- state electronics are increasing of integration rate of elements of integrated circuits (p-n junctions).[1-8] Increasing of the integration rate leads to necessity to decrease their dimensions. To decrease, the dimensions are using several approaches. They are widelyusinglaserandmicrowavetypesofannealing of infused dopants. These types of annealing are also widely using for annealing of radiation defects, generated during ion implantation.[9-17] Using the approaches leads to generating inhomogeneous distribution of temperature. In this situation several parameters (such as diffusion coefficient and other) became inhomogeneous. Due to the inhomogenety Address for correspondence: E. L. Pankratov E-mail: elp2004@mail.ru one can obtain a possibility to increase integration rateofelementsofintegratedcircuitsduetochanging of diffusion speed with coordinate. In this situation, one can obtain decreasing dimensions of elements of integrated circuits[18] with account Arrhenius law.[1,3] Another approach to manufacture elements of integrated circuits with smaller dimensions is doping of heterostructure by diffusion or ion implantation.[1-3] However, in this case, optimization of dopant and/or radiation defects is required.[18] In this paper, we consider a heterostructure. The heterostructure consists of a substrate and several epitaxial layers. Some sections have been manufactured in the epitaxial layers. Further, we consider doping of these sections by diffusion or ion implantation. The doping gives a possibility to manufacture field-effect transistors framework an integrator circuit so as it is shown in Figure 1. The manufacturing gives a possibility to increase
  • 2. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 55 density of elements of the operational amplifier circuit.[4] After the considered doping, dopant and/or radiation defects should be annealed. Framework the paper, we analyzed the dynamics of redistribution of dopant and/or radiation defects during their annealing.We introduce an approach to decrease the dimensions of the element. However, it is necessary to complicate technological process. Method of solution In this section, we determine spatiotemporal distributions of concentrations of infused and implanted dopants. To determine these distributions, we calculate appropriate solutions of the second Fick’s law.[1,3,18-23]   C x y z t t , , , ( ) = ( )       + ( )       +            x D C x y z t x y D C x y z t y z D C C C C , , , , , , x x y z t z , , , ( )        (1) Boundary and initial conditions for the equations are ∂ ( ) ∂ = = C x y z t x x , , , 0 0 , ∂ ( ) ∂ = = C x y z t x x Lx , , , 0 , ∂ ( ) ∂ = = C x y z t y y , , , 0 0, ∂ ( ) ∂ = = C x y z t y x Ly , , , 0 , ∂ ( ) ∂ = = C x y z t z z , , , 0 0 , ∂ ( ) ∂ = C x y z t z x Lz , , , , = = 0 0 , ( , , , ) ( , , ) C f x y z x y z (2) The function C(x,y,z,t) describes the spatiotemporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient.Valueofdopantdiffusioncoefficientcould bechangedwithchangingmaterialsofheterostructure, with changing temperature of materials (including annealing), with changing concentrations of dopant and radiation defects. We approximate dependences of dopant diffusion coefficient on parameters by the following relation with account results.[20-22] D D x y z T C x y z t P x y z T V x y z t C L = ( ) + ( ) ( )       + ( , , , , , , , , , , , , 1 1 1 ξ ς γ γ ) ) + ( ) ( )         V V x y z t V * * , , , ς2 2 2 (3) Figure 1: The considered amplifier circuit[4]
  • 3. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 56 Here, the function DL (x,y,z,T) describes the spatial (in heterostructure) and temperature (due to Arrhenius law) dependences of diffusion coefficient of dopant. The function P (x,y,z,T) describes the limit of solubility of dopant. Parameter γ ∈[1,3] describes average quantity of charged defects interacted with atom of dopant.[20] The function V (x,y,z,t) describes the spatiotemporal distribution of the concentration of radiation vacancies. Parameter V* describes the equilibrium distribution of concentration of vacancies. The considered concentrational dependence on dopant diffusion coefficient has been described in details[20] . It should be noted that using diffusion type of doping did not generation radiation defects. In this situation ζ1 = ζ2 = 0, we determine spatiotemporal distributions of concentrations of radiation defects by solving the following system of equations.[21,22] ∂ ( ) ∂ = ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , , , , , , T I x y z t y ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ ( ) ∂       − ( ) ( ) z D x y z T I x y z t z k x y z T I x y z t I I V , , , , , , , , , , , , , V V x y z t , , , ( ) − ( ) ( ) k x y z T I x y z t I I , , , , , , , 2 (4) ∂ ( ) ∂ = ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , , , , , , T V x y z t y ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ ( ) ∂       − ( ) ( ) z D x y z T V x y z t z k x y z T I x y z t V I V , , , , , , , , , , , , , V V x y z t , , , ( ) + ( ) ( ) k x y z T V x y z t V V , , , , , , , 2 Boundary and initial conditions for these equations are ∂ ( ) ∂ = =  x y z t x x , , , 0 0 , ∂ ( ) ∂ = =  x y z t x x Lx , , , 0 , ∂ ( ) ∂ = =  x y z t y y , , , 0 0, ∂ ( ) ∂ = =  x y z t y y Ly , , , 0 , ∂ ( ) ∂ = =  x y z t z z , , , 0 0 , ∂ ( ) ∂ =  x y z t z z Lz , , , = = 0 0 , ( , , , ) ( , , ) r x y z x y z fr (5) Here, ρ =I,V. The function I (x,y,z,t) describes the spatiotemporal distribution of the concentration of radiation interstitials; Dρ (x,y,z,T) is the diffusion coefficientsofpointradiationdefects;termsV2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation divacancies and di-interstitials; kI,V (x,y,z,T) is the parameter of recombination of point radiation defects; kI,I (x,y,z,T) and kV,V (x,y,z,T) are the parameters of the generation of simplest complexes of point radiation defects. Further, we determine distributions in space and time of concentrations of divacancies ΦV (x,y,z,t) and di-interstitials ΦI (x,y,z,t) by solving the following system of equations.[21,22] ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ΦI I I I x y z t t x D x y z T x y z t x y D x , , , , , , , , , ( ) = ( ) ( )       + Φ Φ Φ , , , , , , , y z T x y z t y I ( ) ( )       ∂ ∂ Φ + ( ) ( )       + ( ) ∂ ∂ ∂ ∂ z D x y z T x y z t z k x y z T I x y z I I I I Φ Φ , , , , , , , , , , , , , 2 t t k x y z T I x y z t I ( ) − ( ) ( ) , , , , , , (6) ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ Φ Φ Φ Φ V V V V x y z t t x D x y z T x y z t x y D x , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )       ∂ ∂ Φ + ( ) ( )       + ( ) ∂ ∂ ∂ ∂ z D x y z T x y z t z k x y z T V x y z V V V V Φ Φ , , , , , , , , , , , , , 2 t t k x y z T V x y z t V ( ) − ( ) ( ) , , , , , ,
