SlideShare a Scribd company logo
1 of 64
Download to read offline
Department of Technical and Vocational
Education and Training
Department of Mechanical Engineering
Tables, Data and Equations
For
ME 31031 and ME 32031 Design of Machine Elements
AGTI Third Year (Mechanical)
Page 1
Stresses In Simple Machine Member
Sn(max: ) =
Sx + Sy
2
+ √(
Sx−Sy
2
)2 + Ss
2
Sn(min: ) =
Sx + Sy
2
− √(
Sx−Sy
2
)2 + Ss
2
Ss(max: ) = √(
Sx−Sy
2
)2 + Ss
2
Ss(max: ) =
Sn(max: ) − Sn(min: )
2
or
Sn(max: ) − 0
2
or
Sn(min: ) − 0
2
Sxand Sy = ±
𝐏
𝐀
±
𝐌×𝐂
𝐈
(+Tension), (−compression)
Ss =
T × r
J
( for circular cross section)
Where, Sn(max: ) = Maximum normal Stress
Sn(min: ) = Minimum normal Stress
Ss(max: ) = Maximum shear Stress
P = Axial load, N
A = Area of cross section, m2
M = Bending Moment, N. m
C = Distance from neutral axis to outer surface, m
I = Rectangular moment of inertia of cross section , m4
T = Torsional moment, N. m
J = Polar moment of inertia, m4
Page 2
Curved Beam
hi
ho
Bending stress at the inside fiber, 𝑆 =
𝑀 × ℎ𝑖
𝐴 × 𝑒 × 𝑟𝑖
, ℎ𝑖 = 𝑟𝑛 − 𝑟𝑖
Bending stress at the outside fiber, 𝑆 =
𝑀 × ℎ𝑜
𝐴 × 𝑒 × 𝑟𝑜
, ℎ𝑜 = 𝑟𝑜 − 𝑟𝑛
Where,
ℎ𝑖 = the distance from the neutral axis to the inside fiber, m
ℎ𝑜 = the distance from the neutral axis to the outside fiber, m
𝑟𝑖 = the radius of curvature of the inside fiber, m
𝑟𝑜 = the radius of curvature of the outside fiber, m
C.A = Central Axis
N.A = Neutral Axis
ri
ro
rn R
e
Page 3
Figures give the location to the neutral axis, the distance from the centroidal
axis to the neutral axis, and the distance to the centrodial axis from the center
of curvature for various commonly encountered shapes
C.A
N.A
rn
e
h
b
ri
R
ro
ro
d ri
rn
R
C.A
N.A
e
rn =
h
loge (
ro
ri
)
e = R − rn
R = ri +
h
2
rn =
[ro
1
2
⁄
+ ri
1
2
⁄
]
2
4
e = R − rn
R = ri +
d
2
Page 4
ro
h ri
bi
ti
to
bo t
e
rn
R
C.A
N.A
ro
h ri
ti
bi
t
e
rn
R
C.A N.A
rn =
(bi − t)ti + th
(bi − t)loge(
ri + ti
ri
) + tloge(
ro
ri
)
e = R − rn
R = ri +
1
2
⁄ h2
t + 1
2
⁄ ti
2
(bi − t)
(bi − t)ti + th
rn =
(bi − t)ti + (bo − t)to + th
biloge(
ri + ti
ri
) + tloge(
ro − to
ri + ti
) + bologe(
ro
ro − to
)
e = R − rn
R = ri +
1
2
⁄ h2
t + 1
2
⁄ ti
2
(bi − t) + (bo − t)to(h − 1
2
⁄ to)
(bi − t)ti + (bo − t)to + th
Page 5
ro
h ri
bo bi
rn
R
C.A N.A
e
ro
ri
t/2
t/2
to ti
e
rn
R
C.A
N.A
h
b
rn =
(
bi + bo
2 ) h
(
biro − bori
h
) loge (
ro
ri
) − (bi − bo)
e = R − rn
R = ri +
h(bi + 2bo)
3(bi + bo)
rn =
(bi − t)(ti + to) + th
b [loge(
ri + ti
ri
) + loge(
ro
ro − to
)] + tloge(
ro − to
ri + ti
)
e = R − rn
R = ri +
1
2
⁄ h2
t + 1
2
⁄ ti
2
(b − t) + (b − t)to(h − 1
2
⁄ to)
(b − t)(ti + to) + th
Page 6
Power Transmission shafting
Hollow shaft and solid shaft
Equal torsional stiffness
(
T
θ
)S = (
T
θ
)H
i. e (
JG
L
)S = (
JG
L
)H
JS = JH
π
32
d4
=
π
32
(do
4
− di
4
)
∴ di
4
= do
4
− d4
… … … . . (1)
Equal torsional strength
(
T
Ss
)S = (
T
Ss
)H
i. e (
J
y
)S = (
J
y
)H
π
32
d4
×
2
d
=
π
32
(do
4
− di
4
) ×
2
do
∴ di
4
= do
4
− d3
do … … … . . (2)
Page 7
Reduction in weight
If N% is weight reduction
WH = (1 − N)Ws
π
4
(do
2
− di
2
)lhW = (1 − N)
π
4
d2
lsW
(do
2
− di
2
) = (1 − N)d2
∴ di
2
= do
2
− (1 − N)d2
……………………(3)
The direction of the thrust force depends on the direction of rotation and the
hand of gear tooth.
Driver
RH
Fa
Driven
RH
Fa
Driver
LH
Fa
Driven
LH
Fa
Driven
LH
Fa
Driver
Fa
Driven
Fa
Driver
Fa
LH RH RH
Page 8
Bevel Gear (straight tooth)
r r
Driven
gear
pinion
Driver
Ft =
Mt
r
, Mt =
9550 × kW
rpm
Fr = Ft × tan∅
The separating force can be resolved into two components. Force
components along the shaft axis of the pinion is called the pinion thrust force
F𝑝 and the force component along the shaft axis of the gear is called the gear
thrust force F𝑔.
Fp = Ft × tan ∅ sinβ
Fg = Ft × tan∅cosβ
Where β = cone angle
F𝑡 = tangential force
F𝑟 = separating force
Page 9
Pulley
Driver
Driven
T1
T2
(T1+T2) sin
(T1+T2) cos
(T1+T2)
T1
T2
Mt = (T1 − T2) × r
(T1 − T2) =
Mt
r
Where T1 = Tight side tension
T2 = Slack side tension
ASME CODE Equation for Shaft Design
1. For solid shaft subjected to torsion and bending load ( without axial
load)
d3
=
16
πSs
√(KbMb)2 + (KtMt)2
2. For solid shaft subjected to combine bending, torsion and axial load
d3
=
16
πSs(max: )
√[𝐾𝑏Mb +
αFad
8
]
2
+ (KtMt)2
Page 10
3. For hollow shaft without axial load
do
3
=
16
πSs(1−K4)
√(KbMb)2 + (KtMt)2, K =
di
do
,
4. For hollow shaft with axial load
do
3
=
16
πSs(1 − K4)
√[KbMb +
αFad
8
(1 + K2) ]
2
+ (KtMt)2
ASME Code states for commercial steel shafting
Ss(allowable) = 8000psi (55 MN
m2
⁄ ) for shaft without keyway
Ss(allowable) = 6000psi (40 MN
m2
⁄ ) for shaft with keyway
If ultimate strength and yield strength are known,
Ss(allowable) = 0.18 Su
Ss(allowable) = 0.3 Sy
Choose smaller value (without keyway)
If there is a keyway or fillet, the strength of the shaft is reduced by 25%
Ss(allowable) = 0.18 Su × 0.75
Ss(allowable) = 0.3 Sy × 0.75
Choose smaller value (with keyway)
Page 11
Combined shock and fatigue factor applied to bending
moment (Kb) and Combined shock and fatigue factor applied
to torsion moment (Kt)
For stationary load:
Kb Kt
Load gradually applied 1.0 1.0
Load suddenly applied 1.5 to 2.0 1.5 to 2.0
For Rotating shafts:
Kb Kt
Load gradually applied 1.5 1..0
Load suddenly applied
(minor shock)
1.5 to 2.0 1.0 to 1.5
Load suddenly applied
(heavy shock)
2.0 to 3.0 1.5 to 3.0
Column action Factor (α )
The Column action Factor is unity for a tensile load. For a compression
load, α may be computed by
α =
1
1 − 0.0044(
L
K
)
for
L
K
< 115
α =
Sy
π2n E
(
L
K
)2
for
L
K
> 115
Page 12
K = √
I
A
=
d
4
(for circular cross section)
𝐖𝐡𝐞𝐫𝐞,
n = 1 for hinged ends
n = 2.25 for fixed ends
n = 1.6 for ends partly restrained
k = Radius or gyration, m
I = Rectangular moment of inertia, m4
A = Cross section area of shaft,m2
Sy = Yield stress in compression , N/m2
Standard sizes of shafting
Up to 25mm in 0.5mm increments
25 to 50mm in 1mm increments
50 to 100mm in 2mm increments
100 to 200mm in 5mm increments
Page 13
Power screws and Threaded Fasteners
Pitch (P)
The distance from a point on one thread to the corresponding point on
the next adjacent thread measures parallel to the axis.
P =
1
t. p. i
=
1
number of thread per inch
Lead (L)
The distance the screw would advance relative to nut in one rotation.
For single start, L= P
For double start, L= 2P
For multi start, L= nP
Helix angle (α)
tan α =
Lead
2πrm
tan θn = tan θ × cosα
Where,
do = outer diameter
di = inner (or) core diameter
dm = mean diameter
Page 14
Torque required to advance the screw against the load
P =
W(sinα + fcosα)
cosα − fsinα
… … … … … . . (÷ cos α)
P = W [
f + tanα
1 − ftanα
]
Ts = P × rm
Collar Torque
If there is rubbing and axial load along the axis (ie. Between rotating
and nonrotating members), some torque is wasted in overcoming the
collar friction
Tc = W × fc × rc
𝑊ℎ𝑒𝑟𝑒,
Tc = collar friction torque
fc = collar friction
rc = collar friction radius
rc =
doc + dic
4
( uniform wear)
rc =
2
3
roc
3
− ric
3
roc
2 − ric
2 ( uniform pressure)
TR = Ts + Tc
TR = W [rm
tanα + f
1 − ftanα
+ fcrc]
Page 15
Torque required to lower the load (in the direction of the load)
P = W [
−tanα + f
1 + ftanα
]
Ts = W × rm
Ts = Wrm [
−tanα + f
1 + f tanα
]
TL = Ts + Tc
TL = W [rm
−tanα + f
1 + f tanα
+ fcrc]
Torque required to raise the load (against load) considering the thread angle
T = W [rm
tanα +
f
cosθn
1 −
f × tanα
cosθn
+ fcrc]
Torque required to advance the screw (or nut) in the direction of load (or
lowering the load)
TL = W [rm
−tanα +
f
cosθn
1 +
f × tanα
cosθn
+ fcrc]
Page 16
𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲
η =
Work output
Work input
=
W × lead
2πT
Self lock the load should not descend under its own weight
Overhaul the load descend under its own weight
App torque (+) Self Lock, (-) overhaul
Check −tanα +
fs
cosθn
Stress in screw members
(1)Bending stress are estimated by considering the thread to be a short
cantilever beam projecting from the root cylinder
h/2
b
h
2πrmn
Page 17
𝑀 = 𝑊 ×
ℎ
2
𝐼 = 2𝜋𝑟𝑚𝑛 𝑏3
12
⁄ , 𝑦 =
𝑏
2
Using bending equation
Sb
y
=
M
I
Sb =
3Wh
2πrmnb2
(2) Shear stress at the root of thread
𝑠 =
𝑊
𝑟𝑜𝑜𝑡 𝑎𝑟𝑒𝑎
=
𝑊
2𝜋𝑟𝑚𝑛𝑏
(3)Bending stress (or) Bearing pressure between the contacting surface
of the screw and nut thread
p =
W
projected area
=
W
πdmhn
, n =
nut length
Pitch
(4)Stresses in the root cylinder of the screw may be estimated by
considering loads and torques carried by the bore cylinder
(neglecting strengthening effect of thread)
(i)torsional shear stress , Ss =
Tri
J
(𝑖𝑖)direct stress , Sc =
4W
πdi
2
Page 18
(𝑖𝑖𝑖)𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠, 𝑆𝑏 =
32𝑀
𝜋𝑑𝑖
3
(iv)Maximum shear stress, Ss(max) = √(
Sx
2
)
2
+ Ss
2
Column action
Column action due to axial loading of machine parts occurs very
frequently if the axial load is tensile load, then the application of 𝑆 =
𝑃
𝐴
is in order. If the axial load is compression load, then an appropriate
column equation should be used
The Euler equation for the critical load for slender columns of uniform
cross section is-
Fcr =
Cπ2
EA
(
L
K
)2
The J.B Johnson formula for the critical load for moderate length
columns of uniform cross section is
Fcr = SyA [1 −
Sy(
L
K
)2
4Cπ2E
]
Page 19
K = √
I
A
=
d
4
( for circular cross section)
Where,
Fcr = Critical load to cause buckling, N
C = Constant depending upon the end condition
E = Modulus of Elasticity, N/m2
(E=200× 209
N/m2
)
A = Area of transverse section, m2
L = Length of column, m
K =
Minimum radius of gyration,m
Where, I is the minimum moment of inertia about the axis
of bending
Sy = Yield stress in compression , N/m2
Page 20
The value of C depends on the end condition in figure
C=¼ C=1 C=2 C=4
C = 4, both ends fixed so that the tangent to the elastic curve at
each end is parallel to the original axis of the column
C =
2, one end fixed and one end free to rotate but not free to
move laterally
C =
1, both ends free to rotate , but not free to move laterally (
so called round, or pivot, or hinged end columns)
C = ¼ , one end fixed and the other end free of all restraint
Page 21
The safe load is obtained by dividing the critical load by a factor of safety N
For Euler equation,
F =
Fcr
N
=
Cπ2
EA
N(
L
K
)2
For J.B Johnson equation,
F =
SyA
N
[1 −
Sy(
L
K
)2
4Cπ2E
]
The value of
𝐿
𝐾
which determines whether the Euler equation or J.B Johnson
equation should be used is found by equating the critical load from the Euler
