SlideShare a Scribd company logo
1 of 24
Download to read offline
© 2019, AJCSE. All Rights Reserved 6
RESEARCH ARTICLE
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on
Heterotransistors to Increase Density of their Elements with Account Miss-match
Induced Stress and Porosity of Materials
E. L. Pankratov1,2
1
Department of Mathematival and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue,
Nizhny Novgorod, 603950, Russia, 2
Department of Higher Mathenatics, Nizhny Novgorod State Technical
University, 24 Minin Street, Nizhny Novgorod, 603950, Russia
Received on: 01-12-2018; Revised on: 25-12-2018; Accepted on: 25-01-2019
ABSTRACT
In this paper, we introduce an approach to increase the density of field-effect transistors framework
a broadband power amplifier. Framework the approach, we consider manufacturing the inverter in
heterostructure with specific configuration. Several required areas of the heterostructure should be doped
by diffusion or ion implantation. After that, dopant and radiation defects should be annealed framework
optimized scheme. We also consider an approach to decrease the value of mismatch-induced stress in
the considered heterostructure. We introduce an analytical approach to analyze mass and heat transport
in heterostructures during manufacturing of integrated circuits with account mismatch-induced stress.
Key words: Broadband power amplifier, optimization of manufacturing, increasing of element
integration rate
INTRODUCTION
In the present time, several actual problems of the solid-state electronics (such as increasing of
performance, reliability, and density of elements of integrated circuits: Diodes, field-effect, and bipolar
transistors) are intensively solving.[1-6]
To increase the performance of these devices, it is attracted an
interest determination of materials with higher values of charge carriers mobility.[7-10]
One way to decrease
dimensions of elements of integrated circuits is manufacturing them in thin-film heterostructures.[3-5,11]
In this case, it is possible to use inhomogeneity of heterostructure and necessary optimization of doping
of electronic materials[12]
and development of epitaxial technology to improve these materials (including
analysis of mismatch-induced stress).[13-15]
An alternative approach to increase dimensions of integrated
circuits is using of laser and microwave types of annealing.[16-18]
Framework the paper, we introduce an approach to manufacture field-effect transistors. The approach gives
a possibility to decrease their dimensions with increasing their density framework a broadband power
amplifier. We also consider possibility to decrease mismatch-induced stress to decrease the quantity of
defects, generated due to the stress. In this paper, we consider a heterostructure, which consist of a substrate
and an epitaxial layer [Figure 1]. We also consider a buffer layer between the substrate and the epitaxial
layer. The epitaxial layer includes itself several sections, which were manufactured using another material.
These sections have been doped by diffusion or ion implantation to manufacture the required types of
conductivity (p or n). These areas became sources, drains, and gates [Figure 1]. After this doping, it is
required annealing of dopant and/or radiation defects. The main aim of the present paper is analysis of
redistribution of dopant and radiation defects to determine conditions, which correspond to decrease of
elements of the considered voltage reference and at the same time to increase their density. At the same
time, we consider a possibility to decrease mismatch-induced stress.
Address of correspondence:
E. L. Pankratov
E-mail: elp2004@mail.ru
Available Online at www.ajcse.info
Asian Journal of Computer Science Engineering 2019;4(1):6-29
ISSN 2581 – 3781
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 7
Method of solution
To solve our aim, we determine and analyzed spatiotemporal distribution of concentration of dopant in
the considered heterostructure. We determine the distribution by solving the second Fick’s law in the
following form: [1,20-23]
∂
∂
∂
∂
∂
∂
∂
C x y z t
t x
D
C x y z t
x y
D
C x y z t
y
, , , , , , , , ,
( )
=
∂ ( )
∂





 +
( )
∂






 +
( )






∂
∂
∂
z
D
C x y z t
z
, , ,

+ ∇ ( ) ( )








∫
Ω
∂
∂ x
D
kT
x y z t C x y W t dW
S
S
Lz
µ1
0
, , , , , ,
+ ∇ ( ) ( )








∫
Ω
∂
∂ y
D
kT
x y z t C x y W t dW
S
S
Lz
µ1
0
, , , , , ,  (1)
+
( )





 +
( )




∂
∂
∂ µ
∂
∂
∂
∂ µ
∂
x
D
V kT
x y z t
x y
D
V kT
x y z t
y
C S C S
2 2
, , , , , ,


 +
( )






∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
C S 2 , , ,
with boundary and initial conditions
∂ ( )
∂
=
=
C x y z t
x x
, , ,
0
0 ,
∂ ( )
∂
=
=
C x y z t
x x Lx
, , ,
0,
∂ ( )
∂
=
=
C x y z t
y y
, , ,
0
0 , C (x,y,z,0)=fC
(x,y,z),
Figure 1: (a) Structure of the considered amplifier[19]
(b) Heterostructure with a substrate, epitaxial layers, and buffer layer
(view from side)
b
a
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 8
∂ ( )
∂
=
=
C x y z t
y x Ly
, , ,
0 ,
∂ ( )
∂
=
=
C x y z t
z z
, , ,
0
0,
∂ ( )
∂
=
=
C x y z t
z x Lz
, , ,
0.
Here, C(x,y,z,t) is the spatiotemporal distribution of concentration of dopant; Ω is the atomic volume of
dopant; ∇s
is the symbol of surficial gradient; C x y z t d z
Lz
, , ,
( )
∫
0
is the surficial concentration of dopant
on interface between layers of heterostructure (in this situation, we assume that Z-axis is perpendicular
to interface between layers of heterostructure); µ1
(x,y,z,t) and µ2
(x,y,z,t) are the chemical potential due to
the presence of mismatch-induced stress and porosity of material; and D and DS
are the coefficients of
volumetric and surficial diffusions. Values of dopant diffusion coefficients depend on properties of
materialsofheterostructure,speedofheatingandcoolingofmaterialsduringannealing,andspatiotemporal
distribution of concentration of dopant. Dependences of dopant diffusions coefficients on parameters
could be approximated by the following relations: [24-26]
D D x y z T
C x y z t
P x y z T
V x y z t
C L
= ( ) +
( )
( )





 +
(
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
)
)
+
( )
( )








V
V x y z t
V
* *
, , ,
ς2
2
2
,
D D x y z T
C x y z t
P x y z T
V x y z
S S L S
= ( ) +
( )
( )





 +
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
t
t
V
V x y z t
V
( )
+
( )
( )








* *
, , ,
ς2
2
2
. (2)
Here, DL
(x,y,z,T) and DLS
(x,y,z,T) are the spatial (due to accounting all layers of heterostructure) and
temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature
of annealing; P(x,y,z,T) is the limit of solubility of dopant; parameter γ depends on properties of
materials and could be integer in the following interval γ ∈[1,3];[24]
V (x,y,z,t) is the spatiotemporal
distribution of concentration of radiation vacancies; V* is the equilibrium distribution of vacancies.
Concentration dependence of dopant diffusion coefficient has been described in details in Kitayama
et al.[24]
Spatiotemporal distributions of concentration of point radiation defects have been determined
by solving the following system of equations: [20-23,25,26]








I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
I x y z t
y
( )
( )








+ ( )
( )





 − ( ) (




z
D x y z T
I x y z t
z
k x y z T I x y z t
I I I
, , ,
, , ,
, , , , , ,
,
2
)
)− ( )
k x y z T
I V
, , , ,
( ) ( ) ( ) ( )
0
, , , , , , , , , , , ,
z
L
IS
S
D
I x y z t V x y z t x y z t I x y W t dW
x kT

 
∂
× + Ω ∇
 
∂  
 
∫
( ) ( )
( )
2
0
, , ,
, , , , , ,
z
L
I S
IS
S
D x y z t
D
x y z t I x y W t dW
y kT x V kT x


   
∂
∂ ∂
+Ω ∇ +
   
∂ ∂ ∂
   
 
∫
( ) ( )
2 2
, , , , , ,
I S I S
D D
x y z t x y z t
y V kT y z V kT z
 
   
∂ ∂
∂ ∂
+ +
   
∂ ∂ ∂ ∂
   
 (3)








V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
V x y z t
y
( )
( )








Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 9
+ ( )
( )





 − ( ) (




z
D x y z T
V x y z t
z
k x y z T V x y z t
V V V
, , ,
, , ,
, , , , , ,
,
2
)
)− ( )
k x y z T
I V
, , , ,
( ) ( ) ( ) ( )
0
, , , , , , , , , , , ,
z
L
VS
S
D
I x y z t V x y z t x y z t V x y W t dW
x kT

 
∂
× + Ω ∇
 
∂  
 
∫
( ) ( )
( )
2
0
, , ,
, , , , , ,
z
L
V S
VS
S
D x y z t
D
x y z t V x y W t dW
y kT x V kT x


   
∂
∂ ∂
+Ω ∇ +
   
∂ ∂ ∂
   
 
∫
( ) ( )
2 2
, , , , , ,
V S V S
D D
x y z t x y z t
y V kT y z V kT z

   
∂ ∂
∂ ∂
+ +
   
∂ ∂ ∂ ∂
   
m
with boundary and initial conditions


I x y z t
x x
, , ,
( )
=
=0
0,


I x y z t
x x Lx
, , ,
( )
=
=
0 ,


I x y z t
y y
, , ,
( )
=
=0
0 ,


I x y z t
y y Ly
, , ,
( )
=
=
0 ,


I x y z t
z z
, , ,
( )
=
=0
0 ,


I x y z t
z z Lz
, , ,
( )
=
=
0 ,


V x y z t
x x
, , ,
( )
=
=0
0,


V x y z t
x x Lx
, , ,
( )
=
=
0,


V x y z t
y y
, , ,
( )
=
=0
0 , (4)


V x y z t
y y Ly
, , ,
( )
=
=
0 ,


V x y z t
z z
, , ,
( )
=
=0
0,


V x y z t
z z Lz
, , ,
( )
=
=
0 , I (x,y,z,0)=
=fI
(x,y,z), V (x,y,z,0)=fV
(x,y,z), V x V t y V t z V t t V
kT x y z
n n n
1 1 1
1
2
1
2
1
2
1
2
+ + +
( )= +
+ +






∞
, , ,

.
Here, I (x,y,z,t) is the spatiotemporal distribution of concentration of radiation interstitials; I* is the
equilibrium distribution of interstitials; DI
(x,y,z,T), DV
(x,y,z,T), DIS
(x,y, z,T), and DVS
(x,y,z,T) are the
coefficients of volumetric and surficial diffusions of interstitials and vacancies, respectively; terms
V2
(x,y,z,t) and I2
(x,y,z,t) correspond to the generation of divacancies and di-interstitials, respectively (for
example, [26]
and appropriate references in this book); kI,V
(x,y,z,T), kI,I
(x,y,z,T), and kV,V
(x,y,z,T) are the
parameters of recombination of point radiation defects and generation of their complexes; k is the
Boltzmann constant; ω = a3
, a is the interatomic distance; and  is the specific surface energy. To
account the porosity of buffer layers, we assume that porous is approximately cylindrical with average
values r x y
= +
1
2
1
2
and z1
before annealing.[23]
With time, small pores decomposing on vacancies. The
vacancies absorbing by larger pores.[27]
With time, large pores became larger due to absorbing the
vacancies and became more spherical.[27]
Distribution of concentration of vacancies in heterostructure,
existing due to porosity, could be determined by summing on all pores, i.e.,
V x y z t V x i y j z k t
p
k
n
j
m
i
l
, , , , , ,
( ) = + + +
( )
=
=
=
∑
∑
∑ α β χ
0
0
0
, R x y z
= + +
2 2 2
.
Here, α, β, and χ are the average distances between centers of pores in directions x, y, and z; l, m, and n
are the quantity of pores inappropriate directions.
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 10
Spatiotemporal distributions of divacancies ΦV
(x,y,z,t) and di-interstitials ΦI
(x,y,z, t) could be determined
by solving the following system of equations: [25,26]








Φ Φ
Φ Φ
I I
x y z t
t x
D x y z T
x y z t
x y
D x
I I
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )








Φ
+ ( )
( )





 +
∂
∂
∇
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
I
I
I S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
1 (
( ) ( )








∫ ΦI
L
x y W t dW
z
, , ,
0
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
I
L
S
S I I I
D
x y z t x y W t dW k x y z T I x y z t
y kT

Φ
 
∂
+Ω ∇ Φ +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
+ ( ) ( )
k x y z T I x y z t
I , , , , , ,  (5)








Φ Φ
Φ Φ
V V
x y z t
t x
D x y z T
x y z t
x y
D x
V V
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )








Φ
+ ( )
( )





 +
∂
∂
∇
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
V
V
V S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
1 (
( ) ( )








∫ ΦV
L
x y W t dW
z
, , ,
0
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
V
L
S
S V V V
D
x y z t x y W t dW k x y z T V x y z t
y kT

Φ
 
∂
+Ω ∇ Φ +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
+ ( ) ( )
k x y z T V x y z t
V , , , , , ,
with boundary and initial conditions


ΦI
x
x y z t
x
, , ,
( )
=
=0
0 ,


ΦI
x L
x y z t
x
x
, , ,
( )
=
=
0 ,


ΦI
y
x y z t
y
, , ,
( )
=
=0
0 ,


ΦI
y L
x y z t
y
y
, , ,
( )
=
=
0 ,


ΦI
z
x y z t
z
, , ,
( )
=
=0
0 ,


ΦI
z L
x y z t
z
z
, , ,
( )
=
=
0,


ΦV
x
x y z t
x
, , ,
( )
=
=0
0 ,


ΦV
x L
x y z t
x
x
, , ,
( )
=
=
0 ,


ΦV
y
x y z t
y
, , ,
( )
=
=0
0 , (6)


ΦV
y L
x y z t
y
y
, , ,
( )
=
=
0
,


ΦV
z
x y z t
z
, , ,
( )
=
=0
0,


ΦV
z L
x y z t
z
z
, , ,
( )
=
=
0 ,
ΦI
(x,y,z,0)=fΦI
(x,y,z), ΦV
(x,y,z,0)=fΦV
(x,y,z).
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 11
Here, DΦI
(x,y,z,T), DΦV
(x,y,z,T), DΦIS
(x,y,z,T), and DΦVS
(x,y,z,T) are the coefficients of volumetric and
surficial diffusions of complexes of radiation defects; kI
(x,y,z,T) and kV
(x,y,z,T) are the parameters of
decay of complexes of radiation defects.
Chemical potential µ1
in Equation (1) could be determined by the following relation: [20]
µ1
=E(z)Ωσij
[uij
(x,y,z,t)+uji
(x,y,z,t)]/2, (7)
Where, E(z) is the Young modulus, σij
is the stress tensor; u
u
x
u
x
ij
i
j
j
i
=
∂
∂
+
∂
∂






1
2
is the deformation tensor;
ui
and uj
are the components ux
(x,y,z,t), uy
(x,y,z,t), and uz
(x,y,z,t) of the displacement vector

u x y z t
, , ,
( );
xi
and xj
are the coordinate x, y, and z. The Equation (3) could be transformed to the following form:
( )
( ) ( ) ( ) ( )
, , , , , ,
, , , , , ,
1
, , ,
2
j j
i i
j i j i
u x y z t u x y z t
u x y z t u x y z t
x y z t
x x x x


   
∂ ∂
∂ ∂

=
+ +
   

∂ ∂ ∂ ∂
   

   

− +
( )
− ( )
∂ ( )
∂
−





 − ( ) ( )
ε δ
σ δ
σ
ε β
0 0
1 2
3
ij
ij k
k
z
z
u x y z t
x
K z z T x
, , ,
, y
y z t T E z
ij
, ,
( )−

 






( )
0
2
δ
Ω
,
Where, σ is Poisson coefficient; ε0
= (as
− aEL
)/aEL
is the mismatch parameter; as
and aEL
are lattice
distances of the substrate and the epitaxial layer; K is the modulus of uniform compression; β is the
coefficient of thermal expansion; and Tr
is the equilibrium temperature, which coincide (for our case) with
room temperature. Components of displacement vector could be obtained by solution of the following
equations: [21]
ρ
σ σ σ
z
u x y z t
t
x y z t
x
x y z t
y
x
x xx xy xz
( )
( )
∂
=
( )
∂
+
( )
∂
+
∂ ∂ ∂ ∂
2
2
, , , , , , , , , ,
, , ,
y z t
z
( )
∂
ρ
σ σ σ
z
u x y z t
t
x y z t
x
x y z t
y
x
y yx yy yz
( )
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
2
2
, , , , , , , , , ,
, , ,
y z t
z
( )
∂
ρ
σ σ σ
z
u x y z t
t
x y z t
x
x y z t
y
x
z zx zy zz
( )
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
2
2
, , , , , , , , , ,
, , ,
y z t
z
( )
∂
,
where σ
σ
δ
ij
i
j
j
i
ij k
E z
z
u x y z t
x
u x y z t
x
u
=
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂
−
∂
2 1 3
, , , , , , x
x y z t
x
K z
k
ij
, , ,
( )
∂








+ ( ) ×
δ
×
∂ ( )
∂
− ( ) ( ) ( )−

 

u x y z t
x
z K z T x y z t T
k
k
r
, , ,
, , ,
 , ρ (z) is the density of materials of heterostructure and δij
is the Kronecker symbol. With account, the relation for σij
last system of equation could be written as
ρ
σ
z
u x y z t
t
K z
E z
z
u x
x x
( )
∂ ( )
∂
= ( )+
( )
+ ( )

 











∂
2
2
2
5
6 1
, , , , y
y z t
x
K z
E z
z
, ,
( )
∂
+ ( )−
( )
+ ( )

 











2
3 1 σ
×
∂ ( )
∂ ∂
+
( )
+ ( )

 

∂ ( )
∂
+
∂
2 2
2
2
2 1
u x y z t
x y
E z
z
u x y z t
y
u x y
y y z
, , , , , , ,

,
, ,
z t
z
K z
E z
z
( )
∂





 + ( )+
( )
+ ( )

 









2
3 1 
×
∂ ( )
∂ ∂
− ( ) ( )
∂ ( )
∂
2
u x y z t
x z
K z z
T x y z t
x
z , , , , , ,

Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 12
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u x
y y x
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
2
2 1
, , , , , , ,
, , , , , ,
y z t
x y
T x y z t
y
( )
∂ ∂





 −
∂ ( )
∂
× ( ) ( )+
∂
∂
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂

K z z
z
E z
z
u x y z t
z
u x y z t
y
y z
β
σ
2 1
, , , , , ,
















+
∂ ( )
∂
2
2
u x y z t
y
y , , ,
 (8)
×
( )
+ ( )

 

+ ( )










+ ( )−
( )
+ ( )

 





5
12 1 6 1
E z
z
K z K z
E z
z
 







∂ ( )
∂ ∂
+ ( )
∂ ( )
∂ ∂
2 2
u x y z t
y z
K z
u x y z t
x y
y y
, , , , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u x
z z z
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
2
2 1
, , , , , , ,
, , , , , ,
y z t
y
u x y z t
x z
x
( )
∂
+
∂ ( )
∂ ∂


 2
2
+
∂ ( )
∂ ∂


 +
∂
∂
( )
∂ ( )
∂
+
∂ ( )
∂
2
u x y z t
y z z
K z
u x y z t
x
u x y z t
y
y x y
, , , , , , , , ,
+
+
∂ ( )
∂
















u x y z t
z
x , , ,
+
∂
∂
( )
+ ( )
∂ ( )
∂
−
∂ ( )
∂
−
∂ (
1
6 1
6
z
E z
z
u x y z t
z
u x y z t
x
u x y z t
z x y

, , , , , , , , , )
)
∂
−
∂ ( )
∂
















y
u x y z t
z
z , , ,
− ( ) ( )
∂ ( )
∂
K z z
T x y z t
z

, , ,
.
Conditions for the system of Equation (8) could be written in the form
∂ ( )
∂
=

u y z t
x
0
0
, , ,
;
∂ ( )
∂
=

u L y z t
x
x , , ,
0 ;
∂ ( )
∂
=

u x z t
y
, , ,
0
0 ;
∂ ( )
∂
=

u x L z t
y
y
, , ,
0 ;
∂ ( )
∂
=

u x y t
z
, , ,
0
0 ;
∂ ( )
∂
=

u x y L t
z
z
, , ,
0;
 
u x y z u
, , ,0 0
( ) = ;
 
u x y z u
, , ,∞
( ) = 0 .
We determine spatiotemporal distributions of concentrations of dopant and radiation defects by solving
the Equations (1), (3), and (5) framework standard method of averaging of function corrections.[28]
Previously, we transform the Equations (1), (3), and (5) to the following form with account initial
distributions of the considered concentrations
∂ ( )
∂
=
∂
∂
∂ ( )
∂





 +
∂
∂
∂ ( )
∂



C x y z t
t x
D
C x y z t
x y
D
C x y z t
y
, , , , , , , , , 


 +
∂
∂
∂ ( )
∂





 +
z
D
C x y z t
z
, , ,
(1a)
+
( )