  • 4. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 57 Boundary and initial conditions for these equations are ∂ ( ) ∂ = = Φρ x y z t x x , , , 0 0 , ∂ ( ) ∂ = = Φρ x y z t x x Lx , , , 0, ∂ ( ) ∂ = = Φρ x y z t y y , , , 0 0 , ∂ ( ) ∂ = = Φρ x y z t y y Ly , , , 0, ∂ ( ) ∂ = = Φρ x y z t z z , , , 0 0 , ∂ ( ) ∂ = = Φρ x y z t z z Lz , , , 0, ΦI (x,y,z,0) = fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z)(7) Here, DΦρ (x,y,z,T) is the diffusion coefficients of the above complexes of radiation defects; kI (x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes. We calculate distributions of concentrations of point radiation defects in space and time by recently elaborated approach.[18] The approach based on transformation of approximations of diffusion coefficients in the following form: Dρ (x,y,z,T)=D0ρ [1+ερ gρ (x,y,z,T)], where D0ρ is the average values of diffusion coefficients, 0≤ερ 1, |gρ (x,y,z,T)|≤1, ρ=I,V. We also used analogous transformation of approximations of parameters of recombination of point defects and parameters of generation of their complexes: kI,V (x,y,z,T)=k0I,V [1+εI,V gI,V (x,y,z,T)], kI,I (x,y,z,T) =k0I,I [1+εI,I gI, I (x,y,z,T)] and kV, V (x,y,z,T)=k0V,V [1+εV,V gV,V (x,y,z,T)], where k0ρ1,ρ2 is the their average values, 0≤ εI,V 1, 0≤εI,I 1, 0≤εV,V 1, | gI,V (x,y,z,T)| ≤ 1, |gI,I (x,y,z,T)| ≤ 1, |gV,V (x,y,z,T)| ≤ 1. Let us introduce the following dimensionless variables:  I x y z t I x y z t I , , , , , , * ( ) = ( ) ,  V x y z t V x y z t V , , , , , , * ( ) = ( ) ,  = L k D D I V I V 2 0 0 0 , , Ω   = L k D D I V 2 0 0 0 , ,  = D D t L I V 0 0 2 , χ = x/Lx , η = y/Ly , φ = z/Lz . The introductionleadstotransformationofEquations (4) and conditions (5) to the following form: ∂ ( ) ∂ = ∂ ∂ + ( )     ∂ ( )   I D D D g T I I I V I I χ η ϕ ϑ ϑ χ ε χ η ϕ χ η ϕ ϑ , , , , , , , , , 0 0 0 1 ∂ ∂           + ∂ ∂ + ( )     { χ η ε χ η ϕ 1 I I g T , , , × ∂ ( ) ∂    + ∂ ∂ + ( )     I D D D D D D g T I I V I I V I I χ η ϕ ϑ η ϕ ε χ η ϕ , , , , , , 0 0 0 0 0 0 1   ∂ ( ) ∂           − ( )   I I χ η ϕ ϑ ϕ χ η ϕ ϑ , , , , , , × + ( )     ( ) − + ( ) ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ 1 1 I V I V I I I I I g T V g T , , , , , , , , , , , , ,  Ω      ( )  I 2 χ η ϕ ϑ , , , (8) ∂ ( ) ∂ = ∂ ∂ + ( )     ∂ ( )   V D D D g T V V I V V V χ η ϕ ϑ ϑ χ ε χ η ϕ χ η ϕ ϑ , , , , , , , , , 0 0 0 1 ∂ ∂           + ∂ ∂ + ( )     { χ η ε χ η ϕ 1 V V g T , , , × ∂ ( ) ∂    + ∂ ∂ + ( )     V D D D D D D g T V I V V I V V V χ η ϕ ϑ η ϕ ε χ η ϕ , , , , , , 0 0 0 0 0 0 1   ∂ ( ) ∂           − ( )   V I χ η ϕ ϑ ϕ χ η ϕ ϑ , , , , , , × + ( )     ( ) − + ( ) ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ 1 1 I V I V V V V V V g T V g T , , , , , , , , , , , , ,  Ω      ( )  V 2 χ η ϕ ϑ , , , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ χ , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ χ , , , 1 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η , , , 1 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ , , , 0 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ , , , 1 0 ,  ρ χ η ϕ ϑ χ η ϕ ϑ ρ ρ , , , , , , * ( ) = ( ) f (9) We determine solutions of Equations (8) with conditions (9) framework recently introduced approach,[18] i.e., as the power series
  • 5. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 58   ρ χ η ϕ ϑ ε ω ρ χ η ϕ ϑ ρ ρ , , , , , , ( ) = ( ) = ∞ = ∞ = ∞ ∑ ∑ ∑ i j k ijk k j i Ω 0 0 0 (10) Substitution of the series (10) into Equations (8) and conditions (9) gives us possibility to obtain equations for initial order approximations of concentration of point defects  I000 χ η ϕ ϑ , , , ( ) and  V000 χ η ϕ ϑ , , , ( ) and corrections for them  Iijk χ η ϕ ϑ , , , ( ) and  Vijk χ η ϕ ϑ , , , ( ), i ≥ 1, j ≥ 1, k ≥ 1. The equations are presented in theAppendix. Solutions of the equations could be obtained by standard Fourier approach.[24,25] The solutions are presented in the Appendix. Now, we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To determine the distributions, we transform approximations of diffusion coefficients in the following form: DΦρ (x,y,z,T)=D0Φρ [1+ εΦρ gΦρ (x,y,z,T)], where D0Φρ is the average values of diffusion coefficients. In this situation, the Equation (6) could be written as ∂ ∂ ∂ ∂ ε ∂ ∂ Φ Φ Φ Φ Φ I I I I I x y z t t D x g x y z T x y z t x , , , , , , , , , ( ) = + ( )     ( )  0 1           + ( ) ( )+ k x y z T I x y z t I I , , , , , , , 2 + + ( )     ( )           + D y g x y z T x y z t y D I I I I I 0 0 1 Φ Φ Φ Φ Φ ∂ ∂ ε ∂ ∂ , , , , , , ∂ ∂ ∂ ε ∂ ∂ z g x y z T x y z t z I I I 1+ ( )     ( )           Φ Φ Φ , , , , , , − ( ) ( ) k x y z T I x y z t I , , , , , , ∂ ∂ ∂ ∂ ε ∂ ∂ Φ Φ Φ Φ Φ V V V V V x y z t t D x g x y z T x y z t x , , , , , , , , , ( ) = + ( )     ( )  0 1           + ( ) ( ) k x y z T I x y z t I I , , , , , , , 2 + + ( )     ( )           + D y g x y z T x y z t y D V V V V V 0 0 1 Φ Φ Φ Φ Φ ∂ ∂ ε ∂ ∂ , , , , , , ∂ ∂ ∂ ε ∂ ∂ z g x y z T x y z t z V V V 1+ ( )     ( )           Φ Φ Φ , , , , , , − ( ) ( ) k x y z T I x y z t I , , , , , , . Farther, we determine solutions of above equations as the following power series: Φ Φ ρ ρ ρ ε x y z t x y z t i i i , , , , , , ( ) = ( ) = ∞ ∑ Φ 0 (11) Now, we used the series (11) into Equation (6) and appropriate boundary and initial conditions. The using gives the possibility to obtain equations for initial order approximations of concentrations of complexes of defects Φρ0 (x,y,z,t), corrections for them Φρi (x,y,z,t) (for them i ≥1), and boundary and initial conditions for them. We remove equations and conditions to the Appendix. Solutions of the equations have been calculated by standard approaches[24,25] and presented in the Appendix. Now, we calculate distribution of concentration of dopant in space and time using the approach, which wasusedforanalysisofradiationdefects.Tousethe approach,weconsiderthefollowingtransformation of approximation of dopant diffusion coefficient: DL (x,y,z,T) = D0L [1 + εL gL (x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0 ≤ εL 1, |gL (x,y,z,T)| ≤ 1. Farther, we consider solution of Equation (1) as the following series: C x y z t C x y z t L i j ij j i , , , , , , ( ) = ( ) = ∞ = ∞ ∑ ∑ε ξ 1 0 . Using the relation into Equation (1) and conditions (2) leads to obtain equations for the functionsCij (x,y,z,t)(i≥1,j≥1),boundaryandinitial conditions for them. The equations are presented in the Appendix. Solutions of the equations have been calculated by standard approaches.[24,25] The solutions are presented in the Appendix. We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically using the second-order approximations on all parameters,whichhavebeenusedinappropriateseries. Usually, the second-order approximations are enough good approximations to make qualitative analysis and
