SlideShare a Scribd company logo
1 of 124
1
1
Wind Energy Systems MEMS 5705
Spring 2017
Lecture 11, Feb. 22
Lecture 12, Feb. 27
2
1. Key points of L9 & L10
2. Momentum Theory and Blade Element Theory
2.1 Momentum theory
2.2 Blade element theory
2.3 Blade shape for ideal rotor without wake
rotation
2.4 Strip Theory or BEM Theory
(A combination of momentum theory
and blade element theory)
2
L11 and L12
3
3
3. Power coefficient Cp including the
effects of wake rotation and profile
drag
4. Advanced aerodynamics topics
(# 3.13, pp. 141-145)
5. Chapter 4: Mechanics and Dynamics
5.1 An overview of basic mechanics
4
1. Key points of L9 & L10 (Feb. 15 and 20)
5
1. Range of validity of momentum theory
a = axial induction factor
for a ≤ 0.4, momentum theory is considered
valid. 2nd Edition (3.12, 3.14), pp. 94-95
For a ≥ 0.4, momentum theory is considered
not valid
P.87
),
14
.
2
.
3
(
..........
..........
)
1
(
4
P.87
),
17
.
2
.
3
..(
..........
).........
1
(
4
2
a
a
C
a
a
C
p
t
-
=
-
=
L10)
L9
empirical,
.(
..........
2
)
1
(
4 +
+
-
= a
Ct
6
α
c/4
Pitching moment = M
Drag force = D
Chord
Air flow
Drag and lift forces and pitching moment on stationary airfoil:
α : angle of attack ; c: chord (p. 97)
Airfoil Basics
7
L = Lift force over the reference area c.l
Cl = lift coefficient
l
C
l
U )
.
c
(
2
1 2
÷
ø
ö
ç
è
æ
= r
( )
length
unit
per
force
Dynamic
length
unit
per
force
Lift
2
1
1
.
2
1
.
2
1
2
2
2
=
÷
ø
ö
ç
è
æ
=
÷
ø
ö
ç
è
æ
÷
ø
ö
ç
è
æ
=
÷
ø
ö
ç
è
æ
=
c
U
l
L
l
l
c
U
l
L
l
c
U
L
r
r
r
8
Drag force = D
Drag coefficient:
Pitching moment = M
Pitching moment coefficient:
)
area)(
Ref.
(
2
1 2
d
C
U ÷
ø
ö
ç
è
æ
= r ….(3.43) p. 104
)
(c)(C
U m
area)
Ref.
(
2
1 2
÷
ø
ö
ç
è
æ
= r
….(3.44) p. 104
length
unit
per
force
Dynamic
length
unit
per
force
Drag
2
1 2
=
=
c
U
l
D
Cd
r
moment
Dynamic
moment
Pitching
)
.
.(
2
1 2
=
=
c
l
c
U
M
Cm
r
9
μ = coefficient of viscosity
= kinematic viscosity
r
m
u =
÷
ø
ö
ç
è
æ
=
÷
÷
ø
ö
ç
ç
è
æ
»
ï
þ
ï
ý
ü
ï
î
ï
í
ì
u
m
r Uc
f
Uc
f
c
c
c
m
d
l
u
m
r Uc
Uc
=
=
= number
Reynolds
Re ….(3.41)
p. 103
(* we take chord length c as reference length)
10
Stream tube model of flow behind rotating wind blade. Picture of stream
tube with wake rotation.
Momentum Theory with Wake Rotation (#3.3, pp. 96-101)
11
An important statement in the text (p. 97)
“Note that when wake rotation is included in
the analysis, the induced velocity at the rotor
consists of not only the axial component,
Ua, But also a component in the rotor plane
rΩa'.” (a' = angular induction factor)
Momentum Theory with Wake Rotation
12
rΩ
Plane of Rotation
U
aU
Wind Direction
U(1-a)
For future reference:
)
'
1
(
)
1
(
'
tan
a
r
a
U
aU
r
a
+
W
-
=
W
=
f
Flow velocity diagram at an annulus in a HAWT rotor disk
f
a'r Ω
f f
13
91
p.
..(3.3.6),
..........
..........
......
..........
)
'
1
(
'
)
1
(
speed
wind
speed
tip
blade
60
p.
5.4),
.......(2.
..........
ratio.....
speed
tip
91
p.
,
...(3.3.8)
..........
..........
........
ratio
speed
local
)
'
1
(
'
)
1
(
)
'
1
(
)
1
(
'
tan
2
2
a
a
a
a
U
R
R
r
R
r
U
r
U
r
a
a
a
a
U
r
a
r
a
U
aU
r
a
r
r
+
-
=
=
=
W
=
=
×
W
=
=
=
W
+
-
=
÷
ø
ö
ç
è
æ W
+
W
-
=
W
=
l
l
l
l
f
We will further verify this geometrical derivation analytically.
2nd Edition (2.76) p. 63
2nd Edtion (3.26-27) p. 98
2nd Edition (3.25) p. 98
14
92
p.
),
14
.
3
.
3
..(
..........
..........
)
1
(
'
8
92
p.
),
13
.
3
.
3
........(
..........
..........
..........
2
1
0
3
2
3
ò -
=
=
l
l
l
l
r
r
r
p
p
d
a
a
C
AU
dP
dC
2nd Edition (3.32-33) pp. 98-99
15
2. Momentum Theory and Blade
Element Theory (# 3.6, pp. 117-121)
15
16
( )
( ) 106
p.
),
1
.
5
.
3
(
..........
..........
dr
r
)
a
1
(
a
4
U
91
p.
),
5
.
3
.
3
.....(
..........
dr
r
2
U
2
1
)
a
1
(
a
4
dT
2
2
p
-
r
=
p
r
-
=
106
p.
),
2
.
5
.
3
.(
..........
).........
(
)
1
(
'
4
91
p.
),
10
.
3
.
3
...(
).........
2
(
2
1
)
1
(
'
4
3
2
dr
Ur
a
a
rdr
r
U
a
a
dQ
W
-
=
W
-
=
p
r
p
r
2.1 Momentum Theory (L9 + L10)
2nd Edition (3.58-59) p. 118
