SlideShare a Scribd company logo
1 of 23
SISTEM PERSAMAAN LINEAR
Pada bagian ini dibahas tentang bentuk sistem persamaan linear homogen dan
non-homogen dan penyelesaiannya dengan menggunakan operasi elementer baris dan
kolom atau eliminasi Gauss. Dalam penyelesaian sistem persamaan linear dengan
eliminasi Gauss dikenal istilah matriks eselon baris dan matriks eselon baris tereduksi.
Namun kedua matriks tersebut tidak dilakukan disini.
Persamaan linear berbentuk: a1x + a2y = b merupakan persamaan linear dengan
satu dua variabel, yaitu variabel x dan y. Secara umum didefinisikan bahwa sebuah
persamaan linear dalam n variabel, yaitu variabel x1, x2, x3, ..., xn dapat ditulis dalam
bentuk:
a1x1 + a2x2 + a3x3 + … + an xn = b
dengan a1, a2, a3, …, an dan b adalah konstanta-konstanta real.
Pertanyaan buat Anda, bagaimanakah menentukan himpunan penyelesaian dari
persamaan berikut.
a. 5x + 3y = 2
b. 2x1 + x2 – x3 = 8
Suatu sistem persamaan linear berbentuk:
a11x1 + a12x2 + a13x3 + …. + a1nxn = b1
a21x1 + a22x2 + a23x3 + …. + a2nxn = b2
.
.
.

am1x1 + am2x2 + am3x3 + …. + amnxn = bm
merupakan sistem persamaan linear dengan m persamaan dan n variabel.
Dalam bentuk matriks persamaan tersebut dapat ditulis:

1
 a 11
a
 21
 a 31

 ...
a m1


a 12

a 13

...

a 22

a 23

...

a 32
...

a 33
...

...
...

a m2

a m3

...

 a 11
a
 21
dengan A =  a 31

 ...
a m1


a 1n   x 1   b1 
a 2n   x 2   b 2 
   
a 3n   x 3  =  b 3  atau AX = B
   
...   ...   ... 
a mn   x n  b m 
   

a 12

a 13

...

a 22
a 32
...

a 23
a 33
...

...
...
...

a m2

a m3

...

a 1n 
a 2n 

a 3n  , X =

... 
a mn 


 x1 
x 
 2
 x 3  , dan B =
 
 ... 
x n 
 

 b1 
b 
 2
 b 3  ……….(i)
 
 ... 
b m 
 

Jika nilai b1, b2, b3, …, bn tidak semuanya nol, maka sistem persamaan AX = B disebut
sistem persamaan linear non-homogen, sedangkan jika b1 = b2 = b3 = … = bn = 0, maka
sistem persamaan AX = B disebut sistem persamaan linear homogen. Sistem persamaan
linear non- homogen ada yang mempunyai penyelesaian tunggal, penyelesaian tak
terhingga, dan ada yang tidak mempunyai penyelesaian.
Khusus sistem persamaan linear dua persamaan dengan 2 variabel yang
berbentuk:

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

a. tidak mempunyai penyelesaian, jika

a 21 a 22 b 2
=
≠
;
a 11 a 12 b1

b. mempunyai penyelesaian tak hingga, jika

a 21 a 22 b 2
=
=
;
a 11 a 12 b1

c. mempunyai penyelesaian tunggal, jika tidak semua

a 21 a 22
≠
.
a 11 a 12

Contoh 1.1.:
Tentukan sistem persamaan berikut mempunyai penyelesaian tunggal, penyelesaian tak
hingga, atau tidak mempunyai penyelesaian.
1. 5x1 + 3x2 = 5
15x1 + 9x2 = 15
2. x1 – 3x2 = 10
5x1 + 2x2 = 7

2
3. -2x1 + x2 = 4
8x1 – 4x2 = 9
Penyelesaian:
1. a11 = 5; a12 = 3; b1 = 5
a21 = 15; a22 = 9; b2 = 15
a 21 a 22 b 2
=
=
=3
a 11 a 12 b1

Jadi sistem persamaan mempunyai penyelesaian di titik dengan jumlah tak hingga.
2. a11 = 1; a12 = -3; b1 = 10
a21 = 5; a22 = 2; b2 = 7
a 21
a
a
a
2
= 5; 22 = − → 21 ≠ 22
a 11
a 12
3
a 11 a 12

Jadi sistem persamaan mempunyai penyelesaian tunggal.
3. a11 = -2; a12 = 1; b1 = 4
a21 = 8; a22 = -4; b2 = 9
a 21 a 22
b
a
a
b
9
=
= −4 dan 2 = → 21 = 22 ≠ 2
a 11 a 12
b1 4
a 11 a 12 b1

Jadi sistem persamaan tidak mempunyai penyelesaian.
Salah satu cara untuk menyelesaikan sistem persamaan linear adalah dengan
menggunakan operasi baris elementer, yaitu dengan menggantikan sistem yang diketahui
dengan sistem baru yang mempunyai himpunan penyelesaian yang sama, tetapi lebih
mudah penyelesaiannya. Sistem yang baru ini didapatkan melalui langkah-langkah
menurut tiga aturan operasi yang berikut, untuk menghilangkan variabelnya.
1. Kalikan sebuah baris dengan konstanta yang tidak nol.
2. Dua baris saling ditukarkan.
3. Jumlahkan baris yang telah dikalikan dengan baris yang lain.
Contoh 1.2.:
Penyelesaian sistem persamaan :
5x – 3y + 2z = 28

3
7x + 4y – z = 24
3x + 5y + 4z = 28
dengan menggunakan operasi baris elementer adalah sebagai berikut. Ubah sistem
menjadi bentuk matriks.
5

7
3


−3

2

4

−1

5

7

5
3


4
−3
5

tukarkan baris pertama dengan baris kedua, diperoleh

4

28 

24  →
28 


−1
2
4

24 

28  →
28 


baris pertama dijumlahkan dengan -2 kali baris ketiga,
diperoleh

1

5
3


−6

−9

−3

2

5

−32 

28  →
28 


4

baris kedua dijumlakan dengan -5 kali baris pertama,

dan
baris ketiga dijumlahkan dengan -3 kali baris pertama,
diperoleh
1

0
0


−6

−9

27

47

23

31

1

0
0


−6

−9

1

47
27

23

−32 

188  →
124 


31

baris kedua dikalikan dengan

1
, diperoleh
27

− 32 

188
27  → baris pertama dijumlahkan dengan 6 kali baris kedua,
124 


dan baris ketiga dijumlahkan dengan -23 kali baris
kedua diperoleh

 1 0 13
9

47
 0 1 27
 0 0 − 244
27

1 0

0 1
0 0


13
9
47
27

1

88
9
188
27
976
27

−



27
 → baris ketiga dikalikan dengan − 244 diperoleh





13
 → baris pertama dijumlahkan dengan − 9 baris ketiga, dan
4


88
9
188
27

baris kedua dijumlahkan dengan − 47 diperoleh
27

4
1

0
0


0

0

1

0

0

1

4

0
4


Jadi penyelesaiannya hádala x = 4, y = 0, dan z = 4
Penyelesaian sistem persamaan linear dengan menggunakan operasi elementer
baris dan kolom disebut Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mereduksi
sebuah matriks lengkap menjadi bentuk-bentuk matriks yang sederhana. Matriks yang
sederhana ini ekuivalen dengan matriks semula, yang didapat dengan melakukan
terhingga operasi baris elementer, sehingga dapat lebih mudah diselesaikan. Matriksmatriks yang sederhana ini disebut matriks eselon baris dan matriks eselon baris
tereduksi. Apa perbedaan matriks eselon baris dan matriks eselon baris tereduksi?
Silahkan Anda pelajari sendiri.
Persamaan (i) jika b1 = b2 = b3 = … = bn = 0 disebut sistem persamaan linear
homogen. Dalam suatu sistem persamaan linear homogen, tepat satu dari pernyataan
berikut ini benar:
(1) Sistem hanya mempunyai penyelesaian trivial;
(2) Sistem mempunyai penyelesaian trivial sebagai tambahan dari penyelesaian nontrivial.
Suatu sistem persamaan linear homogen yang mempunyai penyelesaian nontrivial jika jumlah variabel lebih banyak dari banyaknya persamaan. Hal ini sesuai
dengan teorema berikut.
Teorema 1.1.
Suatu sistem persamaan linear homogen yang mempunyai variabel lebih banyak
dari banyaknya persamaan selalu mempunyai penyelesaian yang tak hingga.
Contoh 1.3.
Selesaikanlah sistem persamaan linear homogen berikut dengan eliminasi Gauss.
3x1 + x2 + 2x3 – x4 = 0
2x1 – x2 – 3x3 + 2x4 = 0
2x1 + 3x2 + x3 – 3x4 = 0
5
Matriks lengkap dari sistem ini adalah:
3
2

2


1
−1

2
−3

−1
2

3

1

−3

0
0 → baris pertama dikalikan dengan

0


1
2

2


1
3

2
3

−1
3
2
−3

0
0 → baris kedua dijumlahkan dengan -2 kali baris pertama, dan

0


−1 − 3
3
1

1
3

diperoleh

baris ketiga dijumlahkan dengan -2 kali baris pertama
diperoleh
2
− 1 0
1 1
3
3
3


5
13
8
3
 0 − 3 − 3 3 0 → baris kedua dikalikan dengan − 5 diperoleh
 0 7 − 1 − 7 0
3
3
3



 1 1 2 − 1 0
3
3
3


13
8
0 1 5 − 5 0 → baris pertama dijumlahkan dengan − 1 kali baris kedua, dan
3

7
7
1
 0 3 − 3 − 3 0


baris ketiga dijumlahkan dengan − 7
3

kali baris kedua

diperoleh

 1 0 − 1 1 0
5
5


13
5
0 1 5 − 8 0 → baris ketiga dikalikan dengan − 32 diperoleh
5

 0 0 − 32 7 0
5
5


 1 0 − 1 1 0
5
5


13
0 1 5 − 8 0 → baris pertama dijumlahkan dengan
5

7
 0 0 1 − 32 0



1
5

kali baris ketiga, dan

baris kedua dijumlahkan dengan − 13
5

kali baris ketiga

diperoleh
5
 1 0 0 32 0


33
0 1 0 − 32 0

7
 0 0 1 − 32 0



6
Dari matriks eselon baris tereduksi terakhir diperoleh:
x1 +

5
5
x4 = 0 → x1 = x4
32
32

x2 –

33
33
x4 = 0 → x2 =
x4
32
32

x3 –

7
7
x4 = 0 → x3 =
x4
32
32

Jika x4 = t dengan t ∈ R, maka x1 = -

5
33
7
t; x2 =
t; dan x3 =
t.
32
32
32

Dengan demikian diperoleh jawaban yang tak terhingga banyaknya.