equation to the critical load from the J.B Johnson formula.
Cπ2EA
N(
L
K
)2
=
SyA
N
[1 −
Sy(
L
K
)2
4Cπ2E
] From which
L
K
= √
2Cπ2E
Sy
The value of
𝐿
𝐾
above which the Euler equation should be used and below
which the J.B Johnson formula should be used
Page 22
For different representative data are.
C E, Gpa 𝑆𝑦, Mpa
(
𝐿
𝐾
)2
𝐿
𝐾
¼ 207
550
480
415
345
275
1849
2113
2465
2958
3697
43
46
50
54
61
1 207
550
480
415
345
275
7394
8451
9860
11832
1488789
86
92
99
109
121
2 207
550
480
415
345
275
14789
16902
19719
23663
29579
121
130
140
154
172
Page 23
Equivalent column stresses are used where column action is to be combined
with other effects as torsion and bending. The equivalent column stress for an
actual load,F derived from Euler’s equation is-
Seq =
F
A
[
Sy(
L
K
)2
Cπ2E
]
The equivalent column stress for an actual load F, derived from J.B Johnson
equation is
Seq =
F
A
[
1
1 −
Sy(
L
K
)2
4Cπ2E]
In the equivalent stress equations, the factor of safety is
N =
Fcr
F
=
Sy
Seq
Page 1
Super Gear Design
Proportions of standard gear teeth
14 ½ 
Composite
14 ½ 
Full depth
Involute
20
Full depth
Involute
20
Stub
Involute
Addendum m m m 0.8m
Minimum
Dedendum
1.157m 1.157m 1.157m m
Whole depth 2.157m 2.157m 2.157m 1.8m
Clearance 0.157m 0.157m 0.157m 0.2m
Standard module series
Preferred:
1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50
Second choice:
1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18, 22, 28, 36, 45
Page 2
Case I Known diameter Case
(
1
m2 × y
)
all
=
s k π2
Ft
. … … … . . (1)
s = so (
3
3 + V
) for V less than 10 m
s
⁄ , V. F = (
3
3 + V
)
s = so (
6
6 + V
) for V 10 m
s
⁄ to 20 m
s
⁄ , V. F = (
6
6 + V
)
s = so (
5.6
5.6 + √V
) for V greater than 20 m
s
⁄ , V. F = (
5.6
5.6 + √V
)
k = 4(maximum)
Ft =
9550 × kW
rpm × D
2
⁄
, Ft =
𝑀𝑡
D
2
⁄
Substitute these value in equation (1) and we get(
1
m2×y
)
all
value
Assume y=0.1…….m=…., and write std: module series
Try m=
N =
D
m
, =…….., y=………..(from the table of Appendix I)
(
1
m2 × y
)
ind
= − − − − −
Compare (
1
m2×y
)
ind
and (
1
m2×y
)
all
value
Page 3
If (
1
m2 × y
)
ind
< (
1
m2 × y
)
all
design is satisfied, decrease the module and try again
If (
1
m2 × y
)
ind
> (
1
m2 × y
)
all
design is not satisfied, increase the module and try again
And take the smallest module that satisfies the condition of
(
1
m2 × y
)
ind
≤ (
1
m2 × y
)
all
The reduce k value
kred = kmax ×
(
1
m2 × y
)
ind
(
1
m2 × y
)
all
Face width, b
b = kred × π × m
Case II Unknown Diameter Case
Sind =
2Mt
kyπ2Nm3
− − − − − (2)
Where Mt =
9550 × kW
rpm
k = 4(maximum)
Page 4
N = Number of teeth of weaker, y from table of appendix I
Substituting these value in equation 2 and we get Sind =
…….
m3
Assume V. F =
1
2
and equation 2 becomes (
so
2
) = (
… … .
m3
) , 𝑚 = − − −
and we get m value . Then with std: module series
Try m = − − − −
D = Nm, V =
πDrpm
60
sall = so × V. F
sind = (
− − −
m3
)
Compare the value of Sind and Sall
If Sind < sall
design is satisfied, decrease module and try again
If Sind > sall
design is not satisfied, increase module and try again
Try these procedures until Sindjust ≤ Sall and
take the smallest module that satisfies the condition
Page 5
Reduce k
𝑘𝑟𝑒𝑑 = 𝑘𝑚𝑎𝑥 ×
𝑆𝑖𝑛𝑑
𝑆𝑎𝑙𝑙
Face width, b
𝑏 = 𝑘𝑟𝑑𝑒 × 𝜋 × 𝑚
Dynamic Check
𝐄𝐧𝐝𝐮𝐫𝐚𝐧𝐜𝐞 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐨
𝐹
𝑜 = 𝑆𝑜𝑏𝑦𝜋𝑚
𝐖𝐞𝐚𝐫 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐰(𝐖𝐞𝐚𝐫 𝐭𝐨𝐨𝐭𝐡 𝐥𝐨𝐚𝐝)
𝐵𝑢𝑐𝑘𝑖𝑛𝑔ℎ𝑎𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛
𝐹
𝑤 = 𝐷𝑝𝑏𝐾𝑄
𝑄 =
2𝑁𝑔
𝑁𝑝 + 𝑁𝑔
=
2𝐷𝑔
𝐷𝑝 + 𝐷𝑔
𝐾 =
𝑆𝑒𝑠×𝑠𝑖𝑛∅ (1
𝐸𝑝
⁄ +1
𝐸𝑔)
⁄
2
1.4
𝑠𝑒𝑠 = (2.75 𝐵𝐻𝑁𝑎𝑣𝑔 − 70) 𝑀𝑁
𝑚2
⁄
Page 6
Where,
Dp = Pitch diameter of the pinion, m
B = Face width, m
K = Stress fatigue factor, N/m2
Ses = Surface endurance limit of a gear pair, N/m2
BHNavg = Average brinell hardness number of pinion and gear material
Ep = Modulus of elasticity of the pinion material, N/m2
Eg = Modulus of elasticity of the gear material, N/m2
𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐝
𝐹𝑑 = 𝐹𝑡 +
21𝑉 (𝑏𝐶 + 𝐹𝑡)
21𝑉 + √𝑏𝐶 + 𝐹𝑡
𝑊ℎ𝑒𝑟𝑒 𝐶 = 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑁
𝑚
⁄
C is the function of material of the gear pair, pressure angle , tooth error e.
The required condition to satisfy the dynamic check is Fo,Fw Fd.
Page 7
Value for Ses as used in the wear load equation depend upon
a combination of the gear and pinion materials. Some values
for various materials for both Ses and K are tabulated
Average Brinell Hardness
Number of steel pinion and
gear
Surface
Endurance
Limit
Ses(MN/m2
)
Stress Fatigue Facto,K
(kN/m2
)
14 ½  20
150
200
250
300
400
342
480
618
755
1030
206
405
673
1004
1869
282
555
919
1372
2553
Brinell Hardness Number,BHN
Steel
pinion
Gear
150
200
250
150
200
C.I
C.I
C.I
Phosphor Bronze
Phosphor Bronze
342
480
618
342
445
303
600
1000
317
503
414
820
1310
427
689
C.I Pinion
C.I Pinion
C.I Gear
C.I Gear
549
618
1050
1330
1420
1960
Page 8
Value of Deformation factor C in kN/m for dynamic load check
Materials Involute
tooth form
Tooth error,mm
Pinion Gear 0.01 0.02 0.04 0.06 0.06
Cast iron
Steel
Steel
Cast iron
Steel
Steel
Cast iron
Steel
steel
Cast iron
Cast iron
Steel
Cast iron
Cast iron
Steel
Cast iron
Cast iron
steel
14 ½ 
14 ½ 
14 ½ 
20 full
depth
20 full
depth
20 full
depth
20 stub
20 stub
20 stub
55
76
110
57
79
114
59
81
119
110
152
220
114
158
228
118
162
238
220
304
440
228
316
456
236
324
476
330
456
660
342
474
684
354
486
714
440
608
880
456
632
912
472
648
952
Page 9
Helical Gears
Formative or virtual number of teeth
Nf =
N
cos3
Strength Design
Case I Known diameter Case
(
1
m2 × y
)all =
skπ2
Ft
cos − − − −(1)
s = so (
5.6
5.6 + √V
) , V =
π D rpm
60
, V. F = (
5.6
5.6 + √V
)
k = 6(maximum)
Ft =
9550 × kW
rpm × D
2
⁄
Substitute these value in equation (1) and we get(
1
m2×y
)
all
value
Assume y=0.15…….m=…., and write std: module series
Try m=
N =
D
m
Nf =
N
cos3
, =……..,y=………..(from the table of Appendix I)
Page 10
(
1
m2 × y
)
ind
= − − − − −
Compare (
1
m2×y
)
ind
and (
1
m2×y
)
all
value
If (
1
m2 × y
)
ind
< (
1
m2 × y
)
all
design is satisfied, decrease the module and try again
If (
1
m2 × y
)
ind
> (
1
m2 × y
)
all
design is not satisfied, increase the module and try again
And take the smallest module that satisfies the condition of
(
1
m2 × y
)
ind
≤ (
1
m2 × y
)
all
The reduce k value
kred = kmax ×
(
1
m2 × y
)
ind
(
1
m2 × y
)
all
Face width, b
b = kred × π × m
Page 11
Case II Unknown diameter Case
Sind =
2Mt
kyπ2Nm3cos
− − − − − (2)
Where Mt =
9550 × kW
rpm
k = 6(maximum)
N = − − − −
Nf =
N
cos3
, =……..,y=………..(from the table of Appendix 1)
Substituting these values in equation 2 and we get Sind =
…….
m3
Assume V. F =
1
2
and equation 2 becomes (
so
2
) = (
… … .
m3
)
and we get m value . Then with std: module series
Try m = − − − −
D = Nm, V =
πDrpm
60
sall = so × V. F, V. F = (
5.6
5.6 + √V
)
sind = (
− − −
m3
)
Compare the value of Sind and Sall
Page 12
If Sind < sall
design is satisfied, decrease module and try again
If Sind > sall
design is not satisfied, increase module and try again
Try these procedures until Sindjust ≤ Sall and
take the smallest module that satisfies the condition
Reduce k
kred = kmax ×
Sind
Sall
Face width, b
b = kred × π × m
End thrust
Fe = Ft × tan
Dynamic Check
𝐄𝐧𝐝𝐮𝐫𝐚𝐧𝐜𝐞 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐨
Fo = Sobyπmcos
Page 13
𝐖𝐞𝐚𝐫 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐰(𝐖𝐞𝐚𝐫 𝐭𝐨𝐨𝐭𝐡 𝐥𝐨𝐚𝐝)
𝐵𝑢𝑐𝑘𝑖𝑛𝑔ℎ𝑎𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛
𝐹
𝑤 =
DpbKQ
cos2
Q =
2Ng
Np + Ng
=
2Dg
Dp + Dg
K =
Ses×sin∅n (1
Ep
⁄ +1
Eg)
⁄
2
1.4
tan ∅n = tan ∅ × cos
ses = (2.75 BHNavg − 70) MN
m2
⁄
𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐝
Fd = Ft +
21V (bCcos2
 + Ft)cos
21V + √bCcos2 + Ft
Where C = deformation factor, N
m
⁄
Values for deformation factor, C
C is the function of material of the gear pair, pressure angle , tooth error e.
The required condition to satisfy the dynamic check is Fo,Fw Fd.
Page 14
Bevel Gear
= cone angle,p= pitch angle(or) ½ cone angle (pinion)
g= pitch angle (or) ½ cone angle (gear)
L = cone length =
1
2
√Dp
2
+ Dg
2
=
Npm
2
√1 + V. R2, (m)
b = face width (close to never greater than L
3
⁄ ) , (m)
The formative or virtual number of teeth
Nf, for a bevel gear is the number of teeth having the same pitch as the actual
gear, that could be cut on a gear having a pitch radius equal to the radius of
back cone
Nfp =
Np
cosαp
=
Np
Dg
2L
⁄
=
Np
Ng
√Np
2
+ Ng
2
Nfg =
Ng
cosαg
=
Ng
Dp
2L
⁄
=
Ng
Np
√Np
2
+ Ng
2
Page 15
Strength Check
Case I Known Diameter Case
(
1
m × y
)𝑎𝑙𝑙 =
s b π
Ft
(
L − b
L
) − − − (1)
s = so × V. F
V. F =
6
6 + V
(cut teeth)
V. F =
5.6
5.6 + √V
(generate teeth)
V =
π D rpm
60
L =
1
2
√Dp
2
+ Dg
2
, b close tonot greater than L
3
⁄
Ft =
9550 × kW
rpm × D
2
⁄
(
1
m × y
)
all
= − − − − −
Assume y=0.1, m=------
Write down Std module series
Try m=
Page 16
N =
D
m
Nf = − − − , =……..,y=………..(from the table of Appendix 1)
(
1
m × y
)
ind
= − − − − −
Compare (
1
m×y
)
ind
and (
1
m×y
)
all
value
If (
1
m × y
)
ind
< (
1
m × y
)
all
design is satisfied, decrease the module and try again
If (
1
m × y
)
ind
> (
1
m × y
)
all
design is not satisfied, increase the module and try again
And take the smallest module that satisfies the condition of
(
1
m × y
)
ind
≤ (
1
m × y
)
all
Case II Unknown Diameter Case
Sind =
2Mt
m2byπN
(
L
L − b
) − − − −(2)
Mt =
9550 × kW
rpm
L =
mNp
2
√1 + (V. R)2
Page 17
L
L − b
=
3
2
Sind =
− − −
m3
Assume V. F = 1
2
⁄ and Sind becomes
So
2
∴
So
2
=
− − −
m3
, m = − − −
Write down standard module series
Try with module from the standard module series and find the induce and
allowable value of s
Try m = − − −
D = N m, V =
π D rpm
60
sall = so × V. F
sind =
− − −
m3
Compare the value of Sind and Sall
If Sind < sall
design is satisfied, decrease module and try again
Page 18
If Sind > sall
design is not satisfied, increase module and try again
Try these procedures until Sindjust ≤ Sall and
take the smallest module that satisfies the condition.
Then find the face width.
Dynamic Check
The limiting endurance load
Fo = Sobyπm(
L − b
L
)
The limiting wear load
Fw =
0.75 DpbKQ
cosαp
Q =
2Nfg
Nfp + Nfg
K =
Ses×sin∅ (1
Ep
⁄ +1
Eg)
⁄
2
1.4
ses = (2.75 BHNavg − 70) MN
m2
⁄
Page 19
𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐝
Fd = Ft +
21V (bC + Ft)
21V + √bC + Ft
Where C = deformation factor, N
m
⁄
C is the function of material of the gear pair, pressure angle , tooth error e.