 +
( )




∂
∂
∂ µ
∂
∂
∂
∂ µ
∂
x
D
V kT
x y z t
x y
D
V kT
x y z t
y
C S C S
2 2
, , , , , ,


 +
( )






∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
C S 2 , , ,
+
( )





 +
∂
∂
∇ ( )
∂
∂
∂ µ
∂
µ
z
D
V k T
x y z t
z x
D
kT
x y z t C x y W
C S S
S
2 , , ,
, , , , , ,
Ω t
t dW
Lz
( )








∫
0
+
∂
∂
∇ ( ) ( )








∫
Ω
y
D
kT
x y z t C x y W t dW
S
S
Lz
 , , , , , ,
0
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 13








I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
I x y z t
y
( )
( )








+ ( )
( )





 +
∂
∂
∇ ( )
∂
∂
∂
∂
µ
z
D x y z T
I x y z t
z x
D
kT
x y z t I
I
IS
S
, , ,
, , ,
, , ,
Ω 1 x
x y W t dW
Lz
, , ,
( )








∫
0
( ) ( ) ( ) ( )
2
1 ,
0
, , , , , , , , , , , ,
z
L
IS
S I I
D
x y z t I x y W t dW k x y z T I x y z t
y kT

 
∂
+Ω ∇ −
 
∂  
 
∫
− ( ) ( ) ( )+ ( ) ( )
k x y z T I x y z t V x y z t f x y z t
I V I
, , , , , , , , , , , ,   (3a)








V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, ,
( )
= ( )
( )





 + ,
,
, , ,
T
V x y z t
y
( )
( )








+ ( )
( )





 +
∂
∂
∇ ( )
∂
∂
∂
∂
µ
z
D x y z T
V x y z t
z x
D
kT
x y z t V
V
VS
S
, , ,
, , ,
, , ,
Ω 1 x
x y W t dW
Lz
, , ,
( )








∫
0
+
∂
∂
∇ ( ) ( )








−
∫
Ω
y
D
kT
x y z t I x y W t dW k x y z
IS
S
L
I I
z
1
0
, , , , , , , , ,
, T
T I x y z t
( ) ( )
2
, , ,
− ( ) ( ) ( )+ ( ) ( )
k x y z T I x y z t V x y z t f x y z t
I V V
, , , , , , , , , , , , 








Φ Φ
Φ Φ
I I
x y z t
t x
D x y z T
x y z t
x y
D x
I I
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )








Φ
+ ( )
( )





 +
∂
∂
∇
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
I
I
I S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
1 (
( ) ( )








∫ ΦI
L
x y W t dW
z
, , ,
0
( ) ( ) ( ) ( )
1
0
, , , , , , , , , , , ,
z
I
L
S
S I I
D
x y z t x y W t dW k x y z T I x y z t
y kT

Φ
 
∂
+Ω ∇ Φ +
 
∂  
 
∫
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
+ ( ) ( )+ ( ) ( )
k x y z T I x y z t f x y z t
I I I
, , , , , , , , ,
2
Φ   (5a)








Φ Φ
Φ Φ
V V
x y z t
t x
D x y z T
x y z t
x y
D x
V V
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )








Φ
+ ( )
( )





 +
∂
∂
∇
∂
∂
∂
∂
µ
z
D x y z T
x y z t
z x
D
kT
x y z t
V
V
V S
S
Φ
Φ
Φ
Ω
, , ,
, , ,
, , ,
1 (
( ) ( )








∫ ΦV
L
x y W t dW
z
, , ,
0
+
∂
∂
∇ ( ) ( )








+
∫
Ω Φ
Φ
y
D
kT
x y z t x y W t dW k x y z
I
z
S
S I
L
I
1
0
, , , , , , , , ,T
T I x y z t
( ) ( )
, , ,
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 14
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
+ ( ) ( )+ ( ) ( )
k x y z T V x y z t f x y z t
V V V
, , , , , , , , ,
2
Φ  .
Farther, we replace concentrations of dopant and radiation defects in the right sides of Equations (1a),
(3a), and (5a) on their not yet known average values α1ρ
. In this situation, we obtain equations for the
first-order approximations of the required concentrations in the following form:
∂ ( )
∂
=
∂
∂
∇ ( )





 +
∂
∂
C x y z t
t x
z
D
kT
x y z t
y
z
D
k
C
S
S C
S
1
1 1 1
, , ,
, , ,
α µ α
Ω Ω
T
T
x y z t
S
∇ ( )






µ1 , , ,
+ ( ) ( )+
( )





 +
f x y z t
x
D
V kT
x y z t
x y
D
V kT
x
C
C S C S
, ,
, , ,
δ
∂
∂
∂ µ
∂
∂
∂
∂ µ
2 2 ,
, , ,
y z t
y
( )






∂
+
( )






∂
∂
∂ µ
∂
z
D
V k T
x y z t
z
C S 2 , , ,
 (1b)
∂
∂
α µ α
I x y z t
t
z
x
D
kT
x y z t
y
z
D
I
IS
S I
IS
1
1 1
, , ,
, , ,
( )
=
∂
∂
∇ ( )





 +
∂
∂
Ω Ω
k
kT
x y z t
S
∇ ( )






µ , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I S I S I S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
+ ( ) ( )− ( )− ( )
f x y z t k x y z T k x y z T
I I I I I V I V
, , , , , , , ,
, ,
δ α α α
1
2
1 1  (3b)
∂
∂
α µ α
V x y z t
t
z
x
D
kT
x y z t
y
z
D
V
VS
S V
V
1
1 1 1
, , ,
, , ,
( )
=
∂
∂
∇ ( )





 +
∂
∂
Ω Ω S
S
S
kT
x y z t
∇ ( )






µ1 , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V S V S V S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
+ ( ) ( )− ( )− ( )
f x y z t k x y z T k x y z T
V V V V I V I V
, , , , , , , ,
, ,
δ α α α
1
2
1 1
∂
∂
α µ α
Φ
Ω Ω
Φ
Φ
Φ
1
1 1 1
I S
S
x y z t
t
z
x
D
kT
x y z t z
I
I
I
, , ,
, , ,
( )
=
∂
∂
∇ ( )





 +
∂
∂
∂
∇ ( )






y
D
kT
x y z t
I S
S
Φ
µ1 , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
+ ( ) ( )+ ( ) ( )+ ( )
f x y z t k x y z T I x y z t k x y z T I x y z
I I I I
Φ , , , , , , , , , , , , ,
,
 2
,
,t
( ) (5b)
∂
∂
α µ α
Φ
Ω Ω
Φ
Φ
Φ
1
1 1 1
V S
S
x y z t
t
z
x
D
kT
x y z t z
V
V
V
, , ,
, , ,
( )
=
∂
∂
∇ ( )





 +
∂
∂
∂
∇ ( )






y
D
kT
x y z t
V S
S
Φ
µ1 , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
V V V
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 15
+ ( ) ( )+ ( ) ( )+ ( )
f x y z t k x y z T V x y z t k x y z T V x y z
V V V V
Φ , , , , , , , , , , , , ,
,
 2
,
,t
( ).
Integration of the left and right sides of the Equations (1b), (3b), and (5b) on time gives us possibility to
obtain relations for above approximation in the final form
C x y z t
x
D x y z T
z
kT
V x y z
V
V x y
C S L
1 1 1 2
2
1
, , , , , ,
, , , ,
*
( ) =
∂
∂
( ) +
( )
+
α ς
τ
ς
Ω
,
, ,
*
z
V
t
τ
( )
( )








∫ 2
0
×∇ ( ) +
( )











+
∂
∂
S
S C
C S L
x y z
P x y z T
d
y
D x
µ τ
ξ α
τ α
γ
γ
1
1
1
1
, , ,
, , ,
, y
y z T
P x y z T
S C
t
, ,
, , ,
( ) +
( )






∫ 1 1
0
ξ αγ
γ
× ∇ ( ) +
( )
+
( )
( )





Ω S x y z
z
kT
V x y z
V
V x y z
V
µ τ ς
τ
ς
τ
1 1 2
2
2
1
, , ,
, , , , , ,
* *




+ ∫
d
x
D
V kT
C S
t
τ
∂
∂ 0
×
( )
+
( )
+
∫
∂ µ τ
∂
τ
∂
∂
∂ µ τ
∂
τ
∂
∂
∂ µ
2 2
0
x y z
x
d
y
D
V kT
x y z
y
d
z
D
V kT
C S
t
C S
, , , , , , 2
2
0
x y z
z
d
t
, , ,τ
∂
τ
( )
∫
+ ( )
f x y z
C , ,  (1c)
I x y z t z
x
D
kT
x y z d z
y
D
kT
I
IS
S
t
I
IS
1 1 1
0
1
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ α
Ω Ω S
S
t
x y z d
µ τ τ
1
0
, , ,
( )
∫
+
∂
∂
∂ ( )
∂
+
∂
∂
∂ ( )
∂
∫ ∫
x
D
V kT
x y z t
x
d
y
D
V kT
x y z t
y
d
I S
t
I S
t
µ
τ
µ
τ
2
0
2
0
, , , , , ,
+
+
∂
∂
∂ ( )
∂
∫
z
D
V kT
x y z t
z
d
I S
t
µ
τ
2
0
, , ,
+ ( )− ( ) − ( )
∫ ∫
f x y z k x y z T d k x y z T d
I I I I
t
I V I V
t
, , , , , , , ,
, ,
α τ α α τ
1
2
0
1 1
0
 (3c)
V x y z t z
x
D
kT
x y z d z
y
D
kT
V
IS
S
t
V
IS
1 1 1
0
1
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ α
Ω Ω S
S
t
x y z d
µ τ τ
1
0
, , ,
( )
∫
+
∂
∂
∂ ( )
∂
+
∂
∂
∂ ( )
∂
∫ ∫
x
D
V k T
x y z t
x
d
y
D
V kT
x y z t
y
d
V S
t
V S
t
µ
τ
µ
τ
2
0
2
0
, , , , , ,
+
+
∂
∂
∂ ( )
∂
∫
z
D
V kT
x y z t
z
d
V S
t
µ
τ
2
0
, , ,
+ ( )− ( ) − ( )
∫ ∫
f x y z k x y z T d k x y z T d
V V V V
t
I V I V
t
, , , , , , , ,
, ,
α τ α α τ
1
2
0
1 1
0
Φ Ω Ω
Φ
Φ Φ
1 1 1
0
I
S
S
t
S
x y z t z
x
D
kT
x y z d
x
D
kT
I
I I
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ S
S
t
x y z d
µ τ τ
1
0
, , ,
( )
∫
× + ( )+
∂
∂
∂ ( )
∂
+
∂
∂
∫
α
µ τ
τ
1
2
0
Φ Φ
Φ Φ
I I
I I
z f x y z
x
D
V kT
x y z
x
d
y
D
V kT
S
t
S
, ,
, , , ∂
∂ ( )
∂
+
∫
µ τ
τ
2
0
x y z
y
d
t
, , ,
(5c)
+
∂
∂
∂ ( )
∂
+ ( ) ( )
∫ ∫
z
D
V k T
x y z
z
d k x y z T I x y z d
I S
t
I
t
Φ µ τ
τ τ τ
2
0 0
, , ,
, , , , , ,
+ ( ) ( )
∫k x y z T I x y z d
I I
t
, , , , , , ,
2
0
 
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 16
Φ Ω Ω
Φ
Φ Φ
1 1 1
0
V
S
S
t
S
x y z t z
x
D
kT
x y z d
x
D
kT
V
V V
, , , , , ,
( ) =
∂
∂
∇ ( ) +
∂
∂
∇
∫
α µ τ τ S
S
t
x y z d
µ τ τ
1
0
, , ,
( )
∫
× + ( )+
∂
∂
∂ ( )
∂
+
∂
∂
∫
α
µ τ
τ
1
2
0
Φ Φ
Φ Φ
V V
V V
z f x y z
x
D
V kT
x y z
x
d
y
D
V kT
S
t
S
, ,
, , , ∂
∂ ( )
∂
∫
µ τ
τ
2
0
x y z
y
d
t
, , ,
+
∂
∂
∂ ( )
∂
+ ( ) ( )
∫ ∫
z
D
V kT
x y z
z
d k x y z T V x y z d
V S
t
V
t
Φ µ τ
τ τ τ
2
0 0
, , ,
, , , , , ,
+ ( ) ( )
∫k x y z T V x y z d
V V
t
, , , , , , ,
2
0
  .
We determine the average values of the first-order approximations of concentrations of dopant and
radiation defects by the following standard relation: [28]
α ρ
ρ
1 1
0
0
0
0
1
= ( )
∫
∫
∫
∫
Θ
Θ
L L L
x y z t d z d y d xd t
x y z
L
L
L z
y
x
, , , . (9)
Substitution of the relations (1c), (3c), and (5c) into relation (9) gives us possibility to obtain required
average values in the following form:
1
0
0
0
1
C
x y z
C
L
L
L
L L L
f x y z d z d y d x
z
y
x
= ( )
∫
∫
∫ , , , 1
3
2
4
2
3
2
1
4
4
4
I
x y z
a A
a
B
a B L L L a
a
=
+
( ) − +
+






Θ Θ
−
+
a A
a
3
4
4
, 


1
00 1 0
0
0
1 00
1
V
IV I
I
L
L
L
I II x y z
S
f x y z d z d y d x S L L L
z
y
x
= ( ) − −
∫
∫
∫
Θ
Θ
, ,









,
where S t k x y z T I x y z t V x y z t d z d y d xd t
ij
i j
L
  
= −
( ) ( ) ( ) ( )
Θ , , , , , , , , , ,
1 1
0
z
z
y
x
L
L
∫
∫
∫
∫ 0
0
0
Θ
, a SII
4 00
=
× −
( )
S S S
IV II VV
00
2
00 00 , a S S S S S
IV II IV II VV
3 00 00 00
2
00 00
= + − , a f x y z d z d y d x
V
L
L
L z
y
x
2
0
0
0
= ( )
∫
∫
∫ , ,
× + + ( )
S S S L L L S S f x y z d z d y d x
IV IV IV x y z VV II I
Lz
00 00
2
00
2 2 2
00 00
0
2
Θ , ,
∫
∫
∫
∫ −
0
0
2 2 2
00
L
L
x y z VV
y
x
L L L S
Θ
− ( )
∫
∫
∫
S f x y z d z d y d x
IV I
L
L
L z
y
x
00
2
0
0
0
, , , a S f x y z d z d y d x
IV I
L
L
L z
y
x
1 00
0
0
0
= ( )
∫
∫
∫ , , , a SVV
0 00
=
× ( )








∫
∫
∫ f x y z d z d y d x
I
L
L
L z
y
x
, ,
0
0
0
2
, A y
a
a
a
a
= + −
8 4
2 3
2
4
2
2
4
Θ Θ , B
a
a
q p q
= + + − −
Θ 2
4
2 3
3
6
− + +
q p q
2 3
3
, q
a
a
a L L L
a a
a
a
a
a
a
a
x y z
= −





 − −



Θ
Θ Θ Θ Θ
3
2
4
2 0
1 3
4
2 0
4
2 2
2 3
2
4
24
4
8
4



 −
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 17
− −
Θ Θ
3
2
3
4
3
2 2 2
4
1
2
4
2
54 8
a
a
L L L
a
a
x y z , p
a a L L L a a
a
a
a
x y z
=
−
−
Θ
Θ Θ
2 0 4 1 3
4
2
2
4
4
12 18
,
1
1 20
0
0
1
Φ Φ
Θ Θ
I I
z
R
L L L
S
L L L L L L
f x y z d z d y d x
I
x y z
II
x y z x y z
L
L
= + + ( )
∫ , ,
y
y
x
L
∫
∫
0
1
1 20
0
0
1
Φ Φ
Θ Θ
V V
z
R
L L L
S
L L L L L L
f x y z d z d y d x
V
x y z
VV
x y z x y z
L
L
= + + ( )
∫ , ,
y
y
x
L
∫
∫
0
,
where R t k x y z T I x y z t d z d y d x d t
i I
i
L
L
L z
y
x
 = −
( ) ( ) ( )
∫
∫
∫
∫ Θ
Θ
, , , , , ,
1
0
0
0
0
.
We determine approximations of the second and higher orders of concentrations of dopant and radiation
defects framework standard iterative procedure of the method of averaging of function corrections.[28]
Framework this procedure to determine approximations of the n-th order of concentrations of dopant
and radiation defects, we replace the required concentrations in the Equations (1c), (3c), and (5c) on the
following sum αnρ
+ρn-1
(x,y,z,t). The replacement leads to the following transformation of the appropriate
equations
∂ ( )
∂
=
∂
∂
+
+ ( )

 

( )






C x y z t
t x
C x y z t
P x y z T
C
2 2 1
1
, , , , , ,
, , ,
ξ
α
γ
γ 




+
( )
+
( )
( )












1 1 2
2
2
ς ς
V x y z t
V
V x y z t
V
, , , , , ,
* *
× ( )
∂ ( )
∂


 +
∂
∂
+
( )
+
D x y z T
C x y z t
x y
V x y z t
V
V x y
L , , ,
, , , , , , , ,
*
1
1 2
2
1  
z
z t
V
C x y z t
y
, , , ,
*
( )
( )








∂ ( )
∂




2
1
× ( ) +
+ ( )

 

( )












D x y z T
C x y z t
P x y z T
L
C
, , ,
, , ,
, , ,
1
2 1
ξ
α
γ
γ



+
∂
∂
+
( )
+
( )
( )












z
V x y z t
V
V x y z t
V
1 1 2
2
2
ς ς
, , , , , ,
* *
× ( )
∂ ( )
∂
+
+ ( )

 

D x y z T
C x y z t
z
C x y z t
P x y z T
L
C
, , ,
, , , , , ,
, , ,
1 2 1
1 ξ
α
γ
γ
(
( )














+ ( ) ( )
f x y z t
C , , δ
+
( )





 +
( )




∂
∂
∂ µ
∂
∂
∂
∂ µ
∂
x
D
V kT
x y z t
x y
D
V kT
x y z t
y
C S C S
2 2
, , , , , ,


 +
( )






∂
∂
∂ µ
∂
z
D
V kT
x y z t
z
C S 2 , , ,
+
∂
∂
∇ ( ) + ( )

 











∫
Ω
x
D
kT
x y z t C x y W t dW
S
S C
Lz
µ α
1 2
0
, , , , , ,
+
∂
∂
∇ ( ) + ( )

 











∫
Ω
y
D
kT
x y z t C x y W t dW
S
S C
Lz
µ α
1 2
0
, , , , , ,  (1d)








I x y z t
t x
D x y z T
I x y z t
x y
D x y
I I
2 1
, , ,
, , ,
, , ,
,
( )
= ( )
( )





 + ,
, ,
, , ,
z T
I x y z t
y
( )
( )








1
+ ( )
( )





 − ( ) +
∂
∂
∂
∂
α
z
D x y z T
I x y z t
z
k x y z T I x y
I I I I
, , ,
, , ,
, , , ,
,
1
1 1 ,
, , , , ,
,
z t k x y z T
I V
( )

 
 − ( )
2
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 18
× + ( )

 
 + ( )

 
 +
∂
∂
∇ ( )
α α µ α
1 1 1 1 2
I V S
I x y z t V x y z t
x
x y z t
, , , , , , , , ,
Ω I
I
L
I x y W t dW
z
+ ( )

 






∫ 1
0
, , ,
×



+
∂
∂
∇ ( ) + ( )

 


 ∫
D
kT y
D
kT
x y z t I x y W t dW
IS IS
S I
Lz
Ω µ α
, , , , , ,
2 1
0









+
∂
∂
∂ ( )
∂
∫
x
x y z t
x
t
µ2
0
, , ,
× +
∂
∂
∂ ( )
∂
+
∂
∂
∂
∫
D
V kT
d
y
D
V kT
x y z t
y
d
z
D
V kT
x y z t
I S I S
t
I S
τ
µ
τ
µ
2
0
2
, , , , , ,
(
( )
∂
∫ z
d
t
τ
0
 (3d)








V x y z t
t x
D x y z T
V x y z t
x y
D x y
V V
2 1
, , ,
, , ,
, , ,
,
( )
= ( )
( )





 + ,
, ,
, , ,
z T
V x y z t
y
( )
( )








1
+ ( )
( )





 − ( ) +
∂
∂
∂
∂
α
z
D x y z T
V x y z t
z
k x y z T V x y
V V V V
, , ,
, , ,
, , , ,
,
1
1 1 ,
, , , , ,
,
z t k x y z T
I V
( )

 
 − ( )
2
× + ( )

 
 + ( )

 
 +
∂
∂
∇ ( )
α α µ α
1 1 1 1 2
I V S
I x y z t V x y z t
x
x y z t
, , , , , , , , ,
Ω V
V
L
V x y W t dW
z
+ ( )

 






∫ 1
0
, , ,
×



+
∂
∂
∇ ( ) + ( )

