Kubernetes has the concept of resource requests and limits. Pods get scheduled on the nodes based on their requests and optionally limited in how much of the resource they can consume. Understanding and optimizing resource requests/limits is crucial both for reducing resource "slack" and ensuring application performance/low-latency. This talk shows our approach to monitoring and optimizing Kubernetes resources for 80+ clusters to achieve cost-efficiency and reducing impact for latency-critical applications. All shown tools are Open Source and can be applied to most Kubernetes deployments.