  • 6. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 59 to obtain quantitative results. All analytical results have been checked by numerical simulation. DISCUSSION In this section, we analyzed spatiotemporal distributions of concentrations of dopants. Figure 2 shows typical spatial distributions of concentrations of dopants in neighborhood of interfaces of heterostructures. We calculate these distributions of concentrations of dopants under the following condition: Value of dopant diffusion coefficient in doped area is larger than the value of dopant diffusion coefficient in nearest areas. In this situation, one can find increasing of compactness of field- effect transistors with increasing of homogeneity of distribution of concentration of dopant at one time. Changingrelationbetweenvaluesofdopantdiffusion coefficients leads to opposite result [Figure 3]. It should be noted that framework the considered Figure 2: (a) Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate. (b) Dependences of concentration of dopant, implanted in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger than the value of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogeneous sample and annealing time Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 . Curve 2 corresponds to homogeneous sample and annealing time Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 3 and 4 correspond to heterostructure from Figure 1; annealing times Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 and Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0 , respectively a b Figure 3: (a) Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from Figure 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between values of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient in this section is smaller than the value of dopant diffusion coefficient in the nearest sections. (b) Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial distributions of implanted dopant in system of two epitaxial layers. Dashed lines are spatial distributions of implanted dopant in one epitaxial layer. Annealing time increases with increasing of number of curves a b
  • 7. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 60 approach one should optimize annealing of dopant and/or radiation defects. To do the optimization, we used recently introduced criterion.[26-34] The optimization based on approximation real distribution by step-wise function ψ(x,y,z) [Figure 4]. Farther, the required values of optimal annealing time have been calculated by minimization the following mean squared error: U L L L C x y z x y z dzdydx x y z L L L z y x = ( ) − ( )         ∫ ∫ ∫ 1 0 0 0 , , , , , Θ  (12) We show optimal values of annealing time as functions of parameters on Figure 5. It is known that standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal case, after finishing the annealing dopant achieves interface between layers of heterostructure. If the dopant has no enough time to achieve the interface, it is practicable to anneal the dopant additionally. Figure  5b shows the described dependences of optimal values of additional annealing time for the sameparametersasforFigure 5b.Necessitytoanneal radiation defects leads to smaller values of optimal Figure 4: (a) Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2–4) and idealized step-wise approximation (curve 1). Increasing of the number of curve corresponds to increasing of annealing time. (b) Distributions of concentration of implanted dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2–4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time a b Figure 5: (a) Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0. (b) Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L = 1/2 and ε = ξ = 0 a b
  • 8. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 61 annealing of implanted dopant in comparison with optimal annealing time of infused dopant. CONCLUSIONS In this paper, we introduce an approach to increase integration rate of element of an operational amplifier circuit. The approach gives us possibility to decrease area of the elements with smaller increasing of the element’s thickness. REFERENCES 1. Lachin VI, Savelov NS. Electronics. Phoenix, Rostov- na-Donu: Phoenix; 2001. 2. Alexenko AG, Shagurin II. Microcircuitry. Moscow: Radio and Communication; 1990. 3. Avaev NA, Naumov YE, Frolkin VT. Basis of Microe- lectronics. Moscow: Radio and Communication; 1991. 4. Zhou X, Jiang J, Liu J, Wang J. High-accuracy and low signal distortion on-chip auto-calibrating architecture for continuous-time filters. Analog Integr Circ Sig Process 2014;80:565. 5. Fathi D, Forouzandeh B, Masoumi N. New enhanced noiseanalysisinactivemixersinnanoscaletechnologies. Nano 2009;4:233. 6. Chachuli SA, Fasyar PN, Soin N, Kar NM, Yusop N. Pareto ANOVA analysis for CMOS 0.18 µm two -stage Op-amp. Mat Sci Sem Proc 2014;24:9. 7. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudrik YY, et al. Au-TiB x -n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors 2009;43:897. 8. Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF, Chow TP Jr. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl Phys Lett 2013;102:192107. 9. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors 2009;43:971. 10. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers upon annealing of dysprosium-and holmium- implanted silicon. Semiconductors 1998;32:1029. 11. Kumar MJ, Singh TV. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int J Nanosci 2008;7:81. 12. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett 2013;102:053901. 13. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 2013;102:152114. 14. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111. 15. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:094901. 16. Shishiyanu ST, Shishiyanu TS, Railyan SK. Shallow p−n junctions in Si prepared by pulse photon annealing. Semiconductors 2002;36:611. 17. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836. 18. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58. 19. Erofeev YN. Pulse Devices, Higher School. Moscow: Higher School; 1989 20. Kozlivsky VV. Modification of Semiconductors by Proton Beams. Sant-Peterburg: Nauka Publication; 2003. 21. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 22. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 23. Fahey PM, Griffin PB, Plummer JD. Point defects and dopant diffusion in silicon. Rev Mod Phys 1989;61:289. 24. Tikhonov AN, Samarskii AA. The Mathematical Physics Equations. Moscow: Nauka; 1972. 25. Carslaw HS, Jaeger JC. Conduction of Heat in Solids. New York: Oxford University Press; 1964. 26. Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity. Russ Microelectron 2007;36:33. 27. Pankratov EL. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int J Nanosci 2008;7:187. 28. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. J Comp Theor Nanosci 2017;14:4885. 29. Pankratov EL. On prognosis of technological process to optimize manufacturing of a heterodiodes framework a full-wave rectifier framework, to increase their density and performance. Adv Sci Eng Med 2017;9:787. 30. Pankratov EL, Bulaeva EA. An approach to decrease dimensions of field-effect transistors. Univ J Mater Sci 2013;1:6. 31. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization. Int J Micro Nano Scale Transp 2014;4:17. 32. Pankratov EL, Bulaeva EA. Application of native inhomogeneities to increase compactness of vertical field-effecttransistors.JNanoengNanoman2012;2:275. 33. Pankratov EL, Bulaeva EA.An approach to increase the integration rate of pla-nar drift heterobipolar transistors. Mat Sci Sem Proc 2015;34:260. 34. Pankratov EL. Influence of radiation processing of material on concentration of charge carriers in a diffusion-junction rectifiers. J Comput Theor Nanosci 2018;15:1915-23.