The required condition to satisfy the dynamic check is Fo,Fw Fd.
The American gear manufacturing association (AGMA) standards recommend
the following power ratings
1. Power rating based on peak or full load for both straight and spiral bevel
gear
Power in kW =
m So(rpm)pDpbyπ
19100
(
L − 0.5b
L
)(
5.6
5.6 + √V
)
Where,
s = 1.7 times the BHN of the weaker gear for gears hardened
after cutting
s = 2 times the BHN of the weaker gear if the gear is case
hardened, N/m2
Page 20
2. AGMA standard for wear (durability)
Power in kW = 0.8 CmCBb for straight bevel gear
Power in kW = CmCBb for spiral bevel gear
Where,
Cm = material factor as listed in following Table
CB =
Dp
1.5(rpm)p
0.032
(
5.6
5.6 + √V
)
Page 21
Material Factor, Cm
Gear Pinion
Material Brinell Material Brinell Cm
I 160_200 II 210_245 0.3
II 245_280 II 285_325 0.4
II 285_325 II 335_360 0.5
II 210_245 III 500 0.4
II 285_325 IV 550 0.6
III 500 IV 550 0.9
IV 500 IV 550 1.0
𝐼 = 𝐴𝑛𝑛𝑒𝑙𝑒𝑑 𝑠𝑡𝑒𝑒𝑙
𝐼𝐼 = 𝐻𝑒𝑎𝑡 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑡𝑒𝑒𝑙
𝐼𝐼𝐼 = 𝑂𝑖𝑙 𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑠𝑡𝑒𝑒𝑙
𝐼𝑉 = 𝐶𝑎𝑠𝑒 − ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑠𝑡𝑒𝑒l
Page 22
Worm Gear
𝐶 =
𝐷𝑔 + 𝐷𝑤
2
𝑃𝑐 = 𝑃𝑎 𝑓𝑜𝑟 𝑠𝑚𝑜𝑜𝑡ℎ 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡
𝑉. 𝑅 =
𝑁𝑔
𝑁𝑤
=
𝐷𝑔
𝐷𝑤𝑡𝑎𝑛𝛼
tan 𝛼 =
𝐿𝑒𝑎𝑑
𝜋𝐷𝑤
=
𝑃𝑐𝑁𝑤
𝜋𝐷𝑤
=
𝑚𝑎𝑁𝑤
𝐷𝑤
Where,
Dg = Diameter of gear
Dw = Diameter of worm
Ng = Number of teeth of gear
Nw = Number of start
Pc = Circular Pitch
Pa = Axial Pitch
ma = Axial module
mn = Normal module
V.R = Velocity ratio
Page 23
AGMA equation include the following design equation
𝐷𝑤 ≈
𝐶0.875
3.48
≈ 3𝑃𝑐, 𝑏 ≈ 0.73 × 𝐷𝑤, 𝐿 ≈ 𝑃𝑐(4.5 +
𝑁𝑔
50
)
Where,
Dw = Pitch diameter of the worm,m
C = Center distance between axis of worm and axis of gear,m
b = Face width of gear, m
Pc = Circular pitch of gear, m
L = Axial length of worm, m
The equations are for estimating the approximate proper proportions of the
gear unit
𝑚𝑎 =
𝑃𝑐
𝜋
≈
𝐷𝑤
3𝜋
, 𝐷𝑔(𝑎𝑝𝑝𝑟𝑜𝑥:) = 2𝐶 − 𝐷𝑤(𝑎𝑝𝑝𝑟𝑜𝑥:), 𝑉. 𝑅 =
𝐷𝑔(𝑒𝑥)
𝑚𝑎𝑁𝑤
From the above equation we get,
Nw
Dg
𝐷𝑔(𝑒𝑥𝑎𝑐𝑡) = 𝑉. 𝑅 𝑚𝑎𝑁𝑤
Page 24
Compare approximate Dg and exact value of Dg from table and choose exact
Dg close to approximate Dg. Then find exact Dw
Dw(exact)= 2C-Dg(exact)
Strength design of the worm wheel is based on the Lewis equation,
𝐹 = 𝑠 𝑏 𝑦 𝑃𝑛𝑐 = 𝑠 𝑏 𝑦 𝜋 𝑚𝑛
𝑠 = 𝑠𝑜(
6
6 + 𝑉
𝑔
)
𝑚𝑛 = 𝑚𝑎 𝑐𝑜𝑠𝛼
Where,
F = Permissible tangential load, N
s = Allowable stress, MN/m2
so =
About 1/3 of the ultimate strength, based on an average value for
stress concentration
Vg = Pitch line velocity of the gear, m/s
Pnc = Normal circular pitch, m
mn = Normal module
Page 25
Dynamic Check
Endurance load, Fo
𝐹
𝑜 = 𝑠𝑜 𝑏 𝑦 𝜋𝑚𝑛
𝑊𝑒𝑎𝑟 𝐿𝑜𝑎𝑑, 𝐹
𝑤
𝐹
𝑤 = 𝐷𝑔 𝑏 𝐵
Where,
Dg = Pitch diameter of the gear, m
b = Gear face width, m
B =
A constant depending upon the combination of the materials used
for the worm and gear, as listed in Table
Page 26
Constant B
Worm Gear B(kN/m2
)
Hardened steel Cast iron 345
Steel, 250 BHN Phosphor bronze 415
Hardened steel Phosphor bronze 550
Hardened steel Chilled phosphor bronze 830
Hardened steel Antimony bronze 830
Cast iron Phosphor bronze 1035
The above values for B are suitable for lead angles up to 10 For
angles between 10 and 25, increase B by 25% For lead angles
greater than 25, increase B by 50%
Dynamic load, Fd
𝐹𝑑 = (
6 + 𝑉
𝑔
6
) 𝐹
Where,
𝐹 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑎𝑑
Page 27
As for spur, helical and bevel gears, Fo and Fw are allowable values which
must be greater than the dynamic load Fd (Fo,Fw Fd)
AGMA power rating equations are based on wear and the heat dissipation
capacity of the worm gear unit.
From the stand point of wear
𝑃 =
𝑟𝑝𝑚𝑤 𝐾 𝑄 𝑚
𝑉. 𝑅
𝑄 =
𝑉. 𝑅
𝑉. 𝑅 + 2.5
𝑚 =
2.3
2.3 + 𝑉
𝑤 +
3𝑉
𝑤
𝑉. 𝑅
Where,
P = Input power in kW
rpmw = Speed of worm in rev/min
V.R = Transmission ratio
K =
A pressure constant depending upon center distances, as listed
in Table
m =
Velocity factor depending upon the center distance transmission
ratio and worm speed
Vw = Pitch line velocity of worm, in m/s
Page 28
Pressure Constant, K
Center Distance
C(mm)
K
(kW/rpm)
Center Distance
C(mm)
K
(kW/rpm)
25 0.0092 250 0.881
50 0.0184 375 2.94
75 0.0294 500 5.87
100 0.0661 750 21.3
125 0.125 1000 48.5
150 0.213 1250 88.1
175 0.330 1500 147
200 0.485 1750 235
225 0.727 2000 235
Page 29
From the standpoint of heat dissipation
Based on AGMA recommendations, the limiting input power rating of a plain
worm gear unit from the standpoint of heat dissipation, for worm gear speeds
up to 2000 rev/min, may be estimated by
𝑃 =
3650 𝐶1.7
𝑉. 𝑅 + 5
(ℎ𝑒𝑎𝑡 𝑐ℎ𝑒𝑐𝑘)
Where,
P = Permissible power input in kW
C = Center distance in meters
V.R = Transmission ratio
Allowable Power
𝑃 = 𝐹 𝑉
𝑔
The efficiency of a worm gear unit, assuming square threads, may be
approximated by
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
1 − 𝑓 𝑡𝑎𝑛𝛼
1 + 𝑓 𝑡𝑎𝑛𝛼
Page 30
Where,
f = Coefficient of friction
 = Lead angle
If the efficiency is less than 50% than the device will be self locking.
That is, it cannot be driven by applying a torque to the wheel. This
characteristic can be a useful safety feature in some applications.
Page 31
Module of Spur Gears, mm
Error
(e),
mm
Permissible
Error,
mm
Pitch line velocity, m/s (Spur Gear)
First Class Commercial Gears
Precision Gears
Page 1
Table I Form or Lewis factory Y for spur gears with load at tip of tooth
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0.067
0.071
0.075
0.078
0.081
0.084
0.086
0.088
0.090
0.092
0.093
0.094
0.0955
0.097
0.098
0.099
0.09966
0.10033
0.101
0.078
0.083
0.088
0.092
0.094
0.096
0.092
0.100
0.102
0.104
0.105
0.106
0.107
0.108
0.1095
0.111
0.112
0.113
0.114
0.099
0.103
0.108
0.111
0.115
0.117
0.120
0.123
0.125
0.127
0.1285
0.130
0.1315
0.133
0.1345
0.136
0.137
0.138
0.139
Page 2
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
0.10175
0.1025
0.10325
0.104
0.1045
0.105
0.1055
0.106
0.1064
0.1064
0.1072
0.1076
0.108
0.10828
0.10857
0.10885
0.10914
0.10942
0.10971
0.110
0.1103
0.1106
0.1109
0.115
0.116
0.117
0.118
0.119
0.120
0.121
0.122
0.1228
0.1236
0.1244
0.1252
0.126
0.12657
0.12714
0.12771
0.12828
0.12885
0.12942
0.130
0.1304
0.1308
0.1312
0.13975
0.1405
0.1425
0.142
0.14275
0.1435
0.14425
0.145
0.1454
0.1458
0.1462
0.1466
0.147
0.14757
0.14814
0.14871
0.14928
0.14985
0.15042
0.151
0.1513
0.1516
0.1519
Page 3
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
0.1112
0.1115
0.1118
0.1121
0.1124
0.1127
0.113
0.11313
0.11326
0.11339
0.11353
0.11366
0.11379
0.11393
0.11406
0.11419
0.11433
0.11446
0.11459
0.11473
0.011483
0.115
0.11508
0.1316
0.1320
0.1324
0.1323
0.1332
0.1336
0.134
0.13426
0.13453
0.1348
0.13506
0.13533
0.1356
0.13586
0.12613
0.1364
0.13666
0.13639
0.13712
0.13746
0.13773
0.138
0.13816
0.1522
0.1525
0.1528
0.1531
0.1534
0.1537
0.154
0.15426
0.15453
0.1548
0.15506
0.15533
0.1556
0.15586
0.15613
0.1561
0.15666
0.15693
0.15712
0.15746
0.15773
0.158
0.15812
Page 4
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
0.11516
0.11524
0.11535
0.11540
0.11548
0.11556
0.11564
0.11572
0.11580
0.11588
0.11596
0.11604
0.11612
0.11620
0.11628
0.11636
0.11644
0.11652
0.11660
0.11668
0.11676
0.11684
0.11692
0.117
0.13832
0.13848
0.13864
0.1388
0.13896
0.13912
0.13928
0.13944
0.13960
0.13976
0.13992
0.14008
0.14024
0.1404
0.14056
0.14072
0.14088
0.14104
0.14120
0.14136
0.14152
0.14168
0.14184
0.142
0.15824
0.15836
0.15848
0.1586
0.15872
0.15884
0.15896
0.15908
0.15920
0.15932
0.15944
0.15956
0.15968
0.15980
0.15992
0.16004
0.16016
0.16028
0.16040
0.16052
0.16064
0.16076
0.16088
0.161
Page 5
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
0.11704
0.11708
0.11712
0.11716
0.11720
0.11724
0.11728
0.11732
0.11736
0.11740
0.11744
0.11748
0.11724
0.11756
0.11760
0.11764
0.11768
0.11772
0.11776
0.11780
0.11784
0.11788
0.11792
0.11796
0.14203
0.14216
0.14224
0.14232
0.14240
0.14248
0.14256
0.14262
0.14272
0.14280
0.14288
0.14296
0.14304
0.14132
0.14320
0.14328
0.14336
0.14344
0.14352
0.14360
0.14368
0.14376
0.14384
0.14392
0.16108
0.16118
0.16124
0.16132
0.16140
0.16148
0.16156
0.16164
0.16172
0.16180
0.16188
0.16196
0.16204
0.16212
0.16220
0.16228
0.16236
0.16244
0.16252
0.16260
0.16268
0.16272
0.16284
0.16292
Page 6
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
0.118
0.11804
0.11808
0.11812
0.11816
0.11820
0.11824
0.11828
0.11832
0.11836
0.11840
0.11844
0.11848
0.11852
0.11856
0.11860
0.11864
0.11868
0.11872
0.11876
0.11880
0.11884
0.11888
0.144
0.14408
0.14416
0.14424
0.14432
0.14440
0.14448
0.14456
0.14464
0.14472
0.14480
0.14488
0.14496
0.14504
0.14512
0.14520
0.14528
0.14536
0.14544
0.14552
0.14560
0.14568
0.14576
0.163
0.16308
0.16316
0.16324
0.16332
0.16340
0.16348
0.16356
0.16364
0.16372
0.16380
0.16388
0.16398
0.16404
0.16421
0.16420
0.16428
0.16436
0.16444
0.16452
0.16460
0.16468
0.16476
Page 7
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
0.11892
0.11896
0.119
0.11902
0.11904
0.11906
0.11908
0.11910
0.11912
0.11914
0.11916
0.11918
0.1192
0.11922
0.11924
0.11926
0.11928
0.11930
0.11932
0.11934
0.11936
0.11938
0.11940
0.11942
0.14584
0.14592
0.146
0.146026
0.146053
0.14608
0.146106
0.146133
0.14616
0.146186
0.146213
0.14624
0.146266
0.146293
0.146312
0.146346
0.146374
0.1464
0.146426
0.146453
0.146480
0.146506
0.146533
0.14656
0.16484
0.16498
0.165
0.165033
0.165066
0.1651
0.165133
0.165166
0.1652
0.165233
0.165266
0.1653
0.165333
0.165366
0.1654
0.165433
0.165466
0.1655
0.165533
0.165566
0.1656
0.165633
0.165666
0.1657
Page 8
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
0.11944
0.11946
0.11948
0.11950
0.11952
0.11954
0.11956
0.11953
0.11960
0.11962
0.11964
0.11966
0.11963
0.11970
0.11972
0.11974
0.11976
0.11978
0.11980
0.11982
0.11984
0.11986
0.11988
0.146586
0.146613
0.14664
0.146666
0.146693
0.146712
0.146746
0.146773
0.1468
0.146826
0.146853
0.146880
0.146906
0.146933
0.14696
0.146985
0.147013
0.14704
0.147066
0.147093
0.147112
0.147146
0.147173
0.165733
0.165766
0.1658
0.165833
0.165866
0.1659
0.165933
0.165966
0.1660
0.166033
0.166066
0.1661
0.166133
0.166166
0.1662
0.166233
0.166266
0.1663
0.166333
0.166366
0.1664
0.166433
0.166466
Page 9
No. of
teeth
14 ½  full Depth
Involute or Composite
20 Full Depth
Involute
20 Stub
Involute
195
196
197
198
199
200
300
RACK
0.11990
0.11992
0.11994
0.1196
0.1998
0.120
0.122
0.124
0.1472
0.147226
0.147253
0.147280
0.147306
0.147333
0.150
0.154
0.1665
0.166533
0.166566
0.1666
0.166633
0.166666
0.170
0.175