dL = 4b[1-b*cos(φ)](1/2)ρUΩr2(2πrdr)
= 4b[1-a]ρUr3(πΩdr) . . . . . . . . . . Peters
17
2.2 Blade element theory
18
19
dL = dFL
Ω dFN
dD= dFD
dFT
U(1-a)
Ω r ( 1+ a') Ur
Ф
α
Plane of Rotation
θ (class) = θP (text)
= angle between
the chord line and
the plane of rotation
α = angle of attack
= angle between the
chord line and the relative wind Ur
Ф = θ + α = θp + α = relative wind angle
= angle between the plane
of rotation and relative wind
velocity Ur
Chord line
Blade Geometry for HAWT Aerodynamic Analysis
A typical blade element of length dr and width c
20
dL = dFL
Ω
FN = Ftransit
D
FT
U(1-a)
a'Ω r
Ur
Ф
α
Plane of Rotation
Chord line
Ω r
FTorque
U(1-a) Ω
21
dL = dFL
Ω dFN
dD= dFD
dFT
U(1-a)
Ur
Ф
α
Plane of Rotation
Ur = relative wind velocity
dFL= incremental lift force
dFD = incremental drag force
dFN = Incremental drag force
normal to the plane of
rotation (this contributes
to thrust)
dFT = Incremental drag force
tangential to the
plane of rotation (this
contributes to torque)
Chord line
Ω r ( 1+ a')
Blade Geometry for HAWT Aerodynamic Analysis
22
97
p.
Text.
c
.
A
U
2
1
M
C
A
U
2
1
D
C
A
U
2
1
L
C
2
r
m
2
r
d
2
r
L
ï
ï
ï
þ
ï
ï
ï
ý
ü
r
=
r
=
r
= 2nd Ed. p. 104
Old
23
Let c(Δr) = dA
B = Number of blades
91
p.
.(3.3.7),
..........
..........
ratio.....
speed
tip
U
R
91
p.
3.8),
.......(3.
ratio.....
speed
local
R
r
.
U
r
p.109
(3.5.6),
........
..........
)
'
a
1
(
)
a
1
(
)
'
a
1
(
r
)
a
1
(
U
tan
cos
)
'
a
1
(
r
sin
)
a
1
(
U
U
r
r
r
=
W
=
l
=
l
=
W
=
l
l
+
-
=
+
W
-
=
f
f
+
W
=
f
-
=
2nd Edition
(3.63) p. 120
(3.26-27) p. 98
24
Incremental lift force: (3.55-56) p. 120
( )
( ) 109
p.
),
9
.
5
.
3
.(
..........
..........
.
.
2
1
force
drag
l
Incrementa
109
p.
),
8
.
5
.
3
.(
..........
..........
.
.
2
1
2
2
dr
c
U
C
dF
dr
c
U
C
dF
r
d
D
r
l
L
÷
ø
ö
ç
è
æ
=
÷
ø
ö
ç
è
æ
=
r
r
25
Force FT in the plane of blade rotation
generates useful torque: Q
109
p.
),
10
.
5
.
3
..(
..........
..........
sin
cos
:
thrust
to
s
contribute
dF
component
The
109
p.
),
11
.
5
.
3
..(
..........
..........
cos
sin
N
f
f
f
f
D
L
N
D
L
T
dF
dF
dF
dF
dF
dF
+
=
-
=
(FN exerts a thrust load on the rotor)
2nd Edition (3.67-68) p. 120
26
We consider a rotor with B blades
The elemental normal force (thrust) on the
section at a distance r from the center:
Similarly, the elemental torque due to the
tangential force dFT operating at a distance r
from the center :
109
p.
),
12
.
5
.
3
....(
..........
)
sin
cos
(
2
1
. 2
dr
c
C
C
U
B
dF D
L
r
N f
f
r +
÷
ø
ö
ç
è
æ
=
110
.
p
),
13
.
5
.
3
.(
..........
..........
..........
.
. T
dF
r
B
dQ =
2nd Edition (3.69-70) p. 120-121
27
( )
power
elemental
110
p.
),
14
.
5
.
3
.(
..........
cos
sin
2
1
.
torque
elemental
2
=
WD
=
D
-
÷
ø
ö
ç
è
æ
=
=
Q
P
dr
r
c
C
C
U
B
dQ
d
l
r f
f
r
2nd Edition (3.71) p. 121
28
Summary of Blade Element theory
We considered an annular rotor section
dA = 2 π r dr. Then we obtained one equation for
normal force (thrust) dFN: (3.69, 3.71) pp. 120-121
and one equation for dFT that gives the torque dQ:
109
p.
),
12
.
5
.
3
....(
..........
dr
c
)
sin
C
cos
C
(
U
2
1
.
B
dF d
l
2
r
N f
+
f
÷
ø
ö
ç
è
æ
r
=
( ) 110
p.
),
14
.
5
.
3
..(
..........
dr
r
c
cos
C
sin
C
U
2
1
.
B
dQ d
l
2
r f
-
f
÷
ø
ö
ç
è
æ
r
=
29
2.3 Blade shape for ideal rotor
without wake rotation (pp. 121-123)
30
Ideal Rotor (p.121)
1. Axial induction factor a = 1/3 for each
annular stream tube as in a Betz rotor
2. No wake rotation (angular induction
factor a' =0)
3. no losses from a finite number of blades
4. No drag, Cd = 0
31
2nd Edition (3.72) 121, (3.74) p. 122, 124
Recall from momentum theory
( )
111
p.
),
3
.
6
.
3
.......(
..........
..........
..........
sin
3
2
sin
)
1
(
111
p.
),
2
.
6
.
3
.(
..........
..........
)
0
cos
(
2
1
B.
109
p.
),
12
.
5
.
3
....(
..........
)
sin
cos
(
2
1
.
:
theory
element
blade
From
9
8
110
p.
),
1
.
6
.
3
....(
..........
..........
3
1
1
3
1
4
106
p.
),
1
.
5
.
3
........(
..........
..........
2
)
1
(
4
2
1
2
2
2
2
2
f
f
f
r
f
f