  • 9. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 62 APPENDIX Equations for the functions  Iijk χ η ϕ ϑ , , , ( ) and  Vijk χ η ϕ ϑ , , , ( ), i ≥0, j ≥0, k ≥0 and conditions for them ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 000 0 0 2 000 2 2 000 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 000 2  I , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 000 0 0 2 000 2 2 000 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 000 2  V , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂    I D D I I i I V i i 00 0 0 2 00 2 2 00 χ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ η , , , , , , , 2 2 2 00 2 0 0 + ∂ ( ) ∂       +  I D D i I V χ η ϕ ϑ ϕ , , , × ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ − χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ g T I g T I I i I , , , , , , , , ,   100 i i− ( ) ∂            100 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − ϕ χ η ϕ χ η ϕ ϑ ϕ g T I I i , , , , , ,  100 , i ≥1, ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂    V D D V V i V I i i 00 0 0 2 00 2 2 00 χ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ η , , , , , , , 2 2 2 00 2 + ∂ ( ) ∂       + ∂ ∂ ( )    V g T i V χ η ϕ ϑ ϕ χ χ η ϕ , , , , , , × ∂ ( ) ∂    + ∂ ∂ ( ) ∂ − −   V D D D D g T V i V I V I V i 100 0 0 0 0 100 χ η ϕ ϑ χ η χ η ϕ , , , , , , χ χ η ϕ ϑ η ϕ χ η ϕ , , , , , , ( ) ∂       + ∂ ∂ ( )  g T V × ∂ ( ) ∂    −  V D D i V I 100 0 0 χ η ϕ ϑ ϕ , , , , i ≥1, ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 010 0 0 2 010 2 2 010 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 010 2  I , , , − + ( )     ( ) ( ) 1 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V , , , , , , , , , , ,   ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 010 0 0 2 010 2 2 010 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 010 2  V , , , − + ( )     ( ) ( ) 1 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V , , , , , , , , , , ,   ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 020 0 0 2 020 2 2 020 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 020 2  I , , , − + ( )     ( ) ( )+ 1 010 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V I , , , , , , , , , , ,    χ χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )      V010 ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V I V 020 0 0 2 020 2 2 020 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 020 2  V , , , − + ( )     ( ) ( )+ 1 010 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V I , , , , , , , , , , ,    χ χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )      V010 ;
  • 10. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 63 ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 001 0 0 2 001 2 2 001 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 001 2  I , , , − + ( )     ( ) 1 000 2 ε χ η ϕ χ η ϕ ϑ I I I I g T I , , , , , , , ,  ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 001 0 0 2 001 2 2 001 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 001 2  V , , , − + ( )     ( ) 1 000 2 ε χ η ϕ χ η ϕ ϑ I I I I g T V , , , , , , , ,  ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 110 0 0 2 110 2 2 110 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 110 2 0 0  I D D I V , , , × ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ g T I g T I I I , , , , , , , , ,   010 010 0 χ η ϕ ϑ η ϕ χ η ϕ , , , , , , ( ) ∂       + ∂ ∂ ( )        g T I × ∂ ( ) ∂         − ( ) ( )+     I I V I 010 100 000 χ η ϕ ϑ ϕ χ η ϕ ϑ χ η ϕ ϑ , , , , , , , , , 0 000 100 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )     ×  V × + ( )     1 ε χ η ϕ I I I I g T , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 110 0 0 2 110 2 2 110 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 110 2  V , , , + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T V g T V I V V 0 0 010 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       V010 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − + ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η g T V g V V V V V , , , , , , , , , ,  010 1 ϕ ϕ,T ( )     × × ( ) ( )+ ( ) ( )     V I V I 100 000 000 100 χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ , , , , , , , , , , , ,      ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 002 0 0 2 002 2 2 002 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 002 2  I , , , − + ( )     ( ) ( ) 1 001 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I I I I g T I I , , , , , , , , , , ,   ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 002 0 0 2 002 2 2 002 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 002 2  V , , , − + ( )     ( ) ( ) 1 001 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ V V V V g E V V , , , , , , , , , , ,   ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 101 0 0 2 101 2 2 101 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 101 2  I , , ,