More Related Content

What's hot

Lecture 4.pdf
Lecture 4.pdfLecture 4.pdf
Lecture 4.pdf
Yesuf3
 
Solutions for machine design by KHURMI and GUPTA
Solutions for machine design by KHURMI and GUPTASolutions for machine design by KHURMI and GUPTA
Solutions for machine design by KHURMI and GUPTA
Azlan
 
Vibration Monitoring
Vibration Monitoring Vibration Monitoring
Vibration Monitoring
IONEL DUTU
 

What's hot (20)

Lecture 4.pdf
Lecture 4.pdfLecture 4.pdf
Lecture 4.pdf
 
3.1 GEAR TRAINS
3.1 GEAR TRAINS3.1 GEAR TRAINS
3.1 GEAR TRAINS
 
Wire rope design
Wire rope design Wire rope design
Wire rope design
 
Unit ii bevel gears
Unit ii bevel gearsUnit ii bevel gears
Unit ii bevel gears
 
Design of gears by aliyi umer
Design of gears by aliyi umerDesign of gears by aliyi umer
Design of gears by aliyi umer
 
Manualsolutionsformachinedesignbykhurmiandgupta 121124075743-phpapp01
Manualsolutionsformachinedesignbykhurmiandgupta 121124075743-phpapp01Manualsolutionsformachinedesignbykhurmiandgupta 121124075743-phpapp01
Manualsolutionsformachinedesignbykhurmiandgupta 121124075743-phpapp01
 
Power transmission through belts ppt
Power transmission through belts pptPower transmission through belts ppt
Power transmission through belts ppt
 
1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1
 
Solutions for machine design by KHURMI and GUPTA
Solutions for machine design by KHURMI and GUPTASolutions for machine design by KHURMI and GUPTA
Solutions for machine design by KHURMI and GUPTA
 
Vibration Monitoring
Vibration Monitoring Vibration Monitoring
Vibration Monitoring
 
impact test 10-4
impact test 10-4impact test 10-4
impact test 10-4
 
Static and Dynamics balancing
Static and Dynamics balancing Static and Dynamics balancing
Static and Dynamics balancing
 
Reverse Engineering of Stapler
Reverse Engineering of StaplerReverse Engineering of Stapler
Reverse Engineering of Stapler
 
List of formulae (spur gear)
List of formulae (spur gear)List of formulae (spur gear)
List of formulae (spur gear)
 
1.6 interference in gears
1.6 interference in gears1.6 interference in gears
1.6 interference in gears
 
Lecture 2 spur gear
Lecture 2 spur gearLecture 2 spur gear
Lecture 2 spur gear
 
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
 
Flat belt pulleys
Flat belt pulleysFlat belt pulleys
Flat belt pulleys
 
Iso 2768-tolerances drawings
Iso  2768-tolerances drawingsIso  2768-tolerances drawings
Iso 2768-tolerances drawings
 
A presentation on spur gear
A presentation on spur gearA presentation on spur gear
A presentation on spur gear
 

Similar to Formula Book.pdf

Similar to Formula Book.pdf (20)

Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
machine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfmachine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdf
 
Dynamics of-machines-formulae-sheet
Dynamics of-machines-formulae-sheetDynamics of-machines-formulae-sheet
Dynamics of-machines-formulae-sheet
 
Torsion
TorsionTorsion
Torsion
 
Formula Bank and Important tips for Mechanical Engineering Students for Compe...
Formula Bank and Important tips for Mechanical Engineering Students for Compe...Formula Bank and Important tips for Mechanical Engineering Students for Compe...
Formula Bank and Important tips for Mechanical Engineering Students for Compe...
 