Contoh 1.4.
Diketahui sistem persamaan: x1 + 3x2 + 5x3 + x4 = 0
x1 + 3x2 + 5x3 + 2x4 = 0
Penyelesaian sistem tersebut dengan menggunakan eliminasi Gauss sebagai berikut.
1


1


3
3

5
5

1
2

0
→
0


1
0


3
0

5
0

1
1

0
→
0


1
0


3
0

5
0

0
1

0
0


Dari matriks terakhir tersebut diperoleh: x4 = 0 dan
x1 + 3x2 + 5x3 = 0
Jika x2 = s dan x3 = t untuk s dan t anggota R, maka x1 = -3s – 5t.
Dengan demikian penyelesaiannya adalah: (-3s – 5t, s, t, 0).
TRANSFORMASI LINEAR
Transformasi linear merupakan fungsi khusus dari suatu ruang vektor ke ruang
vektor yang lain. Fungsi khusus tersebut didefinisikan sebagai berikut.
Definisi 2.1.
Jika T: V1 → V2 merupakan fungsi dari ruang vektor V1 ke ruang vektor V2, maka T
dinamakan transformasi linear, jika dan hanya jika
1. T(u + v) = F(u) + F(v) untuk setiap vektor u dan v di V1.
2. T(ku) = kT(u) untuk setiap vektor u di V1 dan setiap skalar k.
7
Contoh 2.1.
Untuk fungsi-fungsi berikut, selidiki apakah fungsi tersebut merupakan transformasi
linear? Berikan alasannya!
1. Fungsi F1 dari R2 ke R2 yang didefinisikan dengan F1((x,y)) = (2x – y, x) untuk setiap
(x,y) ∈ R2.
2. Fungsi F2 dari R2 ke R2 yang didefinisikan dengan F2((x,y)) = (x2,y) untuk setiap (x,y)
∈ R2.
3. Fungsi T1 dari R3 ke R3 yang didefinisikan dengan T1((x,y,z)) = (1,z,y) untuk setiap
(x,y,z) ∈ R3.
4. Fungsi T2 dari R3 ke R3 yang didefinisikan dengan T2((x,y,z)) = (x + 2y, y – z, x + 2z)
untuk setiap (x,y,z) ∈ R3.
Penyelesaian:
1. Misalkan u = (x1 , y1) dan v = (x2 , y2) anggota R2 dan k sebarang skalar.
F1(u + v) = F1((x1 + x2 , y1 + y2))
= (2(x1 + x2) – (y1 + y2), x1 + x2)
= (2x1 + 2x2 – y1 – y2, x1 + x2)
= ((2x1 – y1) + (2x2 – y2), x1 + x2)
= (2x1 – y1, x1) + (2x2 – y2, x2)
= F1(x1, y1) + F(x2, y2)
= F1(u) + F1(v).
F1(ku)

= F1((kx1, ky1))
= (2kx1 – ky1, kx1)
= k(2x1 – y1, x1)
= kF1(x1, y1)
= kF1(u).

Jadi, F1 adalah transformasi linear.
2. Misalkan u = (x1 , y1) dan v = (x2 , y2) anggota R2 dan k sebarang skalar.

8
F2(u + v) = F2((x1 + x2 , y1 + y2))
= ((x1 + x2)2, y1 + y2)
= (x12 + 2x1x2 + x22, y1 + y2)
F2(u) + F2(v) = F2((x1 , y1)) + F2((x2 , y2))
= (x12,y1) + (x22,y2)
= (x12 + x22, y1 + y2)
Ternyata F2(u + v) ≠ F2(u) + F2(v).
Jadi, F2 bukan transformasi linear.
Untuk contoh nomor 3 dan 4, silahkan Anda selesaikan seperti contoh nomor 1 dan 2.
Ada beberapa definisi dan teorema berkenaan dengan transformasi linear yang
harus Anda ketahui, karena definisi dan teorema tersebut sering digunakan dalam aljabar
linear. Definisi dan teorema tersebut adalah:
Definisi 2.2.
1. Misalkan T: V1 → V2 adalah transformasi linear. Himpunan vektor di V 1 yang oleh T
dipetakan ke o dinamakan kernel (ruang nol dari T). Himpunan tersebut dinyatakan
oleh ker(T). Himpunan semua vektor di V 2 yang merupakan bayangan oleh T
dinamakan jangkauan dati T. Himpunan tersebut dinyatakan oleh R(T).
Dengan demikian ker(T) = {v ∈ V1 T(v) = 0}, dan R(T) = {w ∈ V2 T(v) = w, untuk
setiap v ∈ V1}.
2. Jika T: V1 → V2 adalah transformasi linear, maka dimensi jangkauan dari T
dinamakan rank T dan dimensi kernel dari T dinamakan nulitas T.
Teorema 2.1.
1. Jika T: V1 → V2 adalah transformasi linear, maka
a. T(o) = o.
b. T (- v) = -T(v) untuk setiap v di V1.
c. T(v – w) = T(v) – T(w) untuk setiap v dan w di V1.
2. Jika T: V1 → V2 adalah transformasi linear, maka:
a. Ker (T) adalah ruang bagian dari V1.

9
b. R(T) adalah ruang bagian dari V2.
3. Jika T: V1 → V2 adalah transformasi linear dari ruang vektor V1 yang berdimensi n ke
ruang vektor V2, maka (rank dari T) + (nulitas dari T) = n.
Berikut ini merupakan contoh-contoh soal yang berkenaan dengan ker(T), R(T),
rank T, dan nulitas T pada transformasi linear T.
Contoh 2.2.
1. Diketahui T : R2 → R2 adalah transformasi linear yang dirumuskan oleh:
T(x,y) = (x – 2y, 3x – 6y) untuk setiap (x,y) ∈ R2.
a. Apakah vektor berikut terletak dalam ker(T).
1) (-2,-1)
2) (1,3)
b. Apakah vektor berikut terletak dalam R(T).
1) (1,5)
2) (3,9)
2. Diketahui T : R3 → R3 yang dirumuskan oleh T(x,y,z) = (x – y + 3z, 5x + 6y – 4z, 7x
+ 4y + 2z). Tentukan:
a. rank T.
b. nulitas T.
Penyelesaian:
1. a. 1) T(-2,-1) = (-2 + 2, -6 + 6) = (0,0).
Jadi (-2,-1) terletak dalam ker(T).
2) T(1,3) = (1 – 6, 3 – 18) = (-5,-15).
Jadi (1,3) tidak terletak dalam ker(T).
b. 1) Perhatikan bentuk T(x,y) = (1,5), diperoleh sistem persamaan linear:
x – 2y = 1
3x – 6y = 5
a11 = 1; a12 = -2; b1 = 1
a21 = 3; a22 = -6; b2 = 5

10
a 21 a 22
b
a
a
b
=
= 3 dan 2 = 5 → 21 = 22 ≠ 2
a 11 a 12
b1
a 11 a 12 b1

Jadi sistem persamaan tersebut tidak mempunyai penyelesaian, sehingga
vektor (1,5) tidak terletak dalam R(T).
2) Bentuk T(x,y) = (3,9) akan menghasilkan sistem persamaan linear:
x – 2y = 3
3x – 6y = 9
a11 = 1; a12 = -2; b1 = 3
a21 = 3; a22 = -6; b2 = 9
a 21 a 22 b 2
=
=
=3
a 11 a 12 b1

Jadi sistem persamaan mempunyai penyelesaian dengan jumlah tak hingga.
Bentuk matriks dari sistem persamaan tersebut adalah:
1
3


−2
−6

3
→
9


1
0


−2
0

3
0


Diperoleh x – 2y = 3
Misal y = t, maka x = 2y + 3
Penyelesaian: x = 2y + 3 dan y = t
Dengan mengambil t = 1 didapat x = 5 dan y = 1.
Ini berarti T (5,1) = (5 – 2, 15 – 6) = (3,9).
Jadi (3,9) terletak dalam R(T).

2. a. Bentuk matriks Tdiubah menjadi

1

 −1

3


5 7
1
5
7 
1 5 7 





6 4 → 0 11 11  → 0 1 1 





−4 2 
0 −19 −19 
0 0 0 






.
Jadi basis R(T) adalah {(1,5,7),(0,1,1)}, akibatnya rank T = 2.
b. Ambil sebarang vektor (x,y,z) di ker(T), maka T(x,y,z) = (0,0,0).
Didapat (x – y + 3z, 5x + 6y – 4z, 7x + 4y + 2z) = (0,0,0).
x – y + 3z = 0
5x + 6y – 4z = 0

11
7x + 4y + 2z = 0
Bentuk matriks dari sistem persamaan tersebut adalah:
1
5

7


−1

3

6
4

−4
2

0
0 →

0


−1


1

→ 0

0



3

11
11

1
0

0


−19
−19

0
1
0

x+

1 − 1
3
0


19
0 1 − 11 0
0 11 − 19 0




0

0

0



14
z=0
11

y–

Diperoleh:

14
11
19
−
11
0

0
0 →

0


19
z=0
11

Misal z = t, maka x = -

14
19
t dan y =
t
11
11

Penyelesaian dari sistem persamaan linear tersebut adalah:
x=-

14
19
t; y =
t; dan z = t
11
11
 14 19 
 14 19 
,
,1 . Hal Ini berarti  −
,
,1 pembangun
 11 11 
 11 11 

sehingga (x,y,z) = t  −

 14 19 
,
,1 bebas linear.
 11 11 

ker(T) dan vektor  −

 14 19 
Jadi  − , ,1 basis untuk ker (T), sehingga nulitas T = 1.
 11 11 

Dari a dan b didapat rank T = 2; nulitas T = 1; dimensi R 3 = 3, dan terpenuhi bahwa
rank T + nulitas T = dimensi R3.
NILAI EIGEN, VEKTOR EIGEN DAN DIAGONALISASI MATRIKS
Nilai Eigen dan Vektor Eigen
Nilai eigen dan vektor eigen suatu matriks didefinisikan sebagai berikut.
Definisi 3.1.
12
Misalkan An × n, maka vektor x ≠ 0 di R n disebut vektor eigen (eigen vektor) dari
A jika Ax adalah kelipatan skalar dari x, yaitu Ax = λx untuk suatu skalar λ. Skalar λ
dinamakan nilai eigen (eigen value) dari A.
Ax = λx ⇔ Ax = λIx
⇔ (λI – A)x = 0
⇔ (A - λI)x = 0
Persamaan di atas akan mempunyai penyelesaian tak nol (mempunyai penyelesaian non
trivial) jika dan hanya jika: det (λ I – A) = 0
Persamaan det (λ I – A) = 0 dengan λ sebagai variabel disebut persamaan karakteristik
dari matriks A. Akar-akar atau skalar-skalar yang memenuhi persamaan ini adalah nilainilai eigen (nilai-nilai karakteristik) dari matriks A. Dengan kata lain, untuk menentukan
nilai

eigen suatu matriks,

maka

kita harus

menentukan

dahulu persamaan

karakteristiknya. Det (λ I – A) ≡ f(λ) yaitu berupa polinom dalam λ yang dinamakan
polinom karakteristik.
Dengan demikian jika An

× n

, maka persamaan karakteristik dari matriks A

mempunyai derajat n dengan bentuk
det (λ I – A) = f(λ) = a0 + a1x1 + a2x2 + … + an - 1xn - 1 + anxn = 0
Menurut teorema dasar aljabar kita dapatkan bahwa persamaan karakteristik
tersebut mempunyai paling banyak n penyelesaian yang berbeda (Ingat metode Horner
dan persamaan pangkat tinggi). Jadi, suatu matriks yang berukuran n × n paling banyak
mempunyai n-nilai eigen yang berbeda.
Berikut ini diberikan contoh-contoh soal yang berkaitan dengan nilai eigen dan
persamaan karakteristik suatu matriks.
Contoh 3.1.