 


 ∫
D
k T y
D
kT
x y z t V x y W t dW
VS VS
S V
Lz
Ω µ α
, , , , , ,
2 1
0









+
∂
∂
∂ ( )
∂
∫
x
x y z t
x
t
µ2
0
, , ,
× +
∂
∂
∂ ( )
∂
+
∂
∂
∂
∫
D
V kT
d
y
D
V kT
x y z t
y
d
z
D
V kT
x y z t
V S V S
t
V S
τ
µ
τ
µ
2
0
2
, , , , , ,
(
( )
∂
∫ z
d
t
τ
0








Φ Φ
Φ Φ
2 1
I I
x y z t
t x
D x y z T
x y z t
x y
D
I
, , ,
, , ,
, , ,
( )
= ( )
( )





 + I
I
x y z T
x y z t
y
I
, , ,
, , ,
( )
( )








Φ1
+
∂
∂
∇ ( ) + ( )

 









∫
Ω Φ
Φ
Φ
x
D
kT
x y z t x y W t dW
I
I
z
S
S I
L
µ α
, , , , , ,
2 1
0 


+ ( ) ( )
k x y z T I x y z t
I I
, , , , , , ,
2
+
∂
∂
∇ ( ) + ( )

 









∫
Ω Φ
Φ
Φ
y
D
kT
x y z t x y W t dW
I
I
z
S
S I
L
µ α
, , , , , ,
2 1
0 


+ ( ) ( )
k x y z T I x y z t
I , , , , , ,
( ) ( ) ( )
2 2 2
, , , , , , , , ,
I I I
S S S
D D D
x y z t x y z t x y z t
x V kT x y V kT y z V kT z
  
Φ Φ Φ
     
∂ ∂ ∂
∂ ∂ ∂
+ + +
     
∂ ∂ ∂ ∂ ∂ ∂
     
+ ( )
( )





 + ( ) ( )
∂
∂
∂
∂
δ
z
D x y z T
x y z t
z
f x y z t
I I
I
Φ Φ
Φ
, , ,
, , ,
, ,
1
 (5d)








Φ Φ
Φ Φ
2 1
V V
x y z t
t x
D x y z T
x y z t
x y
D
V
, , ,
, , ,
, , ,
( )
= ( )
( )





 + V
V
x y z T
x y z t
y
V
, , ,
, , ,
( )
( )








Φ1
+
∂
∂
∇ ( ) + ( )












∫
Ω Φ
Φ
Φ
x
D
kT
x y z t x y W t dW
V
V
z
S
S V
L
µ α
, , , , , ,
2 1
0 


+ ( ) ( )
k x y z T V x y z t
V V
, , , , , , ,
2
+
∂
∂
∇ ( ) + ( )












∫
Ω Φ
Φ
Φ
y
D
kT
x y z t x y W t dW
V
V
z
S
S V
L
µ α
, , , , , ,
2 1
0 


+ ( ) ( )
k x y z T V x y z t
V , , , , , ,
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 19
+
∂
∂
∂ ( )
∂





 +
∂
∂
∂ ( )
∂


x
D
V k T
x y z t
x y
D
V kT
x y z t
y
V V
S S
Φ Φ
 
2 2
, , , , , ,




 +
∂
∂
∂ ( )
∂






z
D
V kT
x y z t
z
V S
Φ 2 , , ,
+ ( )
( )





 + ( ) ( )
∂
∂
∂
∂
δ
z
D x y z T
x y z t
z
f x y z t
V V
V
Φ Φ
Φ
, , ,
, , ,
, ,
1
.
Integration of the left and the right sides of Equations (1d), (3d), and (5d) gives us possibility to obtain
relations for the required concentrations in the final form
C x y z t
x
C x y z
P x y z T
C
2
2 1
1
, , ,
, , ,
, , ,
( ) =
∂
∂
+
+ ( )

 

( )









ξ
α τ
γ
γ


+
( )
+
( )
( )








∫ 1 1 2
2
2
0
ς
τ
ς
τ
V x y z
V
V x y z
V
t
, , , , , ,
* *
× ( )
∂ ( )
∂
+
∂
∂
( ) +
( )
D x y z T
C x y z
x
d
y
D x y z T
V x y z
V
L L
, , ,
, , ,
, , ,
, , ,
1
1
1
τ
τ ς
τ
*
* *
, , ,
+
( )
( )








∫ ς
τ
2
2
2
0
V x y z
V
t
×
∂ ( )
∂
+
+ ( )

 

( )









C x y z
y
C x y z t
P x y z T
C
1 2 1
1
, , , , , ,
, , ,
τ
ξ
α
γ
γ


+
∂
∂
+
( )
+
( )
( )








∫
z
V x y z
V
V x y z
V
t
1 1 2
2
2
0
ς
τ
ς
τ
, , , , , ,
* *
× ( )
∂ ( )
∂
+
+ ( )

 

D x y z T
C x y z
z
C x y z
P x y z T
L
C
, , ,
, , , , , ,
, , ,
1 2 1
1
τ
ξ
α τ
γ
γ
(
( )










+ ( )
d f x y z
C
τ , ,
+
∂
∂
∇ ( ) + ( )

 
 +
∂
∂
∇
∫
∫
Ω
x
D
kT
x y z C x y W dW d
y
S
S C
L
t
S
z
µ τ α τ τ µ
, , , , , ,
2 1
0
0
x
x y z
t
, , ,τ
( )
∫
0
× + ( )

 
 +
( )

∫
Ω
D
kT
C x y W dW d
x
D
V kT
x y z t
x
S
C
L
C S
z
α τ τ
∂
∂
∂ µ
∂
2 1
0
2
, , ,
, , ,






+
( )





 +
( )




∂
∂
∂ µ
∂
∂
∂
∂ µ
∂
y
D
V kT
x y z t
y z
D
V kT
x y z t
z
C S C S
2 2
, , , , , ,


  (1e)
I x y z t
x
D x y z T
I x y z
x
d
y
D x y z T
I
t
I
2
1
0
, , , , , ,
, , ,
, , ,
( ) = ( )
( )
+
∫
∂
∂
∂ τ
∂
τ
∂
∂
(
( )
( )
∫
∂ τ
∂
τ
I x y z
y
d
t
1
0
, , ,
+ ( )
( )
− ( ) +
∫
∂
∂
∂ τ
∂
τ α
z
D x y z T
I x y z
z
d k x y z T I x y
I
t
I I I
, , ,
, , ,
, , , , ,
,
1
0
2 1 z
z d
t
,τ τ
( )

 

∫
2
0
− ( ) + ( )

 
 + ( )

 
 +
∫k x y z T I x y z V x y z d
I V I V
t
, , , , , , , , , ,
α τ α τ τ
2 1 2 1
0
∂
∂
∂
∇ ( )
∫
x
x y z
S
t
µ τ
, , ,
0
× + ( )

 
 +
∂
∂
∇ ( ) +
∫
Ω
D
kT
I x y W dW d
y
x y z I x
IS
I
L
S I
z
α τ τ µ τ α
2 1
0
2 1
, , , , , , , y
y W
L
t z
, ,τ
( )

 

∫
∫ 0
0
× +
( )





 +
Ω
D
kT
d W d
x
D
V kT
x y z t
x y
D
V kT
x y
IS I S I S
τ
∂
∂
∂ µ
∂
∂
∂
∂ µ
2 2
, , , , , z
z t
y
,
( )






∂
+
( )





 + ( )
∂
∂
∂ µ
∂
z
D
V k T
x y z t
z
f x y z
I S
I
2 , , ,
, ,  (3e)
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 20
V x y z t
x
D x y z T
V x y z
x
d
y
D x y z T
V
t
V
2
1
0
, , , , , ,
, , ,
, , ,
( ) = ( )
( )
+
∫
∂
∂
∂ τ
∂
τ
∂
∂
(
( )
( )
∫
∂ τ
∂
τ
V x y z
y
d
t
1
0
, , ,
+ ( )
( )
− ( ) +
∫
∂
∂
∂ τ
∂
τ α
z
D x y z T
V x y z
z
d k x y z T V x y
V
t
V V V
, , ,
, , ,
, , , , ,
,
1
0
2 1 z
z d
t
,τ τ
( )

 

∫
2
0
− ( ) + ( )

 
 + ( )

 
 +
∫k x y z T I x y z V x y z d
I V I V
t
, , , , , , , , , ,
α τ α τ τ
2 1 2 1
0
∂
∂
∂
∇ ( )
∫
x
x y z
S
t
µ τ
, , ,
0
× + ( )

 
 +
∂
∂
∇ ( ) +
∫
Ω
D
kT
V x y W dW d
y
x y z V x
VS
V
L
S V
z
α τ τ µ τ α
2 1
0
2 1
, , , , , , , y
y W
L
t z
, ,τ
( )

 

∫
∫ 0
0
× +
( )





 +
Ω
D
kT
d W d
x
D
V kT
x y z t
x y
D
V kT
x y
VS V S V S
τ
∂
∂
∂ µ
∂
∂
∂
∂ µ
2 2
, , , , , z
z t
y
,
( )






∂
+
( )





 + ( )
∂
∂
∂ µ
∂
z
D
V k T
x y z t
z
f x y z
V S
V
2 , , ,
, ,
Φ
Φ Φ
Φ
2
1
0
1
I
I
t
I
x y z t
x
D x y z T
x y z
x
d
y
x
I
, , , , , ,
, , , ,
( ) = ( )
( )
+
∫
∂
∂
∂ τ
∂
τ
∂
∂
∂ y
y z
y
t
, ,τ
∂
( )
∫
0
× ( ) + ( )
( )
+
∂
∂
∇
∫
D x y z T d
z
D x y z T
x y z
z
d
x
I I
I
t
S
Φ Φ
Φ
Ω
, , , , , ,
, , ,
τ
∂
∂
∂ τ
∂
τ
1
0
µ
µ τ
x y z
t
, , ,
( )
∫
0
× + ( )

 
 +
∂
∂
+
∫
D
kT
x y W dW d
y
D
kT
x y
I
I
z
I
I
S
I
L
S
I
Φ
Φ
Φ
Φ
Φ Ω Φ
α τ τ α
2 1
0
2 1
, , , , ,
, ,
W dW
L
t z
τ
( )

 

∫
∫ 0
0
× ∇ ( ) + ( ) ( ) +
∂
∂
∂
∫
S I I
t
S
x y z d k x y z T I x y z d
x
D
V kT
I
µ τ τ τ τ
µ
, , , , , , , , ,
,
2
0
Φ 2
2
0
x y z
x
d
t
, , ,τ
τ
( )
∂
∫
+
∂
∂
∂ ( )
∂
+
∂
∂
∂ ( )
∂
∫
y
D
V kT
x y z
y
d
z
D
V kT
x y z
z
d
I I
S
t
S
Φ Φ
µ τ
τ
µ τ
τ
2
0
2
0
, , , , , ,
t
t
f x y z
I
∫ + ( )
Φ , ,
+ ( ) ( )
∫k x y z T I x y z d
I
t
, , , , , , 
0
 (5e)
Φ
Φ Φ
Φ
2
1
0
1
V
V
t
V
x y z t
x
D x y z T
x y z
x
d
y
x
V
, , , , , ,
, , , ,
( ) = ( )
( )
+
∫
∂
∂
∂ τ
∂
τ
∂
∂
∂ y
y z
y
t
, ,τ
∂
( )
∫
0
× ( ) + ( )
( )
+
∂
∂
∇
∫
D x y z T d
z
D x y z T
x y z
z
d
x
V V
V
t
S
Φ Φ
Φ
Ω
, , , , , ,
, , ,
τ
∂
∂
∂ τ
∂
τ
1
0
µ
µ τ
x y z
t
, , ,
( )
∫
0
× + ( )



 +
∂
∂
+
∫
D
kT
x y W dW d
y
D
kT
x y
V
V
z
V
V
S
V
L
S
V
Φ
Φ
Φ
Φ
Φ Ω Φ
α τ τ α
2 1
0
2 1
, , , , ,
, ,
W dW
L
t z
τ
( )




∫
∫ 0
0
× ∇ ( ) + ( ) ( ) +
∂
∂
∂
∫
S V V
t
S
x y z d k x y z T V x y z d
x
D
V kT
V
µ τ τ τ τ
µ
, , , , , , , , ,
,
2
0
Φ 2
2
0
x y z
x
d
t
, , ,τ
τ
( )
∂
∫
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 21
+
∂
∂
∂ ( )
∂
+
∂
∂
∂ ( )
∂
∫
y
D
V k T
x y z
y
d
z
D
V kT
x y z
z
d
V V
S
t
S
Φ Φ
µ τ
τ
µ τ
τ
2
0
2
0
, , , , , ,
t
t
f x y z
V
∫ + ( )+
Φ , ,
+ ( ) ( )
∫k x y z T V x y z d
V
t
, , , , , , 
0
.
Average values of the second-order approximations of required approximations using the following
standard relation: [28]
α ρ ρ
ρ
2 2 1
0
0
0
1
= ( )− ( )

 

∫
∫
ΘL L L
x y z t x y z t d z d y d xd t
x y z
L
L
L z
y
x
, , , , , ,
∫
∫
∫
0
Θ
 (10)
Substitution of the relations (1e), (3e), and (5e) into relation (10) gives us possibility to obtain relations
for required average values α2ρ
α2C
=0, α2ΦI
=0, α2ΦV
=0, 2
3
2
4
2
3
2
1
4
3
4
4
4
4
V
x y z
b E
b
F
a F L L L b
b
b E
b
=
+
( ) − +
+





 −
+
Θ Θ
,

 
2
2
2
00 2 01 10 02 11
0
2
I
V V VV V VV IV x y z V V IV
IV
C S S S L L L S S
S
=
− − + +
( ) − −
Θ
1
1 2 00
+ V IV
S
,
where b
L L L
S S
L L L
S S
x y z
IV V V
x y z
VV II
4 00
2
00 00
2
00
1 1
= −
Θ Θ
, b
S S
L L L
S S
II VV
x y z
VV IV
3
00 00
01 10
2
= − +
(
Θ
+ )+ + + +
( )+
Θ
Θ
Θ
L L L
S S
L L L
S S S L L L
S
x y z
IV VV
x y z
IV II IV x y z
I
00 00
01 10 01
2 V
V
x y z
VV IV
L L L
S S
00
2
01 10
2
Θ
+
(
+ )−
Θ
Θ
L L L
S S
L L L
x y z
IV IV
x y z
00
2
10
3 3 3 3
, b
S S
L L L
S S C S S L L
II VV
x y z
VV IV V IV VV x y
2
00 00
02 11 10 01
2
= + +
( )− − +
(
Θ
Θ
× ) + + +
( )+
L
S S
L L L
L L L S S
S
L L L
z
IV VV
x y z
x y z II IV
IV
x y z
2 01 00
10 01
00
2
Θ
Θ
Θ
S
S S S L L
IV II IV x y
01 10 01
2 2
+ + +
( Θ
× ) + +
( )− − −
( )+
L S L L L S
S
L L L
C S S
C
z VV x y z IV
IV
x y z
V VV IV
2 01 10
00
2
02 11
Θ
Θ
I
I IV
x y z
IV
x y z
S
L L L
S
L L L
00
2
2 2 2 2
10
2
Θ Θ
−
×S S
IV IV
00 01 , b S
S S C
L L L
S S L L L
S
II
IV VV V
x y z
VV IV x y z
IV
1 00
11 02
01 10
01
2
=
+ +
+ +
( )+
Θ
Θ
ΘL
L L L
L L
x y z
x y
Θ
(
× + + ) + +
( )− −
L S S S S LL L
S S
L L L
z II IV VV IV y z
IV IV
x y z
2 2
10 01 01 10
10 01
2
Θ
Θ
S
S
L L L
S S
IV
x y z
IV II
00
01 10
3 2
Θ
+
(
+ ) − −
( )+
ΘL L L C S S C S S
x y z V VV IV I IV IV
02 11 00 01
2 , b
S
L L L
S S
S
L L L
II
x y z
IV VV
IV
x y z
0
00
00 02
2 01
= +
( ) −
Θ
× + +
( ) − −
( )+ −
1
2 2
10 01 02 11 01
2
01
Θ
ΘL L L S S C S S C S S
C
x y z II IV V VV IV I IV IV
V
V VV IV
x y z
S S
L L L
− −
02 11
Θ
× + +
( ) = +
Θ
Θ Θ
L L L S S C
L L L
S
S
L L
x y z II IV I
I V
x y z
IV
I II
x
2 10 01
1 1
00
1
2
00
  
y
y z
II II
x y z
IV
x y z
L
S S
L L L
S
L L L
− −
20 20 11
Θ Θ
,
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 22
C S S S S
V I V IV V VV VV IV
= + − −
  
1 1 00 1
2
00 02 11 , E y
a
a
a
a
= + −
8 4
2 3
2
4
2
2
4
Θ Θ , F
a
a
=
Θ 2
4
6
+ + − − + +
r s r r s r
2 3
3 2 3
3
, r
b
b
b L L L
b b
b
b
b
b
b
x y z
= −





 − −
Θ
Θ
Θ Θ
3
2
4
2 0
1 3
4
3
2
3
4
3 0
2
4
2
24
4
54 8
× −





 −
4
8
2
2 3
2
4
2 2 2
4
1
2
4
2
Θ Θ
Θ
b
b
b
L L L
b
b
x y z , s
b b L L L b b
b
b
b
x y z
=
−
−
Θ
Θ Θ
2 0 4 1 3
4
2
2
4
4
12 18
.
Farther, we determine solutions of Equation (8), i.e. components of displacement vector. To determine
the first-order approximations of the considered components framework method of averaging of function
corrections, we replace the required functions in the right sides of the equations by their not yet known
average values αi
. The substitution leads to the following result:
ρ β
z
u x y z t
t
K z z
T x y z t
x
x
( )
∂ ( )
∂
= − ( ) ( )
∂ ( )
∂
2
1
2
, , , , , ,
,  z
u x y z t
t
y
( )
∂ ( )
∂
=
2
1
2
, , ,
= − ( ) ( )
∂ ( )
∂
K z z
T x y z t
y

, , ,
, ρ β
z
u x y z t
t
K z z
T x y z t
z
z
( )
∂ ( )
∂
= − ( ) ( )
∂ ( )
∂
2
1
2
, , , , , ,
.
Integration of the left and the right sides of the above relations on time t leads to the following result:
u x y z t u K z
z
z x
T x y z d d
x x
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( ) −
∫
∫
β
ρ
τ τ ϑ
ϑ
− ( )
( )
( )
∂
∂
( )
∫
∫
∞
K z
z
z x
T x y z d d
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
,
u x y z t u K z
z
z y
T x y z d d
y y
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( )
∫
∫
β
ρ
τ τ ϑ
ϑ
− ( )
( )
( )
∂
∂
( )
∫
∫
∞
K z
z
z y
T x y z d d
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
,
u x y z t u K z
z
z z
T x y z d d
z z
t
1 0
0
0
, , , , , ,
( ) = + ( )
( )
( )
∂
∂
( )
∫
∫
β
ρ
τ τ ϑ
ϑ
− ( )
( )
( )
∂
∂
( )
∫
∫
∞
K z
z
z z
T x y z d d
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
.
Approximations of the second and higher orders of components of displacement vector could be
determined using standard replacement of the required components on the following sums αi
+ui
(x,y,z,t).[28]
The replacement leads to the following result:
ρ
σ
z
u x y z t
t
K z
E z
z
u
x x
( )
∂ ( )
∂
= ( )+
( )
+ ( )

 











∂
2
2
2
2
1
5
6 1
, , , x
x y z t
x
K z
E z
z
, , ,
( )
∂
+ ( )−
( )
+ ( )

 











2
3 1 σ
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 23
×
∂ ( )
∂ ∂
+
( )
+ ( )

 

∂ ( )
∂
+
∂
2
1
2
1
2
2
1
2 1
u x y z t
x y
E z
z
u x y z t
y
u
y y z
, , , , , ,

x
x y z t
z
T x y z t
x
, , , , , ,
( )
∂





 −
∂ ( )
∂
2
× ( ) ( )+ ( )+
( )
+ ( )

 











∂ ( )
∂ ∂
K z z K z
E z
z
u x y z t
x z
z
β
σ
3 1
2
1 , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u
y y
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
1
2
2
2 1
, , , , , , 1
1x x y z t
x y
T x y z t
y
, , , , , ,
( )
∂ ∂





 −
∂ ( )
∂
× ( ) ( )+
∂
∂
( )
+ ( )

 

∂ ( )
∂
+
∂ ( )
∂
K z z
z
E z
z
u x y z t
z
u x y z t
y z
β
σ
2 1
1 1
, , , , , ,
y
y
u x y z t
y
y
















+
∂ ( )
∂
2
1
2
, , ,
×
( )
+ ( )

 

+ ( )










+ ( )−
( )
+ ( )

 