Base excitation of dynamic systems
Base excitation of dynamic systemsBase excitation of dynamic systems
Base excitation of dynamic systems
 
TORSION,BENDING SHEAR ..pdf
TORSION,BENDING SHEAR  ..pdfTORSION,BENDING SHEAR  ..pdf
TORSION,BENDING SHEAR ..pdf
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shaft
 
fdocuments.us_turning-moment-diagram-flywheel.ppt
fdocuments.us_turning-moment-diagram-flywheel.pptfdocuments.us_turning-moment-diagram-flywheel.ppt
fdocuments.us_turning-moment-diagram-flywheel.ppt
 
Mechanics of Orthogonal Cutting
Mechanics of Orthogonal Cutting Mechanics of Orthogonal Cutting
Mechanics of Orthogonal Cutting
 
H c verma part 1 solution
H c verma part 1 solutionH c verma part 1 solution
H c verma part 1 solution
 
Design of Shaft.ppt
Design of Shaft.pptDesign of Shaft.ppt
Design of Shaft.ppt
 
Design of Shaft.ppt
Design of Shaft.pptDesign of Shaft.ppt
Design of Shaft.ppt
 
Turning moment-diagram-flywheel
Turning moment-diagram-flywheelTurning moment-diagram-flywheel
Turning moment-diagram-flywheel
 
Lesson 07, torsion
Lesson 07, torsionLesson 07, torsion
Lesson 07, torsion
 
Shaft & Torsion
Shaft & TorsionShaft & Torsion
Shaft & Torsion
 
4unit-200715014624 circular shaft - Copy.pptx
4unit-200715014624 circular shaft - Copy.pptx4unit-200715014624 circular shaft - Copy.pptx
4unit-200715014624 circular shaft - Copy.pptx
 
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier SplinesPlatoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
 
ME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdf
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 

More from DrAungKoLatt (6)

Machine Design Lecture (1) Introduction.pptx
Machine Design Lecture (1) Introduction.pptxMachine Design Lecture (1) Introduction.pptx
Machine Design Lecture (1) Introduction.pptx
 
1.pdf
1.pdf1.pdf
1.pdf
 
Chapter 3.pdf
Chapter 3.pdfChapter 3.pdf
Chapter 3.pdf
 
Chapter 2.pdf
Chapter 2.pdfChapter 2.pdf
Chapter 2.pdf
 
Chapter 1.pdf
Chapter 1.pdfChapter 1.pdf
Chapter 1.pdf
 
Textbook (Second Semester).PDF
Textbook (Second Semester).PDFTextbook (Second Semester).PDF
Textbook (Second Semester).PDF
 

Recently uploaded

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Recently uploaded (20)

Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 

Formula Book.pdf

  • 1. Department of Technical and Vocational Education and Training Department of Mechanical Engineering Tables, Data and Equations For ME 31031 and ME 32031 Design of Machine Elements AGTI Third Year (Mechanical)
  • 2. Page 1 Stresses In Simple Machine Member Sn(max: ) = Sx + Sy 2 + √( Sx−Sy 2 )2 + Ss 2 Sn(min: ) = Sx + Sy 2 − √( Sx−Sy 2 )2 + Ss 2 Ss(max: ) = √( Sx−Sy 2 )2 + Ss 2 Ss(max: ) = Sn(max: ) − Sn(min: ) 2 or Sn(max: ) − 0 2 or Sn(min: ) − 0 2 Sxand Sy = ± 𝐏 𝐀 ± 𝐌×𝐂 𝐈 (+Tension), (−compression) Ss = T × r J ( for circular cross section) Where, Sn(max: ) = Maximum normal Stress Sn(min: ) = Minimum normal Stress Ss(max: ) = Maximum shear Stress P = Axial load, N A = Area of cross section, m2 M = Bending Moment, N. m C = Distance from neutral axis to outer surface, m I = Rectangular moment of inertia of cross section , m4 T = Torsional moment, N. m J = Polar moment of inertia, m4
  • 3. Page 2 Curved Beam hi ho Bending stress at the inside fiber, 𝑆 = 𝑀 × ℎ𝑖 𝐴 × 𝑒 × 𝑟𝑖 , ℎ𝑖 = 𝑟𝑛 − 𝑟𝑖 Bending stress at the outside fiber, 𝑆 = 𝑀 × ℎ𝑜 𝐴 × 𝑒 × 𝑟𝑜 , ℎ𝑜 = 𝑟𝑜 − 𝑟𝑛 Where, ℎ𝑖 = the distance from the neutral axis to the inside fiber, m ℎ𝑜 = the distance from the neutral axis to the outside fiber, m 𝑟𝑖 = the radius of curvature of the inside fiber, m 𝑟𝑜 = the radius of curvature of the outside fiber, m C.A = Central Axis N.A = Neutral Axis ri ro rn R e
  • 4. Page 3 Figures give the location to the neutral axis, the distance from the centroidal axis to the neutral axis, and the distance to the centrodial axis from the center of curvature for various commonly encountered shapes C.A N.A rn e h b ri R ro ro d ri rn R C.A N.A e rn = h loge ( ro ri ) e = R − rn R = ri + h 2 rn = [ro 1 2 ⁄ + ri 1 2 ⁄ ] 2 4 e = R − rn R = ri + d 2
  • 5. Page 4 ro h ri bi ti to bo t e rn R C.A N.A ro h ri ti bi t e rn R C.A N.A rn = (bi − t)ti + th (bi − t)loge( ri + ti ri ) + tloge( ro ri ) e = R − rn R = ri + 1 2 ⁄ h2 t + 1 2 ⁄ ti 2 (bi − t) (bi − t)ti + th rn = (bi − t)ti + (bo − t)to + th biloge( ri + ti ri ) + tloge( ro − to ri + ti ) + bologe( ro ro − to ) e = R − rn R = ri + 1 2 ⁄ h2 t + 1 2 ⁄ ti 2 (bi − t) + (bo − t)to(h − 1 2 ⁄ to) (bi − t)ti + (bo − t)to + th
  • 6. Page 5 ro h ri bo bi rn R C.A N.A e ro ri t/2 t/2 to ti e rn R C.A N.A h b rn = ( bi + bo 2 ) h ( biro − bori h ) loge ( ro ri ) − (bi − bo) e = R − rn R = ri + h(bi + 2bo) 3(bi + bo) rn = (bi − t)(ti + to) + th b [loge( ri + ti ri ) + loge( ro ro − to )] + tloge( ro − to ri + ti ) e = R − rn R = ri + 1 2 ⁄ h2 t + 1 2 ⁄ ti 2 (b − t) + (b − t)to(h − 1 2 ⁄ to) (b − t)(ti + to) + th
  • 7. Page 6 Power Transmission shafting Hollow shaft and solid shaft Equal torsional stiffness ( T θ )S = ( T θ )H i. e ( JG L )S = ( JG L )H JS = JH π 32 d4 = π 32 (do 4 − di 4 ) ∴ di 4 = do 4 − d4 … … … . . (1) Equal torsional strength ( T Ss )S = ( T Ss )H i. e ( J y )S = ( J y )H π 32 d4 × 2 d = π 32 (do 4 − di 4 ) × 2 do ∴ di 4 = do 4 − d3 do … … … . . (2)
  • 8. Page 7 Reduction in weight If N% is weight reduction WH = (1 − N)Ws π 4 (do 2 − di 2 )lhW = (1 − N) π 4 d2 lsW (do 2 − di 2 ) = (1 − N)d2 ∴ di 2 = do 2 − (1 − N)d2 ……………………(3) The direction of the thrust force depends on the direction of rotation and the hand of gear tooth. Driver RH Fa Driven RH Fa Driver LH Fa Driven LH Fa Driven LH Fa Driver Fa Driven Fa Driver Fa LH RH RH
  • 9. Page 8 Bevel Gear (straight tooth) r r Driven gear pinion Driver Ft = Mt r , Mt = 9550 × kW rpm Fr = Ft × tan∅ The separating force can be resolved into two components. Force components along the shaft axis of the pinion is called the pinion thrust force F𝑝 and the force component along the shaft axis of the gear is called the gear thrust force F𝑔. Fp = Ft × tan ∅ sinβ Fg = Ft × tan∅cosβ Where β = cone angle F𝑡 = tangential force F𝑟 = separating force
  • 10. Page 9 Pulley Driver Driven T1 T2 (T1+T2) sin (T1+T2) cos (T1+T2) T1 T2 Mt = (T1 − T2) × r (T1 − T2) = Mt r Where T1 = Tight side tension T2 = Slack side tension ASME CODE Equation for Shaft Design 1. For solid shaft subjected to torsion and bending load ( without axial load) d3 = 16 πSs √(KbMb)2 + (KtMt)2 2. For solid shaft subjected to combine bending, torsion and axial load d3 = 16 πSs(max: ) √[𝐾𝑏Mb + αFad 8 ] 2 + (KtMt)2
  • 11. Page 10 3. For hollow shaft without axial load do 3 = 16 πSs(1−K4) √(KbMb)2 + (KtMt)2, K = di do , 4. For hollow shaft with axial load do 3 = 16 πSs(1 − K4) √[KbMb + αFad 8 (1 + K2) ] 2 + (KtMt)2 ASME Code states for commercial steel shafting Ss(allowable) = 8000psi (55 MN m2 ⁄ ) for shaft without keyway Ss(allowable) = 6000psi (40 MN m2 ⁄ ) for shaft with keyway If ultimate strength and yield strength are known, Ss(allowable) = 0.18 Su Ss(allowable) = 0.3 Sy Choose smaller value (without keyway) If there is a keyway or fillet, the strength of the shaft is reduced by 25% Ss(allowable) = 0.18 Su × 0.75 Ss(allowable) = 0.3 Sy × 0.75 Choose smaller value (with keyway)
  • 12. Page 11 Combined shock and fatigue factor applied to bending moment (Kb) and Combined shock and fatigue factor applied to torsion moment (Kt) For stationary load: Kb Kt Load gradually applied 1.0 1.0 Load suddenly applied 1.5 to 2.0 1.5 to 2.0 For Rotating shafts: Kb Kt Load gradually applied 1.5 1..0 Load suddenly applied (minor shock) 1.5 to 2.0 1.0 to 1.5 Load suddenly applied (heavy shock) 2.0 to 3.0 1.5 to 3.0 Column action Factor (α ) The Column action Factor is unity for a tensile load. For a compression load, α may be computed by α = 1 1 − 0.0044( L K ) for L K < 115 α = Sy π2n E ( L K )2 for L K > 115
  • 13. Page 12 K = √ I A = d 4 (for circular cross section) 𝐖𝐡𝐞𝐫𝐞, n = 1 for hinged ends n = 2.25 for fixed ends n = 1.6 for ends partly restrained k = Radius or gyration, m I = Rectangular moment of inertia, m4 A = Cross section area of shaft,m2 Sy = Yield stress in compression , N/m2 Standard sizes of shafting Up to 25mm in 0.5mm increments 25 to 50mm in 1mm increments 50 to 100mm in 2mm increments 100 to 200mm in 5mm increments
  • 14. Page 13 Power screws and Threaded Fasteners Pitch (P) The distance from a point on one thread to the corresponding point on the next adjacent thread measures parallel to the axis. P = 1 t. p. i = 1 number of thread per inch Lead (L) The distance the screw would advance relative to nut in one rotation. For single start, L= P For double start, L= 2P For multi start, L= nP Helix angle (α) tan α = Lead 2πrm tan θn = tan θ × cosα Where, do = outer diameter di = inner (or) core diameter dm = mean diameter
  • 15. Page 14 Torque required to advance the screw against the load P = W(sinα + fcosα) cosα − fsinα … … … … … . . (÷ cos α) P = W [ f + tanα 1 − ftanα ] Ts = P × rm Collar Torque If there is rubbing and axial load along the axis (ie. Between rotating and nonrotating members), some torque is wasted in overcoming the collar friction Tc = W × fc × rc 𝑊ℎ𝑒𝑟𝑒, Tc = collar friction torque fc = collar friction rc = collar friction radius rc = doc + dic 4 ( uniform wear) rc = 2 3 roc 3 − ric 3 roc 2 − ric 2 ( uniform pressure) TR = Ts + Tc TR = W [rm tanα + f 1 − ftanα + fcrc]
  • 16. Page 15 Torque required to lower the load (in the direction of the load) P = W [ −tanα + f 1 + ftanα ] Ts = W × rm Ts = Wrm [ −tanα + f 1 + f tanα ] TL = Ts + Tc TL = W [rm −tanα + f 1 + f tanα + fcrc] Torque required to raise the load (against load) considering the thread angle T = W [rm tanα + f cosθn 1 − f × tanα cosθn + fcrc] Torque required to advance the screw (or nut) in the direction of load (or lowering the load) TL = W [rm −tanα + f cosθn 1 + f × tanα cosθn + fcrc]
  • 17. Page 16 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 η = Work output Work input = W × lead 2πT Self lock the load should not descend under its own weight Overhaul the load descend under its own weight App torque (+) Self Lock, (-) overhaul Check −tanα + fs cosθn Stress in screw members (1)Bending stress are estimated by considering the thread to be a short cantilever beam projecting from the root cylinder h/2 b h 2πrmn
  • 18. Page 17 𝑀 = 𝑊 × ℎ 2 𝐼 = 2𝜋𝑟𝑚𝑛 𝑏3 12 ⁄ , 𝑦 = 𝑏 2 Using bending equation Sb y = M I Sb = 3Wh 2πrmnb2 (2) Shear stress at the root of thread 𝑠 = 𝑊 𝑟𝑜𝑜𝑡 𝑎𝑟𝑒𝑎 = 𝑊 2𝜋𝑟𝑚𝑛𝑏 (3)Bending stress (or) Bearing pressure between the contacting surface of the screw and nut thread p = W projected area = W πdmhn , n = nut length Pitch (4)Stresses in the root cylinder of the screw may be estimated by considering loads and torques carried by the bore cylinder (neglecting strengthening effect of thread) (i)torsional shear stress , Ss = Tri J (𝑖𝑖)direct stress , Sc = 4W πdi 2
  • 19. Page 18 (𝑖𝑖𝑖)𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠, 𝑆𝑏 = 32𝑀 𝜋𝑑𝑖 3 (iv)Maximum shear stress, Ss(max) = √( Sx 2 ) 2 + Ss 2 Column action Column action due to axial loading of machine parts occurs very frequently if the axial load is tensile load, then the application of 𝑆 = 𝑃 𝐴 is in order. If the axial load is compression load, then an appropriate column equation should be used The Euler equation for the critical load for slender columns of uniform cross section is- Fcr = Cπ2 EA ( L K )2 The J.B Johnson formula for the critical load for moderate length columns of uniform cross section is Fcr = SyA [1 − Sy( L K )2 4Cπ2E ]
  • 20. Page 19 K = √ I A = d 4 ( for circular cross section) Where, Fcr = Critical load to cause buckling, N C = Constant depending upon the end condition E = Modulus of Elasticity, N/m2 (E=200× 209 N/m2 ) A = Area of transverse section, m2 L = Length of column, m K = Minimum radius of gyration,m Where, I is the minimum moment of inertia about the axis of bending Sy = Yield stress in compression , N/m2
  • 21. Page 20 The value of C depends on the end condition in figure C=¼ C=1 C=2 C=4 C = 4, both ends fixed so that the tangent to the elastic curve at each end is parallel to the original axis of the column C = 2, one end fixed and one end free to rotate but not free to move laterally C = 1, both ends free to rotate , but not free to move laterally ( so called round, or pivot, or hinged end columns) C = ¼ , one end fixed and the other end free of all restraint
  • 22. Page 21 The safe load is obtained by dividing the critical load by a factor of safety N For Euler equation, F = Fcr N = Cπ2 EA N( L K )2 For J.B Johnson equation, F = SyA N [1 − Sy( L K )2 4Cπ2E ] The value of 𝐿 𝐾 which determines whether the Euler equation or J.B Johnson equation should be used is found by equating the critical load from the Euler equation to the critical load from the J.B Johnson formula. Cπ2EA N( L K )2 = SyA N [1 − Sy( L K )2 4Cπ2E ] From which L K = √ 2Cπ2E Sy The value of 𝐿 𝐾 above which the Euler equation should be used and below which the J.B Johnson formula should be used