r
p
r
p
r
p
r
U
a
U
U
dr
c
C
U
dr
c
C
C
U
B
dF
dr
r
U
dr
r
U
dr
r
a
a
U
dT
r
L
r
D
L
r
N
=
-
=
+
=
+
÷
ø
ö
ç
è
æ
=
=
÷
÷
ø
ö
ç
ç
è
æ
÷
ø
ö
ç
è
æ
-
=
-
=
32
111
p.
),
5
.
6
.
3
....(
..........
..........
..........
3
2
)
0
1
(
)
3
1
1
(
tan
109
p.
(3.5.6),
....
..........
..........
)
'
a
1
(
)
a
1
(
)
'
a
1
(
r
)
a
1
(
U
tan
r
r
r
l
=
l
+
-
=
f
l
+
-
=
+
W
-
=
f
2nd Edition (3.63) p. 120, (3.76) p. 122
33
111
p.
),
4
.
6
.
3
....(
..........
sin
tan
r
4
Bc
C
dr
r
9
8
U
theory
momentum
from
(dT)
theory
b.e.
from
)
dF
(
dr
c
)
cos
C
(
sin
U
3
2
2
1
.
B
dF
l
2
N
l
2
N
f
f
=
p
Þ
p
÷
ø
ö
ç
è
æ
r
=
=
f
÷
÷
÷
÷
ø
ö
ç
ç
ç
ç
è
æ
f
r
=
2nd Edition (3.77) p. 122
34
Cl Bc
4p r
= tanfsinf............(3.6.4),p. 111
=
2
3
.
1
lr
æ
è
ç
ö
ø
÷sinf.
c =
8p rsinf
3BCl lr
.................( 3.6.8),p. 111
Alternative Method: μ = λr
c = [4πr/BCl]*[(3b-1)/b] =
[16πr/BCl]*[b2/(1 + λr
2)]
Equation to find optimum chord. (3.75, 3.79) p. 122
tan(ϕ) = 2/(3λr)
35
Example (p.122) and table 3.2 (p. 123)
λ = 7 , R = 5 m, Cl = 1
8
.
0
R
r
consider
on,
illustrati
for
and,
7
Take
3
B
,
7
at
C
C
o
o
min
l
d
=
=
a
=
=
a
÷
÷
ø
ö
ç
ç
è
æ
36
r/R c θ
0.8 0.236 6.8 o -0.2 o 7º
f a = f - = 7o
( )
o
1
1
1
8
.
6
8
.
0
x
7
x
3
2
tan
111
p.
),
7
.
6
.
3
..(
..........
8
.
0
x
7
x
3
2
tan
R
r
3
2
tan
=
÷
ø
ö
ç
è
æ
=
÷
ø
ö
ç
è
æ
=
÷
÷
ø
ö
ç
ç
è
æ
l
=
f
-
-
-
2nd Edition (3.76), p. 122
Book method to get inflow angle.
θ
37
Now try Peters’ New Method for angle.
λ = 7 ; λr = 7(0.8) = 5.6
Φ = π/3 –(1/3)*arccos[(1-5.62)/(1+5.62)]
= 60º - (1/3)(180º- 20.25º) = 6.8º
α = 7º = 6.8º - Θ; Θ = -0.2º
38
236
.
0
236
.
0
)
8
.
0
7
)(
1
(
)
3
(
3
8
.
6
sin
)
5
8
.
0
(
8
)
8
.
0
7
)(
1
(
)
3
(
3
8
.
6
sin
)
8
.
0
(
8
3
sin
8
=
=
´
´
=
´
=
=
c
R
c
B
r
c
o
o
r
l
p
p
l
f
p
m
Book method for chord.
39
b = 1/[1+2*cos(6.8º)] = .335
c = 16π(.8)(5)(.335)2/[(3)(1)(1+5.62)]
c = 0.2323 m
PETERS’ METHOD FOR CHORD
40
Note: Twist angle θt = θp – θp, o
where θp, o = pitch at tip, r = R.
at r/R = 0.8, θt = θp – θp, o = -0.2º – (-1.6) º
= 1.4º
1.4
41
[Figure 3.25. p. 123]
42
, p. 113
Figure 3.26, p. 123
43
(not clear to us,
hence not done)
3.5 page 623
44
We define θP,0 as pitch at tip.
45
46
47
2.4 Strip Theory or BEM Theory
(Blade Element + Momentum Theory)
(pp. 124-127)
48
106
p.
),
2
.
5
.
3
.........(
..........
dr
r
2
r
U
2
1
)
a
1
(
'
a
4
dQ
90
p.
),
4
.
3
.
3
.........(
..........
dr
r
2
r
2
1
)
'
a
1
(
'
a
4
dT
106
p.
),
1
.
5
.
3
.....(
..........
..........
dr
r
2
U
2
1
)
a
1
(
a
4
dT
:
Theory
Momentum
2
2
2
2
p
W
r
-
=
p
W
r
+
=
p
r
-
=
110
p.
),
14
.
5
.
3
.(
..........
2
1
)
cos
sin
(
109
p.
),
12
.
5
.
3
...(
2
1
)
sin
cos
(
:
theory
element
Blade
2
2
dr
r
Bc
U
C
C
dQ
dr
Bc
U
C
C
dT
dF
r
d
l
r
d
l
N
r
f
f
r
f
f
-
=
+
=
=
2nd Edition pp. 124, 125
49
To combine the momentum theory with the
blade element theory, we have to express
Ur = V in terms of U and Ω r.
50
dL = dFL
Ω
FN = thrust
D
FT
U(1-a)
a'Ω r
Ur
Ф
α
Plane of Rotation
Chord line
Ω r
FTorque
U(1-a) Ω
51
General Blade-Element/Momentum Theory
dL = 2ρ(2πrdr)(U-wcosΦ)w = (B/2)ρ(cdr)V2Cl
Cl = s*sin(ϕ - θ) = s*[sinϕcosθ – cosϕsinθ)]
s = slope of lift curve, 2π for flat plate, 5.73 for 0012
8πr(1-b*cosϕ)b = Bcs(1+μ2-b2)[sinϕcosθ – cosϕsinθ)]
For large λr, ϕ is small and we can approximate.
We also define σ’= sλr/4 = [Bc/(2πr)]sλr/4 = A.
52
BEM with Small Angles
For small angles, cosΘ=1, sinΘ=Θ, cosϕ=1, sinϕ=(1-b)/λr
This results in the BEM balance of: b(1-b) =A[1-b-λrθ]
Which gives a quadratic: b2 – b(1+A) +A(1 – λrθ)
b = {(1+A) – [(1-A)2 +4λrθ]1/2}/2
This b can be used either in momentum or blade element to
get the lift which resolves into thrust and torque.
53
U(1-a)
Ur
Ф
f
f
cos
)
'
1
(
109
p.
),
7
.
5
.
3
....(
..........
..........
sin
)
1
(
a
r
U
a
U
U
r
r
+
W
=
-
=
)
a'
r(1+
W
2nd Edition (3.64) p. 120
54
Thus,
114
.
),
3
.
7
.
3
......(
..........
..........
2
c
B
'
:
'
ratio
solidity
local
Define
)
....(
..........
1
)
'
1
(
)
1
(
)
'
1
(
)
1
(
tan
:
also
and
)
........(
..........
