SlideShare a Scribd company logo
1 of 18
BAB I
PENDAHULUAN
LATAR BELAKANG
Geometri adalah struktur matematika yang membicarakan unsur dan relasi
yang ada antara unsur tersebut. Titik, garis, bidang, dan ruang merupakan benda
abstrak yang menjadi unsur dasar geometri. Berdasarkan unsur-unsur inilah,
didefinisikan pengertian-pengertian baru atau berdasar pada pengertian-pengertian
baru sebelumnya. Dalam geometri didapat juga sifat-sifat pokok, yaitu sifat-sifat
pertama yang tidak berdasarkan sifat-sifat yang mendahuluinya yaitu aksioma dan
posulat. Aksioma adalah suatu pernyataan yang kebenarannya diterima tanpa
melalui pembuktian. berdasarkan sifat pokok tersebut dapat diturunkan sifat-sifat
yang disebut dengan dalil. Dalil tersebut dapat juga dibentuk berdasarkan dalil
sebelumnya. Dalil merupakan sebuah pernyataan yang kebenarannya dapat
diterima melalui serangkaian pembuktian.
Simbol atau lambang merupakan alat bantu yang mengandung suatu
pengertian. Suatu lambang tertentu digunakan untuk menyatakan hal tertentu
sedangkan suatu hal tertentu dapat juga disimbolkan dengan bermacam-macam
lambang. Seperti titik dilambangkan dengan huruf kapital misalnya A, B, C dan
seterusnya, garis dilambangkan dengan huruf kecil misalnya garis k, l, atau dapat
juga dilambangkan dengan gabungan dua titik seperti AB (dibaca: garis 𝐴𝐵̅̅̅̅), dan
lambang-lambang yang lain seperti 𝐴𝐵⃡ yang menunjukkan segmen AB.
Euclid dengan buku Elemen-nya adalah hasil karya klasik matematika dari
jaman purbakala yang paling terkenal, dan juga menjadi buku teks matematika
tertua yang selalu digunakan dunia. Sedikit yang bisa diketahui tentang Euclid,
kecuali fakta bahwa dia hidup di Alexandria sekitar tahun 300 SM. Pokok
persoalan utama dari karyanya adalah geometri, perbandingan dan teori bilangan.
Telah diperlihatkan bahwa bukti geometrik dengan cara menggambarkan
kesimpulan melalui diagram untuk saat ini dianggap tidak memuaskan. Bukti
tersebut tidak memenuhi standar sekarang. Di lain pihak, Euclid, yang merupakan
ahli logika ternama, bergantung sepenuhnya pada pembuktian menggunakan
gambar.
Postulat sejajar Euclid, yakni berupa satu kalimat penting dalam sejarah
kontroversi intelektual, dapat dinyatakan sebagai berikut : Jika dua garis dibagi
oleh garis transversal sedemikian sehingga jumlah dua sudut interiornya (sudut
dalam) pada sisi transversal adalah kurang dari 180o, garis tersebut akan bertemu
pada sisi transversal tersebut.
Sejarah pentingnya postulat sejajar tersebut didasarkan pada peran
pentingnya dalam teori Euclid. Oleh karena itu, pertama dimulai dengan
mensketsa teori geometri bidang Euclid. Agar menjadi bukti, penting dilakukan
pemeriksaan terhadap struktur teori ini. Perlakuan yang dilakukan tidak mengikuti
detailnya perkembangan Euclid, tetapi menekankan pada ide dasarnya dengan
menggunakan istilah yang lebih modern dan juga perlakuan yang cukup sesuai
dengan hasil kerjanya yang sekarang, sehingga banyak dipakai di berbagai buku
ajar.
BAB II
PEMBAHASAN
A. GEOMETRI EUCLID
Tidak banyak orang yang beruntung memperoleh kemasyhuran yang abadi
seperti Euclid, ahli ilmu ukur Yunani yang besar. Meskipun semasa hidupnya
tokoh-tokoh seperti Napoleon, Martin Luther, Alexander yang Agung, jauh lebih
terkenal ketimbang Euclid tetapi dalam jangka panjang ketenarannya
mungkin mengungguli semua mereka yang disebut itu.
Selain kemasyhurannya, hampir tak ada keterangan terperinci mengenai
kehidupan Euclid yang bisa diketahui. Misalnya, kita tahu dia pernah aktif sebagai
guru di Alexandria, Mesir, di sekitar tahun 300 SM, tetapi kapan dia lahir dan
kapan dia wafat betul-betul gelap. Bahkan, kita tidak tahu di benua apa dan dikota
apa dia dilahirkan. Meski dia menulis beberapa buku dan diantaranya masih ada
yang tertinggal, kedudukannya dalam sejarah terutama terletak pada bukunya
yang hebat mengenai ilmu ukur yang bernama The Elements.
Kebanyakan teorema yang disajikan dalam buku The Elements tidak
ditemukan sendiri oleh Euclid, tetapi merupakan hasil karya matematikawan
Yunani awal seperti Pythagoras (dan para pengikutnya), Hippocrates dari Chios,
Theaetetus dari Athena, dan Eudoxus dari Cnidos. Akan tetapi, secara umum
Euclid dihargai karena telah menyusun teorema-teorema ini secara logis, agar
dapat ditunjukkan (tak dapat disangkal, tidak selalu dengan bukti teliti seperti
yang dituntut matematika modern) bahwa cukup mengikuti lima aksioma
sederhana. Euclid juga dihargai karena memikirkan sejumlah pembuktian jenius
dari teorema-teorema yang telah ditemukan sebelumnya, misalnya Teorema 48 di
Buku I.
Arti penting buku The Elements tidaklah terletak pada pernyataan rumus-
rumus pribadi yang dilontarkannya. Hampir semua teori yang terdapat dalam buku
itu sudah pernah ditulis orang sebelumnya, dan juga sudah dapat dibuktikan
kebenarannya. Sumbangan Euclid terletak pada cara pengaturan dari bahan-bahan
dan permasalahan serta formulasinya secara menyeluruh dalam perencanaan
penyusunan buku. Di sini tersangkut, yang paling utama, pemilihan dalil-dalil
serta perhitungan-perhitungannya, misalnya tentang kemungkinan menarik garis
lurus diantara dua titik. Sesudah itu dengan cermat dan hati-hati dia mengatur dalil
sehingga mudah difahami oleh orang-orang sesudahnya. Bilamana perlu, dia
menyediakan petunjuk cara pemecahan hal-hal yang belum terpecahkan dan
mengembangkan percobaan-percobaan terhadap permasalahan yang terlewatkan.
Perlu dicatat bahwa buku The Elements selain terutama merupakan
pengembangan dari bidang geometri yang ketat, juga di samping itu mengandung
bagian-bagian soal aljabar yang luas berikut teori penjumlahan.
Buku The Elements sudah merupakan buku pegangan baku lebih dari 2000
tahun dan tak syak lagi merupakan buku yang paling sukses yang pernah disusun
manusia. Begitu hebatnya Euclid menyusun bukunya sehingga dari bentuknya
saja sudah mampu menyisihkan semua buku yang pernah dibuat orang
sebelumnya dan yang tak pernah digubris lagi. Aslinya ditulis dalam bahasa
Yunani, kemudian buku The Elements itu diterjemahkan ke dalam berbagai
bahasa. Terbitan pertama muncul tahun 1482, sekitar 30 tahun sebelum penemuan
mesin cetak oleh Gutenberg. Sejak penemuan mesin itu dicetak dan diterbitkanlah
dalam beribu-ribu edisi yang beragam corak.
Sebagai alat pelatih logika pikiran manusia, buku The Elements jauh lebih
berpengaruh ketimbang semua risalah Aristoteles tentang logika. Buku itu
merupakan contoh yang komplit sekitar struktur deduktif dan sekaligus
merupakan buah pikir yang menakjubkan dari semua hasil kreasi otak manusia.
Adalah adil jika kita mengatakan bahwa buku Euclid merupakan faktor penting
bagi pertumbuhan ilmu pengetahuan modern. Ilmu pengetahuan bukanlah sekedar
kumpulan dari pengamatan-pengamatan yang cermat dan bukan pula sekedar
generalisasi yang tajam serta bijak. Hasil besar yang direnggut ilmu pengetahuan
modern berasal dari kombinasi antara kerja penyelidikan empiris dan percobaan-
percobaan di satu pihak, dengan analisa hati-hati dan kesimpulan yang punya
dasar kuat di lain pihak.
Kita masih bertanya-tanya apa sebab ilmu pengetahuan muncul di Eropa
dan bukan di Cina, tetapi rasanya aman jika kita menganggap bahwa hal itu
bukanlah semata-mata lantaran soal kebetulan. Memanglah, peranan yang
digerakkan oleh orang-orang brilian seperti Newton, Galileo dan Copernicus
mempunyai makna yang teramat penting. Tetapi, tentu ada sebab-musababnya
mengapa orang-orang ini muncul di Eropa. Mungkin sekali faktor historis yang
paling menonjol apa sebab mempengaruhi Eropa dalam segi ilmu pengetahuan
adalah rasionalisme Yunani, bersamaan dengan pengetahuan matematika yang
diwariskan oleh Yunani kepada Eropa. Patut kiranya dicatat bahwa Cina–
meskipun berabad-abad lamanya teknologinya jauh lebih maju ketimbang Eropa–
tak pernah memiliki struktur matematika teoritis seperti halnya yang dipunyai
Eropa. Tak ada seorang matematikus Cina pun yang punya hubungan dengan
Euclid. Orang-orang Cina menguasai pengetahuan yang bagus tentang ilmu
geometri praktis, tetapi pengetahuan geometri mereka tak pernah dirumuskan
dalam suatu skema yang mengandung kesimpulan.
Bagi orang-orang Eropa, anggapan bahwa ada beberapa dasar prinsip-
prinsip fisika yang dari padanya semuanya berasal, tampaknya hal yang wajar
karena mereka punya contoh Euclid yang berada di belakang mereka. Pada
umumnya orang Eropa tidak beranggapan geometrinya Euclid hanyalah sebuah
sistem abstrak, melainkan mereka yakin benar bahwa gagasan Euclid --dan
dengan sendirinya teori euclid-- memang benar-benar merupakan kenyataan yang
sesungguhnya.
Pengaruh Euclid terhadap Sir Isaac Newton sangat kentara sekali, sejak
Newton menulis buku tersohornya The Principia dalam bentuk kegeometrian,
mirip dengan The Elements. Berbagai ilmuwan mencoba menyamakan diri dengan
Euclid dengan jalan memperlihatkan bagaimana semua kesimpulan mereka secara
logis berasal mula dari asumsi asli. Tak kecuali apa yang diperbuat oleh ahli
matematika seperti Russel, Whitehead dan filosof Spinoza.
Kini, para ahli matematika sudah memaklumi bahwa geometri Euclid,
bukan satu-satunya sistem geometri yang memang jadi pegangan pokok dan teguh
serta yang dapat direncanakan pula, mereka pun maklum bahwa selama 150 tahun
terakhir banyak orang yang merumuskan geometri bukan a la Euclid. Sebenarnya,