  • 23. Page 22 For different representative data are. C E, Gpa 𝑆𝑦, Mpa ( 𝐿 𝐾 )2 𝐿 𝐾 ¼ 207 550 480 415 345 275 1849 2113 2465 2958 3697 43 46 50 54 61 1 207 550 480 415 345 275 7394 8451 9860 11832 1488789 86 92 99 109 121 2 207 550 480 415 345 275 14789 16902 19719 23663 29579 121 130 140 154 172
  • 24. Page 23 Equivalent column stresses are used where column action is to be combined with other effects as torsion and bending. The equivalent column stress for an actual load,F derived from Euler’s equation is- Seq = F A [ Sy( L K )2 Cπ2E ] The equivalent column stress for an actual load F, derived from J.B Johnson equation is Seq = F A [ 1 1 − Sy( L K )2 4Cπ2E] In the equivalent stress equations, the factor of safety is N = Fcr F = Sy Seq
  • 25. Page 1 Super Gear Design Proportions of standard gear teeth 14 ½  Composite 14 ½  Full depth Involute 20 Full depth Involute 20 Stub Involute Addendum m m m 0.8m Minimum Dedendum 1.157m 1.157m 1.157m m Whole depth 2.157m 2.157m 2.157m 1.8m Clearance 0.157m 0.157m 0.157m 0.2m Standard module series Preferred: 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50 Second choice: 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18, 22, 28, 36, 45
  • 26. Page 2 Case I Known diameter Case ( 1 m2 × y ) all = s k π2 Ft . … … … . . (1) s = so ( 3 3 + V ) for V less than 10 m s ⁄ , V. F = ( 3 3 + V ) s = so ( 6 6 + V ) for V 10 m s ⁄ to 20 m s ⁄ , V. F = ( 6 6 + V ) s = so ( 5.6 5.6 + √V ) for V greater than 20 m s ⁄ , V. F = ( 5.6 5.6 + √V ) k = 4(maximum) Ft = 9550 × kW rpm × D 2 ⁄ , Ft = 𝑀𝑡 D 2 ⁄ Substitute these value in equation (1) and we get( 1 m2×y ) all value Assume y=0.1…….m=…., and write std: module series Try m= N = D m , =…….., y=………..(from the table of Appendix I) ( 1 m2 × y ) ind = − − − − − Compare ( 1 m2×y ) ind and ( 1 m2×y ) all value
  • 27. Page 3 If ( 1 m2 × y ) ind < ( 1 m2 × y ) all design is satisfied, decrease the module and try again If ( 1 m2 × y ) ind > ( 1 m2 × y ) all design is not satisfied, increase the module and try again And take the smallest module that satisfies the condition of ( 1 m2 × y ) ind ≤ ( 1 m2 × y ) all The reduce k value kred = kmax × ( 1 m2 × y ) ind ( 1 m2 × y ) all Face width, b b = kred × π × m Case II Unknown Diameter Case Sind = 2Mt kyπ2Nm3 − − − − − (2) Where Mt = 9550 × kW rpm k = 4(maximum)
  • 28. Page 4 N = Number of teeth of weaker, y from table of appendix I Substituting these value in equation 2 and we get Sind = ……. m3 Assume V. F = 1 2 and equation 2 becomes ( so 2 ) = ( … … . m3 ) , 𝑚 = − − − and we get m value . Then with std: module series Try m = − − − − D = Nm, V = πDrpm 60 sall = so × V. F sind = ( − − − m3 ) Compare the value of Sind and Sall If Sind < sall design is satisfied, decrease module and try again If Sind > sall design is not satisfied, increase module and try again Try these procedures until Sindjust ≤ Sall and take the smallest module that satisfies the condition
  • 29. Page 5 Reduce k 𝑘𝑟𝑒𝑑 = 𝑘𝑚𝑎𝑥 × 𝑆𝑖𝑛𝑑 𝑆𝑎𝑙𝑙 Face width, b 𝑏 = 𝑘𝑟𝑑𝑒 × 𝜋 × 𝑚 Dynamic Check 𝐄𝐧𝐝𝐮𝐫𝐚𝐧𝐜𝐞 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐨 𝐹 𝑜 = 𝑆𝑜𝑏𝑦𝜋𝑚 𝐖𝐞𝐚𝐫 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐰(𝐖𝐞𝐚𝐫 𝐭𝐨𝐨𝐭𝐡 𝐥𝐨𝐚𝐝) 𝐵𝑢𝑐𝑘𝑖𝑛𝑔ℎ𝑎𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝐹 𝑤 = 𝐷𝑝𝑏𝐾𝑄 𝑄 = 2𝑁𝑔 𝑁𝑝 + 𝑁𝑔 = 2𝐷𝑔 𝐷𝑝 + 𝐷𝑔 𝐾 = 𝑆𝑒𝑠×𝑠𝑖𝑛∅ (1 𝐸𝑝 ⁄ +1 𝐸𝑔) ⁄ 2 1.4 𝑠𝑒𝑠 = (2.75 𝐵𝐻𝑁𝑎𝑣𝑔 − 70) 𝑀𝑁 𝑚2 ⁄
  • 30. Page 6 Where, Dp = Pitch diameter of the pinion, m B = Face width, m K = Stress fatigue factor, N/m2 Ses = Surface endurance limit of a gear pair, N/m2 BHNavg = Average brinell hardness number of pinion and gear material Ep = Modulus of elasticity of the pinion material, N/m2 Eg = Modulus of elasticity of the gear material, N/m2 𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐝 𝐹𝑑 = 𝐹𝑡 + 21𝑉 (𝑏𝐶 + 𝐹𝑡) 21𝑉 + √𝑏𝐶 + 𝐹𝑡 𝑊ℎ𝑒𝑟𝑒 𝐶 = 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑁 𝑚 ⁄ C is the function of material of the gear pair, pressure angle , tooth error e. The required condition to satisfy the dynamic check is Fo,Fw Fd.
  • 31. Page 7 Value for Ses as used in the wear load equation depend upon a combination of the gear and pinion materials. Some values for various materials for both Ses and K are tabulated Average Brinell Hardness Number of steel pinion and gear Surface Endurance Limit Ses(MN/m2 ) Stress Fatigue Facto,K (kN/m2 ) 14 ½  20 150 200 250 300 400 342 480 618 755 1030 206 405 673 1004 1869 282 555 919 1372 2553 Brinell Hardness Number,BHN Steel pinion Gear 150 200 250 150 200 C.I C.I C.I Phosphor Bronze Phosphor Bronze 342 480 618 342 445 303 600 1000 317 503 414 820 1310 427 689 C.I Pinion C.I Pinion C.I Gear C.I Gear 549 618 1050 1330 1420 1960
  • 32. Page 8 Value of Deformation factor C in kN/m for dynamic load check Materials Involute tooth form Tooth error,mm Pinion Gear 0.01 0.02 0.04 0.06 0.06 Cast iron Steel Steel Cast iron Steel Steel Cast iron Steel steel Cast iron Cast iron Steel Cast iron Cast iron Steel Cast iron Cast iron steel 14 ½  14 ½  14 ½  20 full depth 20 full depth 20 full depth 20 stub 20 stub 20 stub 55 76 110 57 79 114 59 81 119 110 152 220 114 158 228 118 162 238 220 304 440 228 316 456 236 324 476 330 456 660 342 474 684 354 486 714 440 608 880 456 632 912 472 648 952
  • 33. Page 9 Helical Gears Formative or virtual number of teeth Nf = N cos3 Strength Design Case I Known diameter Case ( 1 m2 × y )all = skπ2 Ft cos − − − −(1) s = so ( 5.6 5.6 + √V ) , V = π D rpm 60 , V. F = ( 5.6 5.6 + √V ) k = 6(maximum) Ft = 9550 × kW rpm × D 2 ⁄ Substitute these value in equation (1) and we get( 1 m2×y ) all value Assume y=0.15…….m=…., and write std: module series Try m= N = D m Nf = N cos3 , =……..,y=………..(from the table of Appendix I)
  • 34. Page 10 ( 1 m2 × y ) ind = − − − − − Compare ( 1 m2×y ) ind and ( 1 m2×y ) all value If ( 1 m2 × y ) ind < ( 1 m2 × y ) all design is satisfied, decrease the module and try again If ( 1 m2 × y ) ind > ( 1 m2 × y ) all design is not satisfied, increase the module and try again And take the smallest module that satisfies the condition of ( 1 m2 × y ) ind ≤ ( 1 m2 × y ) all The reduce k value kred = kmax × ( 1 m2 × y ) ind ( 1 m2 × y ) all Face width, b b = kred × π × m
  • 35. Page 11 Case II Unknown diameter Case Sind = 2Mt kyπ2Nm3cos − − − − − (2) Where Mt = 9550 × kW rpm k = 6(maximum) N = − − − − Nf = N cos3 , =……..,y=………..(from the table of Appendix 1) Substituting these values in equation 2 and we get Sind = ……. m3 Assume V. F = 1 2 and equation 2 becomes ( so 2 ) = ( … … . m3 ) and we get m value . Then with std: module series Try m = − − − − D = Nm, V = πDrpm 60 sall = so × V. F, V. F = ( 5.6 5.6 + √V ) sind = ( − − − m3 ) Compare the value of Sind and Sall
  • 36. Page 12 If Sind < sall design is satisfied, decrease module and try again If Sind > sall design is not satisfied, increase module and try again Try these procedures until Sindjust ≤ Sall and take the smallest module that satisfies the condition Reduce k kred = kmax × Sind Sall Face width, b b = kred × π × m End thrust Fe = Ft × tan Dynamic Check 𝐄𝐧𝐝𝐮𝐫𝐚𝐧𝐜𝐞 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐨 Fo = Sobyπmcos
  • 37. Page 13 𝐖𝐞𝐚𝐫 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐰(𝐖𝐞𝐚𝐫 𝐭𝐨𝐨𝐭𝐡 𝐥𝐨𝐚𝐝) 𝐵𝑢𝑐𝑘𝑖𝑛𝑔ℎ𝑎𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝐹 𝑤 = DpbKQ cos2 Q = 2Ng Np + Ng = 2Dg Dp + Dg K = Ses×sin∅n (1 Ep ⁄ +1 Eg) ⁄ 2 1.4 tan ∅n = tan ∅ × cos ses = (2.75 BHNavg − 70) MN m2 ⁄ 𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐝 Fd = Ft + 21V (bCcos2  + Ft)cos 21V + √bCcos2 + Ft Where C = deformation factor, N m ⁄ Values for deformation factor, C C is the function of material of the gear pair, pressure angle , tooth error e. The required condition to satisfy the dynamic check is Fo,Fw Fd.
  • 38. Page 14 Bevel Gear = cone angle,p= pitch angle(or) ½ cone angle (pinion) g= pitch angle (or) ½ cone angle (gear) L = cone length = 1 2 √Dp 2 + Dg 2 = Npm 2 √1 + V. R2, (m) b = face width (close to never greater than L 3 ⁄ ) , (m) The formative or virtual number of teeth Nf, for a bevel gear is the number of teeth having the same pitch as the actual gear, that could be cut on a gear having a pitch radius equal to the radius of back cone Nfp = Np cosαp = Np Dg 2L ⁄ = Np Ng √Np 2 + Ng 2 Nfg = Ng cosαg = Ng Dp 2L ⁄ = Ng Np √Np 2 + Ng 2
  • 39. Page 15 Strength Check Case I Known Diameter Case ( 1 m × y )𝑎𝑙𝑙 = s b π Ft ( L − b L ) − − − (1) s = so × V. F V. F = 6 6 + V (cut teeth) V. F = 5.6 5.6 + √V (generate teeth) V = π D rpm 60 L = 1 2 √Dp 2 + Dg 2 , b close tonot greater than L 3 ⁄ Ft = 9550 × kW rpm × D 2 ⁄ ( 1 m × y ) all = − − − − − Assume y=0.1, m=------ Write down Std module series Try m=
  • 40. Page 16 N = D m Nf = − − − , =……..,y=………..(from the table of Appendix 1) ( 1 m × y ) ind = − − − − − Compare ( 1 m×y ) ind and ( 1 m×y ) all value If ( 1 m × y ) ind < ( 1 m × y ) all design is satisfied, decrease the module and try again If ( 1 m × y ) ind > ( 1 m × y ) all design is not satisfied, increase the module and try again And take the smallest module that satisfies the condition of ( 1 m × y ) ind ≤ ( 1 m × y ) all Case II Unknown Diameter Case Sind = 2Mt m2byπN ( L L − b ) − − − −(2) Mt = 9550 × kW rpm L = mNp 2 √1 + (V. R)2
  • 41. Page 17 L L − b = 3 2 Sind = − − − m3 Assume V. F = 1 2 ⁄ and Sind becomes So 2 ∴ So 2 = − − − m3 , m = − − − Write down standard module series Try with module from the standard module series and find the induce and allowable value of s Try m = − − − D = N m, V = π D rpm 60 sall = so × V. F sind = − − − m3 Compare the value of Sind and Sall If Sind < sall design is satisfied, decrease module and try again
  • 42. Page 18 If Sind > sall design is not satisfied, increase module and try again Try these procedures until Sindjust ≤ Sall and take the smallest module that satisfies the condition. Then find the face width. Dynamic Check The limiting endurance load Fo = Sobyπm( L − b L ) The limiting wear load Fw = 0.75 DpbKQ cosαp Q = 2Nfg Nfp + Nfg K = Ses×sin∅ (1 Ep ⁄ +1 Eg) ⁄ 2 1.4 ses = (2.75 BHNavg − 70) MN m2 ⁄
