SlideShare a Scribd company logo
1 of 102
Download to read offline
1
Gear Box
Name: Muhammad Jawhar Anwar
Class: 4 Stage โ€“A
Subject: Design Project
Department: Mechanical and Mechatronics
Supervised by : DR. Buland
College of Engineering
Salahaddin University-Erbil
Academic Year 2021-2022
2
Specifications Units value
Power to be delivered Hp 27.6
Input speed rpm 1992
Output speed
Range ยฑ3
rpm 103
Height in 24
Width x Length in 14 x 14
Gear and bearing life Hour
(s)
>13000
I/P and O/P shafts extension in 4
I/P and O/P shafts
orientation
In-line (reverted gearbox)
Shock level Usually low and occasional moderate
shocks
Chapter2
Speed, Torque, and Gear Ratios
โ€ข Calculation of the Number of Teeth for each gear
โˆš
` ( )
(๐‘š โˆš๐‘š ( ๐‘š) )
( ( ))
. โˆš( ) ( ( )) )
3
( )
( ) ( )
( ) ( )
( )
(
๐‘
๐‘Ÿ๐‘๐‘š
) (
๐‘ก ๐‘™ ๐‘ 
๐‘
) (
๐‘Ÿ ๐‘ฃ
๐‘Ÿ
) .
๐‘ 
๐‘š ๐‘›
/
๐‘™ ๐‘ก
( )
( )
( )
( )
. /
( )
( )
4
. /
( )
๐‘ž
( )( )
( )( )
๐‘ž
Gear N T d V W
# rpm Ibf.ft in Ft//min Ibf
2 16 1992 72.81 3.2 1668 546
3 70 455.3 318.55 14 1668 546
4 16 455.3 318.55 3.2 381.24 2389
5 70 104.07 1393.65 14 381.24 2389
5
Chapter 3
โˆš ( )
โˆš๐‘™ ๐‘› for steel pinion and steel mating gear
๐‘ก ๐‘ก ๐‘› ๐‘›๐‘ก ๐‘™ ๐‘ก๐‘Ÿ ๐‘›๐‘ ๐‘š ๐‘ก๐‘ก ๐‘™๐‘œ
is the overload factor. Usually =1 (no shocks)
also see table 3.2.
is the size factor =1 (as suggested by AGMA)
(
โˆš
)
( ) ๐‘ž ( )
( ) ๐‘ž ( )
( )
( )
(
โˆš
)
size factor
( ) ๐‘ž ( )
because is uncrowned teeth
. / ๐‘ž for 1<F<17in.
6
( ) . / ๐‘ž ( )
. /
Round up to F= 3 in
(
( )
( ))
We choice commercial condition because Qv =7
( )
( ) ( ) ( )
( )
( ( ) ( ))
7
๐‘š
(
๐‘š
๐‘š
) ( )
( )
( )
โˆš
โˆš ( ) ( )
( ) ( ) ( )
๐‘ก ๐‘› ( )
rev
Using fig 3.3 to find
8
So
Using table 3-4 the type of steel gear
๐‘Ÿ ๐‘ก ๐‘Ÿ ๐‘œ๐‘Ÿ
๐‘›
Bending of gear 4
9
Using fig 3.4
( ) ( )
10
Then we use fig 3.5 L= rev
psi
๐‘›
11
Wear of gear 5
โˆš
โˆš ( ) ( )
Choosing grade 1 through hardened steel to 250HB
Using fig 3.6 at HB=250 to find
๐‘›
12
Bending of gear 5
N5=70 , then J=0.415
Choosing the same material grade1
Using fig 3.7 at HB=250
St= 77.3 HB+ 12 800 psi
๐‘›
13
Wear of gear 2
Using eq 15
(
โˆš
)
Gear 2&3 is lower than 4&5 therefore
Select F=2.25 in.
( )
(
( )
( ))
Using eq 20
( ) ( ) ( )
( )
( ( ) ( ))
Using eq 14
โˆš
โˆš ( ) ( )
Using eq 24
14
rev
Use fig 3.3
Use table 3.4 & ant try grade 1, flame hardened steel
๐‘›
Bending of gear 2
N2=16 teeth then
J=0.27
Using fig 3.5 as rev ,
Using eq 26
Using the same material from table 3.5 flame hardened steel
Using eq 27
๐‘›
15
Wear of gear 3
rev
โˆš
โˆš ( ) ( )
Choosing grade 1 through hardened steel to 200HB
Using fig 3.6 then
๐‘›
Bending of gear 3
N3=70 then J=0.415 from fig 3.4
Fig 3.5
Using the same material grade 1
16
๐‘›
Gear Material
grade
Treatment Wear
stress psi
Bending
stress psi
d in F in
2 1 Flame-
hardened
170000 45000 3.2 2.25
3 1 Through-
hardened
to 200HB
90000 28000 14 2.25
4 3 Carburized
and
hardened
180000 55000 3.2 3.0
5 2 Through-
hardened
to 250HB
109600 32125 14 3.0
17
Chapter 4
Shaft Design
Determination of the axial location of gears and bearings
Figure 4. 1 Shaft layout for the reverted gearbox indicating the estimated axial distances between
the gears and bearings, distances are in inches.