  • 11. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 64 + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T I g T I V I I 0 0 001 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       I001 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − + ( ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T I g T I I I , , , , , , , , ,  001 1 ) )     ( ) ( )   I V 100 000 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 101 0 0 2 101 2 2 101 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 101 2  V , , , + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T V g T V I V V 0 0 001 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       V001 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − + ( ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T V g T V V V , , , , , , , , ,  001 1 ) )     ( ) ( )   I V 000 100 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 011 0 0 2 011 2 2 011 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − ( ) × η χ η ϕ ϑ ϕ χ η ϕ ϑ 2 2 011 2 010   I I , , , , , , × + ( )     ( )− + ( ) 1 1 000 ε χ η ϕ χ η ϕ ϑ ε χ η ϕ I I I I I V I V g T I g T , , , , , , , , , , , , ,       ( ) ( )   I V 001 000 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 011 0 0 2 011 2 2 011 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − ( ) × η χ η ϕ ϑ ϕ χ η ϕ ϑ 2 2 011 2 010   V V , , , , , , × + ( )     ( )− + ( ) 1 1 000 ε χ η ϕ χ η ϕ ϑ ε χ η ϕ V V V V I V I V g T V g t , , , , , , , , , , , , ,       ( ) ( )   I V 000 001 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ; ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ ijk x , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ ijk x , , , 1 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η ijk , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η ijk , , , 1 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ ijk , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ ijk , , , 1 0 (i ≥0, j ≥0, k ≥0);  ρ χ η ϕ χ η ϕ ρ ρ 000 0 , , , , , , * ( ) = ( ) f  ρ χ η ϕ ijk , , ,0 0 ( ) = (i ≥1, j ≥1, k ≥1). Solutions of the above equations could be written as  ρ χ η ϕ ϑ χ η ϕ ϑ ρ ρ 000 1 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ L L F c c c e n n n , Where, F nu nv n w f u v w dwdvdu n n ρ ρ ρ π π π = ( ) ( ) ( ) ( ) ∫ ∫ ∫ 1 0 1 0 1 0 1 * cos cos cos , , , cn (χ) = cos (π n χ), e n D D nI V I ϑ π ϑ ( ) = − ( ) exp 2 2 0 0 , e n D D nV I V ϑ π ϑ ( ) = − ( ) exp 2 2 0 0 ;  I D D nc c c e e s u c i I V n nI nI n n 00 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) v v I u v w u i n ( ) ∂ ( ) ∂ × − = ∞ ∫ ∫ ∫ ∫ ∑  100 0 1 0 1 0 1 0 1 , , ,τ ϑ c w g u v w T dwdvdud D D nc c c e e n I I V n nI nI ( ) ( ) − ( ) ( ) ( ) ( ) − , , , τ π χ η ϕ ϑ τ 2 0 0 ( ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ c u s v n n n 0 1 0 1 0 1 ϑ
  • 12. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 65 × ( ) ( ) ∂ ( ) ∂ − − ∫c w g u v w T I u v w v dw dv du d D D n I i I , , , , , ,  100 0 1 0 0 2 τ τ π V V n nI nI n nc c c e e χ η ϕ ϑ τ ϑ ( ) ( ) ( ) ( ) − ( ) ∫ ∑ = ∞ 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − ∫ c u c v s w g u v w T I u v w w dwdvdu d n n n I i , , , , , ,  100 0 1 0   1 1 0 1 ∫ ∫ , i ≥1,  V D D nc c c e e s u c i V I n nV nI n n 00 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) v v g u v w T V n ( ) ( ) ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) ( ) − c w V u u d wd vd u d D D nc c c e e n i V I n nV n  100 0 0 ,τ τ χ η ϕ ϑ I I n n n c u s v − ( ) ( ) ( ) ∫ ∫ ∫ ∑ = ∞ τ ϑ 0 1 0 1 0 1 × ( ) ( ) ∂ ( ) ∂ − − ∫ 2 2 100 0 1 0 0 π τ τ π c w g u v w T V u v dw dv du d D D n n V i V I , , , ,  c c c c e n nV n χ η ϕ ϑ ( ) ( ) ( ) ( ) = ∞ ∑ 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u c v s w g u v w T V u w d wd vd u d nI n n n V i τ τ τ , , , ,  100 0 1 1 0 1 0 1 0 ∫ ∫ ∫ ∫ ϑ , i ≥1, Where, sn (χ) = sin (π n χ);  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 010 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n × + ( )     ( ) ( ) 1 000 000 ε τ τ I V I V g u v w T I u v w V u v w d wd vd u , , , , , , , , , , ,   d d τ ;  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 020 0 0 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) D D c c c e e c u c I V n n n n n n n v v c w n I V n ( ) ( ) +   ∫ ∫ ∫ ∫ ∑ = ∞ 1 0 1 0 1 0 1 0 1 ε ϑ , × ( )  ( ) ( )+ ( g u v w T I u v w V u v w I u v w I V , , , , , , , , , , , , ,    010 000 000    ) ) ( )      V u v w d wd vd u d 010 , , ,  ;  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 001 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n × + ( )     ( ) 1 000 2 ε ρ τ τ ρ ρ ρ ρ , , , , , , , , g u v w T u v w d wd vd u d  ;  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 002 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n × + ( )     ( ) ( ) 1 001 000 ε ρ τ ρ τ ρ ρ ρ ρ , , , , , , , , , , , g u v w T u v w u v w d wd vd u   d d τ ;  I D D nc c c e e s u I V n n n nI nI n 110 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v c u n n n ( ) ( ) ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) − g u v w T I u v w u dw dv du d D D nc c I i I V n , , , , , ,  100 0 0 2 τ τ π χ n n n nI n c e η ϕ ϑ ( ) ( ) ( ) = ∞ ∑ 1
  • 13. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 66 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u s v c u g u v w T I u v w v d wd vd nI n n n I i τ τ , , , , , ,  100 u u d D D I V τ π ϑ 0 1 0 1 0 1 0 0 0 2 ∫ ∫ ∫ ∫ − × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) − n e e c u c v s u g u v w T I u v w nI nI n n n I i ϑ τ τ , , , , , ,  100 ∂ ∂ ∫ ∫ ∫ ∫ ∑ = ∞ w d wd vd u d n τ ϑ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c c e c c e c u c v c n n n n nI n n nI n n n χ η ϕ χ ϑ η ϕ τ 2 v v I V n ( ) +   ∫ ∫ ∫ ∫ ∑ = ∞ 1 0 1 0 1 0 1 0 1 ε ϑ , × ( )  ( ) ( )+ ( g u v w T I u v w V u v w I u v w I V , , , , , , , , , , , , ,    100 000 000    ) ) ( )      V u v w d wd vd u d 100 , , ,   V D D nc c c e e s u V I n n n nV nV n 110 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v c u n n n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( − g u v w T V u v w u d wd vd u d D D nc c V i V I n n , , , , , ,  100 0 0 2 τ τ π χ η) ) ( ) ( ) × = ∞ ∑ c e n nV n ϕ ϑ 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u s v c u g u v w T V u v w v d wd vd nV n n n V i τ τ , , , , , ,  100 u u d D D V I τ π ϑ 0 1 0 1 0 1 0 0 0 2 ∫ ∫ ∫ ∫ − × × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) − ne e c u c v s u g u v w T V u v w nV nV n n n V i ϑ τ τ , , , , , ,  100 ∂ ∂ × ∫ ∫ ∫ ∫ ∑ = ∞ w d wd vd u d n τ ϑ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) + c c c c e c c e c u c v n n n n nI n n nV n n χ η ϕ χ ϑ η ϕ τ 2 1 ε ε ϑ I V I V n g u v w T , , , , , ( )     × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )+ ( ) c w I u v w V u v w I u v w V u v n     100 000 000 100 , , , , , , , , , , ,    w w d wd vd u d ,  ( )     ;  I D D nc c c e e s u I V n n n nI nI n 101 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v g u v w T n I n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) c w I u v w u d wd vd u d D D nc c c e n I V n n n n  001 0 0 2 , , ,τ τ π χ η ϕ I I n ϑ ( ) × = ∞ ∑ 1 × ( ) ( ) ( ) ∂ ( ) ∂ − ∫ ∫s v c w g u v w T I u v w v d wd vd u d D n n I , , , , , ,  001 0 1 0 1 0 2 τ τ π I I V nI n n n n D ne c c c 0 1 ϑ χ η ϕ ( ) ( ) ( ) ( ) × = ∞ ∑ × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u c v s w g u v w T I u v w w d wd vd u d nI n n n I τ τ , , , , , ,  001 τ τ χ η ϕ ϑ 0 1 0 1 0 1 0 1 2 ∫ ∫ ∫ ∫ ∑ − ( ) ( ) ( ) × = ∞ c c c n n n n × ( ) − ( ) ( ) ( ) ( ) + ( )     ∫ ∫ e e c u c v c w g u v w T nI nI n n n I V I V ϑ τ ε 1 0 1 0 1 , , , , , 0 0 1 0 100 000 ∫ ∫ ( ) ( ) ϑ τ τ τ   I u v w V u v w d wd vd u d , , , , , ,  V D D nc c c e e s u V I n n n nV nV n 101 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v g u v w T n V n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ
  • 14. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 67 × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) c w V u v w u d wd vd u d D D nc c c e n V I n n n n  001 0 0 2 , , ,τ τ π χ η ϕ I I nV n n e c u ϑ τ ϑ ( ) − ( ) ( ) × ∫ ∫ ∑ = ∞ 0 1 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ − ∫ ∫s v c w g u v w T I u v w v d wd vd u d D n n I , , , , , ,  001 0 1 0 1 0 2 τ τ π I I V nI n n n n D ne c c c 0 1 ϑ χ η ϕ ( ) ( ) ( ) ( ) × = ∞ ∑ × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u c v s w g u v w T V u v w w d wd vd u d nV n n n V τ τ , , , , , ,  001 τ τ χ η ϕ ϑ 0 1 0 1 0 1 0 1 2 ∫ ∫ ∫ ∫ ∑ − ( ) ( ) ( ) × = ∞ c c c n n n n × ( ) − ( ) ( ) ( ) ( ) + ( )     e e c u c v c w g u v w T I u nV nV n n n I V I V ϑ τ ε 1 100 , , , , ,  , , , , , , , v w V u v w d wd vd u d τ τ τ ϑ ( ) ( ) ∫ ∫ ∫ ∫ 0 1 0 1 0 1 0 000  ;  I c c c e e c u c v c w n n n nI nI n n n 011 2 χ η ϕ ϑ χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ( ) ( ) { × ∫ ∫ ∫ ∫ ∑ = ∞  I u v w n 000 0 1 0 1 0 1 0 1 , , ,τ ϑ × + ( )     ( ) + + ( ) 1 1 010 ε τ ε I I I I I V I V g u v w T I u v w g u v w T , , , , , , , , , , , , ,       ( ) ( )        I u v w V u v w d wd vd u d 001 000 , , , , , , τ τ τ  V c c c e e c u c v c w n n n nV nV n n n 011 2 χ η ϕ ϑ χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ( ) ( ) { × ∫ ∫ ∫ ∫ ∑ = ∞  I u v w n 000 0 1 0 1 0 1 0 1 , , ,τ ϑ × + ( )     ( ) + + ( ) 1 1 010 ε τ ε I I I I I V I V g u v w T I u v w g u v w T , , , , , , , , , , , , ,       ( ) ( )        I u v w V u v w d wd vd u d 001 000 , , , , , , τ τ τ Equations for functions Φρi (x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radiation defects.        Φ Φ Φ Φ I I I I x y z t t D x y z t x x y z t y 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + Φ ΦI x y z t z 0 2 , , , ( )       +  + ( ) ( )− ( ) ( ) k x y z T I x y z t k x y z T I x y z t I I I , , , , , , , , , , , , , 2        Φ Φ Φ Φ V V V V x y z t t D x y z t x x y z t y 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + Φ ΦV x y z t z 0 2 , , , ( )       +  + ( ) ( )− ( ) ( ) k x y z T V x y z t k x y z T V x y z t V V V , , , , , , , , , , , , , 2 ;        Φ Φ Φ Φ I i I I i I i x y z t t D x y z t x x y z t y , , , , , , , , , ( ) = ( ) + ( ) + 0 2 2 2 2 2 Φ ΦI i x y z t z , , , ( )         +  2 + ( ) ( )       + ( − D x g x y z T x y z t x y g x y z T I I I i I 0 1 Φ Φ Φ Φ       , , , , , , , , , ) ) ( )       +      −   ΦI i x y z t y 1 , , , + ( ) ( )            −     z g x y z T x y z t z I I i Φ Φ , , , , , , 1 , i≥1,
  • 15. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 68        Φ Φ Φ Φ V i V V i V i x y z t t D x y z t x x y z t y , , , , , , , , , ( ) = ( ) + ( ) + 0 2 2 2 2 2 Φ ΦV i x y z t z , , , ( )         +  2 + ( ) ( )       + ( − D x g x y z T x y z t x y g x y z T V V V i V 0 1 Φ Φ Φ Φ       , , , , , , , , , ) ) ( )       +      −   ΦV i x y z t y 1 , , , + ( ) ( )            −     z g x y z T x y z t z V V i Φ Φ , , , , , , 1 , i≥1; Boundary and initial conditions for the functions takes the form ∂ ( ) ∂ = = Φi x x y z t x , , , 0 0 , ∂ ( ) ∂ = = Φi x L x y z t x x , , , 0 , ∂ ( ) ∂ = = Φi y x y z t y , , , 0 0 , ∂ ( ) ∂ = = Φi y L x y z t y y , , , 0 , ∂ ( ) ∂ = = Φi z x y z t z , , , 0 0 , ∂ ( ) ∂ = = Φi z L x y z t z z , , , 0 , i≥0; Φρ0 (x,y,z,0)=fΦρ (x,y,z), Φρi (x,y,z,0)=0, i≥1. Solutions of the above equations could be written as Φ Φ Φ    0 1 1 2 x y z t L L L L L L F c x c y c z e t x y z x y z n n n n n n , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ ∑ ∑ + ( ) ( ) ( ) × = ∞ 2 1 L n c x c y c z n n n n × ( ) − ( ) ( ) ( ) ( ) ( ) ( )−   e t e c u c v c w k u v w T I u v w n n n n n I I Φ Φ ρ ρ τ τ , , , , , , , 2 0 0 0 0 0 L L L t z y x ∫ ∫ ∫ ∫ − ( ) ( )  k u v w T I u v w d wd vd u d I , , , , , ,  , Where, F c u c v c w f u v w d wd vd u n n n n L L L z y x Φ Φ   = ( ) ( ) ( ) ( ) ∫ ∫ ∫ , , 0 0 0 , e t n D t L L L n x y z Φ Φ ρ ρ π ( ) = − + + ( )     − − − exp 2 2 0 2 2 2 , cn (x) = cos (π n x/Lx ); Φ Φ Φ ρ π τ ρ ρ i x y z n n n n n n x y z t L L L nc x c y c z e t e s u , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( 2 2 ) ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v g u v w T n L L L t n z y x Φρ , , , 0 0 0 0 1 × ( ) ( ) − ( ) ( ) ( ) − c w u v w u d wd vd u d L L L nc x c y c z n I i x y z n n n ∂ τ ∂ τ π ρ Φ 1 2 2 , , , e e t e n n t n Φ Φ ρ ρ τ ( ) − ( ) × ∫ ∑ = ∞ 0 1 × − ( ) ( ) ( ) ( ) ( ) ( ) − e c u s v c w g u v w T u v w v d wd v n n n n I i Φ Φ Φ ρ ρ ρ τ ∂ τ ∂ , , , , , , 1 d d u d L L L n L L L t x y z n z y x τ π 0 0 0 0 2 1 2 ∫ ∫ ∫ ∫ ∑ − × = ∞ × ( ) − ( ) ( ) ( ) ( ) ( ) − e t e c u c v s w u v w w g u v w n n n n n I i Φ Φ Φ Φ ρ ρ ρ ρ τ ∂ τ ∂ 1 , , , , , ,T T d wd vd u d L L L t z y x ( ) × ∫ ∫ ∫ ∫ τ 0 0 0 0 × ( ) ( ) ( ) c x c y c z n n n , i ≥1,