  • 43. Page 19 𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐅𝐨𝐫𝐜𝐞, 𝐅𝐝 Fd = Ft + 21V (bC + Ft) 21V + √bC + Ft Where C = deformation factor, N m ⁄ C is the function of material of the gear pair, pressure angle , tooth error e. The required condition to satisfy the dynamic check is Fo,Fw Fd. The American gear manufacturing association (AGMA) standards recommend the following power ratings 1. Power rating based on peak or full load for both straight and spiral bevel gear Power in kW = m So(rpm)pDpbyπ 19100 ( L − 0.5b L )( 5.6 5.6 + √V ) Where, s = 1.7 times the BHN of the weaker gear for gears hardened after cutting s = 2 times the BHN of the weaker gear if the gear is case hardened, N/m2
  • 44. Page 20 2. AGMA standard for wear (durability) Power in kW = 0.8 CmCBb for straight bevel gear Power in kW = CmCBb for spiral bevel gear Where, Cm = material factor as listed in following Table CB = Dp 1.5(rpm)p 0.032 ( 5.6 5.6 + √V )
  • 45. Page 21 Material Factor, Cm Gear Pinion Material Brinell Material Brinell Cm I 160_200 II 210_245 0.3 II 245_280 II 285_325 0.4 II 285_325 II 335_360 0.5 II 210_245 III 500 0.4 II 285_325 IV 550 0.6 III 500 IV 550 0.9 IV 500 IV 550 1.0 𝐼 = 𝐴𝑛𝑛𝑒𝑙𝑒𝑑 𝑠𝑡𝑒𝑒𝑙 𝐼𝐼 = 𝐻𝑒𝑎𝑡 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑡𝑒𝑒𝑙 𝐼𝐼𝐼 = 𝑂𝑖𝑙 𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑠𝑡𝑒𝑒𝑙 𝐼𝑉 = 𝐶𝑎𝑠𝑒 − ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑠𝑡𝑒𝑒l
  • 46. Page 22 Worm Gear 𝐶 = 𝐷𝑔 + 𝐷𝑤 2 𝑃𝑐 = 𝑃𝑎 𝑓𝑜𝑟 𝑠𝑚𝑜𝑜𝑡ℎ 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑉. 𝑅 = 𝑁𝑔 𝑁𝑤 = 𝐷𝑔 𝐷𝑤𝑡𝑎𝑛𝛼 tan 𝛼 = 𝐿𝑒𝑎𝑑 𝜋𝐷𝑤 = 𝑃𝑐𝑁𝑤 𝜋𝐷𝑤 = 𝑚𝑎𝑁𝑤 𝐷𝑤 Where, Dg = Diameter of gear Dw = Diameter of worm Ng = Number of teeth of gear Nw = Number of start Pc = Circular Pitch Pa = Axial Pitch ma = Axial module mn = Normal module V.R = Velocity ratio
  • 47. Page 23 AGMA equation include the following design equation 𝐷𝑤 ≈ 𝐶0.875 3.48 ≈ 3𝑃𝑐, 𝑏 ≈ 0.73 × 𝐷𝑤, 𝐿 ≈ 𝑃𝑐(4.5 + 𝑁𝑔 50 ) Where, Dw = Pitch diameter of the worm,m C = Center distance between axis of worm and axis of gear,m b = Face width of gear, m Pc = Circular pitch of gear, m L = Axial length of worm, m The equations are for estimating the approximate proper proportions of the gear unit 𝑚𝑎 = 𝑃𝑐 𝜋 ≈ 𝐷𝑤 3𝜋 , 𝐷𝑔(𝑎𝑝𝑝𝑟𝑜𝑥:) = 2𝐶 − 𝐷𝑤(𝑎𝑝𝑝𝑟𝑜𝑥:), 𝑉. 𝑅 = 𝐷𝑔(𝑒𝑥) 𝑚𝑎𝑁𝑤 From the above equation we get, Nw Dg 𝐷𝑔(𝑒𝑥𝑎𝑐𝑡) = 𝑉. 𝑅 𝑚𝑎𝑁𝑤
  • 48. Page 24 Compare approximate Dg and exact value of Dg from table and choose exact Dg close to approximate Dg. Then find exact Dw Dw(exact)= 2C-Dg(exact) Strength design of the worm wheel is based on the Lewis equation, 𝐹 = 𝑠 𝑏 𝑦 𝑃𝑛𝑐 = 𝑠 𝑏 𝑦 𝜋 𝑚𝑛 𝑠 = 𝑠𝑜( 6 6 + 𝑉 𝑔 ) 𝑚𝑛 = 𝑚𝑎 𝑐𝑜𝑠𝛼 Where, F = Permissible tangential load, N s = Allowable stress, MN/m2 so = About 1/3 of the ultimate strength, based on an average value for stress concentration Vg = Pitch line velocity of the gear, m/s Pnc = Normal circular pitch, m mn = Normal module
  • 49. Page 25 Dynamic Check Endurance load, Fo 𝐹 𝑜 = 𝑠𝑜 𝑏 𝑦 𝜋𝑚𝑛 𝑊𝑒𝑎𝑟 𝐿𝑜𝑎𝑑, 𝐹 𝑤 𝐹 𝑤 = 𝐷𝑔 𝑏 𝐵 Where, Dg = Pitch diameter of the gear, m b = Gear face width, m B = A constant depending upon the combination of the materials used for the worm and gear, as listed in Table
  • 50. Page 26 Constant B Worm Gear B(kN/m2 ) Hardened steel Cast iron 345 Steel, 250 BHN Phosphor bronze 415 Hardened steel Phosphor bronze 550 Hardened steel Chilled phosphor bronze 830 Hardened steel Antimony bronze 830 Cast iron Phosphor bronze 1035 The above values for B are suitable for lead angles up to 10 For angles between 10 and 25, increase B by 25% For lead angles greater than 25, increase B by 50% Dynamic load, Fd 𝐹𝑑 = ( 6 + 𝑉 𝑔 6 ) 𝐹 Where, 𝐹 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑎𝑑
  • 51. Page 27 As for spur, helical and bevel gears, Fo and Fw are allowable values which must be greater than the dynamic load Fd (Fo,Fw Fd) AGMA power rating equations are based on wear and the heat dissipation capacity of the worm gear unit. From the stand point of wear 𝑃 = 𝑟𝑝𝑚𝑤 𝐾 𝑄 𝑚 𝑉. 𝑅 𝑄 = 𝑉. 𝑅 𝑉. 𝑅 + 2.5 𝑚 = 2.3 2.3 + 𝑉 𝑤 + 3𝑉 𝑤 𝑉. 𝑅 Where, P = Input power in kW rpmw = Speed of worm in rev/min V.R = Transmission ratio K = A pressure constant depending upon center distances, as listed in Table m = Velocity factor depending upon the center distance transmission ratio and worm speed Vw = Pitch line velocity of worm, in m/s
  • 52. Page 28 Pressure Constant, K Center Distance C(mm) K (kW/rpm) Center Distance C(mm) K (kW/rpm) 25 0.0092 250 0.881 50 0.0184 375 2.94 75 0.0294 500 5.87 100 0.0661 750 21.3 125 0.125 1000 48.5 150 0.213 1250 88.1 175 0.330 1500 147 200 0.485 1750 235 225 0.727 2000 235
  • 53. Page 29 From the standpoint of heat dissipation Based on AGMA recommendations, the limiting input power rating of a plain worm gear unit from the standpoint of heat dissipation, for worm gear speeds up to 2000 rev/min, may be estimated by 𝑃 = 3650 𝐶1.7 𝑉. 𝑅 + 5 (ℎ𝑒𝑎𝑡 𝑐ℎ𝑒𝑐𝑘) Where, P = Permissible power input in kW C = Center distance in meters V.R = Transmission ratio Allowable Power 𝑃 = 𝐹 𝑉 𝑔 The efficiency of a worm gear unit, assuming square threads, may be approximated by 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1 − 𝑓 𝑡𝑎𝑛𝛼 1 + 𝑓 𝑡𝑎𝑛𝛼
  • 54. Page 30 Where, f = Coefficient of friction  = Lead angle If the efficiency is less than 50% than the device will be self locking. That is, it cannot be driven by applying a torque to the wheel. This characteristic can be a useful safety feature in some applications.
  • 55. Page 31 Module of Spur Gears, mm Error (e), mm Permissible Error, mm Pitch line velocity, m/s (Spur Gear) First Class Commercial Gears Precision Gears
  • 56. Page 1 Table I Form or Lewis factory Y for spur gears with load at tip of tooth No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0.067 0.071 0.075 0.078 0.081 0.084 0.086 0.088 0.090 0.092 0.093 0.094 0.0955 0.097 0.098 0.099 0.09966 0.10033 0.101 0.078 0.083 0.088 0.092 0.094 0.096 0.092 0.100 0.102 0.104 0.105 0.106 0.107 0.108 0.1095 0.111 0.112 0.113 0.114 0.099 0.103 0.108 0.111 0.115 0.117 0.120 0.123 0.125 0.127 0.1285 0.130 0.1315 0.133 0.1345 0.136 0.137 0.138 0.139
  • 57. Page 2 No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 0.10175 0.1025 0.10325 0.104 0.1045 0.105 0.1055 0.106 0.1064 0.1064 0.1072 0.1076 0.108 0.10828 0.10857 0.10885 0.10914 0.10942 0.10971 0.110 0.1103 0.1106 0.1109 0.115 0.116 0.117 0.118 0.119 0.120 0.121 0.122 0.1228 0.1236 0.1244 0.1252 0.126 0.12657 0.12714 0.12771 0.12828 0.12885 0.12942 0.130 0.1304 0.1308 0.1312 0.13975 0.1405 0.1425 0.142 0.14275 0.1435 0.14425 0.145 0.1454 0.1458 0.1462 0.1466 0.147 0.14757 0.14814 0.14871 0.14928 0.14985 0.15042 0.151 0.1513 0.1516 0.1519
  • 58. Page 3 No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 0.1112 0.1115 0.1118 0.1121 0.1124 0.1127 0.113 0.11313 0.11326 0.11339 0.11353 0.11366 0.11379 0.11393 0.11406 0.11419 0.11433 0.11446 0.11459 0.11473 0.011483 0.115 0.11508 0.1316 0.1320 0.1324 0.1323 0.1332 0.1336 0.134 0.13426 0.13453 0.1348 0.13506 0.13533 0.1356 0.13586 0.12613 0.1364 0.13666 0.13639 0.13712 0.13746 0.13773 0.138 0.13816 0.1522 0.1525 0.1528 0.1531 0.1534 0.1537 0.154 0.15426 0.15453 0.1548 0.15506 0.15533 0.1556 0.15586 0.15613 0.1561 0.15666 0.15693 0.15712 0.15746 0.15773 0.158 0.15812
  • 59. Page 4 No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 0.11516 0.11524 0.11535 0.11540 0.11548 0.11556 0.11564 0.11572 0.11580 0.11588 0.11596 0.11604 0.11612 0.11620 0.11628 0.11636 0.11644 0.11652 0.11660 0.11668 0.11676 0.11684 0.11692 0.117 0.13832 0.13848 0.13864 0.1388 0.13896 0.13912 0.13928 0.13944 0.13960 0.13976 0.13992 0.14008 0.14024 0.1404 0.14056 0.14072 0.14088 0.14104 0.14120 0.14136 0.14152 0.14168 0.14184 0.142 0.15824 0.15836 0.15848 0.1586 0.15872 0.15884 0.15896 0.15908 0.15920 0.15932 0.15944 0.15956 0.15968 0.15980 0.15992 0.16004 0.16016 0.16028 0.16040 0.16052 0.16064 0.16076 0.16088 0.161
  • 60. Page 5 No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 0.11704 0.11708 0.11712 0.11716 0.11720 0.11724 0.11728 0.11732 0.11736 0.11740 0.11744 0.11748 0.11724 0.11756 0.11760 0.11764 0.11768 0.11772 0.11776 0.11780 0.11784 0.11788 0.11792 0.11796 0.14203 0.14216 0.14224 0.14232 0.14240 0.14248 0.14256 0.14262 0.14272 0.14280 0.14288 0.14296 0.14304 0.14132 0.14320 0.14328 0.14336 0.14344 0.14352 0.14360 0.14368 0.14376 0.14384 0.14392 0.16108 0.16118 0.16124 0.16132 0.16140 0.16148 0.16156 0.16164 0.16172 0.16180 0.16188 0.16196 0.16204 0.16212 0.16220 0.16228 0.16236 0.16244 0.16252 0.16260 0.16268 0.16272 0.16284 0.16292
  • 61. Page 6 No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 0.118 0.11804 0.11808 0.11812 0.11816 0.11820 0.11824 0.11828 0.11832 0.11836 0.11840 0.11844 0.11848 0.11852 0.11856 0.11860 0.11864 0.11868 0.11872 0.11876 0.11880 0.11884 0.11888 0.144 0.14408 0.14416 0.14424 0.14432 0.14440 0.14448 0.14456 0.14464 0.14472 0.14480 0.14488 0.14496 0.14504 0.14512 0.14520 0.14528 0.14536 0.14544 0.14552 0.14560 0.14568 0.14576 0.163 0.16308 0.16316 0.16324 0.16332 0.16340 0.16348 0.16356 0.16364 0.16372 0.16380 0.16388 0.16398 0.16404 0.16421 0.16420 0.16428 0.16436 0.16444 0.16452 0.16460 0.16468 0.16476
  • 62. Page 7 No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 0.11892 0.11896 0.119 0.11902 0.11904 0.11906 0.11908 0.11910 0.11912 0.11914 0.11916 0.11918 0.1192 0.11922 0.11924 0.11926 0.11928 0.11930 0.11932 0.11934 0.11936 0.11938 0.11940 0.11942 0.14584 0.14592 0.146 0.146026 0.146053 0.14608 0.146106 0.146133 0.14616 0.146186 0.146213 0.14624 0.146266 0.146293 0.146312 0.146346 0.146374 0.1464 0.146426 0.146453 0.146480 0.146506 0.146533 0.14656 0.16484 0.16498 0.165 0.165033 0.165066 0.1651 0.165133 0.165166 0.1652 0.165233 0.165266 0.1653 0.165333 0.165366 0.1654 0.165433 0.165466 0.1655 0.165533 0.165566 0.1656 0.165633 0.165666 0.1657
  • 63. Page 8 No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 0.11944 0.11946 0.11948 0.11950 0.11952 0.11954 0.11956 0.11953 0.11960 0.11962 0.11964 0.11966 0.11963 0.11970 0.11972 0.11974 0.11976 0.11978 0.11980 0.11982 0.11984 0.11986 0.11988 0.146586 0.146613 0.14664 0.146666 0.146693 0.146712 0.146746 0.146773 0.1468 0.146826 0.146853 0.146880 0.146906 0.146933 0.14696 0.146985 0.147013 0.14704 0.147066 0.147093 0.147112 0.147146 0.147173 0.165733 0.165766 0.1658 0.165833 0.165866 0.1659 0.165933 0.165966 0.1660 0.166033 0.166066 0.1661 0.166133 0.166166 0.1662 0.166233 0.166266 0.1663 0.166333 0.166366 0.1664 0.166433 0.166466
  • 64. Page 9 No. of teeth 14 ½  full Depth Involute or Composite 20 Full Depth Involute 20 Stub Involute 195 196 197 198 199 200 300 RACK 0.11990 0.11992 0.11994 0.1196 0.1998 0.120 0.122 0.124 0.1472 0.147226 0.147253 0.147280 0.147306 0.147333 0.150 0.154 0.1665 0.166533 0.166566 0.1666 0.166633 0.166666 0.170 0.175