sejak teori relativitas Einstein diterima orang, para ilmuwan menyadari bahwa
geometri Euclid tidaklah selamanya benar dalam penerapan masalah cakrawala
yang sesungguhnya. Pada kedekatan sekitar "Lubang hitam" dan bintang neutron -
-misalnya-- dimana gaya berat berada dalam derajat tinggi, geometri Euclid tidak
memberi gambaran yang teliti tentang dunia, ataupun tidak menunjukkan
penjabaran yang tepat mengenai ruang angkasa secara keseluruhan. Tetapi,
contoh-contoh ini langka, karena dalam banyak hal pekerjaan Euclid menyediakan
kemungkinan perkiraan yang mendekati kenyataan. Kemajuan ilmu pengetahuan
manusia belakangan ini tidak mengurangi baik hasil upaya intelektual Euclid
maupun dari arti penting kedudukannya dalam sejarah.
The Elements terdiri atas tiga belas buku. Buku 1 menguraikan proposisi-
proposisi dasar dari geometri bidang datar, termasuk tiga kasus dalam hal
kekongruenan segitiga, macam-macam teorema tentang garis-garis sejajar,
teorema mengenai jumlah sudut-sudut dalam sebuah segitiga dan teorema
Pythagoras. Buku 2 berkenaan dengan aljabar geometris, karena kebanyakan
teoremanya tidak lebih tentang penafsiran aljabar sederhana. Buku 3 menyelidiki
lingkaran dan sifat-sifatnya, dan termasuk teorema tentang tangent dan sudut-
sudut yang digambarkan. Buku 4 terkait segibanyak beraturan dan lingkaran-
lingkaran yang mengelilinginya. Buku 5 mengembangkan teori aritmetika tentang
perbandingan. Buku 6 menerapkan teori perbandingan kepada geometri bidang
datar, dan memuat teorema-teorema bilangan kembar. Buku 7 menguraikan teori
bilangan dasar: misalnya bilangan prima, faktor persekutuan terbesar, dan lain-
lain. Buku 8 terkait dengan deret geometri. Buku 9 memuat macam-macam
aplikasi dari hasil dua buku sebelumnya, dan memuat teorema-teorema
ketakterhinggaan bilangan prima, maupun rumus jumlah deret geometri. Buku 10
berusaha menggolongkan besaran yang tak dapat dibandingkan (dengan kata lain
irasional) menggunakan apa yang disebut “metode keletihan”, suatu rintisan
integral kuno. Buku 11 menghitung volume relatif dari kerucut, piramida, tabung,
dan bola menggunakan metode keletihan. Dan akhirnya, buku 13 meneliti apa
yang biasa disebut lima benda padat platonis.
B. STRUKTUR GEOMETRI EUCLID
Asumsi atau postulat yang ada untuk geometri bidang Euclid adalah :
1. Sesuatu akan sama dengan sesuatu atau sesuatu yang sama akan sama satu
sama lainnya.
2. Jika kesamaan ditambahkan dengan kesamaan, maka jumlahnya akan sama.
3. Jika kesamaan dikurangi dari kesamaan, selisihnya akan sama.
4. Keseluruhan akan lebih besar daripada bagiannya.
5. Bangun geometrik dapat dipindahkan tanpa mengubah ukuran atau
bentuknya.
6. Setiap sudut memiliki bisektor.
7. Setiap segmen memiliki titik tengah.
8. Dua titik hanya berada pada satu satunya garis.
9. Sebarang segmen dapat diperluas oleh suatu segmen yang sama dengan
segmen yang diberikan.
10. Lingkaran dapat digambarkan dengan sebarang titik pusat dan radius yang
diketahui.
11. Semua sudut siku – siku sama besar.
Dari postulat – postulat di atas dapat dideduksi sejumlah teorema dasar.
Diantaranya adalah :
1. Sudut bertolak belakang sama besar.
2. Sifat kongruensi segitiga ( SAS, ASA, SSS )
3. Teorema kesamaan sudut dasar segitiga sama kaki dan konversinya
4. Eksistensi garis yang tegak lurus pada garis pada titik dari garis tersebut
5. Eksistensi garis yang tegak lurus pada garis yang melalui titik eksternal
6. Pembuktian suatu sudut yang sama dengan sudut dengan titik sudut dan sisi
yang telah diberikan sebelumnya.
7. Pembentukan segitiga yang kongruen dengan segitiga dengan sisi yang sama
pada sisi segitiga yang diketahui.
Sekarang akan dibuktikan teorema sudut eksterior, sebagai cara menuju
perkembangan lebih lanjut.
Teorema 1. Teorema sudut eksterior. Sudut eksterior segitiga akan lebih besar
daripada sudut interior terpencil manapun.
Bukti. Misal ABC adalah segitiga sebarang dan misalkan D merupakan
perpanjangan dari BC̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ melalui C. Pertama akan ditunjukkan bahwa sudut eksterior
∠ACD lebih besar dari ∠A. misalkan E merupakan titik tengah AC, dan misalkan
BE merupakan perluasan panjangnya melalui E hingga F. Maka AE = EC =BE =
EF dan ∠AEB = ∠CEF ( sudut bertolak belakang sama besar ). Jadi Δ AEB = Δ
CEF ( SAS ), dan ∠BAE = ∠FCE ( akibat segitiga kongruen ). Karena ∠ACD >
∠FCE ( keseluruhan sudut selalu lebih besar dari bagiannya ), maka disimpulkan
bahwa ∠ACD > ∠BAE = ∠A.
Untuk menunjukkan bahwa ∠ACD > ∠B, perluas 𝐴𝐶̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ melalui C hingga H, yang
membentuk ∠BCH. Kemudian tunjukkan bahwa ∠BCH > ∠B, dengan
menggunakan prosedur bagian pertama pembuktian: misalkan M merupakan titik
tengah BC̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ , perluas panjang AM̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
melalui M, dan lain-lain. Untuk melengkapi bukti,
perhatikan bahwa ∠BCH dan ∠ACD merupakan sudut bertolak belakang sehingga
sudut tersebut sama besar.
Pernyataan ∠ACD > ∠FCE bergantung pada diagramnya. Sekarang mudah
melakukan pembuktian beberapa hasil yang cukup penting.
Teorema 2. Jika dua garis dibagi oleh garis transversal sehingga membentuk
pasangan sudut interior dalam berseberangan, maka garis tersebut sejajar.
Bukti. Ingat kembali bahwa dua garis dalam bidang yang sama dikatakan sejajar
jika garis tersebut tidak bertemu (berpotongan). Misalkan garis transversal
membagi dua garis l, m pada titik A, B sehingga membentuk pasangan sudut
interior dalam berseberangan, ∠1 dan ∠2, yang sama besar, dan misalkan garis l
dan garis m tidak sejajar. Maka garis l dan garis m akan bertemu di titik C yang
membentuk ΔABC. C terletak pada satu sisi AB atau pada sisi yang lainnya.
Untuk kasus lainnya, sudut eksterior Δ ABC sama dengan sudut interior terpencil.
(misalkan, jika C pada sisi AB yang sama sebagai ∠2 maka sudut eksterior ∠1
sama dengan sudut interior terpencil ∠2 ). Hal ini kontradiksi dengan teorema
sebelumnya. Oleh karena itu garis l dan garis m sejajar.
Akibat 1. Dua garis tegak lurus terhadap garis yang sama pasti sejajar.
Sebagai akibat langsung akibat 1 adalah
Akibat 2. Hanya ada satu garis yang tegak lurus terhadap garis melalui titik
eksternal.
Akibat 3. (Eksistensi garis sejajar). Jika titik P tidak berada pada garis l, maka
akan ada setidaknya satu garis yang melalui P yang sejajar dengan l.
Bukti. Dari P hilangkan garis tegak lurus pada garis l yang memiliki kaki di Q,
dan di P buat garis m yang tegak lurus terhadap PQ. Maka garis m sejajar dengan
garis l menurut akibat 1.
Teorema 3. Jumlah dua sudut segitiga kurang dari 180o.
Bukti. Misalkan ΔABC merupakan sebarang segitiga. Akan ditunjukkan bahwa
∠A + ∠B < 180o. Perluas CB melalui B hingga ke D. maka ∠ABD merupakan
sudut eksterior ΔABC. Dengan menggunakan teorema 1, ∠ABD > ∠A, tetapi
∠ABD = 180o - ∠B.dengan mensubstitusikan untuk ∠ABD pada relasi pertama,
maka : 180o - ∠B > ∠A, atau 180o > ∠A + ∠B. Jadi, ∠A + ∠B < 180o, dan
teorema tersebut terbukti.
Pengganti Postulat Sejajar Euclid
Postulat sejajar Euclid biasanya digantikan oleh pernyataan berikut ini :
Hanya ada satu garis sejajar pada garis yang melalui titik bukan pada garis
tersebut.
Pernyatan ini disebut dengan postulat Playfair. Postulat ini bisa dihubungkan
dengan postulat sejajar Euclid karena sebenarnya dua pernyataan ini tidak sama.
Pernyataan sebelumnya merupakan pernyataan tentang garis sejajar, dan
pernyataan kedua mengenai garis bertemu. Bahkan kedua pernyataan tersebut
memainkan peran yang sama dalam perkembangan logis geometri. Dikatakan
pernyataan ini ekivalen secara logis. Hal ini berarti bahwa jika pernyataan
pertama dianggap sebagai postulat (bersama dengan semua postulat Euclid kecuali
postulat sejajar), kemudian pernyataan kedua dapat dideduksi sebagai teorema;
dan konversinya, jika pernyataan kedua dianggap sebagai postulat (bersama
dengan semua postulat Euclid kecuali postulat sejajar), maka pernyataan pertama
dapat dideduksi sebagai teorema. Jadi secara logis, tidak penting dua pernyataan
mana yang akan diasumsikan sebagai postulat dan yang mana yang akan
dideduksi sebagai suatu teorema.
Ekivalensi Postulat Euclid dan Playfair
Akan dibuktikan ekivalensi postulat Euclid dan postulat Playfair.
Pertama, dengan mengasumsikan postulat sejajar Euclid, maka akan dideduksi
postulat Playfair.
Diketahui garis l dan titik P tidak pada l (gambar 2.5), maka akan ditunjukkan
bahwa hanya ada satu garis melalui P yang tidak pada l. diketahui bahwa ada garis
melalui P yang sejajar dengan l, dan diketahui juga bagaimana cara
menggambarnya (akibat 3,teorema 2). Dari P, dihilangkan garis tegak lurus pada l
dengan kaki Q dan pada P garis tegak m yang tegak lurus pada 𝑃𝑄⃡ . Maka garis
m sejajar garis l.
Kemudian misalkan garis n sebarang garis melalui P yang berbeda dengan garis
m. maka akan ditunjukkan bahwa garis n bertemu dengan garis l. Misalkan ∠1, ∠2
menunjukkan sudut dimana garis n bertemu dengan 𝑃𝑄⃡ . Maka ∠1 bukan
merupakan sudut siku-siku untuk sebaliknya garis n dan garis m berimpit,
berlawanan dengan asumsi. Jadi ∠1 atau ∠2 adalah sudut lancip, misalnya ∠1
yang merupakan sudut lancip.
Ringkasannya, garis l dan garis n dibagi oleh garis transversal sehingga