cos
)
'
1
(
sin
)
1
(
p
r
B
a
a
a
r
a
U
A
a
r
a
U
U
r
r
p
s
s
l
f
f
f
=
×
+
-
=
+
W
-
=
+
W
=
-
=
2nd Edition (3.82) p. 125
55
Now, we express the blade element theory as
follows (after some algebra):
)
....(
2
2
1
tan
1
1
cos
sin
'
)
'
1
(
)
.......(
2
2
1
tan
1
sin
cos
'
)
1
(
2
2
2
2
2
2
D
dr
r
r
r
C
C
C
a
dQ
C
dr
r
U
C
C
C
a
dT
l
d
l
l
d
l
p
r
f
f
f
s
p
r
f
f
f
s
W
÷
÷
ø
ö
ç
ç
è
æ
-
+
=
÷
÷
ø
ö
ç
ç
è
æ
+
-
=
Combining Eq. (D) and 2nd eq. p. 124 and Eq. (B), we get
)
.......(
..........
..........
tan
1
1
cos
'
1
'
4
F
C
C
C
a
a
l
d
l
÷
÷
ø
ö
ç
ç
è
æ
-
¢
=
+ f
f
s
Combining Eq. (c), Eq. (3.5.1) we get
)
.(
..........
..........
tan
1
sin
cos
.
1
4
2
E
C
C
C
a
a
l
d
l ÷
÷
ø
ö
ç
ç
è
æ
+
¢
=
+
f
f
f
s
56
It is conventional (“accepted practice” according
to the text) to neglect drag force (Cd = 0) in the
BEM theory: 2nd Edition (3.88-89) p. 125
With Cd = 0 in Eqs. (E) and (F), we get
( )
[ ]
( )
[ ] 115
.
p
),
10
.
7
.
3
..(
..........
1
C
'
cos
4
1
'
a
cos
C
'
'
a
1
'
a
4
115
.
p
),
9
.
7
.
3
....(
cos
C
'
sin
4
1
1
a
sin
cos
C
'
a
1
a
4
l
l
l
2
2
l
-
s
f
=
Þ
f
s
=
+
f
s
f
+
=
Þ
f
f
s
=
-
57
Power Coefficient CP including the effects of
wake rotation and profile drag (pp. 116-119)
We begin with the basic equation:
(3.92) p. 127
ò
ò W
=
=
W
=
R
r
R
r h
h
dQ
dP
P
dQ
dP
power
Total
p.117
),
13
.
7
.
3
..(
..........
..........
where rh is the rotor radius at the hub
58
Power Coefficient Cp:
2nd Edition (3.94) p. 127
?
dQ
117
p.
,
)
15
.
7
.
3
.....(
2
1 3
2
=
W
=
=
=
ò
U
R
dQ
P
P
P
P
C
R
r
dynamic
wind
p
h
p
r
59
We already have an expression for dQ from
the blade element theory: (3.95) p. 127
( ) p.114
.),
2
.
7
.
3
....(
cos
sin
sin
)
1
(
' 2
2
2
2
dr
r
C
C
a
U
dQ d
l f
f
f
r
p
s -
-
=
Also, we wish to replace dr by dλr by using our earlier
definition of local speed ratio λr :
r
r
d
R
r
U
r
l
l
l
l
×
=
=
W
=
R
dr
p.91
),
8
.
3
.
3
....(
..........
..........
60
We make use of these two equations for dQ
and λr, and express CP (after some algebra)
as follows:
117
p.
),
16
.
7
.
3
....(
cot
1
sin
1
)
1
(
'
2 2
2
2 r
r
l
d
l
p d
C
C
a
C
C
h
l
l
f
f
s
l
l
l
ú
û
ù
ê
ë
é
÷
ø
ö
ç
è
æ
-
÷
÷
ø
ö
ç
ç
è
æ
-
= ò
Where λh, is the local speed ratio at r = rh.
To further simplify the above integral equation for
CP, we revisit two earlier-derived equation for
a/(1-a) and a/a' from the blade element theory:
61
That is from p. 125,
p.117
),
18
.
7
.
3
.......(
..........
..........
'
tan
p.115
),
8
.
7
.
3
........(
..........
..........
tan
a'
a
and
p.115
),
7
.
7
.
3
.....(
).........
1
(
'
cos
sin
a
4
p.115
),
5
.
7
.
3
.(
..........
sin
4
1
cos
'
1
2
2
r
r
l
l
a
a
a
C
C
a
a
l
f
f
l
s
f
f
f
f
s
=
Þ
=
-
=
Þ
×
=
-
62
Substituting these two equations into integral for
Cp: see bottom of page 127
117
p.
),
11
.
7
.
3
.....(
d
cot
C
C
1
)
a
1
(
'
a
8
d
cot
C
C
1
)
a
1
(
'
a
8
d
cot
C
C
1
)
a
1
(
tan
a
8
d
cot
C
C
1
sin
)
a
1
(
cos
sin
a
4
2
d
cot
C
C
1
sin
1
)
a
1
(
C
'
2
C
r
l
d
3
r
2
r
2
r
l
d
r
2
r
2
r
l
d
2
r
2
r
l
d
2
2
r
2
r
l
d
2
l
2
p
h
h
h
h
h
l
ú
û
ù
ê
ë
é
f
÷
÷
ø
ö
ç
ç
è
æ
-
-
l
l
=
l
l
ú
û
ù
ê
ë
é
f
÷
÷
ø
ö
ç
ç
è
æ
-
-
l
l
=
l
l
ú
û
ù
ê
ë
é
f
÷
÷
ø
ö
ç
ç
è
æ
-
-
f
l
=
l
l
ú
û
ù
ê
ë
é
f
÷
÷
ø
ö
ç
ç
è
æ
-
f
-
f
f
l
=
l
l
ú
û
ù
ê
ë
é
f
÷
÷
ø
ö
ç
ç
è
æ
-
f
-
s
l
=
ò
ò
ò
ò
ò
l
l
l
l
l
l
l
l
l
l
63
It is instructive to set Cd = 0 in previous eq.
92
p.
),
14
.
3
.
3
.......(
..........
d
)
a
1
(
'
a
8
C r
3
r
2
p
h
l
l
-
l
= ò
l
l
This is Cp based on momentum theory including
wake rotation.
64
Project #2 part b
Due along with part a
March 6
Repeat table 3.2 and the figures on
slides 40 – 42 including wake rotation and
using the Peters’ method. Include both θT
and θP.
65
4. Advanced Aerodynamics Topics
In later lectures, we treat the following
four advanced topics (this treatment goes
well beyond the text):
1.Dynamic wake or inflow
2.Dynamic stall
3.Tip-loss factor
4.Rotational sampling
66
5. Chapter 6: Wind Turbine
Materials and Components
Please review basics of statics, mechanics