13
5

1. Matriks A = 
− 4

− 3
2
 mempunyai vector eigen x = 4 , karena Ax merupakan
1 
 
− 3
1 


5

kelipatan dari x, yaitu Ax

= 
− 4

2
− 2
2
4 = − 4 = -1 4 = -x. Dengan
 
 
 

demikian λ = -1 adalah nilai eigen dari matriks A.
− 3

2. Tentukan nilai eigen dan vektor eigen dari matriks − 7
− 6


1
5
6

−1 
−1  .

− 2


Untuk menentukan nilai eigen dan vektor eigen, kita harus membentuk persamaan
− 3

karakteristik. Misal − 7
− 6


1
5
6

−1 
−1  = A.

− 2


Persamaan karakteristik: det (λI – A) = 0
 1
 
⇒ det  λ 0
 0
 

0
1
0

0  − 3
0 − − 7
 
 
1 − 6

1
5
6

−1 

−1  = 0


− 2 

 λ + 3 − 1
1 


λ −5
1  = 0
⇒ det   7

 6
− 6 λ + 2 




⇒ (λ + 3)(λ – 5)(λ + 2) – 6 – 42 – 6(λ – 5) + 6(λ + 3) + 7(λ + 2) = 0
⇒ λ3 – 12λ – 46 = 0
⇒ (λ + 2)2(λ– 4) = 0
⇒ λ = -2; λ = 4
Jadi nilai eigen adalah -2 dan 4.
Untuk menentukan vektor eigen kita misalkan vektor eigen tersebut x = (a,b,c), dan
kita mencari x yang memenuhi (λI – A)x = 0
 1
 
⇒  λ 0
 0
 

0
1
0

0  − 3
0 − − 7
 
1 − 6
 

1
5
6

− 1  a 
 
− 1  b  = 0

− 2  c 
  

14
 λ + 3 − 1
1   a 

 
λ −5
1   b  = 0
⇒  7

 6
− 6 λ + 2  c 

  

 1

Untuk λ = -2 ⇒  7
 6


−1
−7
−6

1   a 
 
1   b  = 0 .

  
0  c 

Matriks yang bersesuaian:

1
7


6

−1

1

−7
−6

1
0

0 0

0 0
1 − 1


0
0 →

0


1 − 1 1 0


1
1 − 1 7 0 →
1 − 1 0 0



1 0

1
0
7
0 0


Diperoleh: c = 0 dan a = b
Andai a = t, maka b = t, dan c =0.
1 
 
Jadi vector eigen yang bersesuaian dengan λ = -2 adalah t 1 .
0
 

 7

Untuk λ = 4 ⇒  7
 6


−1
−1
−6

1  a 
 
1  b  = 0 .

6  c 
  

Matriks yang bersesuaian:

7
7

6

6
0

1


−1

1

−1
−6

1
6

0
0

0
0

−1

1

0
7

0 → 0

1
0



−1

1

0
−1

0
1

0
0 →

0


0
0

0


Diperoleh: a = 0 dan b = c
Andai c = t, maka b = t, dan a = 0.
0
 
Jadi vector eigen yang bersesuaian dengan λ = 4 adalah t 1 .
1
 

15
1

3. Tentukan nilai eigen dan vektor eigen dari matriks 0
0


1
2
0

0
0 .

1


Persamaan karakteristik: det (λI – A) = 0
 1
 
⇒ det  λ 0
 0
 

0
1
0

0 1
0 − 0
 
1 0
 

 λ − 1 − 1

λ −2
⇒ det   0
 0
0


1
2
0

0 

0  = 0

1 


0 

0  = 0

λ − 1 


⇒ (λ – 1)(λ – 2)(λ – 1) = 0
⇒ λ = 1; λ = 2
Jadi nilai eigen adalah 1 dan 2.
Penentuan vektor eigen sebagai berikut.
(λI – A)x = 0
 1
 
⇒  λ 0
 0
 

0
1
0

0 1
0 − 0
 
1 0
 

 λ − 1 − 1

λ −2
⇒  0
 0
0

 0

Untuk λ = 1 ⇒  0
 0


1
2
0

0  a 
 
0  b  = 0

1  c 
  

0   a 
 
0   b  = 0

λ − 1  c 
  

−1 0  a 
 
−1 0  b  = 0 .

0 0  c 
  

Diperoleh: a = s; b = 0; dan c = t.
1
 
Jadi vector eigen yang bersesuaian dengan λ = 1 adalah s 0 +
0
 

 1

Untuk λ = 2 ⇒  0
 0


0
 
t 0 .
1
 

−1 0  a 
 
0 0  b  = 0 .

0 1   c 
  

16
Diperoleh: a = b dan c = 0
Andai b = t, maka a = t, dan c =0.
1 
 
Jadi vector eigen yang bersesuaian dengan λ = 2 adalah t 1 .
0
 

Ruang Eigen
Vektor eigen suatu matriks An×n yang bersesuaian dengan nilai eigen λ berada
dalam ruang penyelesaian (λI – A)x = 0. Ruang penyelesaian ini dinamakan ruang eigen
(eigen space) matriks A. Secara jelas ruang eigen didefinisikan sebagai berikut.
Definisi 3.2.
Ruang penyelesaian sistem persamaan linear (λI – A)x = 0 atau (A - λI)x = 0
dinamakan ruang eigen dari matriks An×n.
Contoh 3.2.
Tentukan basis untuk ruang eigen dari matriks:
− 3

1. A = − 7
− 6

1

2. B = 0
0


1
5
6
1
2
0

−1 
−1  .

− 2

0
0

1


Penyelesaian:
Untuk menentukan basis ruang eigen suatu matriks harus melalui langkah-langkah
berikut.
•

membentuk persamaan karakteristik

•

menentukan nilai eigen dengan menyelesaikan persamaan karakteristik

•

menentukan vector eigen yang bersesuaian dengan nilai eigen yang diperoleh

Berdasarkan Contoh 3.1. matriks A dan matriks B sudah diperoleh nilai eigen dan vector
eigennya, yaitu:

17
− 3

1. Nilai eigen matriks A = − 7
− 6


1
5
6

−1 
−1  adalah -2 dan 4.

− 2


1 
 
Vektor eigen yang bersesuaian dengan λ = -2 adalah vector tak nol x = t 1 . Jadi,
0
 

vector

1 
1 
  merupakan suatu basis untuk ruang eigen dari matriks A yang
0
 

bersesuaian dengan λ = 1. Sedangkan vektor eigen yang bersesuaian dengan λ = 4
0
0
1
 
adalah vector tak nol x = t   . Jadi, vektor 1 merupakan suatu basis untuk ruang
1
1
 
 

eigen dari matriks A yang bersesuaian dengan λ = 4.
1

2. Nilai eigen matriks B = 0
0


1
2
0

0
0 adalah 1 dan 2.

1


1
 
Vektor eigen yang bersesuaian dengan λ = 1 adalah vector tak nol x = s 0 +
 
0

0
 
t 0 .
 
1

1
0
0
 
Jadi, vektor   dan 0 merupakan basis untuk ruang eigen dari matriks B yang
0
1
 
 

bersesuaian dengan λ = 1. Sedangkan vektor eigen yang bersesuaian dengan λ = 2
1 
1 
1 
 
adalah vector tak nol x = t   . Jadi, vektor 1 merupakan suatu basis untuk ruang
0
0
 
 

eigen dari matriks A yang bersesuaian dengan λ = 2.
Diagonalisasi Matriks

18
Salah satu penerapan dari nilai eigen dan vektor eigen adalah menentukan matriks
diagonal dan matriks pendiagonalisasi suatu matriks. Matriks diagonal adalah matriks
persegi dengan unsur-unsur pada diagonal utama tidak semuanya nol dan unsur-unsur di
luar diagonal utama sama dengan nol. Bentuk umum matriks diagonal adalah:
a 11
0

D=  0

 ...
0


0
a 22

0
0

0

a 33

...
0

...
0

0 
0 

... 0  dengan paling sedikit satu di antara aij ≠ 0 untuk i = j

... 0 
... a nn 

...
...

Untuk membahas diagonalisasi matriks diawali dengan definisi berikut.
Definisi 4.1.
Suatu matriks persegi (matriks bujursangkar) A dikatakan dapat didiagonalkan
(dapat didiagonalisasi) jika ada suatu matriks P yang invertibel sedemikian rupa sehingga
P-1AP adalah suatu matriks diagonal. Matriks P dikatakan mendiagonalkan A
(mendiagonalisasi) matriks A. Matriks yang dapat didiagonalkan disebut diagonalizable.
Langkah-langkah yang digunakan untuk mendiagonalisasi suatu matriks sama
dengan menentukan basis ruang eigen suatu matriks, yaitu:
•

membentuk persamaan karakteristik

•

menentukan nilai eigen dengan menyelesaikan persamaan karakteristik

•

menentukan vector eigen yang bersesuaian dengan nilai eigen yang diperoleh

•

menentukan basis ruang eigen yang bersesuaian dengan nilai eigen

Contoh 4.1.
3

Diketahui matriks M = − 2
0


−2
3
0

0
0

5


Carilah:
a

matriks P yang mendiagonalisasi M.

b matriks diagonal D = P-1MP.

19
Penyelesaian:
Persamaan karakteristik matriks M adalah:
det (λI – M) = 0
 1
 
⇒ det  λ 0
 0
 

0 

0  = 0

5 


−2
3
0

0  3
0 − − 2
 
1  0
 

0
1
0

 λ − 3
2
0 


λ −3
0  = 0
⇒ det   2

 0
0
λ − 5 



⇒ (λ – 3)(λ – 3)(λ – 5) – 4(λ – 5) = 0
⇒ (λ – 1)(λ – 5)2 = 0
⇒ λ = 1; λ = 5
Jadi nilai eigen adalah 1 dan 5.
Penentuan vektor eigen sebagai berikut.
(λI – A)x = 0
 1
 
⇒  λ 0
 0
 

0
1
0

0  3
0 − − 2
 
1  0
 

−2
3
0

0  a 
 
0  b  = 0

5  c 
  

 λ − 3
2
0   a 

 
λ −3
0   b  = 0
⇒  2

 0
0
λ − 5  c 
  

 − 2

Untuk λ = 1 ⇒   2
 0


2
−2
0

0   a 
 
0   b  = 0 .