The face width of each gear is known
2 = 3 = 1.5 ๐‘›.
Similarly
4 = 5 = 2.0 ๐‘›.
18
Figure 4. 2 Counter shaft diameters, shoulders and the axial locations of the gears and bearing.
From the previous chapter
23๐‘ก = 546 ๐‘™
45๐‘ก = -2389 ๐‘™
๐‘Ÿ = ๐‘ก tan โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 28
Therefore
23๐‘Ÿ = 23๐‘ก tan
23๐‘Ÿ = 546 tan 20
23๐‘Ÿ = โˆ’198.72 ๐‘™
Similarly 45๐‘Ÿ = 45๐‘ก tan
= tan =2389 tan20 = -869.5 ibf
The next step is to select a suitable material for the shaft followed by a rough estimation of
the shaft diameters at different axial locations. This could be achieved by determination of
19
the fatigue and static stress capacity based on the infinite life of the shaft and a minimum
safety factor of 1.5.
Force analysis
โ€ข Determination of reaction forces on bearings.
x-z plane
๐‘ฅ ๐‘ฅ ๐‘ฅ
( ) ( )
( )
๐‘™
๐‘™
x-y plane
๐‘ฅ ๐‘ฅ ๐‘ฅ
( ) ( )
( )
lbf
lbf
20
0 0
3822 3822
0 0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
y
[in.]
x [in.]
torque diagram
21
101 101
647 647
-1742 -1742
0
-2000
-1500
-1000
-500
0
500
1000
y
[in.]
x [in.]
shear force diagram
0
202
3275
3922
2180
0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
y
[in.]
x [in.]
moment diagram(x -z)
22
354 354
155.28 155.25
-714.22 -714.22
0
-800
-600
-400
-200
0
200
400
600
y
[in.]
x [in.]
shear force diagram(x -y)
0
708
1446
887
0
0
200
400
600
800
1000
1200
1400
1600
y
[in.]
x [in.]
moment diagram(x -y)
0
736
3580
4236
2354
0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
y
[in.]
x [in.]
moment diagram(x -y)
23
Figure 4. 3 Free body diagram, torque, shear force and bending moment diagrams for the shaft.
โ€ข The torque diagram
T3= *
T3= 546 *
= 3822 ibf .in
T3= *
T3= - 2389 * = -3822 ibf .in
The Shear force and Bending moment
diagrams x-y plane
๐บ = = 354 ๐‘™
๐บ = -
๐บ = 354 โ€“ 198.72
๐บ = 155.28 ๐‘™
= ๐บ โˆ’
= 155.28 โ€“ 869.5
= โˆ’714.22 Ibf =
=0
24
๐‘ฅ
( )
๐‘™ in
( ) ( )
( ) ( )
๐‘™ ๐‘›
( ) ( ) ( )
( ) ( ) ( )
๐‘™ ๐‘›
x-z plane
๐บ = = 101 ๐‘™
๐บ = +
๐บ = 101 + 546
๐บ = 647 ๐‘™
= ๐บ โˆ’
= 647 โ€“ 2389
= โˆ’1742 ibf =
๐‘ฅ
๐‘™ ๐‘›
( ) ( )
( ) ( )
๐‘™ ๐‘›
( ) ( ) ( )
( ) ( ) ( )
๐‘™ ๐‘›
25
The total bending moment diagram
It could be found by superposition of the moments in the x-y plane and x-z plane.
๐บ =โˆš( ) ( )
=736 Ibf.in
Similarly MJ=โˆš( ) ( )
= 4236Ibf . ๐‘›
MK=2354 lbf.in
The shoulder at point I
The bending moment is the highest at the shoulder (point I), the torque is high and
there is a stress concentration as well.