membentuk sudut lancip ∠1 dan sudut siku – siku, yang merupakan sudut interior
pada sisi yang sama dari garis transversal tersebut. Karena jumlah sudut tersebut
kurang dari 180o, postulat sejajar Euclid dapat diaplikasikan dan disimpulkan
bahwa garis n bertemu dengan garis l. Jadi garis m hanya satu – satunya garis 12
yang melalui P yang sejajar dengan garis l dan dideduksikan bahwa postulat
Playfair dari postulat sejajar Euclid.
Sekarang dengan mengasumsikan postulat Playfair, akan dideduksi postulat
sejajar Euclid.
Gambar 2.6
Misalkan garis m dibagi oleh garis transversal dititik Q, P yang membentuk ∠1
dan ∠2, pasangan sudut interior pada satu sisi garis transversal yang memiliki
jumlah sudut kurang dari 180o ( gambar 2.6 ), adalah :
(1) ∠1 + ∠2 < 180o
Misalkan ∠3 menunjukkan tambahan ∠1 yang terletak pada sisi berlawanan 𝑃𝑄⃡
dari ∠1 dan ∠2 ( gambar 2.6 ), maka :
(2) ∠1 + ∠3 = 180o
Dari hubungan (1), (2) maka :
(3) ∠2 < ∠3
Pada titik P, bentuk ∠QPR yang sama dengan dan yang interior dalam
berseberangan dengan ∠3. Maka ∠2 < ∠PQR, sehingga 𝑅𝑃 berbeda dari garis m.
menurut teorema 2, 𝑅𝑃 sejajar dengan l. Karenanya menurut postulat Playfair, m
tidak sejajar dengan l. Oleh karena itu, garis m dan l bertemu.
Seandainya garis-garis tersebut bertemu di sisi berlawanan dari 𝑃𝑅 dari ∠1 dan
∠2, katakanlah di titik E maka ∠2 merupakan sudut eksterior ΔPQE, karenanya
∠2 > ∠3 , berlawanan dengan (3). Akibatnya, pengandaian tadi salah, jadi garis m
dan l bertemu pada sisi garis transversal 𝑃𝑄⃡ yang memuat ∠1 dan ∠2. Jadi
postulat sejajar Euclid mengikuti postulat Playfair dan akibatnya dua postulat
tersebut menjadi ekivalen.
C. PERAN POSTULAT SEJAJAR EUCLID
Dengan mengasumsikan postulat sejajar Euclid berikut ini merupakan
beberapa hasil penting yang dapat dibenarkan :
1. Jika dua garis sejajar dibagi oleh garis transversal, sebarang pasangan sudut
interior dalam berseberangan yang terbentuk akan sama besar.
2. Jumlah sudut sebarang segitiga adalah 180°.
3. Sisi bertolak belakang dari jajaran genjang adalah sama besar.
4. Garis sejajar selalu berjarak sama.
5. Eksistensi segi empat dan bujur sangkar.
6. Teori luas menggunakan unit persegi.
7. Teori segitiga yang sama, yang termasuk eksistensi bangun dengan ukuran
sebarang yang sama dengan bangun yang diketahui.
Postulat sejajar Euclid merupakan sumber untuk banyak hasil yang sangat
penting. Tanpa postulat tersebut (atau ekivalennya), kita tidak akan memiliki teori
luas yang sudah lama dikenal, teori kesamaan, dan teori Pythagoras yang terkenal
itu.
Cara dimana Euclid mengatur teoremanya mengimplikasikan bahwa
sesungguhnya Euclid tidak sepenuhnya puas dengan postulat sejajarnya. Euclid
manyatakan hal tersebut di awal karjanya tetapi pernyataan itu tidak dipakainya
sampai akhirnya dia tidak dapat malakukan kemajuan tanpa postulat tersebut.
Agaknya, Euclid memiliki intuisi bahwa postulat sejajar tersebut tidak memiliki
kualitas intuitif ataupun sederhana dari postulat lainnya. Rasa yang demikian
dilakukan oleh para ahli geometri dalam selama 20 abad. Para ahli mencoba
mendeduksi postulat sejajar dari postulat lainnya, atau menggantikan postulat
tersebut dengan postulat yang nampaknya lebih pasti.
D. TOKOH-TOKOH DALAM PERKEMBANGAN EUCLID GEOMETRY
Bukti Proclus tentang Postulat Sejajar Euclid
Prolus (410-485) memberikan “bukti” tentang postulat sejajar Euclid yang kita
ringkas sebagai berikut :
Kita asumsikan postulat Euclid bukan sebagai postulat sejajar. Misalkan P
merupakan titik tidak berada pada garis l (gambar 2.7). kita bentuk garis m
melalui P sejajar dengan garis l dengan cara yang biasa digunakan. Misalkan 𝑃𝑄⃡⃡
tegak lurus dengan l di Q, dan misalkan m tegak lurus dengan 𝑃𝑄⃡⃡ di P. Sekarang,
anggaplah ada garis lain n melalui P yang yang sejajar dengan l, maka n
membentuk sudut lancip dengan garis PQ, yang terletak katakanlah pada sisi
kanan 𝑃𝑄⃡⃡ . Bagian dari n di sebelah kanan titik P seluruhnya termuat dalam
daerah yang dibatasi oleh garis l, m dan 𝑃𝑄⃡⃡ . Sekarang dimisalkan X adalah
sebarang titik di m yang letaknya di sebelah kanan titik P, misalkan 𝑋𝑌̅̅̅̅ tegak
lurus dengan l di Y dan misalkan gariS 𝑋𝑌̅̅̅̅ tersebut bertemu dengan garis n di Z.
Maka 𝑋𝑌̅̅̅̅ > 𝑋𝑍̅̅̅̅. Misalkan X mundur di garis m, maka 𝑋𝑍̅̅̅̅. meningkat secara tidak
menentu, karena 𝑋𝑍̅̅̅̅. setidaknya sama besarnya dengan segmen dari X yang tegak
lurus dengan n. Jadi 𝑋𝑌̅̅̅̅ juga meningkat secara tidak menentu. Tetapi jarak antara
dua garis sejajar harus terbatas. Oleh karena itu, akan menjadi kontradiksi dan
pengandaian salah. Jadi, m hanya merupakan satu-satunya garis yang melalui P
yang sejajar dengan garis l. Karenanya, postulat Playfair berlaku, dan juga
ekivalen dengan postulat sejajar Euclid.
Argumen Prolus tersebut mencakup 3 asumsi :
a. jika dua garis saling berpotongan, jarak pada suatu garis dari satu titik ke
garis lainnya akan meningkat secara tak menentu, karena titik tersebut mundur
(menyusut) tak berujung.
b. segmen terpendek yang menghubungkan titik eksternal pada suatu garis
merupakan segmen yang tegak lurus.
c. jarak antara dua garis sejajar adalah terbatas.
(a) dan (b) dapat dibenarkan tanpa bantuan postulat sejajar Euclid. Jadi inti
persoalan pembuktian adalah asumsi (c). Proclus mengasumsikan (c) sebagai
postulat tambahan. Mari kita sebut sebagai postulat asumsi Proclus tersembunyi.
Kemudian bisa dinyatakan: postulat Proclus ekivalen dengan postulat sejajar
Proclus. Postulat sejajar Euclid mengimplikasikan bahwa jarak antara garis sejajar
selalu konstan, dan terbatas. Konversinya, melalui argumen Proclus dapat
dinyatakan bahwa postulat Proclus mengimplikasikan postulat sejajar Euclid.
Jadi, Proclus menggantikan postulat sejajar dengan postulat yang ekivalen, dan
bukan menetapkan validitas postulat sejajar tersebut.
Percobaan Saccheri untuk Mempertahankan Postulat Euclid
Girolamo Saccheri (1667-1733) melakukan studi yang mendalam tentang
geometri dalam buku yang berjudul Euclides Vindicatus, yang diterbitkan di tahun
saat kematiannya. Beliau melakukan pendekatan terhadap permasalahan
pembuktian postulat sejajar Euclid dengan cara baru yang radikal. Prosedurnya
ekivalen dengan mengasumsikan bahwa postulat sejajar Euclid salah, dan
menemukan kontradiksi dengan penalaran logis. Hal ini akan mensahkan postulat
sejajar dengan menggunakan prinsip metode tak langsung.
Maksud Saccheri adalah studi segi empat yang memiliki sisi yang sama panjang
dan tegak lurus dengan sisi ketiga. Tanpa mengasumsikan sebarang postulat
sejajar, beliau melakukan studi mendalam tentang segi empat tersebut yang
sekarang disebut dengan segi empat Saccheri. Misalkan ABCD merupakan segi
empat Saccheri dengan AD = BC dan sudut siku-siku di A, B (gambar 2.10).
Saccheri membuktikan bahwa ∠C = ∠D dan kemudian mempertimbangkan tiga
kemungkinan yang berhubungan dengan sudut C dan D :
1. hipotesis tentang sudut siku-siku (∠C = ∠D = 90°)
2. hipotesis tentang sudut tumpul (∠C = ∠D > 90°)
3. hipotesis tentang sudut lancip (∠C = ∠D < 90°)
Jika postulat sejajar Euclid diasumsikan, maka hipotesis sudut siku-siku akan
terjadi (karena postulat sejajar mengimplikasikan bahwa jumlah sudut sebarang
segi empat adalah 360°). Argumen dasar Saccheri sebagai berikut:
Tunjukkan bahwa hipotesis sudut tumpul dan hipotesis sudut lancip keduanya
membawa keadaan kontradiksi. Hal ini akan membentuk hipotesis sudut siku-siku
yang ekivalen dengan postulat sejajar Euclid.
Saccheri membuktikan menggunakan sederetan teorema yang memiliki alasan
yang tepat, bahwa hipotesis sudut tumpul akan menghasilkan kontradiksi.
Beliau mempertimbangkan implikasi hipotesis sudut lancip. Di antaranya ada
sejumlah teorema yang tidak umum, dua di antaranya kita nyatakan sebagai
berikut:
Jumlah sudut sebarang segitiga kurang dari 180°.
Jika l dan m merupakan dua garis dalam bidang, maka salah satu dari sifat di
bawah ini di penuhi:
a. l dan m berpotongan, dalam kasus di mana dua garis tersebut divergen dari
titik perpotongan.
b. l dan m tidak berpotongan tetapi memiliki garis tegak lurus yang sama di
mana dua garis tersebut divergen dalam kedua arah dari garis tegak lurus
yang sama tersebut.
c. l dan m tidak brpotongan dan tidak memiliki garis tegak lurus yang sama, di
mana dua garis tersebut konvergen dalam satu arah langkah, dan divergen
pada arah lainnya.
Saccheri tidak memandang sebagai kontradiksi, meskipun beliau pikir harus
menganggap sebagai kontradiksi dan bahkan diketahui pada masa sekarang bahwa
teori hipotesis sudut lancip Saccheri bebas kontradikisi seperti geometri Euclid.
BAB III
PENUTUP
KESIMPULAN
Adapun kesimpulan yang dapat ditarik dari penyusunan makalah ini adalah
sebagai berikut:
1. Geometri Euclid merupakan sistem aksiomatik, dimana semua teorema
("pernyataan yang benar") diturunkan dari bilangan aksioma yang terbatas, artinya
hasil-hasil penting/teorema-teorema tersebut merupakan akibat dari postulat
sejajar.
2. Peran postulat sejajar Euclid adalah sebagai sumber untuk banyak hasil yang
sangat penting. Tanpa postulat tersebut (atau ekivalennya), kita tidak akan
memiliki teori luas yang sudah lama dikenal, teori kesamaan, dan teori Pythagoras
yang terkenal. Jadi postulat sejajar Euclid akan lebih berperan apabila dideduksi
dengan postulat lainnya atau digantikan dengan postulat lainnya yang lebih pasti.