− 4  c 
  

− 2

Matriks yang bersesuaian:  2
0


2
−2

0
0

0

−4

0
1

0 → 0

0
0



−1
0

0
0

0

1

0
0

0


Diperoleh: a = b; dan c = 0.
Jika b = t, maka a = t dan c = 0.
1 
 
Vector eigen yang bersesuaian dengan λ = 1 adalah t 1 .
0
 

20
1 
 
Jadi basis ruang eigen yang bersesuaian dengan λ = 1 adalah 1 .
0
 

 2

Untuk λ = 5 ⇒  2
 0


2
2
0

0  a 
 
0  b  = 0 .

0  c 
  

2

Matriks yang bersesuaian: 2
0


2

0

2
0

0

0
1

0 → 0

0
0



1

0

0
0

0
0

0
0

0


Diperoleh: a = -b dan c = -t
Andai b = s, maka a = -s, dan c = t.
−1
 
Jadi vector eigen yang bersesuaian dengan λ = 5 adalah s  1  +
0 
 

0
 
t 0 .
1
 

−1
 
Jadi basis ruang eigen yang bersesuaian dengan λ = 5 adalah  1  dan
0 
 

a

1

Dengan demikian matriks P yang mendiagonalisasi M adalah 1
0


−1
1
0

0
0
 .
1
 

0
0 .

1


b. Matriks diagonal yang terbentuk adalah: D = P-1MP.
Untuk menentukan D, kita harus menentukan dahulu P-1. Melalui perhitungan dalam

 1
 2
 1
menentukan invers suatu matriks diperoleh P-1 = −
 2
 0


1

sendiri bahwa PP = P P = 0

0
-1

-1

0
1
0

1
2
1
2
0


0

0 . Anda dapat buktikan

1



0
0 .


1

21
Dengan demikian D = P-1MP
 1
 2
 1
⇒ D = −
 2
 0



1
2
1
2
0


0
3
0 − 2


1  0



 1
 2
 1
= −
 2
 0



1
2
1
2
0


0
 1
0 1


1 0



−2
3
0

−5
5
0

0
0

5


1
1

0


0
1
0 = 0


0
5



−1
1
0

0
5
0

0
0

1


0
0

5


Tidak semua matriks dapat didiagonalisasi. Berikut ini merupakan teorema yang
dapat memudahkan kita untuk mengetahui suatu matriks dapat didiagonalisasi atau tidak.
Teorema 4.1.
1. Jika v1, v2, v3, ... , vk adalah vektor-vektor eigen dari matriks A yang bersesuaian
dengan nilai-nilai eigen λ1, λ2, λ3, ... , λk yang berbeda, maka {v1, v2, v3, ... , vk}
adalah himpunan yang bebas linear.
2. Jika suatu matriks A berukuran n × n mempunyai nilai-nilai eigen yang berbedabeda, maka A dapat didiagonalisasi.
Contoh 4.1.
− 3

Perhatikan bahwa matriks A = − 7
− 6


1
5
6

−1 
−1  tidak dapat didiagonalisasi. Berdasarkan

− 2


Contoh 3.1. diperoleh:
•

nilai eigen matriks A adalah -2 dan 4

•

1 
 
vektor eigen yang bersesuaian denga0n λ = -2 adalah vector tak nol x = t 1
0
 

•

1 
 
basis ruang eigen yang bersesuaian dengan λ = -2 adalah 1
0
 

22
•

0
 
vektor eigen yang bersesuaian dengan λ = 4 adalah vector tak nol x = t 1
1
 

•

0
 
basis ruang eigen A yang bersesuaian dengan λ = 4 adalah 1
1
 

Karena basis ruang eigen berdimensi dua atau hanya terdapat dua vector yang bebas
linear (< 3), maka A tidak dapat didiagonalisasi.

23

More Related Content

What's hot

Metode numerik untuk menyelesaikan sistem persamaan linier
Metode numerik untuk menyelesaikan sistem persamaan linierMetode numerik untuk menyelesaikan sistem persamaan linier
Metode numerik untuk menyelesaikan sistem persamaan linier
ahmad puji ardi
 
Linier simultan bridon
Linier simultan bridonLinier simultan bridon
Linier simultan bridon
Muhammad Ridho
 
Penyelesaian Sistem Persamaan Linear Dua Variabel dan Tiga Variabelo
Penyelesaian Sistem Persamaan Linear Dua Variabel dan Tiga VariabeloPenyelesaian Sistem Persamaan Linear Dua Variabel dan Tiga Variabelo
Penyelesaian Sistem Persamaan Linear Dua Variabel dan Tiga Variabelo
Christian Lokas
 

What's hot (20)

Splkdv (Sistem Persamaan Linear dan kuadrat Dua Variabel)
Splkdv (Sistem Persamaan Linear dan kuadrat Dua Variabel)Splkdv (Sistem Persamaan Linear dan kuadrat Dua Variabel)
Splkdv (Sistem Persamaan Linear dan kuadrat Dua Variabel)
 
Spl 3 variabel
Spl 3 variabelSpl 3 variabel
Spl 3 variabel
 
Metode numerik untuk menyelesaikan sistem persamaan linier
Metode numerik untuk menyelesaikan sistem persamaan linierMetode numerik untuk menyelesaikan sistem persamaan linier
Metode numerik untuk menyelesaikan sistem persamaan linier
 
Bab 3(3) spl
Bab 3(3) splBab 3(3) spl
Bab 3(3) spl
 
PPT SPtLDV
PPT SPtLDV PPT SPtLDV
PPT SPtLDV
 
Power Point Sistem Persamaan Linear Tiga Variabel
Power Point Sistem Persamaan Linear Tiga VariabelPower Point Sistem Persamaan Linear Tiga Variabel
Power Point Sistem Persamaan Linear Tiga Variabel
 
Metamtika teknik 03-bernouli dan pdl-tk1
Metamtika teknik 03-bernouli dan pdl-tk1Metamtika teknik 03-bernouli dan pdl-tk1
Metamtika teknik 03-bernouli dan pdl-tk1
 
Sistem Persamaan Linear Dua Variabel
Sistem Persamaan Linear Dua VariabelSistem Persamaan Linear Dua Variabel
Sistem Persamaan Linear Dua Variabel
 
Linier simultan bridon
Linier simultan bridonLinier simultan bridon
Linier simultan bridon
 
Desimal, kerapatan dan kalkulator
Desimal, kerapatan dan kalkulatorDesimal, kerapatan dan kalkulator
Desimal, kerapatan dan kalkulator
 
spdv,spltv,and sptldv
spdv,spltv,and sptldvspdv,spltv,and sptldv
spdv,spltv,and sptldv
 
Penyelesaian Sistem Persamaan Linear Dua Variabel dan Tiga Variabelo
Penyelesaian Sistem Persamaan Linear Dua Variabel dan Tiga VariabeloPenyelesaian Sistem Persamaan Linear Dua Variabel dan Tiga Variabelo
Penyelesaian Sistem Persamaan Linear Dua Variabel dan Tiga Variabelo
 
Media Pembelajaran SPLDV Metode Eliminasi
Media Pembelajaran SPLDV Metode EliminasiMedia Pembelajaran SPLDV Metode Eliminasi
Media Pembelajaran SPLDV Metode Eliminasi
 
ketaksamaan
ketaksamaanketaksamaan
ketaksamaan
 
Powerpoint SPtLDV
Powerpoint SPtLDVPowerpoint SPtLDV
Powerpoint SPtLDV
 
Sistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan KuadratSistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan Kuadrat
 
Sistem Persamaan Linear
Sistem Persamaan LinearSistem Persamaan Linear
Sistem Persamaan Linear
 
Sistem persamaan dan pertidaksamaan Linear
Sistem persamaan dan pertidaksamaan LinearSistem persamaan dan pertidaksamaan Linear
Sistem persamaan dan pertidaksamaan Linear
 
Turunan dan aplikasinya
Turunan dan aplikasinyaTurunan dan aplikasinya
Turunan dan aplikasinya
 
SPLTV SMA Global Prestasi ( Tsani X sc 2 )
SPLTV SMA Global Prestasi ( Tsani X sc 2 ) SPLTV SMA Global Prestasi ( Tsani X sc 2 )
SPLTV SMA Global Prestasi ( Tsani X sc 2 )
 

Viewers also liked

matematika geodesi-transformasi linier
matematika geodesi-transformasi liniermatematika geodesi-transformasi linier
matematika geodesi-transformasi linier
aulia rachmawati
 
Ruang Peta dan Ruang Nol
Ruang Peta dan Ruang NolRuang Peta dan Ruang Nol
Ruang Peta dan Ruang Nol
bagus222
 
Buku Biologi SMA Kelas XII Subardi
Buku Biologi SMA Kelas XII SubardiBuku Biologi SMA Kelas XII Subardi
Buku Biologi SMA Kelas XII Subardi
Rian Maulana
 
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsistenMenentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
BAIDILAH Baidilah
 

Viewers also liked (12)

Tahap pemrograman
Tahap pemrogramanTahap pemrograman
Tahap pemrograman
 
matematika geodesi-transformasi linier
matematika geodesi-transformasi liniermatematika geodesi-transformasi linier
matematika geodesi-transformasi linier
 
20122 31-icl240-b-k-3
20122 31-icl240-b-k-320122 31-icl240-b-k-3
20122 31-icl240-b-k-3
 
Ruang Peta dan Ruang Nol
Ruang Peta dan Ruang NolRuang Peta dan Ruang Nol
Ruang Peta dan Ruang Nol
 
Buku Biologi SMA Kelas XII Subardi
Buku Biologi SMA Kelas XII SubardiBuku Biologi SMA Kelas XII Subardi
Buku Biologi SMA Kelas XII Subardi
 
Aplikasi matriks
Aplikasi matriksAplikasi matriks
Aplikasi matriks
 
Bahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdfBahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdf
 
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsistenMenentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
 
Bahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdfBahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdf
 
Modelo informe técnico, de obra
Modelo informe técnico, de obraModelo informe técnico, de obra
Modelo informe técnico, de obra
 
Interchange 2 part A
Interchange 2 part AInterchange 2 part A
Interchange 2 part A
 
What's Next in Growth? 2016
What's Next in Growth? 2016What's Next in Growth? 2016
What's Next in Growth? 2016
 

Similar to Draft 2

PPT_Kelompok3_Eliminasi Gauss.pptx
PPT_Kelompok3_Eliminasi Gauss.pptxPPT_Kelompok3_Eliminasi Gauss.pptx
PPT_Kelompok3_Eliminasi Gauss.pptx
IanVemasSilalahi
 
Sistem Persamaan Linear Dua Variabel
Sistem Persamaan Linear Dua VariabelSistem Persamaan Linear Dua Variabel
Sistem Persamaan Linear Dua Variabel
Christian Lokas
 