5
12 1 6 1
E z
z
K z K z
E z
z
 







∂ ( )
∂ ∂
+ ( )
∂ ( )
∂ ∂
2
1
2
1
u x y z t
y z
K z
u x y z t
x y
y y
, , , , , ,
ρ
σ
z
u x y z t
t
E z
z
u x y z t
x
u
z z
( )
∂ ( )
∂
=
( )
+ ( )

 

∂ ( )
∂
+
∂
2
2
2
2
1
2
2
2 1
, , , , , , 1
1
2
2
1
z x
x y z t
y
u x y z t
x z
, , , , , ,
( )
∂
+
∂ ( )
∂ ∂



+
∂ ( )
∂ ∂


 +
∂
∂
( )
∂ ( )
∂
+
∂ (
2
1 1 1
u x y z t
y z z
K z
u x y z t
x
u x y z t
y x y
, , , , , , , , , )
)
∂
+
∂ ( )
∂
















y
u x y z t
z
x
1 , , ,
+
( )
+ ( )

 

∂
∂
∂ ( )
∂
−
∂ ( )
∂
−
∂
E z
z z
u x y z t
z
u x y z t
x
u x
z x y
6 1
6 1 1 1

, , , , , , , y
y z t
y
u x y z t
z
z
, , , , ,
( )
∂
−
∂ ( )
∂






1
−
∂ ( )
∂
−
∂ ( )
∂
−
∂ ( )
∂








u x y z t
x
u x y z t
y
u x y z t
z
E z
x y z
1 1 1
, , , , , , , , , (
( )
+ ( )
− ( ) ( )
∂ ( )
∂
1 σ
β
z
K z z
T x y z t
z
, , ,
.
Integration of the left and right sides of the above relations on time t leads to the following result:
u x y z t
z
K z
E z
z x
u x
x x
2
2
2 1
1 5
6 1
, , ,
( ) =
( )
( )+
( )
+ ( )

 











∂
∂
ρ σ
,
, , ,
y z d d
z
K z
t
τ τ ϑ
ρ
ϑ
( ) +
( )
( )
{
∫
∫ 0
0
1
−
( )
+ ( )

 






∂
∂ ∂
( ) +
( )
(
∫
∫
E z
z x y
u x y z d d
E z
z
y
t
3 1 2
2
1
0
0
σ
τ τ ϑ
ρ
ϑ
, , ,
)
)
∂
∂
( )


 ∫
∫
2
2 1
0
0
y
u x y z d d
y
t
, , ,τ τ ϑ
ϑ
+
∂
∂
( )



+ ( )
+
( )
∂
∂ ∂
∫
∫
2
2 1
0
0
2
1
1
1
1
z
u x y z d d
z z x z
u x y z
z
t
z
, , , , ,
τ τ ϑ
σ ρ
ϑ
,
,τ τ ϑ
ϑ
( ) ( )
{
∫
∫ d d K z
t
0
0
+
( )
+ ( )

 






− ( )
( )
( )
∂
∂
( ) −
∫
∫
E z
z
K z
z
z x
T x y z d d
t
3 1 0
0
σ
β
ρ
τ τ ϑ
ϑ
, , ,
∂
∂
∂
( )
∫
∫
∞
2
2 1
0
0
x
u x y z d d
x , , ,τ τ ϑ
ϑ
×
( )
( )+
( )
+ ( )

 











− ( )−
( )
+ ( )

 

1 5
6 1 3 1
ρ σ σ
z
K z
E z
z
K z
E z
z











∂
∂ ∂
( )
∫
∫
∞
2
1
0
0
x y
u x y z d d
y , , ,τ τ ϑ
ϑ
×
( )
−
( )
( ) + ( )

 

∂
∂
( ) +
∂
∂
∫
∫
∞
1
2 1
2
2 1
0
0
2
ρ ρ σ
τ τ ϑ
ϑ
z
E z
z z y
u x y z d d
z
y , , , 2
2 1
0
0
u x y z d d
z , , ,τ τ ϑ
ϑ
( )






∫
∫
∞
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 24
−
( )
( )+
( )
+ ( )

 











∂
∂ ∂
( )
1
3 1
2
1
ρ σ
τ τ ϑ
z
K z
E z
z x z
u x y z d d
z , , ,
0
0
0
0
ϑ
β
ρ
∫
∫
∞
+ + ( )
( )
( )
u K z
z
z
x
×
∂
∂
( )
∫
∫
∞
x
T x y z d d
, , ,τ τ ϑ
ϑ
0
0
u x y z t
E z
z z x
u x y z d d
y x
t
2
2
2 1
0
0
2 1
, , , , , ,
( ) =
( )
( ) + ( )

 

∂
∂
( )
∫
ρ σ
τ τ ϑ
ϑ
∫
∫ ∫
∫
+
∂
∂ ∂
( )






2
1
0
0
x y
u x y z d d
x
t
, , ,τ τ ϑ
ϑ
×
+ ( )
+
( )
( )
∂
∂ ∂
( ) +
( )
( )
∫
∫
1
1
1 5
12
2
1
0
0
σ ρ
τ τ ϑ
ρ
ϑ
z
K z
z x y
u x y z d d
z
E z
y
t
, , ,
1
1+ ( )

 

+ ( )










σ z
K z
×
∂
∂
( ) +
( )
∂
∂
( )
+ ( )
∂
∂
∫
∫
2
2 1
0
0
1
1
2 1
y
u x y z d d
z z
E z
z z
u x y
x
t
y
, , , , ,
τ τ ϑ
ρ σ
ϑ
z
z d d
t
,τ τ ϑ
ϑ
( )








∫
∫ 0
0
+
∂
∂
( )








− ( )
( )
( )
( )
∫
∫
y
u x y z d d K z
z
z
T x y z d
z
t
1
0
0
, , , , , ,
τ τ ϑ
β
ρ
τ
ϑ
τ
τ ϑ
σ
ϑ
d
E z
z
t
0
0
6 1
∫
∫ −
( )
+ ( )

 






− ( )




 ( )
∂
∂ ∂
( ) −
( )
( )
∂
∂
∫
∫
K z
z y z
u x y z d d
E z
z x
y
t
1
2
2
1
0
0
2
2
ρ
τ τ ϑ
ρ
ϑ
, , , u
u x y z d d
x
1
0
0
, , ,τ τ ϑ
ϑ
( )


 ∫
∫
∞
+
∂
∂ ∂
( )



+ ( )
− ( )
( )
( )
∫
∫
∞
2
1
0
0
1
1
x y
u x y z d d
z
K z
z
z
T x y z
x , , , , ,
τ τ ϑ
σ
β
ρ
ϑ
,
,τ τ ϑ
ρ
ϑ
( ) −
( )
( )
∫
∫
∞
d d
K z
z
0
0
×
∂
∂ ∂
( ) −
( )
∂
∂
( )
∫
∫
∞
2
1
0
0
2
2 1
0
1
x y
u x y z d d
z y
u x y z d d
y x
, , , , , ,
τ τ ϑ
ρ
τ τ ϑ
ϑ ϑ
∫
∫
∫
∞
( )
+ ( )

 






0
5
12 1
E z
z
σ
+ ( )



−
∂
∂
( )
+ ( )
∂
∂
( ) +
∂
∂
∫
∫
∞
K z
z
E z
z z
u x y z d d
y
u x y
y z
1
1
0
0
1
σ
τ τ ϑ
ϑ
, , , , , z
z d d
,τ τ ϑ
ϑ
( )
















∫
∫
∞
0
0
×
( )
−
( )
( )−
( )
+ ( )

 











∂
∂ ∂
1
2
1
6 1
2
1
ρ ρ σ
z z
K z
E z
z y z
u x y z
y , , ,τ
τ τ ϑ
ϑ
( ) +
∫
∫
∞
d d u y
0
0
0
u x y z t
E z
z x
u x y z d d
z z
, , , , , ,
( ) =
( )
+ ( )

 

∂
∂
( ) +
∂
∂
∫
∫
∞
2 1
2
2 1
0
0
2
σ
τ τ ϑ
ϑ
y
y
u x y z d d
z
2 1
0
0
, , ,τ τ ϑ
ϑ
( )


 ∫
∫
∞
+
∂
∂ ∂
( ) +
∂
∂ ∂
( )
∫
∫ ∫
∫
∞ ∞
2
1
0
0
2
1
0
0
x z
u x y z d d
y z
u x y z d d
x y
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ




( )
+
( )
1 1
ρ ρ
z z
×
∂
∂
( )
∂
∂
( ) +
∂
∂
( )
∫
∫ ∫
∞ ∞
z
K z
x
u x y z d d
y
u x y z d d
x x
1
0
0
1
0
0
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ
∫
∫








+
∂
∂
( )








+
( )
∂
∂
( )
+ ( )
∂
∂
∫
∫
∞
z
u x y z d d
z z
E z
z z
x
1
0
0
1
6 1
6
, , ,τ τ ϑ
ρ σ
ϑ
u
u x y z d d
z
1
0
0
, , ,τ τ ϑ
ϑ
( )








∫
∫
∞
−
∂
∂
( ) −
∂
∂
( ) −
∂
∂
∫
∫ ∫
∫
∞ ∞
x
u x y z d d
y
u x y z d d
z
u
x y
1
0
0
1
0
0
1
, , , , , ,
τ τ ϑ τ τ ϑ
ϑ ϑ
z
z x y z d d
, , ,τ τ ϑ
ϑ
( )








∫
∫
∞
0
0
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 25
− ( )
( )
( )
∂
∂
( ) +
∫
∫
∞
K z
z
z z
T x y z d d u z
β
ρ
τ τ ϑ
ϑ
, , ,
0
0
0 .
Framework this paper, we determine the concentration of dopant, concentrations of radiation defects,
and components of displacement vector using the second-order approximation framework method of
averaging of function corrections. This approximation is usually enough good approximation to make
qualitative analysis and to obtain some quantitative results. All obtained results have been checked by
comparison with the results of numerical simulations.
DISCUSSION
Inthissection,weanalyzedthedynamicsofredistributionsofdopantandradiationdefectsduringannealing
and under influence of mismatch-induced stress and modification of porosity. Typical distributions of
concentrations of dopant in heterostructures are presented in Figures 2 and 3 for diffusion and ion types
of doping, respectively. These distributions have been calculated for the case when the value of dopant
diffusion coefficient in doped area is larger than in nearest areas. The figures show that inhomogeneity
of heterostructure gives us possibility to increase compactness of concentrations of dopants and at the
same time to increase homogeneity of dopant distribution in doped part of epitaxial layer. However,
framework this approach of manufacturing of bipolar transistor, it is necessary to optimize annealing
of dopant and/or radiation defects. Reason of this optimization is the following. If annealing time is
small, the dopant did not achieve any interfaces between materials of heterostructure. In this situation,
one cannot find any modifications of distribution of concentration of dopant. If annealing time is large,
distribution of concentration of dopant is too homogenous. We optimize annealing time framework
recently introduces approach.[12,29-36]
Framework this criterion, we approximate the real distribution of
concentration of dopant by step-wise function [Figures 4 and 5].
Farther, we determine the optimal values of annealing time by minimization of the following mean
squared error:
U
L L L
C x y z x y z d z d y d x
x y z
L
L
L z
y
x
= ( )− ( )

 

∫
∫
∫
1
0
0
0
, , , , ,
Θ  , (15)
Where, ψ (x,y,z) is the approximation function. Dependences of optimal values of annealing time on
parameters are presented in Figures 6 and 7 for diffusion and ion types of doping, respectively. It should
Figure 2: Distributions of concentration of infused dopant in heterostructure from Figure 1 in direction, which is
perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to increasing of
difference between values of dopant diffusion coefficient in layers of heterostructure under condition when the value of
dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 26
be noted that it is necessary to anneal radiation defects after ion implantation. One could find spreading
of concentration of distribution of dopant during this annealing. In the ideal case, distribution of dopant
Figure 3: Distributions of concentration of implanted dopant in heterostructure from Figure 1 in direction, which
is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 correspond to annealing time
Θ = 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 2 and 4 correspond to annealing time Θ = 0.0057(Lx
2
+Ly
2
+Lz
2
)/D0
. Curves 1 and 2
correspond to homogenous sample. Curves 3 and 4 correspond to heterostructure under condition when the value of dopant
diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate
Figure 4: Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of
dopant. Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of number of curve
corresponds to increasing of annealing time
Figure 5: Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of
dopant. Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of the number of curve
corresponds to increase of annealing time
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 27
achieves appropriate interfaces between materials of heterostructure during annealing of radiation
defects. If dopant did not achieve any interfaces during annealing of radiation defects, it is practicably to
additionally anneal the dopant. In this situation, optimal value of additional annealing time of implanted
dopant is smaller than annealing time of infused dopant.
Farther, we analyzed the influence of relaxation of mechanical stress on distribution of dopant in doped
areas of heterostructure. Under the following condition ε0
 0, one can find compression of distribution
of concentration of dopant near interface between materials of heterostructure. Contrary (at ε0
 0), one
can find spreading of distribution of concentration of dopant in this area. This changing of distribution
of concentration of dopant could be at least partially compensated using laser annealing.[36]
This type of
annealing gives us possibility to accelerate diffusion of dopant and another process in annealed area due
to inhomogeneous distribution of temperature and Arrhenius law. Accounting relaxation of mismatch-
induced stress in heterostructure could lead to change of optimal values of annealing time. At the same
time, modification of porosity gives us possibility to decrease the value of mechanical stress. On the one
Figure 6: Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained
by minimization of mean squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal
annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of
heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2
and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2
and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and
ε = ξ = 0
Figure 7: Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained
by minimization of mean squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal
annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of
heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2
and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2
and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and
ε = ξ = 0
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 28
hand, mismatch-induced stress could be used to increase density of elements of integrated circuits, on the
other hand, could lead to generation dislocations of the discrepancy. Figures 8 and 9 show distributions
of concentration of vacancies in porous materials and component of displacement vector, which are
perpendicular to interface between layers of heterostructure.
CONCLUSION
In this paper, we model redistribution of infused and implanted dopants with account relaxation
mismatch-induced stress during manufacturing field-effect heterotransistors framework a broadband
power amplifier. We formulate recommendations for optimization of annealing to decrease dimensions of
transistors and to increase their density. We formulate recommendations to decrease mismatch-induced
stress. Analytical approach to model diffusion and ion types of doping with account concurrent changing
of parameters in space and time has been introduced. At the same time, the approach gives us possibility
to take into account nonlinearity of considered processes.
REFERENCES
1. Lachin VI, Savelov NS. Electronics. Phoenix: Rostov-on-Don; 2001.
2. Polishscuk A. Anadigm Programmable Analog ICs: The Entire Spectrum of Analog Electronics on a Single Chip, 1st
Meeting. Vol. 12. Modern Electronics; 2004. p. 8-11.
3. Volovich G. Modern Chips UM3Ch Class D Manufactured by Firm MPS. Modern Electronics, Issue 2; 2006. p. 10-7.
4. Kerentsev A, Lanin V. Constructive-technological Features of MOSFET-transistors. Power Electronics, Issue 1; 2008.
p. 34-8.
Figure 8: Normalized dependences of component uz
of displacement vector on coordinate z for non-porous (curve 1) and
porous (curve 2) epitaxial layers
Figure 9: Normalized dependences of vacancy concentrations on coordinate z in unstressed (curve 1) and stressed (curve 2)
epitaxial layers
Pankratov: On manufacturing of a broadband power amplifiers
AJCSE/Jan-Mar-2019/Vol 4/Issue 1 29
5. AgeevAO,BelyaevAE,BoltovetsNS,IvanovVN,KonakovaRV,YaKudrikPM,etal.Au-TiBx
-n-6H-SiCSchottkybarrier
diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors 2009;43:865‑71.
6. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor.
Semiconductors 2009;43:939-42.
7. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers upon
annealing of dysprosium-and holmium-implanted silicon. Semiconductors 1998;32:921-3.
8. Ermolovich IB, Milenin VV, Red’ko RA, Red’ko SM. Specific features of recombination processes in CdTe films
produced in different temperature conditions of growth and subsequent annealing. Semiconductors 2009;43:980-4.
9. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via
band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett. 2013;102:53901-5.
10. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in
p-type ZnO. Appl Phys Lett 2013;102:152114-8.
11. Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. A study of technological
processes in the production of high-power high-voltage bipolar transistors incorporating an array of inclusions in the
collector region. Semiconductors 2001;35:1013-7.
12. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical
approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci
2013;1:58-82.
13. Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial growth of zinc oxide by the method of atomic layer deposition on
SiC/Si substrates. Phys Solid State 2016;58:1448-52.
14. Trukhanov EM, Kolesnikov AV, Loshkarev ID. Long-range stresses generated by misfit dislocations in epitaxial films.
Russ Microelectron 2015;44:552-8.
15. Pankratov EL, Bulaeva EA. On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model
physical processes in reactors for epitaxy from gas phase during growth films. Rev Theor Sci 2015;3:365-98.
16. Ong KK, Pey KL, Lee PS, Wee AT, WangXC, Chong YF. Dopant distribution in the recrystallization transient at the
maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4.
17. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2005;98:94901-5.
18. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in
semiconductor structures during microwave annealing. Radiophysics Quantum Electron 2003;46:749-55.
19. Chen B, Shen L, Liu S, Zheng Y, Gao J. A broadband, high isolation millimeter-wave CMOS power amplifier using a
transformer and transmission line matching topology. Analog. Integr Circ Sig Process 2014;81:537-47.
20. Zhang YW, Bower AF. Numerical simulations of island formation in a coherent strained epitaxial thin film system.
J Mech Phys Solids 1999;47:2273-97.
21. Landau LD, Lefshits EM. Theoretical Physics. 7 Theory of Elasticity. Moscow: Physmatlit; 2001.
22. Kitayama M, Narushima T, Carter WC, Cannon RM, Glaeser AM. The wulff shape of alumina: I, modeling the kinetics
of morphological evolution. J Am Ceram Soc 2000;83:2561-71. Kitayama M, Narushima T, Glaeser AM. The wulff
shape of alumina: II, experimental measurements of pore shape evolution rates. J Am Ceram Soc 2000;83:2572-83.
23. Cheremskoy PG, Slesov VV, Betekhtin VI. Pore in Solid Bodies. Moscow: Energoatomizdat; 1990.
24. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991.
25. Fahey PM, Griffin PB, Plummer JD. Diffusion and point defects in silicon. Rev Mod Phys 1989;61:289-388.
26. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979.
27. Mynbaeva MG, Mokhov EN, Lavrent’ev EA, Mynbaev KD. High-temperature diffusion doping of porous silicon
carbide. Technol Phys Lett 2008;34:731-7.
28. Sokolov YD. About the definition of dynamic forces in the mine lifting. Appl Mech 1955;1:23-35.
29. Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity.
Russ Microelectron 2007;36:33-9.
30. Pankratov EL. Redistribution of a dopant during annealing of radiation defects in a multilayer structure by laser scans for
production of an implanted-junction rectifier. Int J Nanosci 2008;7:187-97.
31. Pankratov EL, Bulaeva EA. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using
overlayers. Int J Micro Nano Scale Transp 2012;3:119-30.
32. Pankratov EL, Bulaeva EA. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. Int J
ModPhys B 2015;29:1550023-1-1550023-12.
33. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational
amplifier to increase their integration rate. Influence mismatch-induced stress. J Comp Theor Nanosci 2017;14:4885-99.
34. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater
Sci Semicond Process 2015;34:260-8.
35. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of
optimization. Int J Micro Nano Scale Transp 2014;4:17-31.
36. Pankratov EL. Local doping and optimal annealing of a mesh multilayer structure to decrease the spatial dimensions of
integrated p-n-junctions. Nano 2009;6:31-40.