More Related Content

What's hot

Kemampuan berpikir kritis dan kreatif matematis
Kemampuan berpikir kritis dan kreatif matematisKemampuan berpikir kritis dan kreatif matematis
Kemampuan berpikir kritis dan kreatif matematis
Yadi Pura
 
Geometri datar dra. kusni- m.si
Geometri datar   dra. kusni- m.siGeometri datar   dra. kusni- m.si
Geometri datar dra. kusni- m.si
Kiki Ni
 
Sistem Bilangan Babilonia (Seksagesimal) presentasi
Sistem Bilangan Babilonia (Seksagesimal) presentasiSistem Bilangan Babilonia (Seksagesimal) presentasi
Sistem Bilangan Babilonia (Seksagesimal) presentasi
Kristalina Dewi
 
Analisis real-lengkap-a1c
Analisis real-lengkap-a1cAnalisis real-lengkap-a1c
Analisis real-lengkap-a1c
Ummu Zuhry
 
Contoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrupContoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrup
Kabhi Na Kehna
 

What's hot (20)

Aliran-Aliran Filsafat Matematika
Aliran-Aliran Filsafat MatematikaAliran-Aliran Filsafat Matematika
Aliran-Aliran Filsafat Matematika
 
Geometri Eliptik
Geometri EliptikGeometri Eliptik
Geometri Eliptik
 
Analisis real-lengkap-a1c
Analisis real-lengkap-a1cAnalisis real-lengkap-a1c
Analisis real-lengkap-a1c
 
Sejarah Matematika Hindu
Sejarah Matematika HinduSejarah Matematika Hindu
Sejarah Matematika Hindu
 
Koneksi Matematika
Koneksi MatematikaKoneksi Matematika
Koneksi Matematika
 
Modul 2 keterbagian bilangan bulat
Modul 2   keterbagian bilangan bulatModul 2   keterbagian bilangan bulat
Modul 2 keterbagian bilangan bulat
 
Kemampuan berpikir kritis dan kreatif matematis
Kemampuan berpikir kritis dan kreatif matematisKemampuan berpikir kritis dan kreatif matematis
Kemampuan berpikir kritis dan kreatif matematis
 
Geometri datar dra. kusni- m.si
Geometri datar   dra. kusni- m.siGeometri datar   dra. kusni- m.si
Geometri datar dra. kusni- m.si
 
GEOMETRI RUANG-garis & bidang sejajar, perpotongan tiga buah bidang, dua bida...
GEOMETRI RUANG-garis & bidang sejajar, perpotongan tiga buah bidang, dua bida...GEOMETRI RUANG-garis & bidang sejajar, perpotongan tiga buah bidang, dua bida...
GEOMETRI RUANG-garis & bidang sejajar, perpotongan tiga buah bidang, dua bida...
 
Sistem Bilangan Babilonia (Seksagesimal) presentasi
Sistem Bilangan Babilonia (Seksagesimal) presentasiSistem Bilangan Babilonia (Seksagesimal) presentasi
Sistem Bilangan Babilonia (Seksagesimal) presentasi
 
Analisis real-lengkap-a1c
Analisis real-lengkap-a1cAnalisis real-lengkap-a1c
Analisis real-lengkap-a1c
 
BAB 2 Pencerminan (Refleksi)
BAB 2 Pencerminan (Refleksi)BAB 2 Pencerminan (Refleksi)
BAB 2 Pencerminan (Refleksi)
 
Fungsi Pembangkit
Fungsi PembangkitFungsi Pembangkit
Fungsi Pembangkit
 
Geometri PEMBUKTIAN PROCLUS DAN WALLIS TERHADAP PSOTULAT KESEJAJARAN EULCIDES
Geometri PEMBUKTIAN PROCLUS DAN WALLIS TERHADAP PSOTULAT KESEJAJARAN EULCIDESGeometri PEMBUKTIAN PROCLUS DAN WALLIS TERHADAP PSOTULAT KESEJAJARAN EULCIDES
Geometri PEMBUKTIAN PROCLUS DAN WALLIS TERHADAP PSOTULAT KESEJAJARAN EULCIDES
 
Vektor, Aljabar Linier
Vektor, Aljabar LinierVektor, Aljabar Linier
Vektor, Aljabar Linier
 
Contoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrupContoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrup
 
Teori bilangan
Teori bilanganTeori bilangan
Teori bilangan
 
BAB 1 Transformasi
BAB 1 Transformasi BAB 1 Transformasi
BAB 1 Transformasi
 
Bab ix ruas garis berarah
Bab ix ruas garis berarahBab ix ruas garis berarah
Bab ix ruas garis berarah
 
Modul 4 kongruensi linier
Modul 4   kongruensi linierModul 4   kongruensi linier
Modul 4 kongruensi linier
 

Viewers also liked

Setengah putaran transformasi geometri
Setengah putaran transformasi geometriSetengah putaran transformasi geometri
Setengah putaran transformasi geometri
Evi Setianingsih
 
Aksioma insidensi dalam geometri euclid final
Aksioma insidensi dalam geometri euclid finalAksioma insidensi dalam geometri euclid final
Aksioma insidensi dalam geometri euclid final
agusloveridha
 
Kesebangunan dan kekongruenan
Kesebangunan dan kekongruenanKesebangunan dan kekongruenan
Kesebangunan dan kekongruenan
06081181320031
 
Bab 1 kesebangunan dan kekongruenan
Bab 1 kesebangunan dan kekongruenanBab 1 kesebangunan dan kekongruenan
Bab 1 kesebangunan dan kekongruenan
blackcatt
 
Titik, Garis, Sudut, Kurva
Titik, Garis, Sudut, KurvaTitik, Garis, Sudut, Kurva
Titik, Garis, Sudut, Kurva
Desy Aryanti
 
Kelompok 1 matematika titik, garis, bidang dan kurva
Kelompok 1 matematika   titik, garis, bidang dan kurvaKelompok 1 matematika   titik, garis, bidang dan kurva
Kelompok 1 matematika titik, garis, bidang dan kurva
Restu Waras Toto
 

Viewers also liked (20)

Geometri euclid
Geometri euclidGeometri euclid
Geometri euclid
 
Resume geometri euclid
Resume geometri euclidResume geometri euclid
Resume geometri euclid
 
Kesebangunan
KesebangunanKesebangunan
Kesebangunan
 
Geometri bidang datar dan dalil dalil pada segitiga
Geometri bidang datar dan dalil dalil pada segitigaGeometri bidang datar dan dalil dalil pada segitiga
Geometri bidang datar dan dalil dalil pada segitiga
 
5.transformasi balikan
5.transformasi balikan5.transformasi balikan
5.transformasi balikan
 
Setengah putaran
Setengah putaranSetengah putaran
Setengah putaran
 
Geometri kelompok 4
Geometri kelompok 4Geometri kelompok 4
Geometri kelompok 4
 
Nikolai Ivanovich Lobachevski
Nikolai Ivanovich Lobachevski         Nikolai Ivanovich Lobachevski
Nikolai Ivanovich Lobachevski
 
Tokoh-Tokoh Aljabar
Tokoh-Tokoh AljabarTokoh-Tokoh Aljabar
Tokoh-Tokoh Aljabar
 
Setengah putaran transformasi geometri
Setengah putaran transformasi geometriSetengah putaran transformasi geometri
Setengah putaran transformasi geometri
 
Saccheri 1
Saccheri 1Saccheri 1
Saccheri 1
 
Geometri 2
Geometri 2Geometri 2
Geometri 2
 
Kesebangunan dan kekongruenan
Kesebangunan dan kekongruenanKesebangunan dan kekongruenan
Kesebangunan dan kekongruenan
 
Rpp 1 kesebangunan
Rpp 1 kesebangunanRpp 1 kesebangunan
Rpp 1 kesebangunan
 
Kesebangunan dan kekongruenan bangun datar (dewi tri handayani)
Kesebangunan dan kekongruenan bangun datar (dewi tri handayani)Kesebangunan dan kekongruenan bangun datar (dewi tri handayani)
Kesebangunan dan kekongruenan bangun datar (dewi tri handayani)
 
Aksioma insidensi dalam geometri euclid final
Aksioma insidensi dalam geometri euclid finalAksioma insidensi dalam geometri euclid final
Aksioma insidensi dalam geometri euclid final
 
Kesebangunan dan kekongruenan
Kesebangunan dan kekongruenanKesebangunan dan kekongruenan
Kesebangunan dan kekongruenan
 
Bab 1 kesebangunan dan kekongruenan
Bab 1 kesebangunan dan kekongruenanBab 1 kesebangunan dan kekongruenan
Bab 1 kesebangunan dan kekongruenan
 
Titik, Garis, Sudut, Kurva
Titik, Garis, Sudut, KurvaTitik, Garis, Sudut, Kurva
Titik, Garis, Sudut, Kurva
 
Kelompok 1 matematika titik, garis, bidang dan kurva
Kelompok 1 matematika   titik, garis, bidang dan kurvaKelompok 1 matematika   titik, garis, bidang dan kurva
Kelompok 1 matematika titik, garis, bidang dan kurva
 

Similar to Geometri euclid

Artikel filsafat lakatos
Artikel filsafat lakatosArtikel filsafat lakatos
Artikel filsafat lakatos
Thiya Apriana
 