  • 16. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 69 where sn (x) = sin (π n x/Lx ). Equations for the functions Cij (x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be written as ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 00 0 2 00 2 0 2 00 2 , , , , , , , , , D D C x y z t z L 0 2 00 2 ∂ ( ) ∂ , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ C x y z t t D C x y z t x C x y z t y C i L i i 0 0 2 0 2 2 0 2 2 , , , , , , , , , i i x y z t z 0 2 , , , ( ) ∂       + + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( − D x g x y z T C x y z t x D y g x y z T L L i L L 0 10 0 , , , , , , , , , ) ) ∂ ( ) ∂       + − C x y z t y i 10 , , , + ∂ ∂ ( ) ∂ ( ) ∂       − D z g x y z T C x y z t z L L i 0 10 , , , , , , , i ≥1; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 01 0 2 01 2 0 2 01 2 , , , , , , , , , D D C x y z t z L 0 2 01 2 ∂ ( ) ∂ + , , , + ∂ ∂ ( ) ( ) ∂ ( ) ∂       + ∂ ∂ D x C x y z t P x y z T C x y z t x D L L 0 00 00 0   , , , , , , , , , y y C x y z t P x y z T C x y z t y 00 00   , , , , , , , , , ( ) ( ) ∂ ( ) ∂       + + ∂ ∂ ( ) ( ) ∂ ( ) ∂       D z C x y z t P x y z T C x y z t z L 0 00 00   , , , , , , , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 02 0 2 02 2 0 2 02 2 , , , , , , , , , D D C x y z t z L 0 2 02 2 ∂ ( ) ∂ + , , , + ∂ ∂ ( ) ( ) ( ) ∂ ( ) − D x C x y z t C x y z t P x y z T C x y z t L 0 01 00 1 00 , , , , , , , , , , , ,   ∂ ∂       + ∂ ∂ ( ) ( ) ( ) ×       − x y C x y z t C x y z t P x y z T 01 00 1 , , , , , , , , ,      × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) − C x y z t y z C x y z t C x y z t P x y z 00 01 00 1 , , , , , , , , , , , ,   T T C x y z t z ( ) ∂ ( ) ∂            + 00 , , , × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) − C x y z t y z C x y z t C x y z t P x y z 00 01 00 1 , , , , , , , , , , , ,   T T C x y z t z D x C x y z t P x y z L ( ) ∂ ( ) ∂            + ∂ ∂ ( ) 00 0 00 , , , , , , , , ,   T T ( ) ×         × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) ∂ C x y z t x y C x y z t P x y z T C x y z t 01 00 01 , , , , , , , , , , , ,   ( ( ) ∂       + ∂ ∂ ( ) ( ) ∂ ( ) ∂     y z C x y z t P x y z T C x y z t z 00 01   , , , , , , , , ,         ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 11 0 2 11 2 0 2 11 2 , , , , , , , , , D D C x y z t z L 0 2 11 2 ∂ ( ) ∂ + , , , + ∂ ∂ ( ) ( ) ( ) ∂ ( ) ∂  − x C x y z t C x y z t P x y z T C x y z t x 10 00 1 00 , , , , , , , , , , , ,         + ∂ ∂ ( ) ( ) ( ) ×         − y C x y z t C x y z t P x y z T 10 00 1 , , , , , , , , ,   × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) − C x y z t y z C x y z t C x y z t P x y z 00 10 00 1 , , , , , , , , , , , ,   T T C x y z t z D L ( ) ∂ ( ) ∂            + 00 0 , , ,
  • 17. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 70 + ∂ ∂ ( ) ( ) ∂ ( ) ∂       + ∂ ∂ D x C x y z t P x y z T C x y z t x y C L 0 00 10 0   , , , , , , , , , 0 0 10   x y z t P x y z T C x y z t y , , , , , , , , , ( ) ( ) ∂ ( ) ∂       +      + ∂ ∂ ( ) ( ) ∂ ( ) ∂            + z C x y z t P x y z T C x y z t z D L 00 10 0   , , , , , , , , , ∂ ∂ ∂ ( ) ∂ ( ) ∂       +      x g x y z T C x y z t x L , , , , , , 01 + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ y g x y z T C x y z t y z g x y z T C x y L L , , , , , , , , , , 01 01 , , , z t z ( ) ∂            ;   C x y z t x ij x , , , ( ) = =0 0,   C x y z t x ij x Lx , , , ( ) = = 0,   C x y z t y ij y , , , ( ) = =0 0 ,   C x y z t y ij y Ly , , , ( ) = = 0 ,   C x y z t z ij z , , , ( ) = =0 0,   C x y z t z ij z Lz , , , ( ) = = 0 , i ≥0, j ≥0; C00 (x,y,z,0)=fC (x,y,z), Cij (x,y,z,0)=0, i ≥1, j ≥1. Functions Cij (x,y,z,t) (i ≥ 0, j ≥ 0) could be approximated by the following series during solutions of the above equations: C x y z t F L L L L L L F c x c y c z e t C x y z x y z nC n n n nC n 00 0 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ ∑ . Here, ( ) 2 2 0 2 2 2 1 1 1     = − + +           nC C x y z e t exp n D t L L L  , F c u c v f u v w c w d wd v d u nC n n C n L L L z y x = ( ) ( ) ( ) ( ) ∫ ∫ ∫ , , 0 0 0 ; C x y z t L L L n F c x c y c z e t e s u i x y z nC n n n nC nC n 0 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v g u v w T n L L L L t n z y x , , , 0 0 0 0 1 × ( ) ∂ ( ) ∂ − ( ) ( ) − c w C u v w u d wd vd u d L L L n F c x c y c z n i x y z nC n n n 10 2 2 , , ,τ τ π ( ( ) ( ) − ( ) × ∫ ∑ = ∞ e t e nC nC t n τ 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − ∫ c u s v c v g u v w T C u v w v d wd vd u d n n n L i L L z , , , , , , 10 0 0 τ τ y y x L x y z nC nC n L L L n F e t ∫ ∫ ∑ − ( ) × = ∞ 0 2 1 2π × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ∂ − c x c y c z e c u c v s v g u v w T C u v n n n nC n n n L i  , , , , 10 , , , w w d wd vd u d L L L t z y x   ( ) ∂ ∫ ∫ ∫ ∫ 0 0 0 0 , i ≥1; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 01 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( )× ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ∂ ( ) ∂ − C u v w P u v w T C u v w u d wd vd u d L L L x y z 00 00 2 2 γ γ τ τ τ π , , , , , , , , , n n F c x c y c z e t nC n n n nC n ( ) ( ) ( ) ( ) × = ∞ ∑ 1 × − ( ) ( ) ( ) ( ) ( ) ( ) ∂ e c u s v c w C u v w P u v w T C u v w nC n n n τ τ τ γ γ 00 00 , , , , , , , , , ( ( ) ∂ − ( )× ∫ ∫ ∫ ∫ ∑ = ∞ v d wd vd u d L L L n e t L L L t x y z nC n z y x τ π 0 0 0 0 2 1 2