Persamaan garis
Persamaan garisPersamaan garis
Persamaan garis
Mat Ludin
 
Persamaan garis
Persamaan garisPersamaan garis
Persamaan garis
Mat Ludin
 

Similar to Draft 2 (20)

Gaussjordan
GaussjordanGaussjordan
Gaussjordan
 
Gaussjordan
GaussjordanGaussjordan
Gaussjordan
 
Sistem persamaan linier
Sistem persamaan linierSistem persamaan linier
Sistem persamaan linier
 
Pertemuan3&4
Pertemuan3&4Pertemuan3&4
Pertemuan3&4
 
PPT_Kelompok3_Eliminasi Gauss.pptx
PPT_Kelompok3_Eliminasi Gauss.pptxPPT_Kelompok3_Eliminasi Gauss.pptx
PPT_Kelompok3_Eliminasi Gauss.pptx
 
Presentation1
Presentation1Presentation1
Presentation1
 
Materi Aljabar Persamaan Linear
Materi Aljabar Persamaan LinearMateri Aljabar Persamaan Linear
Materi Aljabar Persamaan Linear
 
5 sistem persamaan linier
5 sistem persamaan linier5 sistem persamaan linier
5 sistem persamaan linier
 
Sistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan KuadratSistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan Kuadrat
 
Sistem Persamaan Linear Dua Variabel
Sistem Persamaan Linear Dua VariabelSistem Persamaan Linear Dua Variabel
Sistem Persamaan Linear Dua Variabel
 
Ppt aljabar matriks
Ppt aljabar matriksPpt aljabar matriks
Ppt aljabar matriks
 
Telaah matematika smp ppt
Telaah matematika smp pptTelaah matematika smp ppt
Telaah matematika smp ppt
 
Sistem persamaan linear dan kuadrat
Sistem persamaan linear dan kuadratSistem persamaan linear dan kuadrat
Sistem persamaan linear dan kuadrat
 
Pembahasan Makalah Perpotongan Garis Geometri Analitik
Pembahasan Makalah Perpotongan Garis Geometri AnalitikPembahasan Makalah Perpotongan Garis Geometri Analitik
Pembahasan Makalah Perpotongan Garis Geometri Analitik
 
INISIASI 4 - PDGK 4108.pptx
INISIASI 4 - PDGK 4108.pptxINISIASI 4 - PDGK 4108.pptx
INISIASI 4 - PDGK 4108.pptx
 
PPT - Sistem Persamaan Linear.ppt
PPT - Sistem Persamaan Linear.pptPPT - Sistem Persamaan Linear.ppt
PPT - Sistem Persamaan Linear.ppt
 
Aljabar
AljabarAljabar
Aljabar
 
Persamaan garis
Persamaan garisPersamaan garis
Persamaan garis
 
Persamaan garis
Persamaan garisPersamaan garis
Persamaan garis
 
Topik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linearTopik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linear
 

Recently uploaded

Kenakalan Remaja (Penggunaan Narkoba).ppt
Kenakalan Remaja (Penggunaan Narkoba).pptKenakalan Remaja (Penggunaan Narkoba).ppt
Kenakalan Remaja (Penggunaan Narkoba).ppt
novibernadina
 
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdfAksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
JarzaniIsmail
 
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptxPPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
MaskuratulMunawaroh
 
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 20241. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
DessyArliani
 

Recently uploaded (20)

BAHAN PAPARAN UU DESA NOMOR 3 TAHUN 2024
BAHAN PAPARAN UU DESA NOMOR 3 TAHUN 2024BAHAN PAPARAN UU DESA NOMOR 3 TAHUN 2024
BAHAN PAPARAN UU DESA NOMOR 3 TAHUN 2024
 
AKSI NYATA Numerasi Meningkatkan Kompetensi Murid_compressed (1) (1).pptx
AKSI NYATA  Numerasi  Meningkatkan Kompetensi Murid_compressed (1) (1).pptxAKSI NYATA  Numerasi  Meningkatkan Kompetensi Murid_compressed (1) (1).pptx
AKSI NYATA Numerasi Meningkatkan Kompetensi Murid_compressed (1) (1).pptx
 
Panduan Memahami Data Rapor Pendidikan 2024
Panduan Memahami Data Rapor Pendidikan 2024Panduan Memahami Data Rapor Pendidikan 2024
Panduan Memahami Data Rapor Pendidikan 2024
 
Kenakalan Remaja (Penggunaan Narkoba).ppt
Kenakalan Remaja (Penggunaan Narkoba).pptKenakalan Remaja (Penggunaan Narkoba).ppt
Kenakalan Remaja (Penggunaan Narkoba).ppt
 
PANDUAN PENGEMBANGAN KSP SMA SUMBAR TAHUN 2024 (1).pptx
PANDUAN PENGEMBANGAN KSP SMA SUMBAR TAHUN 2024 (1).pptxPANDUAN PENGEMBANGAN KSP SMA SUMBAR TAHUN 2024 (1).pptx
PANDUAN PENGEMBANGAN KSP SMA SUMBAR TAHUN 2024 (1).pptx
 
Aksi Nyata PMM Topik Refleksi Diri (1).pdf
Aksi Nyata PMM Topik Refleksi Diri (1).pdfAksi Nyata PMM Topik Refleksi Diri (1).pdf
Aksi Nyata PMM Topik Refleksi Diri (1).pdf
 
Aksi Nyata Menyebarkan (Pemahaman Mengapa Kurikulum Perlu Berubah) Oleh Nur A...
Aksi Nyata Menyebarkan (Pemahaman Mengapa Kurikulum Perlu Berubah) Oleh Nur A...Aksi Nyata Menyebarkan (Pemahaman Mengapa Kurikulum Perlu Berubah) Oleh Nur A...
Aksi Nyata Menyebarkan (Pemahaman Mengapa Kurikulum Perlu Berubah) Oleh Nur A...
 
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKAKELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
 
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdfAksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
 
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptxPPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
 
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 20241. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
 
MODUL PENDIDIKAN PANCASILA KELAS 6 KURIKULUM MERDEKA.pdf
MODUL PENDIDIKAN PANCASILA KELAS 6 KURIKULUM MERDEKA.pdfMODUL PENDIDIKAN PANCASILA KELAS 6 KURIKULUM MERDEKA.pdf
MODUL PENDIDIKAN PANCASILA KELAS 6 KURIKULUM MERDEKA.pdf
 
vIDEO kelayakan berita untuk mahasiswa.ppsx
vIDEO kelayakan berita untuk mahasiswa.ppsxvIDEO kelayakan berita untuk mahasiswa.ppsx
vIDEO kelayakan berita untuk mahasiswa.ppsx
 
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA.pdf
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA.pdfMODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA.pdf
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA.pdf
 
MODUL AJAR IPAS KELAS 3 KURIKULUM MERDEKA.pdf
MODUL AJAR IPAS KELAS 3 KURIKULUM MERDEKA.pdfMODUL AJAR IPAS KELAS 3 KURIKULUM MERDEKA.pdf
MODUL AJAR IPAS KELAS 3 KURIKULUM MERDEKA.pdf
 
AKSI NYATA TOPIK 1 MERDEKA BELAJAR. PPTX
AKSI NYATA TOPIK 1 MERDEKA BELAJAR. PPTXAKSI NYATA TOPIK 1 MERDEKA BELAJAR. PPTX
AKSI NYATA TOPIK 1 MERDEKA BELAJAR. PPTX
 
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptxOPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
 
PPT MODUL 6 DAN 7 PDGK4105 KELOMPOK.pptx
PPT MODUL 6 DAN 7 PDGK4105 KELOMPOK.pptxPPT MODUL 6 DAN 7 PDGK4105 KELOMPOK.pptx
PPT MODUL 6 DAN 7 PDGK4105 KELOMPOK.pptx
 
Prov.Jabar_1504_Pengumuman Seleksi Tahap 2_CGP A11 (2).pdf
Prov.Jabar_1504_Pengumuman Seleksi Tahap 2_CGP A11 (2).pdfProv.Jabar_1504_Pengumuman Seleksi Tahap 2_CGP A11 (2).pdf
Prov.Jabar_1504_Pengumuman Seleksi Tahap 2_CGP A11 (2).pdf
 
power point bahasa indonesia "Karya Ilmiah"
power point bahasa indonesia "Karya Ilmiah"power point bahasa indonesia "Karya Ilmiah"
power point bahasa indonesia "Karya Ilmiah"
 