In the x-y plane
( ) ( )
( ) ( )
๐‘™ ๐‘›
In the x-z plane
( ) ( )
( ) ( )
๐‘™ in
Combined
26
โˆš( ) ( )
= 3580 ibf. ๐‘›
At point I, is alternating moment usually referred to as and defined by
๐‘š ๐‘ฅ ๐‘š ๐‘›
While the midrange moment is defined as
๐‘š ๐‘ฅ ๐‘š ๐‘›
The midrange torque is
๐‘š = 3822 ๐‘™ . ๐‘› ๐‘š = = 0
27
Estimation of the stress concentrations
For bearings
= 1.2~1.5
Where
๐ท ๐‘  ๐‘ก ๐‘™ ๐‘Ÿ ๐‘Ÿ ๐‘š ๐‘ก ๐‘Ÿ ๐‘œ ๐‘ก ๐‘  ๐‘ก ๐‘ก ๐‘ก ๐‘  ๐‘œ๐‘ข๐‘™ ๐‘Ÿ, ๐‘›.
๐‘  ๐‘ก ๐‘ ๐‘š ๐‘™๐‘™ ๐‘Ÿ ๐‘š ๐‘ก ๐‘Ÿ ๐‘œ ๐‘ก ๐‘  ๐‘ก ๐‘ก ๐‘ก ๐‘  ๐‘œ๐‘ข๐‘™ ๐‘Ÿ, ๐‘›.
The upper limit of 1.5 could be used as a first estimation and a worst-case scenario.
The fillet radius should also be sized to coincide with that of a standard bearing or gear.
= 0.02~0.06
Where
๐‘Ÿ ๐‘  ๐‘ก ๐‘™๐‘™ ๐‘ก ๐‘Ÿ ๐‘ข๐‘ , ๐‘›.
๐‘  ๐‘ก ๐‘Ÿ ๐‘› ๐‘œ๐‘Ÿ ๐‘œ๐‘Ÿ ๐‘ก ๐‘ ๐‘š ๐‘™๐‘™ ๐‘Ÿ ๐‘  ๐‘ก ๐‘š ๐‘ก ๐‘Ÿ ๐‘ก ๐‘ก ๐‘  ๐‘œ๐‘ข๐‘™ ๐‘Ÿ, ๐‘›.
The Marin equation for the determination of the endurance limit is
= ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . ๐‘ž. 29
Table 4. 1 Parameters for Marin surface modification factor ka.
28
Table 4. 2
A 1040 CD steel is chosen for its low price with ๐‘บ๐’–๐’• = 85 ๐’Œ๐’‘๐’”๐’Š, Sy = 71 kpsi. From
table 4.2.
therefore, ๐‘› ๐‘Ÿ ๐‘™ ๐‘ ๐‘ก ๐‘› ๐‘ก ๐‘™ 4.1
= 2.7 ๐‘˜๐‘๐‘  = โˆ’0.265
Then
๐‘˜ = 2.7(85)โˆ’0.265
= 0.831
29
Let
๐‘˜ = 0.9 (๐‘ก๐‘œ ๐‘ ๐‘๐‘˜ ๐‘™ ๐‘ก ๐‘Ÿ โˆ’ ๐‘œ๐‘› ๐‘ค ๐‘› ๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘›)
๐‘˜๐‘ = ๐‘˜ = ๐‘˜ = 1
And
โ€ฒ
= 0.5 ๐‘ข๐‘ก ๐‘œ๐‘Ÿ ๐‘ข๐‘ก โ‰ค 200 ๐‘˜๐‘๐‘ 
โ€ฒ
= 100 ๐‘˜๐‘๐‘  ๐‘œ๐‘Ÿ ๐‘ข๐‘ก > 200 ๐‘˜๐‘๐‘ 
Using eq. 29
= 0.831 0.9 0.5 85
= 31.78 ๐‘˜๐‘๐‘ 
Using DE-Goodman criterion to make the first estimate for the smaller diameter at the
shoulder
โˆš * โˆš (๐‘˜ ) (๐‘˜ ๐‘  ) โˆš (๐‘˜ ๐‘š) (๐‘˜ ๐‘  ๐‘š) +
Assuming shoulder-fillet well-rounded or
r/d=0.1 then From table 4.3
๐‘ก = 1.7
๐‘ก๐‘  = 1.5
Assume
= ๐‘ก ๐‘› ๐‘  = ๐‘ก๐‘ 
with
30
โˆš { โˆš }
Since the Goodman criterion is conservative, then it possible to select the next standard
size below 1.65 which is
=1
= 1.625 ๐‘›.
A typical diameter ratio at the shoulder is
= 1.2
Therefore,
๐ท = 1.2 1.625 = 1.95 ๐‘›.
Round up to ๐ท = 2.0 ๐‘›.
A nominal 2.0 in. CD shaft is used
Checking the acceptability of the estimates
๐ท
Assume fillet radius to diameter ratio
๐‘Ÿ
= 0.1
Therefore,
๐‘Ÿ = 0.1 1.625 = 0.16 ๐‘›.