of materials and dynamics; this is typically
covered in the undergraduate engineering
program.
67
In this lecture we address a very
important topic: Fatigue
For many components of WT, fatigue is the
design driver.
68
Fatigue: Chapter 6
(# 6.1 and 6.2, pp.257-266)
69
Overview (p. 257)
“It is well known that many materials which can
withstand a load when applied once, will not survive
if that load is applied and then removed ('cycled') a
number of times. This increasing inability to withstand
loads applied multiple times is called fatigue damage.
The underlying causes of fatigue damage are
complex, but they can be most simply conceived of
as deriving from the growth of tiny cracks. With each
cycle, the cracks grow a little, until the material fails.
This simple view is also consistent with another
observation about fatigue: the lower the magnitude of
the load cycle, the greater the number of cycles that
the material can withstand.”
70
“Like all rotating machines, windmills are
generators of fatigue. Every revolution of its
components (i.e., rotor, transmission,
generator, yaw column, etc.) produces a
load cycle, known as fatigue cycle. Each of
these cycles causes a finite amount of
damage, resulting in a reduction in the
component fatigue life.”
71
(Wind Turbine Technology, David Spera (Ed.), ASME publication, 1994, p. 549)
See also Fig. 6.1 page 259.
72
Typical pattern of design drivers for the primary structural and mechanical
components in a HAVVT. (ASME publication, ibid)
73
Let
nL= the total number of blade revolutions
over the turbine’s life time
Since the number of many of the fatigue-
producing stress cycles is proportional to nL,
it is instructive to evaluate nL in a typical
scenario:
74
Consider a large turbine with an RPM of
approximately 30 to 70 operating 4000
hours per year. This turbine would
experience from 108 to 109 cycles over a 20-
year lifetime. How?
75
Total number of cycles
over a lifetime = nL
nL = 60 k nrotor(Hop)(Y)…………. ………..(6.1), p. 258
k = no. of cyclic events/revolution
(atleast equal to 1; see text p. 157)
nrotor = rotational speed (rpm)
Hop = operating hours/year
Y = years of operation
76
Ω = 30 to 70 rpm ≈ 50 rpm
Hop= 4000 hours/year
Y = 20 years
nL = 60(1)(50)(4000)(20)
= (240)106) cycles
77
S ≡ stress
N ≡ number of cycles to failure
This is evaluated by conducting a rotating
beam test
S-N Curve (p. 259)
78
79
B.M
w/2 w/2
Specimen
w/2 w/2
L1
wL1/2
80
( )
in
d
d
WL
d
M
3
.
0
Typically
2
32
32
3
1
3
min
max,
=
±
=
±
=
p
p
s
81
Time
min
s
max
s
(Purely) alternating stress, that is, the mean stress is zero
and the stresses are fully reversing = σa
one cycle
82
Rotating Shaft under constant B.M
Ω
A
A
Point A experiences alternating stresses
83
Rotating Beam Test
1) Loaded with known weight W
2) Cycled until fracture
3) The value of max. stress (σa) at fracture
and at a specific number of cycles N is
recorded. This gives fatigue strength at
that N.
84
4 ) a number of specimens of a given
material are tested for different values of
W
5) Prepare a plot of σa vs. N
85
(p. 259)
σe=endurance ‘strength’ (details to follow)
86
87
Fatigue life for purely alternating
stress σa
88
Fatigue Strength = σfs
σfs ≡ purely alternating stress σa
that produces fracture in a
given number of cycles N
89
Fatigue life
≡ The number of cycles N that
produces failure at a given
stress level σfs
90
N
σa
σe
Typically in machine design 100x106 or 10x106
10x109 for wind turbines
σe ≡ value of σa where the σa vs. N curve is
horizontal . If not horizontal, σa value at
N = 1010 cycles
91
N
σa
σe
N= 10x109 cycles
Fatigue life N at σa= σfs
σfs
N
92
N
σa (purely alternating)
σe
N= 10x109 cycles
σfs
N
(N>= 10x109 cycles)=continuous operation
93
Fatigue Formula or
Goodman’s Rule
(Text, p. 260)
94
Typically, stresses do not have a zero
mean.
 σmax , σmin , σalternating , and σmean
What are these?
95
N
min
s
max
s
0
σa
Completely Reversed Stress
σa = σalternating
m
mean
average s
s
s