More Related Content

Similar to On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Heterotransistors to Increase Density of their Elements with Account Miss-match Induced Stress and Porosity of Materials

An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...BRNSS Publication Hub
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...BRNSSPublicationHubI
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...antjjournal
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...BRNSS Publication Hub
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 

Similar to On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Heterotransistors to Increase Density of their Elements with Account Miss-match Induced Stress and Porosity of Materials (20)

An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 

More from BRNSSPublicationHubI

Computational Dual-system Imaging Processing Methods for Lumbar Spine Specime...
Computational Dual-system Imaging Processing Methods for Lumbar Spine Specime...Computational Dual-system Imaging Processing Methods for Lumbar Spine Specime...
Computational Dual-system Imaging Processing Methods for Lumbar Spine Specime...BRNSSPublicationHubI
 
Prediction of Neurological Disorder using Classification Approach
Prediction of Neurological Disorder using Classification ApproachPrediction of Neurological Disorder using Classification Approach
Prediction of Neurological Disorder using Classification ApproachBRNSSPublicationHubI
 
The Optimization-based Approaches for Task Scheduling to Enhance the Resource...
The Optimization-based Approaches for Task Scheduling to Enhance the Resource...The Optimization-based Approaches for Task Scheduling to Enhance the Resource...
The Optimization-based Approaches for Task Scheduling to Enhance the Resource...BRNSSPublicationHubI
 
Contactless Real-Time Vital Signs Monitoring Using a Webcam
Contactless Real-Time Vital Signs Monitoring Using a WebcamContactless Real-Time Vital Signs Monitoring Using a Webcam
Contactless Real-Time Vital Signs Monitoring Using a WebcamBRNSSPublicationHubI
 
Secure and Energy Savings Communication of Flying Ad Hoc Network for Rescue O...
Secure and Energy Savings Communication of Flying Ad Hoc Network for Rescue O...Secure and Energy Savings Communication of Flying Ad Hoc Network for Rescue O...
Secure and Energy Savings Communication of Flying Ad Hoc Network for Rescue O...BRNSSPublicationHubI
 
A Survey on Secure Routing Protocol for Data Transmission in ad hoc Networks
A Survey on Secure Routing Protocol for Data Transmission in ad hoc NetworksA Survey on Secure Routing Protocol for Data Transmission in ad hoc Networks
A Survey on Secure Routing Protocol for Data Transmission in ad hoc NetworksBRNSSPublicationHubI
 
FPGA Hardware Design of Different LDPC Applications: Survey
FPGA Hardware Design of Different LDPC Applications: SurveyFPGA Hardware Design of Different LDPC Applications: Survey
FPGA Hardware Design of Different LDPC Applications: SurveyBRNSSPublicationHubI
 
Design and Implementation of Smart Air Pollution Monitoring System Based on I...
Design and Implementation of Smart Air Pollution Monitoring System Based on I...Design and Implementation of Smart Air Pollution Monitoring System Based on I...
Design and Implementation of Smart Air Pollution Monitoring System Based on I...BRNSSPublicationHubI
 
Smart Monitoring System for Substation’ Parameters and Automatic under Freque...
Smart Monitoring System for Substation’ Parameters and Automatic under Freque...Smart Monitoring System for Substation’ Parameters and Automatic under Freque...
Smart Monitoring System for Substation’ Parameters and Automatic under Freque...BRNSSPublicationHubI
 
An Automatic Coronavirus Detection Systems: Survey
An Automatic Coronavirus Detection Systems: SurveyAn Automatic Coronavirus Detection Systems: Survey
An Automatic Coronavirus Detection Systems: SurveyBRNSSPublicationHubI
 
Manifolds and Catastrophes for Physical Systems
Manifolds and Catastrophes for Physical SystemsManifolds and Catastrophes for Physical Systems
Manifolds and Catastrophes for Physical SystemsBRNSSPublicationHubI
 
Explore the Influencing Variables of Personality Traits on Motives of Adaptin...
Explore the Influencing Variables of Personality Traits on Motives of Adaptin...Explore the Influencing Variables of Personality Traits on Motives of Adaptin...
Explore the Influencing Variables of Personality Traits on Motives of Adaptin...BRNSSPublicationHubI
 
Use of Digital Health Technologies in HealthCare Organization: A System Persp...
Use of Digital Health Technologies in HealthCare Organization: A System Persp...Use of Digital Health Technologies in HealthCare Organization: A System Persp...
Use of Digital Health Technologies in HealthCare Organization: A System Persp...BRNSSPublicationHubI
 
A Predictive Model for Novel Corona Virus Detection with Support Vector Machine
A Predictive Model for Novel Corona Virus Detection with Support Vector MachineA Predictive Model for Novel Corona Virus Detection with Support Vector Machine
A Predictive Model for Novel Corona Virus Detection with Support Vector MachineBRNSSPublicationHubI
 
A Survey on Non-Contact Heart Rate Estimation from Facial Video
A Survey on Non-Contact Heart Rate Estimation from Facial VideoA Survey on Non-Contact Heart Rate Estimation from Facial Video
A Survey on Non-Contact Heart Rate Estimation from Facial VideoBRNSSPublicationHubI
 
Impact of Classification Algorithms on Cardiotocography Dataset for Fetal Sta...
Impact of Classification Algorithms on Cardiotocography Dataset for Fetal Sta...Impact of Classification Algorithms on Cardiotocography Dataset for Fetal Sta...
Impact of Classification Algorithms on Cardiotocography Dataset for Fetal Sta...BRNSSPublicationHubI
 
Improved Particle Swarm Optimization Based on Blockchain Mechanism for Flexib...
Improved Particle Swarm Optimization Based on Blockchain Mechanism for Flexib...Improved Particle Swarm Optimization Based on Blockchain Mechanism for Flexib...
Improved Particle Swarm Optimization Based on Blockchain Mechanism for Flexib...BRNSSPublicationHubI
 
Investigating the Relationship Between Teaching Performance and Research Perf...
Investigating the Relationship Between Teaching Performance and Research Perf...Investigating the Relationship Between Teaching Performance and Research Perf...
Investigating the Relationship Between Teaching Performance and Research Perf...BRNSSPublicationHubI
 
Data Communication Using Cryptography Encryption
Data Communication Using Cryptography EncryptionData Communication Using Cryptography Encryption
Data Communication Using Cryptography EncryptionBRNSSPublicationHubI
 
Online Attack Types of Data Breach and Cyberattack Prevention Methods
Online Attack Types of Data Breach and Cyberattack Prevention MethodsOnline Attack Types of Data Breach and Cyberattack Prevention Methods
Online Attack Types of Data Breach and Cyberattack Prevention MethodsBRNSSPublicationHubI
 

More from BRNSSPublicationHubI (20)

Computational Dual-system Imaging Processing Methods for Lumbar Spine Specime...
Computational Dual-system Imaging Processing Methods for Lumbar Spine Specime...Computational Dual-system Imaging Processing Methods for Lumbar Spine Specime...
Computational Dual-system Imaging Processing Methods for Lumbar Spine Specime...
 
Prediction of Neurological Disorder using Classification Approach
Prediction of Neurological Disorder using Classification ApproachPrediction of Neurological Disorder using Classification Approach
Prediction of Neurological Disorder using Classification Approach
 
The Optimization-based Approaches for Task Scheduling to Enhance the Resource...
The Optimization-based Approaches for Task Scheduling to Enhance the Resource...The Optimization-based Approaches for Task Scheduling to Enhance the Resource...
The Optimization-based Approaches for Task Scheduling to Enhance the Resource...
 
Contactless Real-Time Vital Signs Monitoring Using a Webcam
Contactless Real-Time Vital Signs Monitoring Using a WebcamContactless Real-Time Vital Signs Monitoring Using a Webcam
Contactless Real-Time Vital Signs Monitoring Using a Webcam
 
Secure and Energy Savings Communication of Flying Ad Hoc Network for Rescue O...
Secure and Energy Savings Communication of Flying Ad Hoc Network for Rescue O...Secure and Energy Savings Communication of Flying Ad Hoc Network for Rescue O...
Secure and Energy Savings Communication of Flying Ad Hoc Network for Rescue O...
 
A Survey on Secure Routing Protocol for Data Transmission in ad hoc Networks
A Survey on Secure Routing Protocol for Data Transmission in ad hoc NetworksA Survey on Secure Routing Protocol for Data Transmission in ad hoc Networks
A Survey on Secure Routing Protocol for Data Transmission in ad hoc Networks
 
FPGA Hardware Design of Different LDPC Applications: Survey
FPGA Hardware Design of Different LDPC Applications: SurveyFPGA Hardware Design of Different LDPC Applications: Survey
FPGA Hardware Design of Different LDPC Applications: Survey
 
Design and Implementation of Smart Air Pollution Monitoring System Based on I...
Design and Implementation of Smart Air Pollution Monitoring System Based on I...Design and Implementation of Smart Air Pollution Monitoring System Based on I...
Design and Implementation of Smart Air Pollution Monitoring System Based on I...
 
Smart Monitoring System for Substation’ Parameters and Automatic under Freque...
Smart Monitoring System for Substation’ Parameters and Automatic under Freque...Smart Monitoring System for Substation’ Parameters and Automatic under Freque...
Smart Monitoring System for Substation’ Parameters and Automatic under Freque...
 
An Automatic Coronavirus Detection Systems: Survey
An Automatic Coronavirus Detection Systems: SurveyAn Automatic Coronavirus Detection Systems: Survey
An Automatic Coronavirus Detection Systems: Survey
 
Manifolds and Catastrophes for Physical Systems
Manifolds and Catastrophes for Physical SystemsManifolds and Catastrophes for Physical Systems
Manifolds and Catastrophes for Physical Systems
 
Explore the Influencing Variables of Personality Traits on Motives of Adaptin...
Explore the Influencing Variables of Personality Traits on Motives of Adaptin...Explore the Influencing Variables of Personality Traits on Motives of Adaptin...
Explore the Influencing Variables of Personality Traits on Motives of Adaptin...
 
Use of Digital Health Technologies in HealthCare Organization: A System Persp...
Use of Digital Health Technologies in HealthCare Organization: A System Persp...Use of Digital Health Technologies in HealthCare Organization: A System Persp...
Use of Digital Health Technologies in HealthCare Organization: A System Persp...
 
A Predictive Model for Novel Corona Virus Detection with Support Vector Machine
A Predictive Model for Novel Corona Virus Detection with Support Vector MachineA Predictive Model for Novel Corona Virus Detection with Support Vector Machine
A Predictive Model for Novel Corona Virus Detection with Support Vector Machine
 
A Survey on Non-Contact Heart Rate Estimation from Facial Video
A Survey on Non-Contact Heart Rate Estimation from Facial VideoA Survey on Non-Contact Heart Rate Estimation from Facial Video
A Survey on Non-Contact Heart Rate Estimation from Facial Video
 
Impact of Classification Algorithms on Cardiotocography Dataset for Fetal Sta...
Impact of Classification Algorithms on Cardiotocography Dataset for Fetal Sta...Impact of Classification Algorithms on Cardiotocography Dataset for Fetal Sta...
Impact of Classification Algorithms on Cardiotocography Dataset for Fetal Sta...
 
Improved Particle Swarm Optimization Based on Blockchain Mechanism for Flexib...
Improved Particle Swarm Optimization Based on Blockchain Mechanism for Flexib...Improved Particle Swarm Optimization Based on Blockchain Mechanism for Flexib...
Improved Particle Swarm Optimization Based on Blockchain Mechanism for Flexib...
 
Investigating the Relationship Between Teaching Performance and Research Perf...
Investigating the Relationship Between Teaching Performance and Research Perf...Investigating the Relationship Between Teaching Performance and Research Perf...
Investigating the Relationship Between Teaching Performance and Research Perf...
 
Data Communication Using Cryptography Encryption
Data Communication Using Cryptography EncryptionData Communication Using Cryptography Encryption
Data Communication Using Cryptography Encryption
 
Online Attack Types of Data Breach and Cyberattack Prevention Methods
Online Attack Types of Data Breach and Cyberattack Prevention MethodsOnline Attack Types of Data Breach and Cyberattack Prevention Methods
Online Attack Types of Data Breach and Cyberattack Prevention Methods
 

Recently uploaded

Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 

Recently uploaded (20)

Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Heterotransistors to Increase Density of their Elements with Account Miss-match Induced Stress and Porosity of Materials