Sejarah Perkembangan Ilmu pada Zaman Yunani
Sejarah Perkembangan Ilmu pada Zaman YunaniSejarah Perkembangan Ilmu pada Zaman Yunani
Sejarah Perkembangan Ilmu pada Zaman Yunani
Suya Yahya
 
10 ilmuwan fisika terkenal
10 ilmuwan fisika terkenal10 ilmuwan fisika terkenal
10 ilmuwan fisika terkenal
Abu Khansa
 
Matematika dan warisan budaya
Matematika dan warisan budayaMatematika dan warisan budaya
Matematika dan warisan budaya
Ameilya P P
 
Paradigma thomas s
Paradigma thomas sParadigma thomas s
Paradigma thomas s
Sri Nuryati
 

Similar to Geometri euclid (20)

Sejarah kalkulus
Sejarah kalkulusSejarah kalkulus
Sejarah kalkulus
 
Sejarah Geometri Euclid
Sejarah Geometri EuclidSejarah Geometri Euclid
Sejarah Geometri Euclid
 
Artikel filsafat lakatos
Artikel filsafat lakatosArtikel filsafat lakatos
Artikel filsafat lakatos
 
Sejarah Perkembangan Ilmu pada Zaman Yunani
Sejarah Perkembangan Ilmu pada Zaman YunaniSejarah Perkembangan Ilmu pada Zaman Yunani
Sejarah Perkembangan Ilmu pada Zaman Yunani
 
Sejarah kalkulus
Sejarah kalkulusSejarah kalkulus
Sejarah kalkulus
 
Konvergensi sains dan_spiritualitas
Konvergensi sains dan_spiritualitasKonvergensi sains dan_spiritualitas
Konvergensi sains dan_spiritualitas
 
Matematika
MatematikaMatematika
Matematika
 
Sejarah Kalkulus
Sejarah KalkulusSejarah Kalkulus
Sejarah Kalkulus
 
BAB TERAKHIR DARI MATEMATIKA YUNANI DAN NOTASI NUMERIK YUNANI SERTA OPERASI A...
BAB TERAKHIR DARI MATEMATIKA YUNANI DANNOTASI NUMERIK YUNANI SERTA OPERASI A...BAB TERAKHIR DARI MATEMATIKA YUNANI DANNOTASI NUMERIK YUNANI SERTA OPERASI A...
BAB TERAKHIR DARI MATEMATIKA YUNANI DAN NOTASI NUMERIK YUNANI SERTA OPERASI A...
 
ALBERT EINSTEIN
ALBERT EINSTEINALBERT EINSTEIN
ALBERT EINSTEIN
 
Kosmologi ruang waktu dan gerak
Kosmologi ruang waktu dan gerakKosmologi ruang waktu dan gerak
Kosmologi ruang waktu dan gerak
 
10 ilmuwan fisika terkenal
10 ilmuwan fisika terkenal10 ilmuwan fisika terkenal
10 ilmuwan fisika terkenal
 
Makalah logika
Makalah logikaMakalah logika
Makalah logika
 
Makalah logika (1)
Makalah logika (1)Makalah logika (1)
Makalah logika (1)
 
Makalah logika (1)
Makalah logika (1)Makalah logika (1)
Makalah logika (1)
 
Makalah logika
Makalah logikaMakalah logika
Makalah logika
 
Filsafat dewasa ini
Filsafat dewasa iniFilsafat dewasa ini
Filsafat dewasa ini
 
Matematika dan warisan budaya
Matematika dan warisan budayaMatematika dan warisan budaya
Matematika dan warisan budaya
 
Paradigma thomas s
Paradigma thomas sParadigma thomas s
Paradigma thomas s
 
Logika3
Logika3Logika3
Logika3
 

More from windarti aja (19)

Uas flsafat
Uas flsafatUas flsafat
Uas flsafat
 
Geometri non euclid
Geometri non euclidGeometri non euclid
Geometri non euclid
 
Epistemologi
EpistemologiEpistemologi
Epistemologi
 
Aksiologi pengetahuan
Aksiologi pengetahuanAksiologi pengetahuan
Aksiologi pengetahuan
 
Tugas review materi filsafat
Tugas review materi filsafatTugas review materi filsafat
Tugas review materi filsafat
 
ppt luas segitiga
ppt luas segitigappt luas segitiga
ppt luas segitiga
 
Lesson plan academic writing
Lesson plan academic writingLesson plan academic writing
Lesson plan academic writing
 
Silabus. mtk smp
Silabus. mtk smpSilabus. mtk smp
Silabus. mtk smp
 
Rpp. mtk kelas 7 smp
Rpp. mtk kelas 7 smpRpp. mtk kelas 7 smp
Rpp. mtk kelas 7 smp
 
Makalah phi
Makalah phiMakalah phi
Makalah phi
 
Makalah phi
Makalah phiMakalah phi
Makalah phi
 
Jawaban mid
Jawaban midJawaban mid
Jawaban mid
 
Soal ujian Landasan
Soal ujian LandasanSoal ujian Landasan
Soal ujian Landasan
 
3apa
3apa3apa
3apa
 
Integrating writing and mathematics
Integrating writing and mathematicsIntegrating writing and mathematics
Integrating writing and mathematics
 
Landasan Sosial Budaya
Landasan Sosial BudayaLandasan Sosial Budaya
Landasan Sosial Budaya
 
Makalah baru
Makalah baruMakalah baru
Makalah baru
 
Makalah baru
Makalah baruMakalah baru
Makalah baru
 
Ppt okk
Ppt okkPpt okk
Ppt okk
 

Recently uploaded

Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
pipinafindraputri1
 
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdfAksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
JarzaniIsmail
 
mengapa penguatan transisi PAUD SD penting.pdf
mengapa penguatan transisi PAUD SD penting.pdfmengapa penguatan transisi PAUD SD penting.pdf
mengapa penguatan transisi PAUD SD penting.pdf
saptari3
 
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ikabab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
AtiAnggiSupriyati
 
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.pptHAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
nabilafarahdiba95
 

Recently uploaded (20)

MATEMATIKA EKONOMI MATERI ANUITAS DAN NILAI ANUITAS
MATEMATIKA EKONOMI MATERI ANUITAS DAN NILAI ANUITASMATEMATIKA EKONOMI MATERI ANUITAS DAN NILAI ANUITAS
MATEMATIKA EKONOMI MATERI ANUITAS DAN NILAI ANUITAS
 
Materi Sosialisasi US 2024 Sekolah Dasar pptx
Materi Sosialisasi US 2024 Sekolah Dasar pptxMateri Sosialisasi US 2024 Sekolah Dasar pptx
Materi Sosialisasi US 2024 Sekolah Dasar pptx
 
Modul Ajar Bahasa Inggris - HOME SWEET HOME (Chapter 3) - Fase D.pdf
Modul Ajar Bahasa Inggris - HOME SWEET HOME (Chapter 3) - Fase D.pdfModul Ajar Bahasa Inggris - HOME SWEET HOME (Chapter 3) - Fase D.pdf
Modul Ajar Bahasa Inggris - HOME SWEET HOME (Chapter 3) - Fase D.pdf
 
power point bahasa indonesia "Karya Ilmiah"
power point bahasa indonesia "Karya Ilmiah"power point bahasa indonesia "Karya Ilmiah"
power point bahasa indonesia "Karya Ilmiah"
 
Bab 4 Persatuan dan Kesatuan di Lingkup Wilayah Kabupaten dan Kota.pptx
Bab 4 Persatuan dan Kesatuan di Lingkup Wilayah Kabupaten dan Kota.pptxBab 4 Persatuan dan Kesatuan di Lingkup Wilayah Kabupaten dan Kota.pptx
Bab 4 Persatuan dan Kesatuan di Lingkup Wilayah Kabupaten dan Kota.pptx
 
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
 
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
 
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
 
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdfAksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
 
AKSI NYATA BERBAGI PRAKTIK BAIK MELALUI PMM
AKSI NYATA BERBAGI PRAKTIK BAIK MELALUI PMMAKSI NYATA BERBAGI PRAKTIK BAIK MELALUI PMM
AKSI NYATA BERBAGI PRAKTIK BAIK MELALUI PMM
 
MODUL AJAR BAHASA INDONESIA KELAS 6 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INDONESIA KELAS 6 KURIKULUM MERDEKA.pdfMODUL AJAR BAHASA INDONESIA KELAS 6 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INDONESIA KELAS 6 KURIKULUM MERDEKA.pdf
 
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKAKELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
 
mengapa penguatan transisi PAUD SD penting.pdf
mengapa penguatan transisi PAUD SD penting.pdfmengapa penguatan transisi PAUD SD penting.pdf
mengapa penguatan transisi PAUD SD penting.pdf
 
MODUL AJAR IPAS KELAS 6 KURIKULUM MERDEKA
MODUL AJAR IPAS KELAS 6 KURIKULUM MERDEKAMODUL AJAR IPAS KELAS 6 KURIKULUM MERDEKA
MODUL AJAR IPAS KELAS 6 KURIKULUM MERDEKA
 
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdfContoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
 
Kanvas BAGJA prakarsa perubahan Ahyar.pdf
Kanvas BAGJA prakarsa perubahan Ahyar.pdfKanvas BAGJA prakarsa perubahan Ahyar.pdf
Kanvas BAGJA prakarsa perubahan Ahyar.pdf
 
Lingkungan bawah airLingkungan bawah air.ppt
Lingkungan bawah airLingkungan bawah air.pptLingkungan bawah airLingkungan bawah air.ppt
Lingkungan bawah airLingkungan bawah air.ppt
 
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ikabab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
 
algoritma dan pemrograman komputer, tugas kelas 10
algoritma dan pemrograman komputer, tugas kelas 10algoritma dan pemrograman komputer, tugas kelas 10
algoritma dan pemrograman komputer, tugas kelas 10
 
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.pptHAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
 