s
s
=
=
=
=
0
min
max
96
N
min
s
max
s
0
σ
( )
( ) 2
2
min
max
min
max
s
s
s
s
s
s
-
=
+
=
a
m
m
mean s
s =
σa
σa = σalternating
97
σ = cyclic stress
σ = σm + σa
σe= σa (for continuous operation, N = 1010
cycles)
σfs= σa (N = Nstipulated)
σm = σaverage = σmean
98
max
s
0
m
s σa
σa
σa
σfs
σu
Goodman
Line
Test data
SF
u
s
SF
u
m
fs
a 1
=
+
s
s
s
s
SF
fs
s
1
=
+
u
m
fs
a
s
s
s
s
σm
99
Goodman Design Rule:
SF
u
m
fs
a 1
=
+
s
s
s
s
100
The text takes σfs ≈ σe and SF or safety
factor ≈ 1. The reasons are:
1) For wind turbines N ≥10x109 cycles for
continuous operation. For such a high
value of N, σfs → σe
2) For wind turbines SF varies from 1 to 1.1
( SF is partially accounted for by taking
σfs ≈ σe )
101
Consider Eq. (6.6) on p. 261:
1
)
44
.
2
.
4
.........(
..........
..........
1
=
+
Þ
-
=
u
m
e
a
u
m
a
e
s
s
s
s
s
s
s
s
This agrees with conventional Goodman design rule for
σe = σfs and SF =1
102
Combined Loading
and
Goodman’s Rule
103
Wind turbines experience
combined fluctuating bending,
torsion, and axial loading.
104
xym
xya
xy
ym
ya
y
xm
xa
x
t
+
t
=>
t
s
+
s
=>
s
s
+
s
=>
s
For example,
105
3
2
1
3
2
1
z
zy
zx
yz
y
yx
xz
xy
x
:
stresses
principal
Three
0
0
0
0
0
0
s
'
6
s
³
s
³
s
º
ú
ú
ú
û
ù
ê
ê
ê
ë
é
s
s
s
s
º
ú
ú
ú
û
ù
ê
ê
ê
ë
é
s
t
t
t
s
t
t
t
s
Combined Loading
or equivalently,
106
Fatigue analysis (Goodman’s rule)
addresses σa and σm . But in
actuality combined loading gives 6
stresses (3-D) or 3 principal
stresses.
(Note: stresses are always 3-D)
107
Calculate mean and
alternating stresses w.r.t the
von Mises effective stress: σe
and then calculate :
σea and σem
108
von Mises effective stress σe :
( ) ( ) ( )
( )
( ) ( ) ( )2
1
3
2
3
2
2
2
1
2
zx
2
yz
2
xy
2
x
z
2
z
y
2
y
x
2
e
6
2
s
-
s
+
s
-
s
+
s
-
s
=
t
+
t
+
t
+
s
-
s
+
s
-
s
+
s
-
s
=
s
109
em
ea
zxm
zxa
zx
yzm
yza
yz
xym
xya
xy
zm
za
z
ym
ya
y
xm
xa
x
s
s
t
t
t
t
t
t
t
t
t
s
s
s
s
s
s
s
s
s
+
+
=>
+
=>
+
=>
+
=>
+
=>
+
=>
110
( ) ( ) ( )
( )
( ) ( ) ( )
( )
2
2
2
2
2
2
2
2
2
2
2
2
2
2
6
2
,
6
2
zxm
yzm
xym
xm
zm
zm
ym
ym
xm
em
zxa
yza
xya
xa
za
za
ya
ya
xa
ea
and
t
t
t
s
s
s
s
s
s
s
t
t
t
s
s
s
s
s
s
s
+
+
+
-
+
-
+
-
=
+
+
+
-
+
-
+
-
=
111
or equivalently,
m
a
m
a
m
a
3
3
3
2
2
2
1
1
1
s
s
s
s
s
s
s
s
s
+
=>
+
=>
+
=>
em
ea s
s
112
( ) ( ) ( )
( ) ( ) ( )2
1
3
2
3
2
2
2
1
2
2
1
3
2
3
2
2
2
1
2
2
2
m
m
m
m
m
m
em
a
a
a
a
a
a
ea
and
s
s
s
s
s
s
s
s
s
s
s
s
s
s
-
+
-
+
-
=
-
+
-
+
-
=
113
Goodman rule
SF
to
changes
SF
u
em
fs
ea
u
m
fs
a
1
1
=
+
=
+
s
s
s
s
s
s
s
s
114
Cumulative Damage
and
(Palmgren)–Miner Rule
(Text: p. 262)
115
Cumulative Damage and Miner’s Rule:
A component may experience multiple load cycles of
different amplitudes, as illustrated in Fig. 6.6, p. 262.
0 0.5 1 1.5 2 2.5 3
-3
-2
-1
0
1
2
3
Time
Stress,
arbitrary
units
116
Idealized types of fatigue cycles
117
2nd Edtion (6.7) p. 262
118
2nd Edition (6.8) p. 262
i=1
M
The
119
Equation (6.8), p.262, is based on the
assumptions:
1. fatigue damage at any stress level is
directly proportional to the number of
cycles at that level;
2. the ordering of stress level is of no
consequence.
120
Summary of Miner’s rule (hypothesis) for
cumulative damage; that is, eq. (6.8),
p.262:
1.A widely used hypothesis (not derivable)
2.Simple
3.generally, accuracy is adequate
4.No better alternatives as a design tool.
121
Illustrating the application of cumulative
damage rule, Eq. (6.8), p. 262.
122
0 0.5 1 1.5 2 2.5 3
-3
-2
-1
0
1
2
3
Time
Stress,
arbitrary
units
σ2
σ3
σ1
8667
.
0
15
4
10
4
20
4
15
4
10
4
failure
to
cycles
of
no.
applied
cycles
of
no.
20
4
3
2
1
=
+
+
=
=
=
=
=
D
and s
s
s
Text, p. 262
123
Let us answer the following question about
cumulative damage for the material
depicted by the uppermost curve in the
next figure σm = 0.
a) If σa = 500 MPa is applied for 8000
cycles, for how many additional cycles can
σa = 400 MPa be applied?
124
700
,
25
1
10
6
10
4
.
1
8000
2
4
2
4
=
=
´
+
´
=
n
n
D
(Overly approximate; explains the method)
Aluminium