  • 1. © 2019, AJCSE. All Rights Reserved 6 RESEARCH ARTICLE On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Heterotransistors to Increase Density of their Elements with Account Miss-match Induced Stress and Porosity of Materials E. L. Pankratov1,2 1 Department of Mathematival and Natural Sciences, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 2 Department of Higher Mathenatics, Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia Received on: 01-12-2018; Revised on: 25-12-2018; Accepted on: 25-01-2019 ABSTRACT In this paper, we introduce an approach to increase the density of field-effect transistors framework a broadband power amplifier. Framework the approach, we consider manufacturing the inverter in heterostructure with specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion implantation. After that, dopant and radiation defects should be annealed framework optimized scheme. We also consider an approach to decrease the value of mismatch-induced stress in the considered heterostructure. We introduce an analytical approach to analyze mass and heat transport in heterostructures during manufacturing of integrated circuits with account mismatch-induced stress. Key words: Broadband power amplifier, optimization of manufacturing, increasing of element integration rate INTRODUCTION In the present time, several actual problems of the solid-state electronics (such as increasing of performance, reliability, and density of elements of integrated circuits: Diodes, field-effect, and bipolar transistors) are intensively solving.[1-6] To increase the performance of these devices, it is attracted an interest determination of materials with higher values of charge carriers mobility.[7-10] One way to decrease dimensions of elements of integrated circuits is manufacturing them in thin-film heterostructures.[3-5,11] In this case, it is possible to use inhomogeneity of heterostructure and necessary optimization of doping of electronic materials[12] and development of epitaxial technology to improve these materials (including analysis of mismatch-induced stress).[13-15] An alternative approach to increase dimensions of integrated circuits is using of laser and microwave types of annealing.[16-18] Framework the paper, we introduce an approach to manufacture field-effect transistors. The approach gives a possibility to decrease their dimensions with increasing their density framework a broadband power amplifier. We also consider possibility to decrease mismatch-induced stress to decrease the quantity of defects, generated due to the stress. In this paper, we consider a heterostructure, which consist of a substrate and an epitaxial layer [Figure 1]. We also consider a buffer layer between the substrate and the epitaxial layer. The epitaxial layer includes itself several sections, which were manufactured using another material. These sections have been doped by diffusion or ion implantation to manufacture the required types of conductivity (p or n). These areas became sources, drains, and gates [Figure 1]. After this doping, it is required annealing of dopant and/or radiation defects. The main aim of the present paper is analysis of redistribution of dopant and radiation defects to determine conditions, which correspond to decrease of elements of the considered voltage reference and at the same time to increase their density. At the same time, we consider a possibility to decrease mismatch-induced stress. Address of correspondence: E. L. Pankratov E-mail: elp2004@mail.ru Available Online at www.ajcse.info Asian Journal of Computer Science Engineering 2019;4(1):6-29 ISSN 2581 – 3781
  • 2. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 7 Method of solution To solve our aim, we determine and analyzed spatiotemporal distribution of concentration of dopant in the considered heterostructure. We determine the distribution by solving the second Fick’s law in the following form: [1,20-23] ∂ ∂ ∂ ∂ ∂ ∂ ∂ C x y z t t x D C x y z t x y D C x y z t y , , , , , , , , , ( ) = ∂ ( ) ∂       + ( ) ∂        + ( )       ∂ ∂ ∂ z D C x y z t z , , ,  + ∇ ( ) ( )         ∫ Ω ∂ ∂ x D kT x y z t C x y W t dW S S Lz µ1 0 , , , , , , + ∇ ( ) ( )         ∫ Ω ∂ ∂ y D kT x y z t C x y W t dW S S Lz µ1 0 , , , , , , (1) + ( )       + ( )     ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ ∂ x D V kT x y z t x y D V kT x y z t y C S C S 2 2 , , , , , ,    + ( )       ∂ ∂ ∂ µ ∂ z D V kT x y z t z C S 2 , , , with boundary and initial conditions ∂ ( ) ∂ = = C x y z t x x , , , 0 0 , ∂ ( ) ∂ = = C x y z t x x Lx , , , 0, ∂ ( ) ∂ = = C x y z t y y , , , 0 0 , C (x,y,z,0)=fC (x,y,z), Figure 1: (a) Structure of the considered amplifier[19] (b) Heterostructure with a substrate, epitaxial layers, and buffer layer (view from side) b a
  • 3. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 8 ∂ ( ) ∂ = = C x y z t y x Ly , , , 0 , ∂ ( ) ∂ = = C x y z t z z , , , 0 0, ∂ ( ) ∂ = = C x y z t z x Lz , , , 0. Here, C(x,y,z,t) is the spatiotemporal distribution of concentration of dopant; Ω is the atomic volume of dopant; ∇s is the symbol of surficial gradient; C x y z t d z Lz , , , ( ) ∫ 0 is the surficial concentration of dopant on interface between layers of heterostructure (in this situation, we assume that Z-axis is perpendicular to interface between layers of heterostructure); µ1 (x,y,z,t) and µ2 (x,y,z,t) are the chemical potential due to the presence of mismatch-induced stress and porosity of material; and D and DS are the coefficients of volumetric and surficial diffusions. Values of dopant diffusion coefficients depend on properties of materialsofheterostructure,speedofheatingandcoolingofmaterialsduringannealing,andspatiotemporal distribution of concentration of dopant. Dependences of dopant diffusions coefficients on parameters could be approximated by the following relations: [24-26] D D x y z T C x y z t P x y z T V x y z t C L = ( ) + ( ) ( )       + ( , , , , , , , , , , , , 1 1 1 ξ ς γ γ ) ) + ( ) ( )         V V x y z t V * * , , , ς2 2 2 , D D x y z T C x y z t P x y z T V x y z S S L S = ( ) + ( ) ( )       + , , , , , , , , , , , , 1 1 1 ξ ς γ γ t t V V x y z t V ( ) + ( ) ( )         * * , , , ς2 2 2 . (2) Here, DL (x,y,z,T) and DLS (x,y,z,T) are the spatial (due to accounting all layers of heterostructure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of annealing; P(x,y,z,T) is the limit of solubility of dopant; parameter γ depends on properties of materials and could be integer in the following interval γ ∈[1,3];[24] V (x,y,z,t) is the spatiotemporal distribution of concentration of radiation vacancies; V* is the equilibrium distribution of vacancies. Concentration dependence of dopant diffusion coefficient has been described in details in Kitayama et al.[24] Spatiotemporal distributions of concentration of point radiation defects have been determined by solving the following system of equations: [20-23,25,26]         I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T I x y z t y ( ) ( )         + ( ) ( )       − ( ) (     z D x y z T I x y z t z k x y z T I x y z t I I I , , , , , , , , , , , , , 2 ) )− ( ) k x y z T I V , , , , ( ) ( ) ( ) ( ) 0 , , , , , , , , , , , , z L IS S D I x y z t V x y z t x y z t I x y W t dW x kT    ∂ × + Ω ∇   ∂     ∫ ( ) ( ) ( ) 2 0 , , , , , , , , , z L I S IS S D x y z t D x y z t I x y W t dW y kT x V kT x       ∂ ∂ ∂ +Ω ∇ +     ∂ ∂ ∂       ∫ ( ) ( ) 2 2 , , , , , , I S I S D D x y z t x y z t y V kT y z V kT z       ∂ ∂ ∂ ∂ + +     ∂ ∂ ∂ ∂     (3)         V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T V x y z t y ( ) ( )        
  • 4. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 9 + ( ) ( )       − ( ) (     z D x y z T V x y z t z k x y z T V x y z t V V V , , , , , , , , , , , , , 2 ) )− ( ) k x y z T I V , , , , ( ) ( ) ( ) ( ) 0 , , , , , , , , , , , , z L VS S D I x y z t V x y z t x y z t V x y W t dW x kT    ∂ × + Ω ∇   ∂     ∫ ( ) ( ) ( ) 2 0 , , , , , , , , , z L V S VS S D x y z t D x y z t V x y W t dW y kT x V kT x       ∂ ∂ ∂ +Ω ∇ +     ∂ ∂ ∂       ∫ ( ) ( ) 2 2 , , , , , , V S V S D D x y z t x y z t y V kT y z V kT z      ∂ ∂ ∂ ∂ + +     ∂ ∂ ∂ ∂     m with boundary and initial conditions   I x y z t x x , , , ( ) = =0 0,   I x y z t x x Lx , , , ( ) = = 0 ,   I x y z t y y , , , ( ) = =0 0 ,   I x y z t y y Ly , , , ( ) = = 0 ,   I x y z t z z , , , ( ) = =0 0 ,   I x y z t z z Lz , , , ( ) = = 0 ,   V x y z t x x , , , ( ) = =0 0,   V x y z t x x Lx , , , ( ) = = 0,   V x y z t y y , , , ( ) = =0 0 , (4)   V x y z t y y Ly , , , ( ) = = 0 ,   V x y z t z z , , , ( ) = =0 0,   V x y z t z z Lz , , , ( ) = = 0 , I (x,y,z,0)= =fI (x,y,z), V (x,y,z,0)=fV (x,y,z), V x V t y V t z V t t V kT x y z n n n 1 1 1 1 2 1 2 1 2 1 2 + + + ( )= + + +       ∞ , , ,  . Here, I (x,y,z,t) is the spatiotemporal distribution of concentration of radiation interstitials; I* is the equilibrium distribution of interstitials; DI (x,y,z,T), DV (x,y,z,T), DIS (x,y, z,T), and DVS (x,y,z,T) are the coefficients of volumetric and surficial diffusions of interstitials and vacancies, respectively; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to the generation of divacancies and di-interstitials, respectively (for example, [26] and appropriate references in this book); kI,V (x,y,z,T), kI,I (x,y,z,T), and kV,V (x,y,z,T) are the parameters of recombination of point radiation defects and generation of their complexes; k is the Boltzmann constant; ω = a3 , a is the interatomic distance; and  is the specific surface energy. To account the porosity of buffer layers, we assume that porous is approximately cylindrical with average values r x y = + 1 2 1 2 and z1 before annealing.[23] With time, small pores decomposing on vacancies. The vacancies absorbing by larger pores.[27] With time, large pores became larger due to absorbing the vacancies and became more spherical.[27] Distribution of concentration of vacancies in heterostructure, existing due to porosity, could be determined by summing on all pores, i.e., V x y z t V x i y j z k t p k n j m i l , , , , , , ( ) = + + + ( ) = = = ∑ ∑ ∑ α β χ 0 0 0 , R x y z = + + 2 2 2 . Here, α, β, and χ are the average distances between centers of pores in directions x, y, and z; l, m, and n are the quantity of pores inappropriate directions.
  • 5. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 10 Spatiotemporal distributions of divacancies ΦV (x,y,z,t) and di-interstitials ΦI (x,y,z, t) could be determined by solving the following system of equations: [25,26]         Φ Φ Φ Φ I I x y z t t x D x y z T x y z t x y D x I I , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )         Φ + ( ) ( )       + ∂ ∂ ∇ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t I I I S S Φ Φ Φ Ω , , , , , , , , , 1 ( ( ) ( )         ∫ ΦI L x y W t dW z , , , 0 ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z I L S S I I I D x y z t x y W t dW k x y z T I x y z t y kT  Φ   ∂ +Ω ∇ Φ +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       + ( ) ( ) k x y z T I x y z t I , , , , , , (5)         Φ Φ Φ Φ V V x y z t t x D x y z T x y z t x y D x V V , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )         Φ + ( ) ( )       + ∂ ∂ ∇ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t V V V S S Φ Φ Φ Ω , , , , , , , , , 1 ( ( ) ( )         ∫ ΦV L x y W t dW z , , , 0 ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z V L S S V V V D x y z t x y W t dW k x y z T V x y z t y kT  Φ   ∂ +Ω ∇ Φ +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       + ( ) ( ) k x y z T V x y z t V , , , , , , with boundary and initial conditions   ΦI x x y z t x , , , ( ) = =0 0 ,   ΦI x L x y z t x x , , , ( ) = = 0 ,   ΦI y x y z t y , , , ( ) = =0 0 ,   ΦI y L x y z t y y , , , ( ) = = 0 ,   ΦI z x y z t z , , , ( ) = =0 0 ,   ΦI z L x y z t z z , , , ( ) = = 0,   ΦV x x y z t x , , , ( ) = =0 0 ,   ΦV x L x y z t x x , , , ( ) = = 0 ,   ΦV y x y z t y , , , ( ) = =0 0 , (6)   ΦV y L x y z t y y , , , ( ) = = 0 ,   ΦV z x y z t z , , , ( ) = =0 0,   ΦV z L x y z t z z , , , ( ) = = 0 , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z).
  • 6. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 11 Here, DΦI (x,y,z,T), DΦV (x,y,z,T), DΦIS (x,y,z,T), and DΦVS (x,y,z,T) are the coefficients of volumetric and surficial diffusions of complexes of radiation defects; kI (x,y,z,T) and kV (x,y,z,T) are the parameters of decay of complexes of radiation defects. Chemical potential µ1 in Equation (1) could be determined by the following relation: [20] µ1 =E(z)Ωσij [uij (x,y,z,t)+uji (x,y,z,t)]/2, (7) Where, E(z) is the Young modulus, σij is the stress tensor; u u x u x ij i j j i = ∂ ∂ + ∂ ∂       1 2 is the deformation tensor; ui and uj are the components ux (x,y,z,t), uy (x,y,z,t), and uz (x,y,z,t) of the displacement vector  u x y z t , , , ( ); xi and xj are the coordinate x, y, and z. The Equation (3) could be transformed to the following form: ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , 1 , , , 2 j j i i j i j i u x y z t u x y z t u x y z t u x y z t x y z t x x x x       ∂ ∂ ∂ ∂  = + +      ∂ ∂ ∂ ∂           − + ( ) − ( ) ∂ ( ) ∂ −       − ( ) ( ) ε δ σ δ σ ε β 0 0 1 2 3 ij ij k k z z u x y z t x K z z T x , , , , y y z t T E z ij , , ( )−          ( ) 0 2 δ Ω , Where, σ is Poisson coefficient; ε0 = (as − aEL )/aEL is the mismatch parameter; as and aEL are lattice distances of the substrate and the epitaxial layer; K is the modulus of uniform compression; β is the coefficient of thermal expansion; and Tr is the equilibrium temperature, which coincide (for our case) with room temperature. Components of displacement vector could be obtained by solution of the following equations: [21] ρ σ σ σ z u x y z t t x y z t x x y z t y x x xx xy xz ( ) ( ) ∂ = ( ) ∂ + ( ) ∂ + ∂ ∂ ∂ ∂ 2 2 , , , , , , , , , , , , , y z t z ( ) ∂ ρ σ σ σ z u x y z t t x y z t x x y z t y x y yx yy yz ( ) ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ 2 2 , , , , , , , , , , , , , y z t z ( ) ∂ ρ σ σ σ z u x y z t t x y z t x x y z t y x z zx zy zz ( ) ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ 2 2 , , , , , , , , , , , , , y z t z ( ) ∂ , where σ σ δ ij i j j i ij k E z z u x y z t x u x y z t x u = ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂ − ∂ 2 1 3 , , , , , , x x y z t x K z k ij , , , ( ) ∂         + ( ) × δ × ∂ ( ) ∂ − ( ) ( ) ( )−     u x y z t x z K z T x y z t T k k r , , , , , ,  , ρ (z) is the density of materials of heterostructure and δij is the Kronecker symbol. With account, the relation for σij last system of equation could be written as ρ σ z u x y z t t K z E z z u x x x ( ) ∂ ( ) ∂ = ( )+ ( ) + ( )               ∂ 2 2 2 5 6 1 , , , , y y z t x K z E z z , , ( ) ∂ + ( )− ( ) + ( )               2 3 1 σ × ∂ ( ) ∂ ∂ + ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 1 u x y z t x y E z z u x y z t y u x y y y z , , , , , , ,  , , , z t z K z E z z ( ) ∂       + ( )+ ( ) + ( )             2 3 1  × ∂ ( ) ∂ ∂ − ( ) ( ) ∂ ( ) ∂ 2 u x y z t x z K z z T x y z t x z , , , , , , 
  • 7. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 12 ρ σ z u x y z t t E z z u x y z t x u x y y x ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 2 1 , , , , , , , , , , , , , y z t x y T x y z t y ( ) ∂ ∂       − ∂ ( ) ∂ × ( ) ( )+ ∂ ∂ ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂  K z z z E z z u x y z t z u x y z t y y z β σ 2 1 , , , , , ,                 + ∂ ( ) ∂ 2 2 u x y z t y y , , , (8) × ( ) + ( )     + ( )           + ( )− ( ) + ( )         5 12 1 6 1 E z z K z K z E z z          ∂ ( ) ∂ ∂ + ( ) ∂ ( ) ∂ ∂ 2 2 u x y z t y z K z u x y z t x y y y , , , , , , ρ σ z u x y z t t E z z u x y z t x u x z z z ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 2 2 1 , , , , , , , , , , , , , y z t y u x y z t x z x ( ) ∂ + ∂ ( ) ∂ ∂    2 2 + ∂ ( ) ∂ ∂    + ∂ ∂ ( ) ∂ ( ) ∂ + ∂ ( ) ∂ 2 u x y z t y z z K z u x y z t x u x y z t y y x y , , , , , , , , , + + ∂ ( ) ∂                 u x y z t z x , , , + ∂ ∂ ( ) + ( ) ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ ( 1 6 1 6 z E z z u x y z t z u x y z t x u x y z t z x y  , , , , , , , , , ) ) ∂ − ∂ ( ) ∂                 y u x y z t z z , , , − ( ) ( ) ∂ ( ) ∂ K z z T x y z t z  , , , . Conditions for the system of Equation (8) could be written in the form ∂ ( ) ∂ =  u y z t x 0 0 , , , ; ∂ ( ) ∂ =  u L y z t x x , , , 0 ; ∂ ( ) ∂ =  u x z t y , , , 0 0 ; ∂ ( ) ∂ =  u x L z t y y , , , 0 ; ∂ ( ) ∂ =  u x y t z , , , 0 0 ; ∂ ( ) ∂ =  u x y L t z z , , , 0;   u x y z u , , ,0 0 ( ) = ;   u x y z u , , ,∞ ( ) = 0 . We determine spatiotemporal distributions of concentrations of dopant and radiation defects by solving the Equations (1), (3), and (5) framework standard method of averaging of function corrections.[28] Previously, we transform the Equations (1), (3), and (5) to the following form with account initial distributions of the considered concentrations ∂ ( ) ∂ = ∂ ∂ ∂ ( ) ∂       + ∂ ∂ ∂ ( ) ∂    C x y z t t x D C x y z t x y D C x y z t y , , , , , , , , ,     + ∂ ∂ ∂ ( ) ∂       + z D C x y z t z , , , (1a) + ( )       + ( )     ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ ∂ x D V kT x y z t x y D V kT x y z t y C S C S 2 2 , , , , , ,    + ( )       ∂ ∂ ∂ µ ∂ z D V kT x y z t z C S 2 , , , + ( )       + ∂ ∂ ∇ ( ) ∂ ∂ ∂ µ ∂ µ z D V k T x y z t z x D kT x y z t C x y W C S S S 2 , , , , , , , , , Ω t t dW Lz ( )         ∫ 0 + ∂ ∂ ∇ ( ) ( )         ∫ Ω y D kT x y z t C x y W t dW S S Lz  , , , , , , 0
  • 8. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 13         I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T I x y z t y ( ) ( )         + ( ) ( )       + ∂ ∂ ∇ ( ) ∂ ∂ ∂ ∂ µ z D x y z T I x y z t z x D kT x y z t I I IS S , , , , , , , , , Ω 1 x x y W t dW Lz , , , ( )         ∫ 0 ( ) ( ) ( ) ( ) 2 1 , 0 , , , , , , , , , , , , z L IS S I I D x y z t I x y W t dW k x y z T I x y z t y kT    ∂ +Ω ∇ −   ∂     ∫ − ( ) ( ) ( )+ ( ) ( ) k x y z T I x y z t V x y z t f x y z t I V I , , , , , , , , , , , ,  (3a)         V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , ( ) = ( ) ( )       + , , , , , T V x y z t y ( ) ( )         + ( ) ( )       + ∂ ∂ ∇ ( ) ∂ ∂ ∂ ∂ µ z D x y z T V x y z t z x D kT x y z t V V VS S , , , , , , , , , Ω 1 x x y W t dW Lz , , , ( )         ∫ 0 + ∂ ∂ ∇ ( ) ( )         − ∫ Ω y D kT x y z t I x y W t dW k x y z IS S L I I z 1 0 , , , , , , , , , , T T I x y z t ( ) ( ) 2 , , , − ( ) ( ) ( )+ ( ) ( ) k x y z T I x y z t V x y z t f x y z t I V V , , , , , , , , , , , ,          Φ Φ Φ Φ I I x y z t t x D x y z T x y z t x y D x I I , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )         Φ + ( ) ( )       + ∂ ∂ ∇ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t I I I S S Φ Φ Φ Ω , , , , , , , , , 1 ( ( ) ( )         ∫ ΦI L x y W t dW z , , , 0 ( ) ( ) ( ) ( ) 1 0 , , , , , , , , , , , , z I L S S I I D x y z t x y W t dW k x y z T I x y z t y kT  Φ   ∂ +Ω ∇ Φ +   ∂     ∫ ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       + ( ) ( )+ ( ) ( ) k x y z T I x y z t f x y z t I I I , , , , , , , , , 2 Φ  (5a)         Φ Φ Φ Φ V V x y z t t x D x y z T x y z t x y D x V V , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )         Φ + ( ) ( )       + ∂ ∂ ∇ ∂ ∂ ∂ ∂ µ z D x y z T x y z t z x D kT x y z t V V V S S Φ Φ Φ Ω , , , , , , , , , 1 ( ( ) ( )         ∫ ΦV L x y W t dW z , , , 0 + ∂ ∂ ∇ ( ) ( )         + ∫ Ω Φ Φ y D kT x y z t x y W t dW k x y z I z S S I L I 1 0 , , , , , , , , ,T T I x y z t ( ) ( ) , , ,