Geometri euclid

  • 1. BAB I PENDAHULUAN LATAR BELAKANG Geometri adalah struktur matematika yang membicarakan unsur dan relasi yang ada antara unsur tersebut. Titik, garis, bidang, dan ruang merupakan benda abstrak yang menjadi unsur dasar geometri. Berdasarkan unsur-unsur inilah, didefinisikan pengertian-pengertian baru atau berdasar pada pengertian-pengertian baru sebelumnya. Dalam geometri didapat juga sifat-sifat pokok, yaitu sifat-sifat pertama yang tidak berdasarkan sifat-sifat yang mendahuluinya yaitu aksioma dan posulat. Aksioma adalah suatu pernyataan yang kebenarannya diterima tanpa melalui pembuktian. berdasarkan sifat pokok tersebut dapat diturunkan sifat-sifat yang disebut dengan dalil. Dalil tersebut dapat juga dibentuk berdasarkan dalil sebelumnya. Dalil merupakan sebuah pernyataan yang kebenarannya dapat diterima melalui serangkaian pembuktian. Simbol atau lambang merupakan alat bantu yang mengandung suatu pengertian. Suatu lambang tertentu digunakan untuk menyatakan hal tertentu sedangkan suatu hal tertentu dapat juga disimbolkan dengan bermacam-macam lambang. Seperti titik dilambangkan dengan huruf kapital misalnya A, B, C dan seterusnya, garis dilambangkan dengan huruf kecil misalnya garis k, l, atau dapat juga dilambangkan dengan gabungan dua titik seperti AB (dibaca: garis 𝐴𝐵̅̅̅̅), dan lambang-lambang yang lain seperti 𝐴𝐵⃡ yang menunjukkan segmen AB. Euclid dengan buku Elemen-nya adalah hasil karya klasik matematika dari jaman purbakala yang paling terkenal, dan juga menjadi buku teks matematika tertua yang selalu digunakan dunia. Sedikit yang bisa diketahui tentang Euclid, kecuali fakta bahwa dia hidup di Alexandria sekitar tahun 300 SM. Pokok persoalan utama dari karyanya adalah geometri, perbandingan dan teori bilangan. Telah diperlihatkan bahwa bukti geometrik dengan cara menggambarkan kesimpulan melalui diagram untuk saat ini dianggap tidak memuaskan. Bukti tersebut tidak memenuhi standar sekarang. Di lain pihak, Euclid, yang merupakan
  • 2. ahli logika ternama, bergantung sepenuhnya pada pembuktian menggunakan gambar. Postulat sejajar Euclid, yakni berupa satu kalimat penting dalam sejarah kontroversi intelektual, dapat dinyatakan sebagai berikut : Jika dua garis dibagi oleh garis transversal sedemikian sehingga jumlah dua sudut interiornya (sudut dalam) pada sisi transversal adalah kurang dari 180o, garis tersebut akan bertemu pada sisi transversal tersebut. Sejarah pentingnya postulat sejajar tersebut didasarkan pada peran pentingnya dalam teori Euclid. Oleh karena itu, pertama dimulai dengan mensketsa teori geometri bidang Euclid. Agar menjadi bukti, penting dilakukan pemeriksaan terhadap struktur teori ini. Perlakuan yang dilakukan tidak mengikuti detailnya perkembangan Euclid, tetapi menekankan pada ide dasarnya dengan menggunakan istilah yang lebih modern dan juga perlakuan yang cukup sesuai dengan hasil kerjanya yang sekarang, sehingga banyak dipakai di berbagai buku ajar.
  • 3. BAB II PEMBAHASAN A. GEOMETRI EUCLID Tidak banyak orang yang beruntung memperoleh kemasyhuran yang abadi seperti Euclid, ahli ilmu ukur Yunani yang besar. Meskipun semasa hidupnya tokoh-tokoh seperti Napoleon, Martin Luther, Alexander yang Agung, jauh lebih terkenal ketimbang Euclid tetapi dalam jangka panjang ketenarannya mungkin mengungguli semua mereka yang disebut itu. Selain kemasyhurannya, hampir tak ada keterangan terperinci mengenai kehidupan Euclid yang bisa diketahui. Misalnya, kita tahu dia pernah aktif sebagai guru di Alexandria, Mesir, di sekitar tahun 300 SM, tetapi kapan dia lahir dan kapan dia wafat betul-betul gelap. Bahkan, kita tidak tahu di benua apa dan dikota apa dia dilahirkan. Meski dia menulis beberapa buku dan diantaranya masih ada yang tertinggal, kedudukannya dalam sejarah terutama terletak pada bukunya yang hebat mengenai ilmu ukur yang bernama The Elements. Kebanyakan teorema yang disajikan dalam buku The Elements tidak ditemukan sendiri oleh Euclid, tetapi merupakan hasil karya matematikawan Yunani awal seperti Pythagoras (dan para pengikutnya), Hippocrates dari Chios, Theaetetus dari Athena, dan Eudoxus dari Cnidos. Akan tetapi, secara umum Euclid dihargai karena telah menyusun teorema-teorema ini secara logis, agar dapat ditunjukkan (tak dapat disangkal, tidak selalu dengan bukti teliti seperti yang dituntut matematika modern) bahwa cukup mengikuti lima aksioma sederhana. Euclid juga dihargai karena memikirkan sejumlah pembuktian jenius dari teorema-teorema yang telah ditemukan sebelumnya, misalnya Teorema 48 di Buku I. Arti penting buku The Elements tidaklah terletak pada pernyataan rumus- rumus pribadi yang dilontarkannya. Hampir semua teori yang terdapat dalam buku itu sudah pernah ditulis orang sebelumnya, dan juga sudah dapat dibuktikan kebenarannya. Sumbangan Euclid terletak pada cara pengaturan dari bahan-bahan
  • 4. dan permasalahan serta formulasinya secara menyeluruh dalam perencanaan penyusunan buku. Di sini tersangkut, yang paling utama, pemilihan dalil-dalil serta perhitungan-perhitungannya, misalnya tentang kemungkinan menarik garis lurus diantara dua titik. Sesudah itu dengan cermat dan hati-hati dia mengatur dalil sehingga mudah difahami oleh orang-orang sesudahnya. Bilamana perlu, dia menyediakan petunjuk cara pemecahan hal-hal yang belum terpecahkan dan mengembangkan percobaan-percobaan terhadap permasalahan yang terlewatkan. Perlu dicatat bahwa buku The Elements selain terutama merupakan pengembangan dari bidang geometri yang ketat, juga di samping itu mengandung bagian-bagian soal aljabar yang luas berikut teori penjumlahan. Buku The Elements sudah merupakan buku pegangan baku lebih dari 2000 tahun dan tak syak lagi merupakan buku yang paling sukses yang pernah disusun manusia. Begitu hebatnya Euclid menyusun bukunya sehingga dari bentuknya saja sudah mampu menyisihkan semua buku yang pernah dibuat orang sebelumnya dan yang tak pernah digubris lagi. Aslinya ditulis dalam bahasa Yunani, kemudian buku The Elements itu diterjemahkan ke dalam berbagai bahasa. Terbitan pertama muncul tahun 1482, sekitar 30 tahun sebelum penemuan mesin cetak oleh Gutenberg. Sejak penemuan mesin itu dicetak dan diterbitkanlah dalam beribu-ribu edisi yang beragam corak. Sebagai alat pelatih logika pikiran manusia, buku The Elements jauh lebih berpengaruh ketimbang semua risalah Aristoteles tentang logika. Buku itu merupakan contoh yang komplit sekitar struktur deduktif dan sekaligus merupakan buah pikir yang menakjubkan dari semua hasil kreasi otak manusia. Adalah adil jika kita mengatakan bahwa buku Euclid merupakan faktor penting bagi pertumbuhan ilmu pengetahuan modern. Ilmu pengetahuan bukanlah sekedar kumpulan dari pengamatan-pengamatan yang cermat dan bukan pula sekedar generalisasi yang tajam serta bijak. Hasil besar yang direnggut ilmu pengetahuan modern berasal dari kombinasi antara kerja penyelidikan empiris dan percobaan- percobaan di satu pihak, dengan analisa hati-hati dan kesimpulan yang punya dasar kuat di lain pihak.
  • 5. Kita masih bertanya-tanya apa sebab ilmu pengetahuan muncul di Eropa dan bukan di Cina, tetapi rasanya aman jika kita menganggap bahwa hal itu bukanlah semata-mata lantaran soal kebetulan. Memanglah, peranan yang digerakkan oleh orang-orang brilian seperti Newton, Galileo dan Copernicus mempunyai makna yang teramat penting. Tetapi, tentu ada sebab-musababnya mengapa orang-orang ini muncul di Eropa. Mungkin sekali faktor historis yang paling menonjol apa sebab mempengaruhi Eropa dalam segi ilmu pengetahuan adalah rasionalisme Yunani, bersamaan dengan pengetahuan matematika yang diwariskan oleh Yunani kepada Eropa. Patut kiranya dicatat bahwa Cina– meskipun berabad-abad lamanya teknologinya jauh lebih maju ketimbang Eropa– tak pernah memiliki struktur matematika teoritis seperti halnya yang dipunyai Eropa. Tak ada seorang matematikus Cina pun yang punya hubungan dengan Euclid. Orang-orang Cina menguasai pengetahuan yang bagus tentang ilmu geometri praktis, tetapi pengetahuan geometri mereka tak pernah dirumuskan dalam suatu skema yang mengandung kesimpulan. Bagi orang-orang Eropa, anggapan bahwa ada beberapa dasar prinsip- prinsip fisika yang dari padanya semuanya berasal, tampaknya hal yang wajar karena mereka punya contoh Euclid yang berada di belakang mereka. Pada umumnya orang Eropa tidak beranggapan geometrinya Euclid hanyalah sebuah sistem abstrak, melainkan mereka yakin benar bahwa gagasan Euclid --dan dengan sendirinya teori euclid-- memang benar-benar merupakan kenyataan yang sesungguhnya. Pengaruh Euclid terhadap Sir Isaac Newton sangat kentara sekali, sejak Newton menulis buku tersohornya The Principia dalam bentuk kegeometrian, mirip dengan The Elements. Berbagai ilmuwan mencoba menyamakan diri dengan Euclid dengan jalan memperlihatkan bagaimana semua kesimpulan mereka secara logis berasal mula dari asumsi asli. Tak kecuali apa yang diperbuat oleh ahli matematika seperti Russel, Whitehead dan filosof Spinoza. Kini, para ahli matematika sudah memaklumi bahwa geometri Euclid, bukan satu-satunya sistem geometri yang memang jadi pegangan pokok dan teguh