More Related Content

Similar to Wind_Turbine_L11+L12_Revised.ppt

'Almost PERIODIC WAVES AND OSCILLATIONS.pdf
'Almost PERIODIC WAVES AND OSCILLATIONS.pdf'Almost PERIODIC WAVES AND OSCILLATIONS.pdf
'Almost PERIODIC WAVES AND OSCILLATIONS.pdf
Thahsin Thahir
 
Paper_Flutter
Paper_FlutterPaper_Flutter
Paper_Flutter
Ram Mohan
 
2229198m_Merchant_ENG5059P_Thesis_2016
2229198m_Merchant_ENG5059P_Thesis_20162229198m_Merchant_ENG5059P_Thesis_2016
2229198m_Merchant_ENG5059P_Thesis_2016
Laura Merchant
 
SUPPLEMENTARY LOW SPEED AERODYNAMICS (DEN233) .docx
SUPPLEMENTARY   LOW SPEED AERODYNAMICS (DEN233)  .docxSUPPLEMENTARY   LOW SPEED AERODYNAMICS (DEN233)  .docx
SUPPLEMENTARY LOW SPEED AERODYNAMICS (DEN233) .docx
calvins9
 

Similar to Wind_Turbine_L11+L12_Revised.ppt (20)

'Almost PERIODIC WAVES AND OSCILLATIONS.pdf
'Almost PERIODIC WAVES AND OSCILLATIONS.pdf'Almost PERIODIC WAVES AND OSCILLATIONS.pdf
'Almost PERIODIC WAVES AND OSCILLATIONS.pdf
 
Dynamics of wind & marine turbines
Dynamics of wind & marine turbinesDynamics of wind & marine turbines
Dynamics of wind & marine turbines
 
Design of windmill power generation using multi generator and single rotor (h...
Design of windmill power generation using multi generator and single rotor (h...Design of windmill power generation using multi generator and single rotor (h...
Design of windmill power generation using multi generator and single rotor (h...
 
Paper_Flutter
Paper_FlutterPaper_Flutter
Paper_Flutter
 
Formula Book.pdf
Formula Book.pdfFormula Book.pdf
Formula Book.pdf
 
STRUCTURAL AND VIBRATIONAL RESPONSE ANALYSIS OF H.P. BLADED DISC ASSEMBLY
STRUCTURAL AND VIBRATIONAL RESPONSE ANALYSIS OF H.P. BLADED DISC ASSEMBLYSTRUCTURAL AND VIBRATIONAL RESPONSE ANALYSIS OF H.P. BLADED DISC ASSEMBLY
STRUCTURAL AND VIBRATIONAL RESPONSE ANALYSIS OF H.P. BLADED DISC ASSEMBLY
 
fdocuments.us_turning-moment-diagram-flywheel.ppt
fdocuments.us_turning-moment-diagram-flywheel.pptfdocuments.us_turning-moment-diagram-flywheel.ppt
fdocuments.us_turning-moment-diagram-flywheel.ppt
 
DESIGN AND ANALYSIS OF MULTI- STAGE STEAM TURBINE BLADE AND SHAFT ASSEMBLY
DESIGN AND ANALYSIS OF MULTI- STAGE STEAM TURBINE BLADE AND SHAFT ASSEMBLYDESIGN AND ANALYSIS OF MULTI- STAGE STEAM TURBINE BLADE AND SHAFT ASSEMBLY
DESIGN AND ANALYSIS OF MULTI- STAGE STEAM TURBINE BLADE AND SHAFT ASSEMBLY
 