  • 9. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 14 ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       + ( ) ( )+ ( ) ( ) k x y z T V x y z t f x y z t V V V , , , , , , , , , 2 Φ  . Farther, we replace concentrations of dopant and radiation defects in the right sides of Equations (1a), (3a), and (5a) on their not yet known average values α1ρ . In this situation, we obtain equations for the first-order approximations of the required concentrations in the following form: ∂ ( ) ∂ = ∂ ∂ ∇ ( )       + ∂ ∂ C x y z t t x z D kT x y z t y z D k C S S C S 1 1 1 1 , , , , , , α µ α Ω Ω T T x y z t S ∇ ( )       µ1 , , , + ( ) ( )+ ( )       + f x y z t x D V kT x y z t x y D V kT x C C S C S , , , , , δ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ 2 2 , , , , y z t y ( )       ∂ + ( )       ∂ ∂ ∂ µ ∂ z D V k T x y z t z C S 2 , , , (1b) ∂ ∂ α µ α I x y z t t z x D kT x y z t y z D I IS S I IS 1 1 1 , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ Ω Ω k kT x y z t S ∇ ( )       µ , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , I S I S I S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z          ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       + ( ) ( )− ( )− ( ) f x y z t k x y z T k x y z T I I I I I V I V , , , , , , , , , , δ α α α 1 2 1 1 (3b) ∂ ∂ α µ α V x y z t t z x D kT x y z t y z D V VS S V V 1 1 1 1 , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ Ω Ω S S S kT x y z t ∇ ( )       µ1 , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , V S V S V S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z          ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       + ( ) ( )− ( )− ( ) f x y z t k x y z T k x y z T V V V V I V I V , , , , , , , , , , δ α α α 1 2 1 1 ∂ ∂ α µ α Φ Ω Ω Φ Φ Φ 1 1 1 1 I S S x y z t t z x D kT x y z t z I I I , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ ∂ ∇ ( )       y D kT x y z t I S S Φ µ1 , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       + ( ) ( )+ ( ) ( )+ ( ) f x y z t k x y z T I x y z t k x y z T I x y z I I I I Φ , , , , , , , , , , , , , ,  2 , ,t ( ) (5b) ∂ ∂ α µ α Φ Ω Ω Φ Φ Φ 1 1 1 1 V S S x y z t t z x D kT x y z t z V V V , , , , , , ( ) = ∂ ∂ ∇ ( )       + ∂ ∂ ∂ ∇ ( )       y D kT x y z t V S S Φ µ1 , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , V V V S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂      
  • 10. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 15 + ( ) ( )+ ( ) ( )+ ( ) f x y z t k x y z T V x y z t k x y z T V x y z V V V V Φ , , , , , , , , , , , , , ,  2 , ,t ( ). Integration of the left and right sides of the Equations (1b), (3b), and (5b) on time gives us possibility to obtain relations for above approximation in the final form C x y z t x D x y z T z kT V x y z V V x y C S L 1 1 1 2 2 1 , , , , , , , , , , * ( ) = ∂ ∂ ( ) + ( ) + α ς τ ς Ω , , , * z V t τ ( ) ( )         ∫ 2 0 ×∇ ( ) + ( )            + ∂ ∂ S S C C S L x y z P x y z T d y D x µ τ ξ α τ α γ γ 1 1 1 1 , , , , , , , y y z T P x y z T S C t , , , , , ( ) + ( )       ∫ 1 1 0 ξ αγ γ × ∇ ( ) + ( ) + ( ) ( )      Ω S x y z z kT V x y z V V x y z V µ τ ς τ ς τ 1 1 2 2 2 1 , , , , , , , , , * *     + ∫ d x D V kT C S t τ ∂ ∂ 0 × ( ) + ( ) + ∫ ∂ µ τ ∂ τ ∂ ∂ ∂ µ τ ∂ τ ∂ ∂ ∂ µ 2 2 0 x y z x d y D V kT x y z y d z D V kT C S t C S , , , , , , 2 2 0 x y z z d t , , ,τ ∂ τ ( ) ∫ + ( ) f x y z C , , (1c) I x y z t z x D kT x y z d z y D kT I IS S t I IS 1 1 1 0 1 , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ α Ω Ω S S t x y z d µ τ τ 1 0 , , , ( ) ∫ + ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ) ∂ ∫ ∫ x D V kT x y z t x d y D V kT x y z t y d I S t I S t µ τ µ τ 2 0 2 0 , , , , , , + + ∂ ∂ ∂ ( ) ∂ ∫ z D V kT x y z t z d I S t µ τ 2 0 , , , + ( )− ( ) − ( ) ∫ ∫ f x y z k x y z T d k x y z T d I I I I t I V I V t , , , , , , , , , , α τ α α τ 1 2 0 1 1 0 (3c) V x y z t z x D kT x y z d z y D kT V IS S t V IS 1 1 1 0 1 , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ α Ω Ω S S t x y z d µ τ τ 1 0 , , , ( ) ∫ + ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ) ∂ ∫ ∫ x D V k T x y z t x d y D V kT x y z t y d V S t V S t µ τ µ τ 2 0 2 0 , , , , , , + + ∂ ∂ ∂ ( ) ∂ ∫ z D V kT x y z t z d V S t µ τ 2 0 , , , + ( )− ( ) − ( ) ∫ ∫ f x y z k x y z T d k x y z T d V V V V t I V I V t , , , , , , , , , , α τ α α τ 1 2 0 1 1 0 Φ Ω Ω Φ Φ Φ 1 1 1 0 I S S t S x y z t z x D kT x y z d x D kT I I I , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ S S t x y z d µ τ τ 1 0 , , , ( ) ∫ × + ( )+ ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∫ α µ τ τ 1 2 0 Φ Φ Φ Φ I I I I z f x y z x D V kT x y z x d y D V kT S t S , , , , , ∂ ∂ ( ) ∂ + ∫ µ τ τ 2 0 x y z y d t , , , (5c) + ∂ ∂ ∂ ( ) ∂ + ( ) ( ) ∫ ∫ z D V k T x y z z d k x y z T I x y z d I S t I t Φ µ τ τ τ τ 2 0 0 , , , , , , , , , + ( ) ( ) ∫k x y z T I x y z d I I t , , , , , , , 2 0  
  • 11. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 16 Φ Ω Ω Φ Φ Φ 1 1 1 0 V S S t S x y z t z x D kT x y z d x D kT V V V , , , , , , ( ) = ∂ ∂ ∇ ( ) + ∂ ∂ ∇ ∫ α µ τ τ S S t x y z d µ τ τ 1 0 , , , ( ) ∫ × + ( )+ ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∫ α µ τ τ 1 2 0 Φ Φ Φ Φ V V V V z f x y z x D V kT x y z x d y D V kT S t S , , , , , ∂ ∂ ( ) ∂ ∫ µ τ τ 2 0 x y z y d t , , , + ∂ ∂ ∂ ( ) ∂ + ( ) ( ) ∫ ∫ z D V kT x y z z d k x y z T V x y z d V S t V t Φ µ τ τ τ τ 2 0 0 , , , , , , , , , + ( ) ( ) ∫k x y z T V x y z d V V t , , , , , , , 2 0   . We determine the average values of the first-order approximations of concentrations of dopant and radiation defects by the following standard relation: [28] α ρ ρ 1 1 0 0 0 0 1 = ( ) ∫ ∫ ∫ ∫ Θ Θ L L L x y z t d z d y d xd t x y z L L L z y x , , , . (9) Substitution of the relations (1c), (3c), and (5c) into relation (9) gives us possibility to obtain required average values in the following form: 1 0 0 0 1 C x y z C L L L L L L f x y z d z d y d x z y x = ( ) ∫ ∫ ∫ , , , 1 3 2 4 2 3 2 1 4 4 4 I x y z a A a B a B L L L a a = + ( ) − + +       Θ Θ − + a A a 3 4 4 ,    1 00 1 0 0 0 1 00 1 V IV I I L L L I II x y z S f x y z d z d y d x S L L L z y x = ( ) − − ∫ ∫ ∫ Θ Θ , ,          , where S t k x y z T I x y z t V x y z t d z d y d xd t ij i j L    = − ( ) ( ) ( ) ( ) Θ , , , , , , , , , , 1 1 0 z z y x L L ∫ ∫ ∫ ∫ 0 0 0 Θ , a SII 4 00 = × − ( ) S S S IV II VV 00 2 00 00 , a S S S S S IV II IV II VV 3 00 00 00 2 00 00 = + − , a f x y z d z d y d x V L L L z y x 2 0 0 0 = ( ) ∫ ∫ ∫ , , × + + ( ) S S S L L L S S f x y z d z d y d x IV IV IV x y z VV II I Lz 00 00 2 00 2 2 2 00 00 0 2 Θ , , ∫ ∫ ∫ ∫ − 0 0 2 2 2 00 L L x y z VV y x L L L S Θ − ( ) ∫ ∫ ∫ S f x y z d z d y d x IV I L L L z y x 00 2 0 0 0 , , , a S f x y z d z d y d x IV I L L L z y x 1 00 0 0 0 = ( ) ∫ ∫ ∫ , , , a SVV 0 00 = × ( )         ∫ ∫ ∫ f x y z d z d y d x I L L L z y x , , 0 0 0 2 , A y a a a a = + − 8 4 2 3 2 4 2 2 4 Θ Θ , B a a q p q = + + − − Θ 2 4 2 3 3 6 − + + q p q 2 3 3 , q a a a L L L a a a a a a a a x y z = −       − −    Θ Θ Θ Θ Θ 3 2 4 2 0 1 3 4 2 0 4 2 2 2 3 2 4 24 4 8 4     −
  • 12. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 17 − − Θ Θ 3 2 3 4 3 2 2 2 4 1 2 4 2 54 8 a a L L L a a x y z , p a a L L L a a a a a x y z = − − Θ Θ Θ 2 0 4 1 3 4 2 2 4 4 12 18 , 1 1 20 0 0 1 Φ Φ Θ Θ I I z R L L L S L L L L L L f x y z d z d y d x I x y z II x y z x y z L L = + + ( ) ∫ , , y y x L ∫ ∫ 0 1 1 20 0 0 1 Φ Φ Θ Θ V V z R L L L S L L L L L L f x y z d z d y d x V x y z VV x y z x y z L L = + + ( ) ∫ , , y y x L ∫ ∫ 0 , where R t k x y z T I x y z t d z d y d x d t i I i L L L z y x  = − ( ) ( ) ( ) ∫ ∫ ∫ ∫ Θ Θ , , , , , , 1 0 0 0 0 . We determine approximations of the second and higher orders of concentrations of dopant and radiation defects framework standard iterative procedure of the method of averaging of function corrections.[28] Framework this procedure to determine approximations of the n-th order of concentrations of dopant and radiation defects, we replace the required concentrations in the Equations (1c), (3c), and (5c) on the following sum αnρ +ρn-1 (x,y,z,t). The replacement leads to the following transformation of the appropriate equations ∂ ( ) ∂ = ∂ ∂ + + ( )     ( )       C x y z t t x C x y z t P x y z T C 2 2 1 1 , , , , , , , , , ξ α γ γ      + ( ) + ( ) ( )             1 1 2 2 2 ς ς V x y z t V V x y z t V , , , , , , * * × ( ) ∂ ( ) ∂    + ∂ ∂ + ( ) + D x y z T C x y z t x y V x y z t V V x y L , , , , , , , , , , , * 1 1 2 2 1   z z t V C x y z t y , , , , * ( ) ( )         ∂ ( ) ∂     2 1 × ( ) + + ( )     ( )             D x y z T C x y z t P x y z T L C , , , , , , , , , 1 2 1 ξ α γ γ    + ∂ ∂ + ( ) + ( ) ( )             z V x y z t V V x y z t V 1 1 2 2 2 ς ς , , , , , , * * × ( ) ∂ ( ) ∂ + + ( )     D x y z T C x y z t z C x y z t P x y z T L C , , , , , , , , , , , , 1 2 1 1 ξ α γ γ ( ( )               + ( ) ( ) f x y z t C , , δ + ( )       + ( )     ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ ∂ x D V kT x y z t x y D V kT x y z t y C S C S 2 2 , , , , , ,    + ( )       ∂ ∂ ∂ µ ∂ z D V kT x y z t z C S 2 , , , + ∂ ∂ ∇ ( ) + ( )               ∫ Ω x D kT x y z t C x y W t dW S S C Lz µ α 1 2 0 , , , , , , + ∂ ∂ ∇ ( ) + ( )               ∫ Ω y D kT x y z t C x y W t dW S S C Lz µ α 1 2 0 , , , , , , (1d)         I x y z t t x D x y z T I x y z t x y D x y I I 2 1 , , , , , , , , , , ( ) = ( ) ( )       + , , , , , , z T I x y z t y ( ) ( )         1 + ( ) ( )       − ( ) + ∂ ∂ ∂ ∂ α z D x y z T I x y z t z k x y z T I x y I I I I , , , , , , , , , , , 1 1 1 , , , , , , , z t k x y z T I V ( )     − ( ) 2
  • 13. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 18 × + ( )     + ( )     + ∂ ∂ ∇ ( ) α α µ α 1 1 1 1 2 I V S I x y z t V x y z t x x y z t , , , , , , , , , Ω I I L I x y W t dW z + ( )          ∫ 1 0 , , , ×    + ∂ ∂ ∇ ( ) + ( )       ∫ D kT y D kT x y z t I x y W t dW IS IS S I Lz Ω µ α , , , , , , 2 1 0          + ∂ ∂ ∂ ( ) ∂ ∫ x x y z t x t µ2 0 , , , × + ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ∫ D V kT d y D V kT x y z t y d z D V kT x y z t I S I S t I S τ µ τ µ 2 0 2 , , , , , , ( ( ) ∂ ∫ z d t τ 0 (3d)         V x y z t t x D x y z T V x y z t x y D x y V V 2 1 , , , , , , , , , , ( ) = ( ) ( )       + , , , , , , z T V x y z t y ( ) ( )         1 + ( ) ( )       − ( ) + ∂ ∂ ∂ ∂ α z D x y z T V x y z t z k x y z T V x y V V V V , , , , , , , , , , , 1 1 1 , , , , , , , z t k x y z T I V ( )     − ( ) 2 × + ( )     + ( )     + ∂ ∂ ∇ ( ) α α µ α 1 1 1 1 2 I V S I x y z t V x y z t x x y z t , , , , , , , , , Ω V V L V x y W t dW z + ( )          ∫ 1 0 , , , ×    + ∂ ∂ ∇ ( ) + ( )       ∫ D k T y D kT x y z t V x y W t dW VS VS S V Lz Ω µ α , , , , , , 2 1 0          + ∂ ∂ ∂ ( ) ∂ ∫ x x y z t x t µ2 0 , , , × + ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ∫ D V kT d y D V kT x y z t y d z D V kT x y z t V S V S t V S τ µ τ µ 2 0 2 , , , , , , ( ( ) ∂ ∫ z d t τ 0         Φ Φ Φ Φ 2 1 I I x y z t t x D x y z T x y z t x y D I , , , , , , , , , ( ) = ( ) ( )       + I I x y z T x y z t y I , , , , , , ( ) ( )         Φ1 + ∂ ∂ ∇ ( ) + ( )             ∫ Ω Φ Φ Φ x D kT x y z t x y W t dW I I z S S I L µ α , , , , , , 2 1 0    + ( ) ( ) k x y z T I x y z t I I , , , , , , , 2 + ∂ ∂ ∇ ( ) + ( )             ∫ Ω Φ Φ Φ y D kT x y z t x y W t dW I I z S S I L µ α , , , , , , 2 1 0    + ( ) ( ) k x y z T I x y z t I , , , , , , ( ) ( ) ( ) 2 2 2 , , , , , , , , , I I I S S S D D D x y z t x y z t x y z t x V kT x y V kT y z V kT z    Φ Φ Φ       ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       + ( ) ( )       + ( ) ( ) ∂ ∂ ∂ ∂ δ z D x y z T x y z t z f x y z t I I I Φ Φ Φ , , , , , , , , 1 (5d)         Φ Φ Φ Φ 2 1 V V x y z t t x D x y z T x y z t x y D V , , , , , , , , , ( ) = ( ) ( )       + V V x y z T x y z t y V , , , , , , ( ) ( )         Φ1 + ∂ ∂ ∇ ( ) + ( )             ∫ Ω Φ Φ Φ x D kT x y z t x y W t dW V V z S S V L µ α , , , , , , 2 1 0    + ( ) ( ) k x y z T V x y z t V V , , , , , , , 2 + ∂ ∂ ∇ ( ) + ( )             ∫ Ω Φ Φ Φ y D kT x y z t x y W t dW V V z S S V L µ α , , , , , , 2 1 0    + ( ) ( ) k x y z T V x y z t V , , , , , ,
  • 14. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 19 + ∂ ∂ ∂ ( ) ∂       + ∂ ∂ ∂ ( ) ∂   x D V k T x y z t x y D V kT x y z t y V V S S Φ Φ   2 2 , , , , , ,      + ∂ ∂ ∂ ( ) ∂       z D V kT x y z t z V S Φ 2 , , , + ( ) ( )       + ( ) ( ) ∂ ∂ ∂ ∂ δ z D x y z T x y z t z f x y z t V V V Φ Φ Φ , , , , , , , , 1 . Integration of the left and the right sides of Equations (1d), (3d), and (5d) gives us possibility to obtain relations for the required concentrations in the final form C x y z t x C x y z P x y z T C 2 2 1 1 , , , , , , , , , ( ) = ∂ ∂ + + ( )     ( )          ξ α τ γ γ   + ( ) + ( ) ( )         ∫ 1 1 2 2 2 0 ς τ ς τ V x y z V V x y z V t , , , , , , * * × ( ) ∂ ( ) ∂ + ∂ ∂ ( ) + ( ) D x y z T C x y z x d y D x y z T V x y z V L L , , , , , , , , , , , , 1 1 1 τ τ ς τ * * * , , , + ( ) ( )         ∫ ς τ 2 2 2 0 V x y z V t × ∂ ( ) ∂ + + ( )     ( )          C x y z y C x y z t P x y z T C 1 2 1 1 , , , , , , , , , τ ξ α γ γ   + ∂ ∂ + ( ) + ( ) ( )         ∫ z V x y z V V x y z V t 1 1 2 2 2 0 ς τ ς τ , , , , , , * * × ( ) ∂ ( ) ∂ + + ( )     D x y z T C x y z z C x y z P x y z T L C , , , , , , , , , , , , 1 2 1 1 τ ξ α τ γ γ ( ( )           + ( ) d f x y z C τ , , + ∂ ∂ ∇ ( ) + ( )     + ∂ ∂ ∇ ∫ ∫ Ω x D kT x y z C x y W dW d y S S C L t S z µ τ α τ τ µ , , , , , , 2 1 0 0 x x y z t , , ,τ ( ) ∫ 0 × + ( )     + ( )  ∫ Ω D kT C x y W dW d x D V kT x y z t x S C L C S z α τ τ ∂ ∂ ∂ µ ∂ 2 1 0 2 , , , , , ,       + ( )       + ( )     ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ ∂ y D V kT x y z t y z D V kT x y z t z C S C S 2 2 , , , , , ,    (1e) I x y z t x D x y z T I x y z x d y D x y z T I t I 2 1 0 , , , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ( ( ) ( ) ∫ ∂ τ ∂ τ I x y z y d t 1 0 , , , + ( ) ( ) − ( ) + ∫ ∂ ∂ ∂ τ ∂ τ α z D x y z T I x y z z d k x y z T I x y I t I I I , , , , , , , , , , , , 1 0 2 1 z z d t ,τ τ ( )     ∫ 2 0 − ( ) + ( )     + ( )     + ∫k x y z T I x y z V x y z d I V I V t , , , , , , , , , , α τ α τ τ 2 1 2 1 0 ∂ ∂ ∂ ∇ ( ) ∫ x x y z S t µ τ , , , 0 × + ( )     + ∂ ∂ ∇ ( ) + ∫ Ω D kT I x y W dW d y x y z I x IS I L S I z α τ τ µ τ α 2 1 0 2 1 , , , , , , , y y W L t z , ,τ ( )     ∫ ∫ 0 0 × + ( )       + Ω D kT d W d x D V kT x y z t x y D V kT x y IS I S I S τ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ 2 2 , , , , , z z t y , ( )       ∂ + ( )       + ( ) ∂ ∂ ∂ µ ∂ z D V k T x y z t z f x y z I S I 2 , , , , , (3e)
  • 15. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 20 V x y z t x D x y z T V x y z x d y D x y z T V t V 2 1 0 , , , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ( ( ) ( ) ∫ ∂ τ ∂ τ V x y z y d t 1 0 , , , + ( ) ( ) − ( ) + ∫ ∂ ∂ ∂ τ ∂ τ α z D x y z T V x y z z d k x y z T V x y V t V V V , , , , , , , , , , , , 1 0 2 1 z z d t ,τ τ ( )     ∫ 2 0 − ( ) + ( )     + ( )     + ∫k x y z T I x y z V x y z d I V I V t , , , , , , , , , , α τ α τ τ 2 1 2 1 0 ∂ ∂ ∂ ∇ ( ) ∫ x x y z S t µ τ , , , 0 × + ( )     + ∂ ∂ ∇ ( ) + ∫ Ω D kT V x y W dW d y x y z V x VS V L S V z α τ τ µ τ α 2 1 0 2 1 , , , , , , , y y W L t z , ,τ ( )     ∫ ∫ 0 0 × + ( )       + Ω D kT d W d x D V kT x y z t x y D V kT x y VS V S V S τ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ µ 2 2 , , , , , z z t y , ( )       ∂ + ( )       + ( ) ∂ ∂ ∂ µ ∂ z D V k T x y z t z f x y z V S V 2 , , , , , Φ Φ Φ Φ 2 1 0 1 I I t I x y z t x D x y z T x y z x d y x I , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ y y z y t , ,τ ∂ ( ) ∫ 0 × ( ) + ( ) ( ) + ∂ ∂ ∇ ∫ D x y z T d z D x y z T x y z z d x I I I t S Φ Φ Φ Ω , , , , , , , , , τ ∂ ∂ ∂ τ ∂ τ 1 0 µ µ τ x y z t , , , ( ) ∫ 0 × + ( )     + ∂ ∂ + ∫ D kT x y W dW d y D kT x y I I z I I S I L S I Φ Φ Φ Φ Φ Ω Φ α τ τ α 2 1 0 2 1 , , , , , , , W dW L t z τ ( )     ∫ ∫ 0 0 × ∇ ( ) + ( ) ( ) + ∂ ∂ ∂ ∫ S I I t S x y z d k x y z T I x y z d x D V kT I µ τ τ τ τ µ , , , , , , , , , , 2 0 Φ 2 2 0 x y z x d t , , ,τ τ ( ) ∂ ∫ + ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ) ∂ ∫ y D V kT x y z y d z D V kT x y z z d I I S t S Φ Φ µ τ τ µ τ τ 2 0 2 0 , , , , , , t t f x y z I ∫ + ( ) Φ , , + ( ) ( ) ∫k x y z T I x y z d I t , , , , , ,  0 (5e) Φ Φ Φ Φ 2 1 0 1 V V t V x y z t x D x y z T x y z x d y x V , , , , , , , , , , ( ) = ( ) ( ) + ∫ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ y y z y t , ,τ ∂ ( ) ∫ 0 × ( ) + ( ) ( ) + ∂ ∂ ∇ ∫ D x y z T d z D x y z T x y z z d x V V V t S Φ Φ Φ Ω , , , , , , , , , τ ∂ ∂ ∂ τ ∂ τ 1 0 µ µ τ x y z t , , , ( ) ∫ 0 × + ( )     + ∂ ∂ + ∫ D kT x y W dW d y D kT x y V V z V V S V L S V Φ Φ Φ Φ Φ Ω Φ α τ τ α 2 1 0 2 1 , , , , , , , W dW L t z τ ( )     ∫ ∫ 0 0 × ∇ ( ) + ( ) ( ) + ∂ ∂ ∂ ∫ S V V t S x y z d k x y z T V x y z d x D V kT V µ τ τ τ τ µ , , , , , , , , , , 2 0 Φ 2 2 0 x y z x d t , , ,τ τ ( ) ∂ ∫
  • 16. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 21 + ∂ ∂ ∂ ( ) ∂ + ∂ ∂ ∂ ( ) ∂ ∫ y D V k T x y z y d z D V kT x y z z d V V S t S Φ Φ µ τ τ µ τ τ 2 0 2 0 , , , , , , t t f x y z V ∫ + ( )+ Φ , , + ( ) ( ) ∫k x y z T V x y z d V t , , , , , ,  0 . Average values of the second-order approximations of required approximations using the following standard relation: [28] α ρ ρ ρ 2 2 1 0 0 0 1 = ( )− ( )     ∫ ∫ ΘL L L x y z t x y z t d z d y d xd t x y z L L L z y x , , , , , , ∫ ∫ ∫ 0 Θ (10) Substitution of the relations (1e), (3e), and (5e) into relation (10) gives us possibility to obtain relations for required average values α2ρ α2C =0, α2ΦI =0, α2ΦV =0, 2 3 2 4 2 3 2 1 4 3 4 4 4 4 V x y z b E b F a F L L L b b b E b = + ( ) − + +       − + Θ Θ ,    2 2 2 00 2 01 10 02 11 0 2 I V V VV V VV IV x y z V V IV IV C S S S L L L S S S = − − + + ( ) − − Θ 1 1 2 00 + V IV S , where b L L L S S L L L S S x y z IV V V x y z VV II 4 00 2 00 00 2 00 1 1 = − Θ Θ , b S S L L L S S II VV x y z VV IV 3 00 00 01 10 2 = − + ( Θ + )+ + + + ( )+ Θ Θ Θ L L L S S L L L S S S L L L S x y z IV VV x y z IV II IV x y z I 00 00 01 10 01 2 V V x y z VV IV L L L S S 00 2 01 10 2 Θ + ( + )− Θ Θ L L L S S L L L x y z IV IV x y z 00 2 10 3 3 3 3 , b S S L L L S S C S S L L II VV x y z VV IV V IV VV x y 2 00 00 02 11 10 01 2 = + + ( )− − + ( Θ Θ × ) + + + ( )+ L S S L L L L L L S S S L L L z IV VV x y z x y z II IV IV x y z 2 01 00 10 01 00 2 Θ Θ Θ S S S S L L IV II IV x y 01 10 01 2 2 + + + ( Θ × ) + + ( )− − − ( )+ L S L L L S S L L L C S S C z VV x y z IV IV x y z V VV IV 2 01 10 00 2 02 11 Θ Θ I I IV x y z IV x y z S L L L S L L L 00 2 2 2 2 2 10 2 Θ Θ − ×S S IV IV 00 01 , b S S S C L L L S S L L L S II IV VV V x y z VV IV x y z IV 1 00 11 02 01 10 01 2 = + + + + ( )+ Θ Θ ΘL L L L L L x y z x y Θ ( × + + ) + + ( )− − L S S S S LL L S S L L L z II IV VV IV y z IV IV x y z 2 2 10 01 01 10 10 01 2 Θ Θ S S L L L S S IV x y z IV II 00 01 10 3 2 Θ + ( + ) − − ( )+ ΘL L L C S S C S S x y z V VV IV I IV IV 02 11 00 01 2 , b S L L L S S S L L L II x y z IV VV IV x y z 0 00 00 02 2 01 = + ( ) − Θ × + + ( ) − − ( )+ − 1 2 2 10 01 02 11 01 2 01 Θ ΘL L L S S C S S C S S C x y z II IV V VV IV I IV IV V V VV IV x y z S S L L L − − 02 11 Θ × + + ( ) = + Θ Θ Θ L L L S S C L L L S S L L x y z II IV I I V x y z IV I II x 2 10 01 1 1 00 1 2 00    y y z II II x y z IV x y z L S S L L L S L L L − − 20 20 11 Θ Θ ,