  • 6. serta yang dapat direncanakan pula, mereka pun maklum bahwa selama 150 tahun terakhir banyak orang yang merumuskan geometri bukan a la Euclid. Sebenarnya, sejak teori relativitas Einstein diterima orang, para ilmuwan menyadari bahwa geometri Euclid tidaklah selamanya benar dalam penerapan masalah cakrawala yang sesungguhnya. Pada kedekatan sekitar "Lubang hitam" dan bintang neutron - -misalnya-- dimana gaya berat berada dalam derajat tinggi, geometri Euclid tidak memberi gambaran yang teliti tentang dunia, ataupun tidak menunjukkan penjabaran yang tepat mengenai ruang angkasa secara keseluruhan. Tetapi, contoh-contoh ini langka, karena dalam banyak hal pekerjaan Euclid menyediakan kemungkinan perkiraan yang mendekati kenyataan. Kemajuan ilmu pengetahuan manusia belakangan ini tidak mengurangi baik hasil upaya intelektual Euclid maupun dari arti penting kedudukannya dalam sejarah. The Elements terdiri atas tiga belas buku. Buku 1 menguraikan proposisi- proposisi dasar dari geometri bidang datar, termasuk tiga kasus dalam hal kekongruenan segitiga, macam-macam teorema tentang garis-garis sejajar, teorema mengenai jumlah sudut-sudut dalam sebuah segitiga dan teorema Pythagoras. Buku 2 berkenaan dengan aljabar geometris, karena kebanyakan teoremanya tidak lebih tentang penafsiran aljabar sederhana. Buku 3 menyelidiki lingkaran dan sifat-sifatnya, dan termasuk teorema tentang tangent dan sudut- sudut yang digambarkan. Buku 4 terkait segibanyak beraturan dan lingkaran- lingkaran yang mengelilinginya. Buku 5 mengembangkan teori aritmetika tentang perbandingan. Buku 6 menerapkan teori perbandingan kepada geometri bidang datar, dan memuat teorema-teorema bilangan kembar. Buku 7 menguraikan teori bilangan dasar: misalnya bilangan prima, faktor persekutuan terbesar, dan lain- lain. Buku 8 terkait dengan deret geometri. Buku 9 memuat macam-macam aplikasi dari hasil dua buku sebelumnya, dan memuat teorema-teorema ketakterhinggaan bilangan prima, maupun rumus jumlah deret geometri. Buku 10 berusaha menggolongkan besaran yang tak dapat dibandingkan (dengan kata lain irasional) menggunakan apa yang disebut “metode keletihan”, suatu rintisan integral kuno. Buku 11 menghitung volume relatif dari kerucut, piramida, tabung,
  • 7. dan bola menggunakan metode keletihan. Dan akhirnya, buku 13 meneliti apa yang biasa disebut lima benda padat platonis. B. STRUKTUR GEOMETRI EUCLID Asumsi atau postulat yang ada untuk geometri bidang Euclid adalah : 1. Sesuatu akan sama dengan sesuatu atau sesuatu yang sama akan sama satu sama lainnya. 2. Jika kesamaan ditambahkan dengan kesamaan, maka jumlahnya akan sama. 3. Jika kesamaan dikurangi dari kesamaan, selisihnya akan sama. 4. Keseluruhan akan lebih besar daripada bagiannya. 5. Bangun geometrik dapat dipindahkan tanpa mengubah ukuran atau bentuknya. 6. Setiap sudut memiliki bisektor. 7. Setiap segmen memiliki titik tengah. 8. Dua titik hanya berada pada satu satunya garis. 9. Sebarang segmen dapat diperluas oleh suatu segmen yang sama dengan segmen yang diberikan. 10. Lingkaran dapat digambarkan dengan sebarang titik pusat dan radius yang diketahui. 11. Semua sudut siku – siku sama besar. Dari postulat – postulat di atas dapat dideduksi sejumlah teorema dasar. Diantaranya adalah : 1. Sudut bertolak belakang sama besar. 2. Sifat kongruensi segitiga ( SAS, ASA, SSS )
  • 8. 3. Teorema kesamaan sudut dasar segitiga sama kaki dan konversinya 4. Eksistensi garis yang tegak lurus pada garis pada titik dari garis tersebut 5. Eksistensi garis yang tegak lurus pada garis yang melalui titik eksternal 6. Pembuktian suatu sudut yang sama dengan sudut dengan titik sudut dan sisi yang telah diberikan sebelumnya. 7. Pembentukan segitiga yang kongruen dengan segitiga dengan sisi yang sama pada sisi segitiga yang diketahui. Sekarang akan dibuktikan teorema sudut eksterior, sebagai cara menuju perkembangan lebih lanjut. Teorema 1. Teorema sudut eksterior. Sudut eksterior segitiga akan lebih besar daripada sudut interior terpencil manapun. Bukti. Misal ABC adalah segitiga sebarang dan misalkan D merupakan perpanjangan dari BC̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ melalui C. Pertama akan ditunjukkan bahwa sudut eksterior ∠ACD lebih besar dari ∠A. misalkan E merupakan titik tengah AC, dan misalkan BE merupakan perluasan panjangnya melalui E hingga F. Maka AE = EC =BE = EF dan ∠AEB = ∠CEF ( sudut bertolak belakang sama besar ). Jadi Δ AEB = Δ CEF ( SAS ), dan ∠BAE = ∠FCE ( akibat segitiga kongruen ). Karena ∠ACD > ∠FCE ( keseluruhan sudut selalu lebih besar dari bagiannya ), maka disimpulkan bahwa ∠ACD > ∠BAE = ∠A. Untuk menunjukkan bahwa ∠ACD > ∠B, perluas 𝐴𝐶̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ melalui C hingga H, yang membentuk ∠BCH. Kemudian tunjukkan bahwa ∠BCH > ∠B, dengan menggunakan prosedur bagian pertama pembuktian: misalkan M merupakan titik
  • 9. tengah BC̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ , perluas panjang AM̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ melalui M, dan lain-lain. Untuk melengkapi bukti, perhatikan bahwa ∠BCH dan ∠ACD merupakan sudut bertolak belakang sehingga sudut tersebut sama besar. Pernyataan ∠ACD > ∠FCE bergantung pada diagramnya. Sekarang mudah melakukan pembuktian beberapa hasil yang cukup penting. Teorema 2. Jika dua garis dibagi oleh garis transversal sehingga membentuk pasangan sudut interior dalam berseberangan, maka garis tersebut sejajar. Bukti. Ingat kembali bahwa dua garis dalam bidang yang sama dikatakan sejajar jika garis tersebut tidak bertemu (berpotongan). Misalkan garis transversal membagi dua garis l, m pada titik A, B sehingga membentuk pasangan sudut interior dalam berseberangan, ∠1 dan ∠2, yang sama besar, dan misalkan garis l dan garis m tidak sejajar. Maka garis l dan garis m akan bertemu di titik C yang membentuk ΔABC. C terletak pada satu sisi AB atau pada sisi yang lainnya. Untuk kasus lainnya, sudut eksterior Δ ABC sama dengan sudut interior terpencil. (misalkan, jika C pada sisi AB yang sama sebagai ∠2 maka sudut eksterior ∠1 sama dengan sudut interior terpencil ∠2 ). Hal ini kontradiksi dengan teorema sebelumnya. Oleh karena itu garis l dan garis m sejajar. Akibat 1. Dua garis tegak lurus terhadap garis yang sama pasti sejajar. Sebagai akibat langsung akibat 1 adalah Akibat 2. Hanya ada satu garis yang tegak lurus terhadap garis melalui titik eksternal. Akibat 3. (Eksistensi garis sejajar). Jika titik P tidak berada pada garis l, maka akan ada setidaknya satu garis yang melalui P yang sejajar dengan l.
  • 10. Bukti. Dari P hilangkan garis tegak lurus pada garis l yang memiliki kaki di Q, dan di P buat garis m yang tegak lurus terhadap PQ. Maka garis m sejajar dengan garis l menurut akibat 1. Teorema 3. Jumlah dua sudut segitiga kurang dari 180o. Bukti. Misalkan ΔABC merupakan sebarang segitiga. Akan ditunjukkan bahwa ∠A + ∠B < 180o. Perluas CB melalui B hingga ke D. maka ∠ABD merupakan sudut eksterior ΔABC. Dengan menggunakan teorema 1, ∠ABD > ∠A, tetapi ∠ABD = 180o - ∠B.dengan mensubstitusikan untuk ∠ABD pada relasi pertama, maka : 180o - ∠B > ∠A, atau 180o > ∠A + ∠B. Jadi, ∠A + ∠B < 180o, dan teorema tersebut terbukti. Pengganti Postulat Sejajar Euclid Postulat sejajar Euclid biasanya digantikan oleh pernyataan berikut ini : Hanya ada satu garis sejajar pada garis yang melalui titik bukan pada garis tersebut. Pernyatan ini disebut dengan postulat Playfair. Postulat ini bisa dihubungkan dengan postulat sejajar Euclid karena sebenarnya dua pernyataan ini tidak sama. Pernyataan sebelumnya merupakan pernyataan tentang garis sejajar, dan pernyataan kedua mengenai garis bertemu. Bahkan kedua pernyataan tersebut memainkan peran yang sama dalam perkembangan logis geometri. Dikatakan
  • 11. pernyataan ini ekivalen secara logis. Hal ini berarti bahwa jika pernyataan pertama dianggap sebagai postulat (bersama dengan semua postulat Euclid kecuali postulat sejajar), kemudian pernyataan kedua dapat dideduksi sebagai teorema; dan konversinya, jika pernyataan kedua dianggap sebagai postulat (bersama dengan semua postulat Euclid kecuali postulat sejajar), maka pernyataan pertama dapat dideduksi sebagai teorema. Jadi secara logis, tidak penting dua pernyataan mana yang akan diasumsikan sebagai postulat dan yang mana yang akan dideduksi sebagai suatu teorema. Ekivalensi Postulat Euclid dan Playfair Akan dibuktikan ekivalensi postulat Euclid dan postulat Playfair. Pertama, dengan mengasumsikan postulat sejajar Euclid, maka akan dideduksi postulat Playfair. Diketahui garis l dan titik P tidak pada l (gambar 2.5), maka akan ditunjukkan bahwa hanya ada satu garis melalui P yang tidak pada l. diketahui bahwa ada garis melalui P yang sejajar dengan l, dan diketahui juga bagaimana cara menggambarnya (akibat 3,teorema 2). Dari P, dihilangkan garis tegak lurus pada l dengan kaki Q dan pada P garis tegak m yang tegak lurus pada 𝑃𝑄⃡ . Maka garis m sejajar garis l. Kemudian misalkan garis n sebarang garis melalui P yang berbeda dengan garis m. maka akan ditunjukkan bahwa garis n bertemu dengan garis l. Misalkan ∠1, ∠2 menunjukkan sudut dimana garis n bertemu dengan 𝑃𝑄⃡ . Maka ∠1 bukan merupakan sudut siku-siku untuk sebaliknya garis n dan garis m berimpit, berlawanan dengan asumsi. Jadi ∠1 atau ∠2 adalah sudut lancip, misalnya ∠1 yang merupakan sudut lancip.