2229198m_Merchant_ENG5059P_Thesis_2016
2229198m_Merchant_ENG5059P_Thesis_20162229198m_Merchant_ENG5059P_Thesis_2016
2229198m_Merchant_ENG5059P_Thesis_2016
 
Unit 8: Torsion of circular shafts and elastic stability of columns
Unit 8: Torsion of circular shafts and elastic stability of columnsUnit 8: Torsion of circular shafts and elastic stability of columns
Unit 8: Torsion of circular shafts and elastic stability of columns
 
Turning moment-diagram-flywheel
Turning moment-diagram-flywheelTurning moment-diagram-flywheel
Turning moment-diagram-flywheel
 
【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測
 
1.3428190.pdf
1.3428190.pdf1.3428190.pdf
1.3428190.pdf
 
Rates of change_updated
Rates of change_updatedRates of change_updated
Rates of change_updated
 
SUPPLEMENTARY LOW SPEED AERODYNAMICS (DEN233) .docx
SUPPLEMENTARY   LOW SPEED AERODYNAMICS (DEN233)  .docxSUPPLEMENTARY   LOW SPEED AERODYNAMICS (DEN233)  .docx
SUPPLEMENTARY LOW SPEED AERODYNAMICS (DEN233) .docx
 
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...
 
Notes3
Notes3Notes3
Notes3
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systems
 
20320130406011 2
20320130406011 220320130406011 2
20320130406011 2
 
20320130406011 2
20320130406011 220320130406011 2
20320130406011 2
 

More from ssuserdee4d8

MATLAB workshop lecture 1MATLAB work.ppt
MATLAB workshop lecture 1MATLAB work.pptMATLAB workshop lecture 1MATLAB work.ppt
MATLAB workshop lecture 1MATLAB work.ppt
ssuserdee4d8
 
windenergy_NOwindenergywindenergywindenergy.ppt
windenergy_NOwindenergywindenergywindenergy.pptwindenergy_NOwindenergywindenergywindenergy.ppt
windenergy_NOwindenergywindenergywindenergy.ppt
ssuserdee4d8
 
Lecture-9 SIMS NDTDDDDDDDDDDDDDDDDDD.ppt
Lecture-9 SIMS NDTDDDDDDDDDDDDDDDDDD.pptLecture-9 SIMS NDTDDDDDDDDDDDDDDDDDD.ppt
Lecture-9 SIMS NDTDDDDDDDDDDDDDDDDDD.ppt
ssuserdee4d8
 
529Lecture-1-Non-destructive-Testing.pptx
529Lecture-1-Non-destructive-Testing.pptx529Lecture-1-Non-destructive-Testing.pptx
529Lecture-1-Non-destructive-Testing.pptx
ssuserdee4d8
 
Chapter 2 Operational Amplifier.pptx
Chapter 2 Operational Amplifier.pptxChapter 2 Operational Amplifier.pptx
Chapter 2 Operational Amplifier.pptx
ssuserdee4d8
 
WIND LECTURE.pptx
WIND LECTURE.pptxWIND LECTURE.pptx
WIND LECTURE.pptx
ssuserdee4d8
 
Fluid Dynamic Principles to Generate Axial Induction.ppt
Fluid Dynamic Principles to Generate Axial Induction.pptFluid Dynamic Principles to Generate Axial Induction.ppt
Fluid Dynamic Principles to Generate Axial Induction.ppt
ssuserdee4d8
 
4.1 Siraj.ppt
4.1 Siraj.ppt4.1 Siraj.ppt
4.1 Siraj.ppt
ssuserdee4d8
 

More from ssuserdee4d8 (8)

MATLAB workshop lecture 1MATLAB work.ppt
MATLAB workshop lecture 1MATLAB work.pptMATLAB workshop lecture 1MATLAB work.ppt
MATLAB workshop lecture 1MATLAB work.ppt
 
windenergy_NOwindenergywindenergywindenergy.ppt
windenergy_NOwindenergywindenergywindenergy.pptwindenergy_NOwindenergywindenergywindenergy.ppt
windenergy_NOwindenergywindenergywindenergy.ppt
 
Lecture-9 SIMS NDTDDDDDDDDDDDDDDDDDD.ppt
Lecture-9 SIMS NDTDDDDDDDDDDDDDDDDDD.pptLecture-9 SIMS NDTDDDDDDDDDDDDDDDDDD.ppt
Lecture-9 SIMS NDTDDDDDDDDDDDDDDDDDD.ppt
 
529Lecture-1-Non-destructive-Testing.pptx
529Lecture-1-Non-destructive-Testing.pptx529Lecture-1-Non-destructive-Testing.pptx
529Lecture-1-Non-destructive-Testing.pptx
 
Chapter 2 Operational Amplifier.pptx
Chapter 2 Operational Amplifier.pptxChapter 2 Operational Amplifier.pptx
Chapter 2 Operational Amplifier.pptx
 
WIND LECTURE.pptx
WIND LECTURE.pptxWIND LECTURE.pptx
WIND LECTURE.pptx
 
Fluid Dynamic Principles to Generate Axial Induction.ppt
Fluid Dynamic Principles to Generate Axial Induction.pptFluid Dynamic Principles to Generate Axial Induction.ppt
Fluid Dynamic Principles to Generate Axial Induction.ppt
 
4.1 Siraj.ppt
4.1 Siraj.ppt4.1 Siraj.ppt
4.1 Siraj.ppt
 

Recently uploaded

electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
benjamincojr
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
MaherOthman7
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
Kira Dess
 

Recently uploaded (20)

Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Students
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdf
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Students
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
 
21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university
 
Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdf
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded Systems
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailing
 

Wind_Turbine_L11+L12_Revised.ppt