  • 18. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 71 × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) F c x c y c z e c u c v s w C u v w P u nC n n n nC n n n τ τ γ γ 00 , , , ,v v w T C u v w w d wd vd u d L L L t z y x , , , , , ( ) ∂ ( ) ∂ ∫ ∫ ∫ ∫ 00 0 0 0 0 τ τ ; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 02 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ − C u v w C u v w P u v w T C u v w u d wd v 01 00 1 00 , , , , , , , , , , , , τ τ τ γ γ d d u d L L L F c x c y x y z nC n n n τ π − ( ) ( )× = ∞ ∑ 2 2 1 × ( ) ( ) − ( ) ( ) ( ) ( ) ( ) − nc z e t e c u s v C u v w C u v w P n nC nC n n τ τ τ γ 01 00 1 , , , , , , γ γ τ u v w T C u v w v L L L t z y x , , , , , , ( ) ∂ ( ) ∂ × ∫ ∫ ∫ ∫ 00 0 0 0 0 × ( ) − ( ) ( ) ( ) ( ) − ( ) c w d wd vd u d L L L n F c x c y c z e t e c n x y z nC n n n nC nC n τ π τ 2 2 u u c v n L L t n y x ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ 0 0 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − s w C u v w C u v w P u v w T C u v w n 01 00 1 00 , , , , , , , , , , , , τ τ τ γ γ w w d wd vd u d L L L n c x L x y z n n z τ π 0 2 1 2 ∫ ∑ − ( ) × = ∞ × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ∂ F c y c z e t e s u c v c w C u v w C nC n n nC nC n n n   01 00 , , , u u v w u L L L t z y x , , , ( ) ∂ × ∫ ∫ ∫ ∫ 0 0 0 0 × ( ) ( ) − ( ) ( − C u v w P u v w T d wd vd u d L L L n F c x c y x y z nC n n 00 1 2 2 γ γ τ τ π , , , , , , ) ) ( ) ( ) − ( ) ( ) × ∫ ∫ ∑ = ∞ c z e t e c u n nC nC n L t n x τ 0 0 1 × ( ) ( ) ( ) ( ) ( ) ∂ − s v c w C u v w C u v w P u v w T C u v w n n 01 00 1 00 , , , , , , , , , , , τ τ γ γ , ,τ τ π ( ) ∂ − × ∫ ∫ ∑ = ∞ v d wd vd u d L L L n L L x y z n z y 0 0 2 1 2 × ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( F c x c y c z e t e c u c v s w C u v w nC n n n nC nC n n n τ τ 01 , , , ) ) ( ) ( ) × − ∫ ∫ ∫ ∫ C u v w P u v w T L L L t z y x 00 1 0 0 0 0 γ γ τ , , , , , , × ∂ ( ) ∂ − ( ) ( ) ( ) ( ) C u v w w d wd vd u d L L L F c x c y c z e t x y z nC n n n nC 00 2 2 , , ,τ τ π e e s u nC n L t n x − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ n c v c w C u v w P u v w T C u v w u d wd vd u d n n 00 01 γ γ τ τ , , , , , , , , , τ τ π 0 0 2 1 2 L L x y z n nC n z y L L L c x e t ∫ ∫ ∑ − ( ) ( ) × = ∞ × ( ) − ( ) ( ) ( ) ( ) ( ) ( ) ∂ F c y e c u s v c w C u v w P u v w T C nC n nC n n n τ τ γ γ 00 0 , , , , , , 1 1 0 0 0 0 u v w v d wd vd u d L L L t z y x , , ,τ τ ( ) ∂ × ∫ ∫ ∫ ∫ × ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( n c z L L L n F c x c y c z e t e c u c v n x y z nC n n n nC nC n n 2 2 π τ ) ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ s w n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ∂ ( ) ∂ C u v w P u v w T C u v w w d wd vd u d 00 01 γ γ τ τ τ , , , , , , , , , ; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 11 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1
  • 19. Pankratov: On increasing of dencity of elements of an amplifier circuit AJMS/Oct-Dec-2018/Vol 2/Issue 4 72 × ( ) ∂ ( ) ∂ − ( ) ( g u v w T C u v w u d wd vd u d L L L n F c x c y L x y z nC n n , , , , , , 01 2 2 τ τ π ) ) ( ) ( ) × = ∞ ∑ c z e t n nC n 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u s v c w g u v w T C u v w v d wd vd u d nC n n n L τ τ τ , , , , , , 01 0 L L L L t x y z z y x L L L ∫ ∫ ∫ ∫ − × 0 0 0 2 2π × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ n e t e c u c v s w g u v w T C u v w w d w nC nC n n n L   , , , , , , 01 d d vd u d L L L t n z y x  0 0 0 0 1 ∫ ∫ ∫ ∫ ∑ = ∞ × × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − F c x c y c z L L L F c x c y c z e t e nC n n n x y z nC n n n nC nC 2 2 π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ s u c v n n L L t n y x 0 0 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ ∫ n c w C u v w P u v w T C u v w u d wd vd u d n Lz 00 10 0 γ γ τ τ τ , , , , , , , , , − − ( ) ( )× = ∞ ∑ 2 2 1 π L L L n F c x c y x y z nC n n n × ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ( ) c z e t e c u s v c w C u v w P u v w T n nC nC n n n τ τ γ γ 00 , , , , , , ∂ ∂ ( ) ∂ − ∫ ∫ ∫ ∫ C u v w v d wd vd u d L L L t z y x 10 0 0 0 0 , , ,τ τ − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) 2 2 π τ L L L n F c x c y c z e t e c u c v s w C x y z nC n n n nC nC n n n 0 00 0 0 0 0 1 γ γ τ u v w P u v w T L L L t n z y x , , , , , , ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ × ∂ ( ) ∂ − ( ) ( ) ( ) ( C u v w w d wd vd u d L L L n F c x c y c z e t x y z nC n n n nC 10 2 2 , , ,τ τ π ) ) − ( ) ( ) × ∫ ∫ ∑ = ∞ e s u nC n L t n x τ 0 0 1 × ( ) ( ) ( ) ( ) ( ) ∂ − c v c w C u v w C u v w P u v w T C u v w n n 10 00 1 00 , , , , , , , , , , , τ τ γ γ , ,τ τ π ( ) ∂ − × ∫ ∫ ∑ = ∞ u d wd vd u d L L L n L L x y z n z y 0 0 2 1 2 × ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) − F c x c y c z e t e c u s v c w C u v w nC n n n nC nC n n n τ γ 00 1 , , , , , , , , , , τ τ γ ( ) ( ) ∂ ( ) ∂ × ∫ ∫ ∫ ∫ P u v w T C u v w v L L L t z y x 00 0 0 0 0 × ( ) − ( ) ( ) ( ) ( ) C u v w d wd vd u d L L L n F c x c y c z e t e x y z nC n n n nC n 10 2 2 , , ,τ τ π C C n L t n c u x − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 × ( ) ( ) ( ) ( ) ( ) ∂ − c v s w C u v w C u v w P u v w T C u v w n n 10 00 1 00 , , , , , , , , , , , τ τ γ γ , ,τ τ ( ) ∂ ∫ ∫ w d wd vd u d L L z y 0 0 .