Draft 2

  • 1. SISTEM PERSAMAAN LINEAR Pada bagian ini dibahas tentang bentuk sistem persamaan linear homogen dan non-homogen dan penyelesaiannya dengan menggunakan operasi elementer baris dan kolom atau eliminasi Gauss. Dalam penyelesaian sistem persamaan linear dengan eliminasi Gauss dikenal istilah matriks eselon baris dan matriks eselon baris tereduksi. Namun kedua matriks tersebut tidak dilakukan disini. Persamaan linear berbentuk: a1x + a2y = b merupakan persamaan linear dengan satu dua variabel, yaitu variabel x dan y. Secara umum didefinisikan bahwa sebuah persamaan linear dalam n variabel, yaitu variabel x1, x2, x3, ..., xn dapat ditulis dalam bentuk: a1x1 + a2x2 + a3x3 + … + an xn = b dengan a1, a2, a3, …, an dan b adalah konstanta-konstanta real. Pertanyaan buat Anda, bagaimanakah menentukan himpunan penyelesaian dari persamaan berikut. a. 5x + 3y = 2 b. 2x1 + x2 – x3 = 8 Suatu sistem persamaan linear berbentuk: a11x1 + a12x2 + a13x3 + …. + a1nxn = b1 a21x1 + a22x2 + a23x3 + …. + a2nxn = b2 . . . am1x1 + am2x2 + am3x3 + …. + amnxn = bm merupakan sistem persamaan linear dengan m persamaan dan n variabel. Dalam bentuk matriks persamaan tersebut dapat ditulis: 1
  • 2.  a 11 a  21  a 31   ... a m1  a 12 a 13 ... a 22 a 23 ... a 32 ... a 33 ... ... ... a m2 a m3 ...  a 11 a  21 dengan A =  a 31   ... a m1  a 1n   x 1   b1  a 2n   x 2   b 2      a 3n   x 3  =  b 3  atau AX = B     ...   ...   ...  a mn   x n  b m      a 12 a 13 ... a 22 a 32 ... a 23 a 33 ... ... ... ... a m2 a m3 ... a 1n  a 2n   a 3n  , X =  ...  a mn    x1  x   2  x 3  , dan B =    ...  x n     b1  b   2  b 3  ……….(i)    ...  b m    Jika nilai b1, b2, b3, …, bn tidak semuanya nol, maka sistem persamaan AX = B disebut sistem persamaan linear non-homogen, sedangkan jika b1 = b2 = b3 = … = bn = 0, maka sistem persamaan AX = B disebut sistem persamaan linear homogen. Sistem persamaan linear non- homogen ada yang mempunyai penyelesaian tunggal, penyelesaian tak terhingga, dan ada yang tidak mempunyai penyelesaian. Khusus sistem persamaan linear dua persamaan dengan 2 variabel yang berbentuk: a11x1 + a12x2 = b1 a21x1 + a22x2 = b2 a. tidak mempunyai penyelesaian, jika a 21 a 22 b 2 = ≠ ; a 11 a 12 b1 b. mempunyai penyelesaian tak hingga, jika a 21 a 22 b 2 = = ; a 11 a 12 b1 c. mempunyai penyelesaian tunggal, jika tidak semua a 21 a 22 ≠ . a 11 a 12 Contoh 1.1.: Tentukan sistem persamaan berikut mempunyai penyelesaian tunggal, penyelesaian tak hingga, atau tidak mempunyai penyelesaian. 1. 5x1 + 3x2 = 5 15x1 + 9x2 = 15 2. x1 – 3x2 = 10 5x1 + 2x2 = 7 2
  • 3. 3. -2x1 + x2 = 4 8x1 – 4x2 = 9 Penyelesaian: 1. a11 = 5; a12 = 3; b1 = 5 a21 = 15; a22 = 9; b2 = 15 a 21 a 22 b 2 = = =3 a 11 a 12 b1 Jadi sistem persamaan mempunyai penyelesaian di titik dengan jumlah tak hingga. 2. a11 = 1; a12 = -3; b1 = 10 a21 = 5; a22 = 2; b2 = 7 a 21 a a a 2 = 5; 22 = − → 21 ≠ 22 a 11 a 12 3 a 11 a 12 Jadi sistem persamaan mempunyai penyelesaian tunggal. 3. a11 = -2; a12 = 1; b1 = 4 a21 = 8; a22 = -4; b2 = 9 a 21 a 22 b a a b 9 = = −4 dan 2 = → 21 = 22 ≠ 2 a 11 a 12 b1 4 a 11 a 12 b1 Jadi sistem persamaan tidak mempunyai penyelesaian. Salah satu cara untuk menyelesaikan sistem persamaan linear adalah dengan menggunakan operasi baris elementer, yaitu dengan menggantikan sistem yang diketahui dengan sistem baru yang mempunyai himpunan penyelesaian yang sama, tetapi lebih mudah penyelesaiannya. Sistem yang baru ini didapatkan melalui langkah-langkah menurut tiga aturan operasi yang berikut, untuk menghilangkan variabelnya. 1. Kalikan sebuah baris dengan konstanta yang tidak nol. 2. Dua baris saling ditukarkan. 3. Jumlahkan baris yang telah dikalikan dengan baris yang lain. Contoh 1.2.: Penyelesaian sistem persamaan : 5x – 3y + 2z = 28 3
  • 4. 7x + 4y – z = 24 3x + 5y + 4z = 28 dengan menggunakan operasi baris elementer adalah sebagai berikut. Ubah sistem menjadi bentuk matriks. 5  7 3  −3 2 4 −1 5 7  5 3  4 −3 5 tukarkan baris pertama dengan baris kedua, diperoleh 4 28   24  → 28   −1 2 4 24   28  → 28   baris pertama dijumlahkan dengan -2 kali baris ketiga, diperoleh 1  5 3  −6 −9 −3 2 5 −32   28  → 28   4 baris kedua dijumlakan dengan -5 kali baris pertama, dan baris ketiga dijumlahkan dengan -3 kali baris pertama, diperoleh 1  0 0  −6 −9 27 47 23 31 1  0 0  −6 −9 1 47 27 23 −32   188  → 124   31 baris kedua dikalikan dengan 1 , diperoleh 27 − 32   188 27  → baris pertama dijumlahkan dengan 6 kali baris kedua, 124   dan baris ketiga dijumlahkan dengan -23 kali baris kedua diperoleh  1 0 13 9  47  0 1 27  0 0 − 244 27  1 0  0 1 0 0  13 9 47 27 1 88 9 188 27 976 27 −   27  → baris ketiga dikalikan dengan − 244 diperoleh     13  → baris pertama dijumlahkan dengan − 9 baris ketiga, dan 4  88 9 188 27 baris kedua dijumlahkan dengan − 47 diperoleh 27 4
  • 5. 1  0 0  0 0 1 0 0 1 4  0 4  Jadi penyelesaiannya hádala x = 4, y = 0, dan z = 4 Penyelesaian sistem persamaan linear dengan menggunakan operasi elementer baris dan kolom disebut Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mereduksi sebuah matriks lengkap menjadi bentuk-bentuk matriks yang sederhana. Matriks yang sederhana ini ekuivalen dengan matriks semula, yang didapat dengan melakukan terhingga operasi baris elementer, sehingga dapat lebih mudah diselesaikan. Matriksmatriks yang sederhana ini disebut matriks eselon baris dan matriks eselon baris tereduksi. Apa perbedaan matriks eselon baris dan matriks eselon baris tereduksi? Silahkan Anda pelajari sendiri. Persamaan (i) jika b1 = b2 = b3 = … = bn = 0 disebut sistem persamaan linear homogen. Dalam suatu sistem persamaan linear homogen, tepat satu dari pernyataan berikut ini benar: (1) Sistem hanya mempunyai penyelesaian trivial; (2) Sistem mempunyai penyelesaian trivial sebagai tambahan dari penyelesaian nontrivial. Suatu sistem persamaan linear homogen yang mempunyai penyelesaian nontrivial jika jumlah variabel lebih banyak dari banyaknya persamaan. Hal ini sesuai dengan teorema berikut. Teorema 1.1. Suatu sistem persamaan linear homogen yang mempunyai variabel lebih banyak dari banyaknya persamaan selalu mempunyai penyelesaian yang tak hingga. Contoh 1.3. Selesaikanlah sistem persamaan linear homogen berikut dengan eliminasi Gauss. 3x1 + x2 + 2x3 – x4 = 0 2x1 – x2 – 3x3 + 2x4 = 0 2x1 + 3x2 + x3 – 3x4 = 0 5
  • 6. Matriks lengkap dari sistem ini adalah: 3 2  2  1 −1 2 −3 −1 2 3 1 −3 0 0 → baris pertama dikalikan dengan  0  1 2  2  1 3 2 3 −1 3 2 −3 0 0 → baris kedua dijumlahkan dengan -2 kali baris pertama, dan  0  −1 − 3 3 1 1 3 diperoleh baris ketiga dijumlahkan dengan -2 kali baris pertama diperoleh 2 − 1 0 1 1 3 3 3   5 13 8 3  0 − 3 − 3 3 0 → baris kedua dikalikan dengan − 5 diperoleh  0 7 − 1 − 7 0 3 3 3    1 1 2 − 1 0 3 3 3   13 8 0 1 5 − 5 0 → baris pertama dijumlahkan dengan − 1 kali baris kedua, dan 3  7 7 1  0 3 − 3 − 3 0   baris ketiga dijumlahkan dengan − 7 3 kali baris kedua diperoleh  1 0 − 1 1 0 5 5   13 5 0 1 5 − 8 0 → baris ketiga dikalikan dengan − 32 diperoleh 5   0 0 − 32 7 0 5 5    1 0 − 1 1 0 5 5   13 0 1 5 − 8 0 → baris pertama dijumlahkan dengan 5  7  0 0 1 − 32 0   1 5 kali baris ketiga, dan baris kedua dijumlahkan dengan − 13 5 kali baris ketiga diperoleh 5  1 0 0 32 0   33 0 1 0 − 32 0  7  0 0 1 − 32 0   6
  • 7. Dari matriks eselon baris tereduksi terakhir diperoleh: x1 + 5 5 x4 = 0 → x1 = x4 32 32 x2 – 33 33 x4 = 0 → x2 = x4 32 32 x3 – 7 7 x4 = 0 → x3 = x4 32 32 Jika x4 = t dengan t ∈ R, maka x1 = - 5 33 7 t; x2 = t; dan x3 = t. 32 32 32 Dengan demikian diperoleh jawaban yang tak terhingga banyaknya. Contoh 1.4. Diketahui sistem persamaan: x1 + 3x2 + 5x3 + x4 = 0 x1 + 3x2 + 5x3 + 2x4 = 0 Penyelesaian sistem tersebut dengan menggunakan eliminasi Gauss sebagai berikut. 1   1  3 3 5 5 1 2 0 → 0  1 0  3 0 5 0 1 1 0 → 0  1 0  3 0 5 0 0 1 0 0  Dari matriks terakhir tersebut diperoleh: x4 = 0 dan x1 + 3x2 + 5x3 = 0 Jika x2 = s dan x3 = t untuk s dan t anggota R, maka x1 = -3s – 5t. Dengan demikian penyelesaiannya adalah: (-3s – 5t, s, t, 0). TRANSFORMASI LINEAR Transformasi linear merupakan fungsi khusus dari suatu ruang vektor ke ruang vektor yang lain. Fungsi khusus tersebut didefinisikan sebagai berikut. Definisi 2.1. Jika T: V1 → V2 merupakan fungsi dari ruang vektor V1 ke ruang vektor V2, maka T dinamakan transformasi linear, jika dan hanya jika 1. T(u + v) = F(u) + F(v) untuk setiap vektor u dan v di V1. 2. T(ku) = kT(u) untuk setiap vektor u di V1 dan setiap skalar k. 7