  • 12. Ringkasannya, garis l dan garis n dibagi oleh garis transversal sehingga membentuk sudut lancip ∠1 dan sudut siku – siku, yang merupakan sudut interior pada sisi yang sama dari garis transversal tersebut. Karena jumlah sudut tersebut kurang dari 180o, postulat sejajar Euclid dapat diaplikasikan dan disimpulkan bahwa garis n bertemu dengan garis l. Jadi garis m hanya satu – satunya garis 12 yang melalui P yang sejajar dengan garis l dan dideduksikan bahwa postulat Playfair dari postulat sejajar Euclid. Sekarang dengan mengasumsikan postulat Playfair, akan dideduksi postulat sejajar Euclid. Gambar 2.6 Misalkan garis m dibagi oleh garis transversal dititik Q, P yang membentuk ∠1 dan ∠2, pasangan sudut interior pada satu sisi garis transversal yang memiliki jumlah sudut kurang dari 180o ( gambar 2.6 ), adalah : (1) ∠1 + ∠2 < 180o Misalkan ∠3 menunjukkan tambahan ∠1 yang terletak pada sisi berlawanan 𝑃𝑄⃡ dari ∠1 dan ∠2 ( gambar 2.6 ), maka : (2) ∠1 + ∠3 = 180o
  • 13. Dari hubungan (1), (2) maka : (3) ∠2 < ∠3 Pada titik P, bentuk ∠QPR yang sama dengan dan yang interior dalam berseberangan dengan ∠3. Maka ∠2 < ∠PQR, sehingga 𝑅𝑃 berbeda dari garis m. menurut teorema 2, 𝑅𝑃 sejajar dengan l. Karenanya menurut postulat Playfair, m tidak sejajar dengan l. Oleh karena itu, garis m dan l bertemu. Seandainya garis-garis tersebut bertemu di sisi berlawanan dari 𝑃𝑅 dari ∠1 dan ∠2, katakanlah di titik E maka ∠2 merupakan sudut eksterior ΔPQE, karenanya ∠2 > ∠3 , berlawanan dengan (3). Akibatnya, pengandaian tadi salah, jadi garis m dan l bertemu pada sisi garis transversal 𝑃𝑄⃡ yang memuat ∠1 dan ∠2. Jadi postulat sejajar Euclid mengikuti postulat Playfair dan akibatnya dua postulat tersebut menjadi ekivalen. C. PERAN POSTULAT SEJAJAR EUCLID Dengan mengasumsikan postulat sejajar Euclid berikut ini merupakan beberapa hasil penting yang dapat dibenarkan : 1. Jika dua garis sejajar dibagi oleh garis transversal, sebarang pasangan sudut interior dalam berseberangan yang terbentuk akan sama besar. 2. Jumlah sudut sebarang segitiga adalah 180°. 3. Sisi bertolak belakang dari jajaran genjang adalah sama besar. 4. Garis sejajar selalu berjarak sama. 5. Eksistensi segi empat dan bujur sangkar. 6. Teori luas menggunakan unit persegi. 7. Teori segitiga yang sama, yang termasuk eksistensi bangun dengan ukuran sebarang yang sama dengan bangun yang diketahui. Postulat sejajar Euclid merupakan sumber untuk banyak hasil yang sangat penting. Tanpa postulat tersebut (atau ekivalennya), kita tidak akan memiliki teori
  • 14. luas yang sudah lama dikenal, teori kesamaan, dan teori Pythagoras yang terkenal itu. Cara dimana Euclid mengatur teoremanya mengimplikasikan bahwa sesungguhnya Euclid tidak sepenuhnya puas dengan postulat sejajarnya. Euclid manyatakan hal tersebut di awal karjanya tetapi pernyataan itu tidak dipakainya sampai akhirnya dia tidak dapat malakukan kemajuan tanpa postulat tersebut. Agaknya, Euclid memiliki intuisi bahwa postulat sejajar tersebut tidak memiliki kualitas intuitif ataupun sederhana dari postulat lainnya. Rasa yang demikian dilakukan oleh para ahli geometri dalam selama 20 abad. Para ahli mencoba mendeduksi postulat sejajar dari postulat lainnya, atau menggantikan postulat tersebut dengan postulat yang nampaknya lebih pasti. D. TOKOH-TOKOH DALAM PERKEMBANGAN EUCLID GEOMETRY Bukti Proclus tentang Postulat Sejajar Euclid Prolus (410-485) memberikan “bukti” tentang postulat sejajar Euclid yang kita ringkas sebagai berikut : Kita asumsikan postulat Euclid bukan sebagai postulat sejajar. Misalkan P merupakan titik tidak berada pada garis l (gambar 2.7). kita bentuk garis m melalui P sejajar dengan garis l dengan cara yang biasa digunakan. Misalkan 𝑃𝑄⃡⃡ tegak lurus dengan l di Q, dan misalkan m tegak lurus dengan 𝑃𝑄⃡⃡ di P. Sekarang, anggaplah ada garis lain n melalui P yang yang sejajar dengan l, maka n membentuk sudut lancip dengan garis PQ, yang terletak katakanlah pada sisi kanan 𝑃𝑄⃡⃡ . Bagian dari n di sebelah kanan titik P seluruhnya termuat dalam daerah yang dibatasi oleh garis l, m dan 𝑃𝑄⃡⃡ . Sekarang dimisalkan X adalah sebarang titik di m yang letaknya di sebelah kanan titik P, misalkan 𝑋𝑌̅̅̅̅ tegak lurus dengan l di Y dan misalkan gariS 𝑋𝑌̅̅̅̅ tersebut bertemu dengan garis n di Z. Maka 𝑋𝑌̅̅̅̅ > 𝑋𝑍̅̅̅̅. Misalkan X mundur di garis m, maka 𝑋𝑍̅̅̅̅. meningkat secara tidak menentu, karena 𝑋𝑍̅̅̅̅. setidaknya sama besarnya dengan segmen dari X yang tegak lurus dengan n. Jadi 𝑋𝑌̅̅̅̅ juga meningkat secara tidak menentu. Tetapi jarak antara dua garis sejajar harus terbatas. Oleh karena itu, akan menjadi kontradiksi dan
  • 15. pengandaian salah. Jadi, m hanya merupakan satu-satunya garis yang melalui P yang sejajar dengan garis l. Karenanya, postulat Playfair berlaku, dan juga ekivalen dengan postulat sejajar Euclid. Argumen Prolus tersebut mencakup 3 asumsi : a. jika dua garis saling berpotongan, jarak pada suatu garis dari satu titik ke garis lainnya akan meningkat secara tak menentu, karena titik tersebut mundur (menyusut) tak berujung. b. segmen terpendek yang menghubungkan titik eksternal pada suatu garis merupakan segmen yang tegak lurus. c. jarak antara dua garis sejajar adalah terbatas. (a) dan (b) dapat dibenarkan tanpa bantuan postulat sejajar Euclid. Jadi inti persoalan pembuktian adalah asumsi (c). Proclus mengasumsikan (c) sebagai postulat tambahan. Mari kita sebut sebagai postulat asumsi Proclus tersembunyi. Kemudian bisa dinyatakan: postulat Proclus ekivalen dengan postulat sejajar Proclus. Postulat sejajar Euclid mengimplikasikan bahwa jarak antara garis sejajar selalu konstan, dan terbatas. Konversinya, melalui argumen Proclus dapat dinyatakan bahwa postulat Proclus mengimplikasikan postulat sejajar Euclid. Jadi, Proclus menggantikan postulat sejajar dengan postulat yang ekivalen, dan bukan menetapkan validitas postulat sejajar tersebut. Percobaan Saccheri untuk Mempertahankan Postulat Euclid
  • 16. Girolamo Saccheri (1667-1733) melakukan studi yang mendalam tentang geometri dalam buku yang berjudul Euclides Vindicatus, yang diterbitkan di tahun saat kematiannya. Beliau melakukan pendekatan terhadap permasalahan pembuktian postulat sejajar Euclid dengan cara baru yang radikal. Prosedurnya ekivalen dengan mengasumsikan bahwa postulat sejajar Euclid salah, dan menemukan kontradiksi dengan penalaran logis. Hal ini akan mensahkan postulat sejajar dengan menggunakan prinsip metode tak langsung. Maksud Saccheri adalah studi segi empat yang memiliki sisi yang sama panjang dan tegak lurus dengan sisi ketiga. Tanpa mengasumsikan sebarang postulat sejajar, beliau melakukan studi mendalam tentang segi empat tersebut yang sekarang disebut dengan segi empat Saccheri. Misalkan ABCD merupakan segi empat Saccheri dengan AD = BC dan sudut siku-siku di A, B (gambar 2.10). Saccheri membuktikan bahwa ∠C = ∠D dan kemudian mempertimbangkan tiga kemungkinan yang berhubungan dengan sudut C dan D : 1. hipotesis tentang sudut siku-siku (∠C = ∠D = 90°) 2. hipotesis tentang sudut tumpul (∠C = ∠D > 90°) 3. hipotesis tentang sudut lancip (∠C = ∠D < 90°) Jika postulat sejajar Euclid diasumsikan, maka hipotesis sudut siku-siku akan terjadi (karena postulat sejajar mengimplikasikan bahwa jumlah sudut sebarang segi empat adalah 360°). Argumen dasar Saccheri sebagai berikut: Tunjukkan bahwa hipotesis sudut tumpul dan hipotesis sudut lancip keduanya membawa keadaan kontradiksi. Hal ini akan membentuk hipotesis sudut siku-siku yang ekivalen dengan postulat sejajar Euclid.
  • 17. Saccheri membuktikan menggunakan sederetan teorema yang memiliki alasan yang tepat, bahwa hipotesis sudut tumpul akan menghasilkan kontradiksi. Beliau mempertimbangkan implikasi hipotesis sudut lancip. Di antaranya ada sejumlah teorema yang tidak umum, dua di antaranya kita nyatakan sebagai berikut: Jumlah sudut sebarang segitiga kurang dari 180°. Jika l dan m merupakan dua garis dalam bidang, maka salah satu dari sifat di bawah ini di penuhi: a. l dan m berpotongan, dalam kasus di mana dua garis tersebut divergen dari titik perpotongan. b. l dan m tidak berpotongan tetapi memiliki garis tegak lurus yang sama di mana dua garis tersebut divergen dalam kedua arah dari garis tegak lurus yang sama tersebut. c. l dan m tidak brpotongan dan tidak memiliki garis tegak lurus yang sama, di mana dua garis tersebut konvergen dalam satu arah langkah, dan divergen pada arah lainnya. Saccheri tidak memandang sebagai kontradiksi, meskipun beliau pikir harus menganggap sebagai kontradiksi dan bahkan diketahui pada masa sekarang bahwa teori hipotesis sudut lancip Saccheri bebas kontradikisi seperti geometri Euclid.
  • 18. BAB III PENUTUP KESIMPULAN Adapun kesimpulan yang dapat ditarik dari penyusunan makalah ini adalah sebagai berikut: 1. Geometri Euclid merupakan sistem aksiomatik, dimana semua teorema ("pernyataan yang benar") diturunkan dari bilangan aksioma yang terbatas, artinya hasil-hasil penting/teorema-teorema tersebut merupakan akibat dari postulat sejajar. 2. Peran postulat sejajar Euclid adalah sebagai sumber untuk banyak hasil yang sangat penting. Tanpa postulat tersebut (atau ekivalennya), kita tidak akan memiliki teori luas yang sudah lama dikenal, teori kesamaan, dan teori Pythagoras yang terkenal. Jadi postulat sejajar Euclid akan lebih berperan apabila dideduksi dengan postulat lainnya atau digantikan dengan postulat lainnya yang lebih pasti.