  • 17. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 22 C S S S S V I V IV V VV VV IV = + − −    1 1 00 1 2 00 02 11 , E y a a a a = + − 8 4 2 3 2 4 2 2 4 Θ Θ , F a a = Θ 2 4 6 + + − − + + r s r r s r 2 3 3 2 3 3 , r b b b L L L b b b b b b b x y z = −       − − Θ Θ Θ Θ 3 2 4 2 0 1 3 4 3 2 3 4 3 0 2 4 2 24 4 54 8 × −       − 4 8 2 2 3 2 4 2 2 2 4 1 2 4 2 Θ Θ Θ b b b L L L b b x y z , s b b L L L b b b b b x y z = − − Θ Θ Θ 2 0 4 1 3 4 2 2 4 4 12 18 . Farther, we determine solutions of Equation (8), i.e. components of displacement vector. To determine the first-order approximations of the considered components framework method of averaging of function corrections, we replace the required functions in the right sides of the equations by their not yet known average values αi . The substitution leads to the following result: ρ β z u x y z t t K z z T x y z t x x ( ) ∂ ( ) ∂ = − ( ) ( ) ∂ ( ) ∂ 2 1 2 , , , , , , ,  z u x y z t t y ( ) ∂ ( ) ∂ = 2 1 2 , , , = − ( ) ( ) ∂ ( ) ∂ K z z T x y z t y  , , , , ρ β z u x y z t t K z z T x y z t z z ( ) ∂ ( ) ∂ = − ( ) ( ) ∂ ( ) ∂ 2 1 2 , , , , , , . Integration of the left and the right sides of the above relations on time t leads to the following result: u x y z t u K z z z x T x y z d d x x t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) − ∫ ∫ β ρ τ τ ϑ ϑ − ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ K z z z x T x y z d d β ρ τ τ ϑ ϑ , , , 0 0 , u x y z t u K z z z y T x y z d d y y t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ β ρ τ τ ϑ ϑ − ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ K z z z y T x y z d d β ρ τ τ ϑ ϑ , , , 0 0 , u x y z t u K z z z z T x y z d d z z t 1 0 0 0 , , , , , , ( ) = + ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ β ρ τ τ ϑ ϑ − ( ) ( ) ( ) ∂ ∂ ( ) ∫ ∫ ∞ K z z z z T x y z d d β ρ τ τ ϑ ϑ , , , 0 0 . Approximations of the second and higher orders of components of displacement vector could be determined using standard replacement of the required components on the following sums αi +ui (x,y,z,t).[28] The replacement leads to the following result: ρ σ z u x y z t t K z E z z u x x ( ) ∂ ( ) ∂ = ( )+ ( ) + ( )               ∂ 2 2 2 2 1 5 6 1 , , , x x y z t x K z E z z , , , ( ) ∂ + ( )− ( ) + ( )               2 3 1 σ
  • 18. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 23 × ∂ ( ) ∂ ∂ + ( ) + ( )     ∂ ( ) ∂ + ∂ 2 1 2 1 2 2 1 2 1 u x y z t x y E z z u x y z t y u y y z , , , , , ,  x x y z t z T x y z t x , , , , , , ( ) ∂       − ∂ ( ) ∂ 2 × ( ) ( )+ ( )+ ( ) + ( )               ∂ ( ) ∂ ∂ K z z K z E z z u x y z t x z z β σ 3 1 2 1 , , , ρ σ z u x y z t t E z z u x y z t x u y y ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 1 2 2 2 1 , , , , , , 1 1x x y z t x y T x y z t y , , , , , , ( ) ∂ ∂       − ∂ ( ) ∂ × ( ) ( )+ ∂ ∂ ( ) + ( )     ∂ ( ) ∂ + ∂ ( ) ∂ K z z z E z z u x y z t z u x y z t y z β σ 2 1 1 1 , , , , , , y y u x y z t y y                 + ∂ ( ) ∂ 2 1 2 , , , × ( ) + ( )     + ( )           + ( )− ( ) + ( )         5 12 1 6 1 E z z K z K z E z z          ∂ ( ) ∂ ∂ + ( ) ∂ ( ) ∂ ∂ 2 1 2 1 u x y z t y z K z u x y z t x y y y , , , , , , ρ σ z u x y z t t E z z u x y z t x u z z ( ) ∂ ( ) ∂ = ( ) + ( )     ∂ ( ) ∂ + ∂ 2 2 2 2 1 2 2 2 1 , , , , , , 1 1 2 2 1 z x x y z t y u x y z t x z , , , , , , ( ) ∂ + ∂ ( ) ∂ ∂    + ∂ ( ) ∂ ∂    + ∂ ∂ ( ) ∂ ( ) ∂ + ∂ ( 2 1 1 1 u x y z t y z z K z u x y z t x u x y z t y x y , , , , , , , , , ) ) ∂ + ∂ ( ) ∂                 y u x y z t z x 1 , , , + ( ) + ( )     ∂ ∂ ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ E z z z u x y z t z u x y z t x u x z x y 6 1 6 1 1 1  , , , , , , , y y z t y u x y z t z z , , , , , ( ) ∂ − ∂ ( ) ∂       1 − ∂ ( ) ∂ − ∂ ( ) ∂ − ∂ ( ) ∂         u x y z t x u x y z t y u x y z t z E z x y z 1 1 1 , , , , , , , , , ( ( ) + ( ) − ( ) ( ) ∂ ( ) ∂ 1 σ β z K z z T x y z t z , , , . Integration of the left and right sides of the above relations on time t leads to the following result: u x y z t z K z E z z x u x x x 2 2 2 1 1 5 6 1 , , , ( ) = ( ) ( )+ ( ) + ( )               ∂ ∂ ρ σ , , , , y z d d z K z t τ τ ϑ ρ ϑ ( ) + ( ) ( ) { ∫ ∫ 0 0 1 − ( ) + ( )          ∂ ∂ ∂ ( ) + ( ) ( ∫ ∫ E z z x y u x y z d d E z z y t 3 1 2 2 1 0 0 σ τ τ ϑ ρ ϑ , , , ) ) ∂ ∂ ( )    ∫ ∫ 2 2 1 0 0 y u x y z d d y t , , ,τ τ ϑ ϑ + ∂ ∂ ( )    + ( ) + ( ) ∂ ∂ ∂ ∫ ∫ 2 2 1 0 0 2 1 1 1 1 z u x y z d d z z x z u x y z z t z , , , , , τ τ ϑ σ ρ ϑ , ,τ τ ϑ ϑ ( ) ( ) { ∫ ∫ d d K z t 0 0 + ( ) + ( )          − ( ) ( ) ( ) ∂ ∂ ( ) − ∫ ∫ E z z K z z z x T x y z d d t 3 1 0 0 σ β ρ τ τ ϑ ϑ , , , ∂ ∂ ∂ ( ) ∫ ∫ ∞ 2 2 1 0 0 x u x y z d d x , , ,τ τ ϑ ϑ × ( ) ( )+ ( ) + ( )               − ( )− ( ) + ( )     1 5 6 1 3 1 ρ σ σ z K z E z z K z E z z            ∂ ∂ ∂ ( ) ∫ ∫ ∞ 2 1 0 0 x y u x y z d d y , , ,τ τ ϑ ϑ × ( ) − ( ) ( ) + ( )     ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ 1 2 1 2 2 1 0 0 2 ρ ρ σ τ τ ϑ ϑ z E z z z y u x y z d d z y , , , 2 2 1 0 0 u x y z d d z , , ,τ τ ϑ ϑ ( )       ∫ ∫ ∞
  • 19. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 24 − ( ) ( )+ ( ) + ( )               ∂ ∂ ∂ ( ) 1 3 1 2 1 ρ σ τ τ ϑ z K z E z z x z u x y z d d z , , , 0 0 0 0 ϑ β ρ ∫ ∫ ∞ + + ( ) ( ) ( ) u K z z z x × ∂ ∂ ( ) ∫ ∫ ∞ x T x y z d d , , ,τ τ ϑ ϑ 0 0 u x y z t E z z z x u x y z d d y x t 2 2 2 1 0 0 2 1 , , , , , , ( ) = ( ) ( ) + ( )     ∂ ∂ ( ) ∫ ρ σ τ τ ϑ ϑ ∫ ∫ ∫ ∫ + ∂ ∂ ∂ ( )       2 1 0 0 x y u x y z d d x t , , ,τ τ ϑ ϑ × + ( ) + ( ) ( ) ∂ ∂ ∂ ( ) + ( ) ( ) ∫ ∫ 1 1 1 5 12 2 1 0 0 σ ρ τ τ ϑ ρ ϑ z K z z x y u x y z d d z E z y t , , , 1 1+ ( )     + ( )           σ z K z × ∂ ∂ ( ) + ( ) ∂ ∂ ( ) + ( ) ∂ ∂ ∫ ∫ 2 2 1 0 0 1 1 2 1 y u x y z d d z z E z z z u x y x t y , , , , , τ τ ϑ ρ σ ϑ z z d d t ,τ τ ϑ ϑ ( )         ∫ ∫ 0 0 + ∂ ∂ ( )         − ( ) ( ) ( ) ( ) ∫ ∫ y u x y z d d K z z z T x y z d z t 1 0 0 , , , , , , τ τ ϑ β ρ τ ϑ τ τ ϑ σ ϑ d E z z t 0 0 6 1 ∫ ∫ − ( ) + ( )          − ( )      ( ) ∂ ∂ ∂ ( ) − ( ) ( ) ∂ ∂ ∫ ∫ K z z y z u x y z d d E z z x y t 1 2 2 1 0 0 2 2 ρ τ τ ϑ ρ ϑ , , , u u x y z d d x 1 0 0 , , ,τ τ ϑ ϑ ( )    ∫ ∫ ∞ + ∂ ∂ ∂ ( )    + ( ) − ( ) ( ) ( ) ∫ ∫ ∞ 2 1 0 0 1 1 x y u x y z d d z K z z z T x y z x , , , , , τ τ ϑ σ β ρ ϑ , ,τ τ ϑ ρ ϑ ( ) − ( ) ( ) ∫ ∫ ∞ d d K z z 0 0 × ∂ ∂ ∂ ( ) − ( ) ∂ ∂ ( ) ∫ ∫ ∞ 2 1 0 0 2 2 1 0 1 x y u x y z d d z y u x y z d d y x , , , , , , τ τ ϑ ρ τ τ ϑ ϑ ϑ ∫ ∫ ∫ ∞ ( ) + ( )          0 5 12 1 E z z σ + ( )    − ∂ ∂ ( ) + ( ) ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ K z z E z z z u x y z d d y u x y y z 1 1 0 0 1 σ τ τ ϑ ϑ , , , , , z z d d ,τ τ ϑ ϑ ( )                 ∫ ∫ ∞ 0 0 × ( ) − ( ) ( )− ( ) + ( )               ∂ ∂ ∂ 1 2 1 6 1 2 1 ρ ρ σ z z K z E z z y z u x y z y , , ,τ τ τ ϑ ϑ ( ) + ∫ ∫ ∞ d d u y 0 0 0 u x y z t E z z x u x y z d d z z , , , , , , ( ) = ( ) + ( )     ∂ ∂ ( ) + ∂ ∂ ∫ ∫ ∞ 2 1 2 2 1 0 0 2 σ τ τ ϑ ϑ y y u x y z d d z 2 1 0 0 , , ,τ τ ϑ ϑ ( )    ∫ ∫ ∞ + ∂ ∂ ∂ ( ) + ∂ ∂ ∂ ( ) ∫ ∫ ∫ ∫ ∞ ∞ 2 1 0 0 2 1 0 0 x z u x y z d d y z u x y z d d x y , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ     ( ) + ( ) 1 1 ρ ρ z z × ∂ ∂ ( ) ∂ ∂ ( ) + ∂ ∂ ( ) ∫ ∫ ∫ ∞ ∞ z K z x u x y z d d y u x y z d d x x 1 0 0 1 0 0 , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ ∫ ∫         + ∂ ∂ ( )         + ( ) ∂ ∂ ( ) + ( ) ∂ ∂ ∫ ∫ ∞ z u x y z d d z z E z z z x 1 0 0 1 6 1 6 , , ,τ τ ϑ ρ σ ϑ u u x y z d d z 1 0 0 , , ,τ τ ϑ ϑ ( )         ∫ ∫ ∞ − ∂ ∂ ( ) − ∂ ∂ ( ) − ∂ ∂ ∫ ∫ ∫ ∫ ∞ ∞ x u x y z d d y u x y z d d z u x y 1 0 0 1 0 0 1 , , , , , , τ τ ϑ τ τ ϑ ϑ ϑ z z x y z d d , , ,τ τ ϑ ϑ ( )         ∫ ∫ ∞ 0 0
  • 20. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 25 − ( ) ( ) ( ) ∂ ∂ ( ) + ∫ ∫ ∞ K z z z z T x y z d d u z β ρ τ τ ϑ ϑ , , , 0 0 0 . Framework this paper, we determine the concentration of dopant, concentrations of radiation defects, and components of displacement vector using the second-order approximation framework method of averaging of function corrections. This approximation is usually enough good approximation to make qualitative analysis and to obtain some quantitative results. All obtained results have been checked by comparison with the results of numerical simulations. DISCUSSION Inthissection,weanalyzedthedynamicsofredistributionsofdopantandradiationdefectsduringannealing and under influence of mismatch-induced stress and modification of porosity. Typical distributions of concentrations of dopant in heterostructures are presented in Figures 2 and 3 for diffusion and ion types of doping, respectively. These distributions have been calculated for the case when the value of dopant diffusion coefficient in doped area is larger than in nearest areas. The figures show that inhomogeneity of heterostructure gives us possibility to increase compactness of concentrations of dopants and at the same time to increase homogeneity of dopant distribution in doped part of epitaxial layer. However, framework this approach of manufacturing of bipolar transistor, it is necessary to optimize annealing of dopant and/or radiation defects. Reason of this optimization is the following. If annealing time is small, the dopant did not achieve any interfaces between materials of heterostructure. In this situation, one cannot find any modifications of distribution of concentration of dopant. If annealing time is large, distribution of concentration of dopant is too homogenous. We optimize annealing time framework recently introduces approach.[12,29-36] Framework this criterion, we approximate the real distribution of concentration of dopant by step-wise function [Figures 4 and 5]. Farther, we determine the optimal values of annealing time by minimization of the following mean squared error: U L L L C x y z x y z d z d y d x x y z L L L z y x = ( )− ( )     ∫ ∫ ∫ 1 0 0 0 , , , , , Θ  , (15) Where, ψ (x,y,z) is the approximation function. Dependences of optimal values of annealing time on parameters are presented in Figures 6 and 7 for diffusion and ion types of doping, respectively. It should Figure 2: Distributions of concentration of infused dopant in heterostructure from Figure 1 in direction, which is perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under condition when the value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate
  • 21. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 26 be noted that it is necessary to anneal radiation defects after ion implantation. One could find spreading of concentration of distribution of dopant during this annealing. In the ideal case, distribution of dopant Figure 3: Distributions of concentration of implanted dopant in heterostructure from Figure 1 in direction, which is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 correspond to annealing time Θ = 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 2 and 4 correspond to annealing time Θ = 0.0057(Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 1 and 2 correspond to homogenous sample. Curves 3 and 4 correspond to heterostructure under condition when the value of dopant diffusion coefficient in epitaxial layer is larger than the value of dopant diffusion coefficient in substrate Figure 4: Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of dopant. Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds to increasing of annealing time Figure 5: Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of dopant. Curves 2–4 are real distributions of dopant for different values of annealing time. Increasing of the number of curve corresponds to increase of annealing time
  • 22. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 27 achieves appropriate interfaces between materials of heterostructure during annealing of radiation defects. If dopant did not achieve any interfaces during annealing of radiation defects, it is practicably to additionally anneal the dopant. In this situation, optimal value of additional annealing time of implanted dopant is smaller than annealing time of infused dopant. Farther, we analyzed the influence of relaxation of mechanical stress on distribution of dopant in doped areas of heterostructure. Under the following condition ε0 0, one can find compression of distribution of concentration of dopant near interface between materials of heterostructure. Contrary (at ε0 0), one can find spreading of distribution of concentration of dopant in this area. This changing of distribution of concentration of dopant could be at least partially compensated using laser annealing.[36] This type of annealing gives us possibility to accelerate diffusion of dopant and another process in annealed area due to inhomogeneous distribution of temperature and Arrhenius law. Accounting relaxation of mismatch- induced stress in heterostructure could lead to change of optimal values of annealing time. At the same time, modification of porosity gives us possibility to decrease the value of mechanical stress. On the one Figure 6: Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of mean squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 Figure 7: Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
  • 23. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 28 hand, mismatch-induced stress could be used to increase density of elements of integrated circuits, on the other hand, could lead to generation dislocations of the discrepancy. Figures 8 and 9 show distributions of concentration of vacancies in porous materials and component of displacement vector, which are perpendicular to interface between layers of heterostructure. CONCLUSION In this paper, we model redistribution of infused and implanted dopants with account relaxation mismatch-induced stress during manufacturing field-effect heterotransistors framework a broadband power amplifier. We formulate recommendations for optimization of annealing to decrease dimensions of transistors and to increase their density. We formulate recommendations to decrease mismatch-induced stress. Analytical approach to model diffusion and ion types of doping with account concurrent changing of parameters in space and time has been introduced. At the same time, the approach gives us possibility to take into account nonlinearity of considered processes. REFERENCES 1. Lachin VI, Savelov NS. Electronics. Phoenix: Rostov-on-Don; 2001. 2. Polishscuk A. Anadigm Programmable Analog ICs: The Entire Spectrum of Analog Electronics on a Single Chip, 1st Meeting. Vol. 12. Modern Electronics; 2004. p. 8-11. 3. Volovich G. Modern Chips UM3Ch Class D Manufactured by Firm MPS. Modern Electronics, Issue 2; 2006. p. 10-7. 4. Kerentsev A, Lanin V. Constructive-technological Features of MOSFET-transistors. Power Electronics, Issue 1; 2008. p. 34-8. Figure 8: Normalized dependences of component uz of displacement vector on coordinate z for non-porous (curve 1) and porous (curve 2) epitaxial layers Figure 9: Normalized dependences of vacancy concentrations on coordinate z in unstressed (curve 1) and stressed (curve 2) epitaxial layers
  • 24. Pankratov: On manufacturing of a broadband power amplifiers AJCSE/Jan-Mar-2019/Vol 4/Issue 1 29 5. AgeevAO,BelyaevAE,BoltovetsNS,IvanovVN,KonakovaRV,YaKudrikPM,etal.Au-TiBx -n-6H-SiCSchottkybarrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors 2009;43:865‑71. 6. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors 2009;43:939-42. 7. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, Parshin EO. Formation of donor centers upon annealing of dysprosium-and holmium-implanted silicon. Semiconductors 1998;32:921-3. 8. Ermolovich IB, Milenin VV, Red’ko RA, Red’ko SM. Specific features of recombination processes in CdTe films produced in different temperature conditions of growth and subsequent annealing. Semiconductors 2009;43:980-4. 9. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett. 2013;102:53901-5. 10. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 2013;102:152114-8. 11. Volokobinskaya NI, Komarov IN, Matyukhina TV, Reshetnikov VI, Rush AA, Falina IV, et al. A study of technological processes in the production of high-power high-voltage bipolar transistors incorporating an array of inclusions in the collector region. Semiconductors 2001;35:1013-7. 12. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58-82. 13. Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates. Phys Solid State 2016;58:1448-52. 14. Trukhanov EM, Kolesnikov AV, Loshkarev ID. Long-range stresses generated by misfit dislocations in epitaxial films. Russ Microelectron 2015;44:552-8. 15. Pankratov EL, Bulaeva EA. On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model physical processes in reactors for epitaxy from gas phase during growth films. Rev Theor Sci 2015;3:365-98. 16. Ong KK, Pey KL, Lee PS, Wee AT, WangXC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4. 17. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2005;98:94901-5. 18. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics Quantum Electron 2003;46:749-55. 19. Chen B, Shen L, Liu S, Zheng Y, Gao J. A broadband, high isolation millimeter-wave CMOS power amplifier using a transformer and transmission line matching topology. Analog. Integr Circ Sig Process 2014;81:537-47. 20. Zhang YW, Bower AF. Numerical simulations of island formation in a coherent strained epitaxial thin film system. J Mech Phys Solids 1999;47:2273-97. 21. Landau LD, Lefshits EM. Theoretical Physics. 7 Theory of Elasticity. Moscow: Physmatlit; 2001. 22. Kitayama M, Narushima T, Carter WC, Cannon RM, Glaeser AM. The wulff shape of alumina: I, modeling the kinetics of morphological evolution. J Am Ceram Soc 2000;83:2561-71. Kitayama M, Narushima T, Glaeser AM. The wulff shape of alumina: II, experimental measurements of pore shape evolution rates. J Am Ceram Soc 2000;83:2572-83. 23. Cheremskoy PG, Slesov VV, Betekhtin VI. Pore in Solid Bodies. Moscow: Energoatomizdat; 1990. 24. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 25. Fahey PM, Griffin PB, Plummer JD. Diffusion and point defects in silicon. Rev Mod Phys 1989;61:289-388. 26. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 27. Mynbaeva MG, Mokhov EN, Lavrent’ev EA, Mynbaev KD. High-temperature diffusion doping of porous silicon carbide. Technol Phys Lett 2008;34:731-7. 28. Sokolov YD. About the definition of dynamic forces in the mine lifting. Appl Mech 1955;1:23-35. 29. Pankratov EL. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity. Russ Microelectron 2007;36:33-9. 30. Pankratov EL. Redistribution of a dopant during annealing of radiation defects in a multilayer structure by laser scans for production of an implanted-junction rectifier. Int J Nanosci 2008;7:187-97. 31. Pankratov EL, Bulaeva EA. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using overlayers. Int J Micro Nano Scale Transp 2012;3:119-30. 32. Pankratov EL, Bulaeva EA. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. Int J ModPhys B 2015;29:1550023-1-1550023-12. 33. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. J Comp Theor Nanosci 2017;14:4885-99. 34. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater Sci Semicond Process 2015;34:260-8. 35. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization. Int J Micro Nano Scale Transp 2014;4:17-31. 36. Pankratov EL. Local doping and optimal annealing of a mesh multilayer structure to decrease the spatial dimensions of integrated p-n-junctions. Nano 2009;6:31-40.