  • 8. Contoh 2.1. Untuk fungsi-fungsi berikut, selidiki apakah fungsi tersebut merupakan transformasi linear? Berikan alasannya! 1. Fungsi F1 dari R2 ke R2 yang didefinisikan dengan F1((x,y)) = (2x – y, x) untuk setiap (x,y) ∈ R2. 2. Fungsi F2 dari R2 ke R2 yang didefinisikan dengan F2((x,y)) = (x2,y) untuk setiap (x,y) ∈ R2. 3. Fungsi T1 dari R3 ke R3 yang didefinisikan dengan T1((x,y,z)) = (1,z,y) untuk setiap (x,y,z) ∈ R3. 4. Fungsi T2 dari R3 ke R3 yang didefinisikan dengan T2((x,y,z)) = (x + 2y, y – z, x + 2z) untuk setiap (x,y,z) ∈ R3. Penyelesaian: 1. Misalkan u = (x1 , y1) dan v = (x2 , y2) anggota R2 dan k sebarang skalar. F1(u + v) = F1((x1 + x2 , y1 + y2)) = (2(x1 + x2) – (y1 + y2), x1 + x2) = (2x1 + 2x2 – y1 – y2, x1 + x2) = ((2x1 – y1) + (2x2 – y2), x1 + x2) = (2x1 – y1, x1) + (2x2 – y2, x2) = F1(x1, y1) + F(x2, y2) = F1(u) + F1(v). F1(ku) = F1((kx1, ky1)) = (2kx1 – ky1, kx1) = k(2x1 – y1, x1) = kF1(x1, y1) = kF1(u). Jadi, F1 adalah transformasi linear. 2. Misalkan u = (x1 , y1) dan v = (x2 , y2) anggota R2 dan k sebarang skalar. 8
  • 9. F2(u + v) = F2((x1 + x2 , y1 + y2)) = ((x1 + x2)2, y1 + y2) = (x12 + 2x1x2 + x22, y1 + y2) F2(u) + F2(v) = F2((x1 , y1)) + F2((x2 , y2)) = (x12,y1) + (x22,y2) = (x12 + x22, y1 + y2) Ternyata F2(u + v) ≠ F2(u) + F2(v). Jadi, F2 bukan transformasi linear. Untuk contoh nomor 3 dan 4, silahkan Anda selesaikan seperti contoh nomor 1 dan 2. Ada beberapa definisi dan teorema berkenaan dengan transformasi linear yang harus Anda ketahui, karena definisi dan teorema tersebut sering digunakan dalam aljabar linear. Definisi dan teorema tersebut adalah: Definisi 2.2. 1. Misalkan T: V1 → V2 adalah transformasi linear. Himpunan vektor di V 1 yang oleh T dipetakan ke o dinamakan kernel (ruang nol dari T). Himpunan tersebut dinyatakan oleh ker(T). Himpunan semua vektor di V 2 yang merupakan bayangan oleh T dinamakan jangkauan dati T. Himpunan tersebut dinyatakan oleh R(T). Dengan demikian ker(T) = {v ∈ V1 T(v) = 0}, dan R(T) = {w ∈ V2 T(v) = w, untuk setiap v ∈ V1}. 2. Jika T: V1 → V2 adalah transformasi linear, maka dimensi jangkauan dari T dinamakan rank T dan dimensi kernel dari T dinamakan nulitas T. Teorema 2.1. 1. Jika T: V1 → V2 adalah transformasi linear, maka a. T(o) = o. b. T (- v) = -T(v) untuk setiap v di V1. c. T(v – w) = T(v) – T(w) untuk setiap v dan w di V1. 2. Jika T: V1 → V2 adalah transformasi linear, maka: a. Ker (T) adalah ruang bagian dari V1. 9
  • 10. b. R(T) adalah ruang bagian dari V2. 3. Jika T: V1 → V2 adalah transformasi linear dari ruang vektor V1 yang berdimensi n ke ruang vektor V2, maka (rank dari T) + (nulitas dari T) = n. Berikut ini merupakan contoh-contoh soal yang berkenaan dengan ker(T), R(T), rank T, dan nulitas T pada transformasi linear T. Contoh 2.2. 1. Diketahui T : R2 → R2 adalah transformasi linear yang dirumuskan oleh: T(x,y) = (x – 2y, 3x – 6y) untuk setiap (x,y) ∈ R2. a. Apakah vektor berikut terletak dalam ker(T). 1) (-2,-1) 2) (1,3) b. Apakah vektor berikut terletak dalam R(T). 1) (1,5) 2) (3,9) 2. Diketahui T : R3 → R3 yang dirumuskan oleh T(x,y,z) = (x – y + 3z, 5x + 6y – 4z, 7x + 4y + 2z). Tentukan: a. rank T. b. nulitas T. Penyelesaian: 1. a. 1) T(-2,-1) = (-2 + 2, -6 + 6) = (0,0). Jadi (-2,-1) terletak dalam ker(T). 2) T(1,3) = (1 – 6, 3 – 18) = (-5,-15). Jadi (1,3) tidak terletak dalam ker(T). b. 1) Perhatikan bentuk T(x,y) = (1,5), diperoleh sistem persamaan linear: x – 2y = 1 3x – 6y = 5 a11 = 1; a12 = -2; b1 = 1 a21 = 3; a22 = -6; b2 = 5 10
  • 11. a 21 a 22 b a a b = = 3 dan 2 = 5 → 21 = 22 ≠ 2 a 11 a 12 b1 a 11 a 12 b1 Jadi sistem persamaan tersebut tidak mempunyai penyelesaian, sehingga vektor (1,5) tidak terletak dalam R(T). 2) Bentuk T(x,y) = (3,9) akan menghasilkan sistem persamaan linear: x – 2y = 3 3x – 6y = 9 a11 = 1; a12 = -2; b1 = 3 a21 = 3; a22 = -6; b2 = 9 a 21 a 22 b 2 = = =3 a 11 a 12 b1 Jadi sistem persamaan mempunyai penyelesaian dengan jumlah tak hingga. Bentuk matriks dari sistem persamaan tersebut adalah: 1 3  −2 −6 3 → 9  1 0  −2 0 3 0  Diperoleh x – 2y = 3 Misal y = t, maka x = 2y + 3 Penyelesaian: x = 2y + 3 dan y = t Dengan mengambil t = 1 didapat x = 5 dan y = 1. Ini berarti T (5,1) = (5 – 2, 15 – 6) = (3,9). Jadi (3,9) terletak dalam R(T). 2. a. Bentuk matriks Tdiubah menjadi 1   −1  3  5 7 1 5 7  1 5 7       6 4 → 0 11 11  → 0 1 1       −4 2  0 −19 −19  0 0 0       . Jadi basis R(T) adalah {(1,5,7),(0,1,1)}, akibatnya rank T = 2. b. Ambil sebarang vektor (x,y,z) di ker(T), maka T(x,y,z) = (0,0,0). Didapat (x – y + 3z, 5x + 6y – 4z, 7x + 4y + 2z) = (0,0,0). x – y + 3z = 0 5x + 6y – 4z = 0 11
  • 12. 7x + 4y + 2z = 0 Bentuk matriks dari sistem persamaan tersebut adalah: 1 5  7  −1 3 6 4 −4 2 0 0 →  0  −1  1  → 0  0   3 11 11 1 0  0  −19 −19 0 1 0 x+ 1 − 1 3 0   19 0 1 − 11 0 0 11 − 19 0    0  0  0   14 z=0 11 y– Diperoleh: 14 11 19 − 11 0 0 0 →  0  19 z=0 11 Misal z = t, maka x = - 14 19 t dan y = t 11 11 Penyelesaian dari sistem persamaan linear tersebut adalah: x=- 14 19 t; y = t; dan z = t 11 11  14 19   14 19  , ,1 . Hal Ini berarti  − , ,1 pembangun  11 11   11 11  sehingga (x,y,z) = t  −  14 19  , ,1 bebas linear.  11 11  ker(T) dan vektor  −  14 19  Jadi  − , ,1 basis untuk ker (T), sehingga nulitas T = 1.  11 11  Dari a dan b didapat rank T = 2; nulitas T = 1; dimensi R 3 = 3, dan terpenuhi bahwa rank T + nulitas T = dimensi R3. NILAI EIGEN, VEKTOR EIGEN DAN DIAGONALISASI MATRIKS Nilai Eigen dan Vektor Eigen Nilai eigen dan vektor eigen suatu matriks didefinisikan sebagai berikut. Definisi 3.1. 12
  • 13. Misalkan An × n, maka vektor x ≠ 0 di R n disebut vektor eigen (eigen vektor) dari A jika Ax adalah kelipatan skalar dari x, yaitu Ax = λx untuk suatu skalar λ. Skalar λ dinamakan nilai eigen (eigen value) dari A. Ax = λx ⇔ Ax = λIx ⇔ (λI – A)x = 0 ⇔ (A - λI)x = 0 Persamaan di atas akan mempunyai penyelesaian tak nol (mempunyai penyelesaian non trivial) jika dan hanya jika: det (λ I – A) = 0 Persamaan det (λ I – A) = 0 dengan λ sebagai variabel disebut persamaan karakteristik dari matriks A. Akar-akar atau skalar-skalar yang memenuhi persamaan ini adalah nilainilai eigen (nilai-nilai karakteristik) dari matriks A. Dengan kata lain, untuk menentukan nilai eigen suatu matriks, maka kita harus menentukan dahulu persamaan karakteristiknya. Det (λ I – A) ≡ f(λ) yaitu berupa polinom dalam λ yang dinamakan polinom karakteristik. Dengan demikian jika An × n , maka persamaan karakteristik dari matriks A mempunyai derajat n dengan bentuk det (λ I – A) = f(λ) = a0 + a1x1 + a2x2 + … + an - 1xn - 1 + anxn = 0 Menurut teorema dasar aljabar kita dapatkan bahwa persamaan karakteristik tersebut mempunyai paling banyak n penyelesaian yang berbeda (Ingat metode Horner dan persamaan pangkat tinggi). Jadi, suatu matriks yang berukuran n × n paling banyak mempunyai n-nilai eigen yang berbeda. Berikut ini diberikan contoh-contoh soal yang berkaitan dengan nilai eigen dan persamaan karakteristik suatu matriks. Contoh 3.1. 13
  • 14. 5 1. Matriks A =  − 4 − 3 2  mempunyai vector eigen x = 4 , karena Ax merupakan 1    − 3 1   5 kelipatan dari x, yaitu Ax =  − 4 2 − 2 2 4 = − 4 = -1 4 = -x. Dengan       demikian λ = -1 adalah nilai eigen dari matriks A. − 3  2. Tentukan nilai eigen dan vektor eigen dari matriks − 7 − 6  1 5 6 −1  −1  .  − 2  Untuk menentukan nilai eigen dan vektor eigen, kita harus membentuk persamaan − 3  karakteristik. Misal − 7 − 6  1 5 6 −1  −1  = A.  − 2  Persamaan karakteristik: det (λI – A) = 0  1   ⇒ det  λ 0  0   0 1 0 0  − 3 0 − − 7     1 − 6 1 5 6 −1   −1  = 0   − 2   λ + 3 − 1 1    λ −5 1  = 0 ⇒ det   7   6 − 6 λ + 2     ⇒ (λ + 3)(λ – 5)(λ + 2) – 6 – 42 – 6(λ – 5) + 6(λ + 3) + 7(λ + 2) = 0 ⇒ λ3 – 12λ – 46 = 0 ⇒ (λ + 2)2(λ– 4) = 0 ⇒ λ = -2; λ = 4 Jadi nilai eigen adalah -2 dan 4. Untuk menentukan vektor eigen kita misalkan vektor eigen tersebut x = (a,b,c), dan kita mencari x yang memenuhi (λI – A)x = 0  1   ⇒  λ 0  0   0 1 0 0  − 3 0 − − 7   1 − 6   1 5 6 − 1  a    − 1  b  = 0  − 2  c     14
  • 15.  λ + 3 − 1 1   a     λ −5 1   b  = 0 ⇒  7   6 − 6 λ + 2  c        1  Untuk λ = -2 ⇒  7  6  −1 −7 −6 1   a    1   b  = 0 .     0  c  Matriks yang bersesuaian: 1 7   6 −1 1 −7 −6 1 0 0 0  0 0 1 − 1  0 0 →  0  1 − 1 1 0   1 1 − 1 7 0 → 1 − 1 0 0   1 0  1 0 7 0 0  Diperoleh: c = 0 dan a = b Andai a = t, maka b = t, dan c =0. 1    Jadi vector eigen yang bersesuaian dengan λ = -2 adalah t 1 . 0    7  Untuk λ = 4 ⇒  7  6  −1 −1 −6 1  a    1  b  = 0 .  6  c     Matriks yang bersesuaian: 7 7  6  6 0  1  −1 1 −1 −6 1 6 0 0 0 0 −1 1 0 7  0 → 0  1 0   −1 1 0 −1 0 1 0 0 →  0  0 0  0  Diperoleh: a = 0 dan b = c Andai c = t, maka b = t, dan a = 0. 0   Jadi vector eigen yang bersesuaian dengan λ = 4 adalah t 1 . 1   15
  • 16. 1  3. Tentukan nilai eigen dan vektor eigen dari matriks 0 0  1 2 0 0 0 .  1  Persamaan karakteristik: det (λI – A) = 0  1   ⇒ det  λ 0  0   0 1 0 0 1 0 − 0   1 0    λ − 1 − 1  λ −2 ⇒ det   0  0 0  1 2 0 0   0  = 0  1   0   0  = 0  λ − 1   ⇒ (λ – 1)(λ – 2)(λ – 1) = 0 ⇒ λ = 1; λ = 2 Jadi nilai eigen adalah 1 dan 2. Penentuan vektor eigen sebagai berikut. (λI – A)x = 0  1   ⇒  λ 0  0   0 1 0 0 1 0 − 0   1 0    λ − 1 − 1  λ −2 ⇒  0  0 0   0  Untuk λ = 1 ⇒  0  0  1 2 0 0  a    0  b  = 0  1  c     0   a    0   b  = 0  λ − 1  c     −1 0  a    −1 0  b  = 0 .  0 0  c     Diperoleh: a = s; b = 0; dan c = t. 1   Jadi vector eigen yang bersesuaian dengan λ = 1 adalah s 0 + 0    1  Untuk λ = 2 ⇒  0  0  0   t 0 . 1   −1 0  a    0 0  b  = 0 .  0 1   c     16
  • 17. Diperoleh: a = b dan c = 0 Andai b = t, maka a = t, dan c =0. 1    Jadi vector eigen yang bersesuaian dengan λ = 2 adalah t 1 . 0   Ruang Eigen Vektor eigen suatu matriks An×n yang bersesuaian dengan nilai eigen λ berada dalam ruang penyelesaian (λI – A)x = 0. Ruang penyelesaian ini dinamakan ruang eigen (eigen space) matriks A. Secara jelas ruang eigen didefinisikan sebagai berikut. Definisi 3.2. Ruang penyelesaian sistem persamaan linear (λI – A)x = 0 atau (A - λI)x = 0 dinamakan ruang eigen dari matriks An×n. Contoh 3.2. Tentukan basis untuk ruang eigen dari matriks: − 3  1. A = − 7 − 6  1  2. B = 0 0  1 5 6 1 2 0 −1  −1  .  − 2  0 0  1  Penyelesaian: Untuk menentukan basis ruang eigen suatu matriks harus melalui langkah-langkah berikut. • membentuk persamaan karakteristik • menentukan nilai eigen dengan menyelesaikan persamaan karakteristik • menentukan vector eigen yang bersesuaian dengan nilai eigen yang diperoleh Berdasarkan Contoh 3.1. matriks A dan matriks B sudah diperoleh nilai eigen dan vector eigennya, yaitu: 17
  • 18. − 3  1. Nilai eigen matriks A = − 7 − 6  1 5 6 −1  −1  adalah -2 dan 4.  − 2  1    Vektor eigen yang bersesuaian dengan λ = -2 adalah vector tak nol x = t 1 . Jadi, 0   vector 1  1    merupakan suatu basis untuk ruang eigen dari matriks A yang 0   bersesuaian dengan λ = 1. Sedangkan vektor eigen yang bersesuaian dengan λ = 4 0 0 1   adalah vector tak nol x = t   . Jadi, vektor 1 merupakan suatu basis untuk ruang 1 1     eigen dari matriks A yang bersesuaian dengan λ = 4. 1  2. Nilai eigen matriks B = 0 0  1 2 0 0 0 adalah 1 dan 2.  1  1   Vektor eigen yang bersesuaian dengan λ = 1 adalah vector tak nol x = s 0 +   0 0   t 0 .   1 1 0 0   Jadi, vektor   dan 0 merupakan basis untuk ruang eigen dari matriks B yang 0 1     bersesuaian dengan λ = 1. Sedangkan vektor eigen yang bersesuaian dengan λ = 2 1  1  1    adalah vector tak nol x = t   . Jadi, vektor 1 merupakan suatu basis untuk ruang 0 0     eigen dari matriks A yang bersesuaian dengan λ = 2. Diagonalisasi Matriks 18
  • 19. Salah satu penerapan dari nilai eigen dan vektor eigen adalah menentukan matriks diagonal dan matriks pendiagonalisasi suatu matriks. Matriks diagonal adalah matriks persegi dengan unsur-unsur pada diagonal utama tidak semuanya nol dan unsur-unsur di luar diagonal utama sama dengan nol. Bentuk umum matriks diagonal adalah: a 11 0  D=  0   ... 0  0 a 22 0 0 0 a 33 ... 0 ... 0 0  0   ... 0  dengan paling sedikit satu di antara aij ≠ 0 untuk i = j  ... 0  ... a nn   ... ... Untuk membahas diagonalisasi matriks diawali dengan definisi berikut. Definisi 4.1. Suatu matriks persegi (matriks bujursangkar) A dikatakan dapat didiagonalkan (dapat didiagonalisasi) jika ada suatu matriks P yang invertibel sedemikian rupa sehingga P-1AP adalah suatu matriks diagonal. Matriks P dikatakan mendiagonalkan A (mendiagonalisasi) matriks A. Matriks yang dapat didiagonalkan disebut diagonalizable. Langkah-langkah yang digunakan untuk mendiagonalisasi suatu matriks sama dengan menentukan basis ruang eigen suatu matriks, yaitu: • membentuk persamaan karakteristik • menentukan nilai eigen dengan menyelesaikan persamaan karakteristik • menentukan vector eigen yang bersesuaian dengan nilai eigen yang diperoleh • menentukan basis ruang eigen yang bersesuaian dengan nilai eigen Contoh 4.1. 3  Diketahui matriks M = − 2 0  −2 3 0 0 0  5  Carilah: a matriks P yang mendiagonalisasi M. b matriks diagonal D = P-1MP. 19
  • 20. Penyelesaian: Persamaan karakteristik matriks M adalah: det (λI – M) = 0  1   ⇒ det  λ 0  0   0   0  = 0  5   −2 3 0 0  3 0 − − 2   1  0   0 1 0  λ − 3 2 0    λ −3 0  = 0 ⇒ det   2   0 0 λ − 5    ⇒ (λ – 3)(λ – 3)(λ – 5) – 4(λ – 5) = 0 ⇒ (λ – 1)(λ – 5)2 = 0 ⇒ λ = 1; λ = 5 Jadi nilai eigen adalah 1 dan 5. Penentuan vektor eigen sebagai berikut. (λI – A)x = 0  1   ⇒  λ 0  0   0 1 0 0  3 0 − − 2   1  0   −2 3 0 0  a    0  b  = 0  5  c      λ − 3 2 0   a     λ −3 0   b  = 0 ⇒  2   0 0 λ − 5  c       − 2  Untuk λ = 1 ⇒   2  0  2 −2 0 0   a    0   b  = 0 .  − 4  c     − 2  Matriks yang bersesuaian:  2 0  2 −2 0 0 0 −4 0 1  0 → 0  0 0   −1 0 0 0 0 1 0 0  0  Diperoleh: a = b; dan c = 0. Jika b = t, maka a = t dan c = 0. 1    Vector eigen yang bersesuaian dengan λ = 1 adalah t 1 . 0   20
  • 21. 1    Jadi basis ruang eigen yang bersesuaian dengan λ = 1 adalah 1 . 0    2  Untuk λ = 5 ⇒  2  0  2 2 0 0  a    0  b  = 0 .  0  c     2  Matriks yang bersesuaian: 2 0  2 0 2 0 0 0 1  0 → 0  0 0   1 0 0 0 0 0 0 0  0  Diperoleh: a = -b dan c = -t Andai b = s, maka a = -s, dan c = t. −1   Jadi vector eigen yang bersesuaian dengan λ = 5 adalah s  1  + 0    0   t 0 . 1   −1   Jadi basis ruang eigen yang bersesuaian dengan λ = 5 adalah  1  dan 0    a 1  Dengan demikian matriks P yang mendiagonalisasi M adalah 1 0  −1 1 0 0 0  . 1   0 0 .  1  b. Matriks diagonal yang terbentuk adalah: D = P-1MP. Untuk menentukan D, kita harus menentukan dahulu P-1. Melalui perhitungan dalam  1  2  1 menentukan invers suatu matriks diperoleh P-1 = −  2  0   1  sendiri bahwa PP = P P = 0  0 -1 -1 0 1 0 1 2 1 2 0  0  0 . Anda dapat buktikan  1   0 0 .   1 21
  • 22. Dengan demikian D = P-1MP  1  2  1 ⇒ D = −  2  0   1 2 1 2 0  0 3 0 − 2   1  0    1  2  1 = −  2  0   1 2 1 2 0  0  1 0 1   1 0   −2 3 0 −5 5 0 0 0  5  1 1  0  0 1 0 = 0   0 5   −1 1 0 0 5 0 0 0  1  0 0  5  Tidak semua matriks dapat didiagonalisasi. Berikut ini merupakan teorema yang dapat memudahkan kita untuk mengetahui suatu matriks dapat didiagonalisasi atau tidak. Teorema 4.1. 1. Jika v1, v2, v3, ... , vk adalah vektor-vektor eigen dari matriks A yang bersesuaian dengan nilai-nilai eigen λ1, λ2, λ3, ... , λk yang berbeda, maka {v1, v2, v3, ... , vk} adalah himpunan yang bebas linear. 2. Jika suatu matriks A berukuran n × n mempunyai nilai-nilai eigen yang berbedabeda, maka A dapat didiagonalisasi. Contoh 4.1. − 3  Perhatikan bahwa matriks A = − 7 − 6  1 5 6 −1  −1  tidak dapat didiagonalisasi. Berdasarkan  − 2  Contoh 3.1. diperoleh: • nilai eigen matriks A adalah -2 dan 4 • 1    vektor eigen yang bersesuaian denga0n λ = -2 adalah vector tak nol x = t 1 0   • 1    basis ruang eigen yang bersesuaian dengan λ = -2 adalah 1 0   22
  • 23. • 0   vektor eigen yang bersesuaian dengan λ = 4 adalah vector tak nol x = t 1 1   • 0   basis ruang eigen A yang bersesuaian dengan λ = 4 adalah 1 1   Karena basis ruang eigen berdimensi dua atau hanya terdapat dua vector yang bebas linear (< 3), maka A tidak dapat didiagonalisasi. 23