31
Using ๐‘ก๐‘œ ๐‘› ๐‘ก ๐‘ ๐‘ก๐‘Ÿ ๐‘ ๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘›๐‘ก๐‘Ÿ ๐‘ก ๐‘œ๐‘› ๐‘˜๐‘ก
๐‘ก = 1.6
Using fig.4.6 to find the sensitivity factor q.
Then
๐‘ž = 0.82
= 1 + ( ๐‘ก โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . ๐‘ž. 33
= 1 + 0.82(1.6 โˆ’ 1)
=1.49
Using fig. 4.7 for (r/d) =0.1 and (D/d) =1.23
then
๐‘ก๐‘  = 1.35
Using fig. 4.8 for r=1.6 in. then
๐‘ž๐‘  = 0.95
๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 34
๐‘  = 1 + 0.95(1.35 โˆ’ 1)
๐‘  = 1.33
= 0.831 (๐‘›๐‘œ๐‘ก ๐‘ ๐‘› )
Kb=( ) ๐‘œ๐‘Ÿ 0.11 < โ‰ค 2 ๐‘›
Using eq. 35
Kb=( )
32
Using eq. 29
= 0.831 0.835 0.5 85
= 29.49 ๐‘˜๐‘๐‘ 
The Von Mises stresses for rotating round, solid shafts, neglecting axial loads are given by:
=( ( ) 0( ) ( ) 1
( )
๐‘๐‘ 
=( ( ) โ„
0( ) ( ) 1
* ( ) +
โˆš
( )
๐‘›
๐‘›
๐‘›
Check for Yielding
33
The von Mises maximum stress is :
๐‘š ๐‘ฅโ€ฒ= [( ๐‘š + )2 + 3( ๐‘š + )2]1โ„2
*(
๐‘˜ ( ๐‘š )
) (
๐‘˜ ๐‘ ( ๐‘š )
) +
To check for yielding, Eq. 30 is compared to the yield strength, then
๐‘›๐‘ฆ =
Note: for a quick conservative check, the sum of alternating stress and the midrange
stress is always greater or equal to the maximum stress therefore, the results will be
conservative.
Therefore,
๐‘›๐‘ฆ
๐‘ ๐‘ฆ ๐‘ ๐‘ฆ
๐‘›๐‘ฆ = 3
34
The Keyway
The keyway is a groove made in the shaft to fix the gear mounted on the shaft in
position. This keyway affects the diameter of the shaft and reduces its strength. The
keyway extends to a point just to the right of point (I).
From the total bending moment diagram, let the moment at the end of keyway close
to point (I) is
= 3 750๐‘™ . ๐‘›
Assume that at the bottom of the keyway
= 0.02 ( ๐‘ ๐‘ก ๐‘› ๐‘Ÿ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก ๐‘œ๐‘›)
Therefore,
๐‘Ÿ
๐‘Ÿ .
Using fig. 4.5
๐‘ก = 2.4
And using fig. 4.6
๐‘ž = 0.69
Using eq.33
= 1 + ( ๐‘ก โˆ’ 1)
= 1 + 0.69(2.4 โˆ’ 1)
= 1.966
Using fig. 4.7 ๐‘ก๐‘  = 2.2
Fig 4.8 gives9 ๐‘ž๐‘  = 0.9
Using eq.34 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1)
๐‘  = 1 + 0.9(2.2 โˆ’ 1)
๐‘  = 2
35
( )
๐‘๐‘ 
* ( ) +
โˆš
( )
=15722 psi
๐‘›
๐‘›
๐‘›
Note: the results show that the keyway is more critical than the shoulder. Therefore, to
overcome the conundrum, it is recommended to change the shaft material to a higher
strength or to change its diameter to a larger size.
Trying
steel 1050 CD with ๐‘บ๐’–๐’• = ๐Ÿ๐ŸŽ๐ŸŽ ๐’Œ๐’‘๐’”๐’Š, ๐‘บ๐’š = ๐Ÿ–๐Ÿ’ ๐’Œ๐’‘๐’”๐’Š. From table 4.2.
and recalculating the factors affected by ๐‘ข๐‘ก.
Using eq.30
๐‘˜ = ๐‘ข๐‘ก
๐‘˜ = 2.7(100)โˆ’0.265
= 0.797
Using eq. 29
= 0.797 0.835 0.5 100
36
= 33.275 ๐‘˜๐‘๐‘ 
Fig. 4.6 gives
๐‘ž = 0.73
= 1 + ( ๐‘ก โˆ’ 1)
= 1 + 0.73(2.4 โˆ’ 1)
= 2.022
( )
๐‘๐‘ 
๐‘›
๐‘›
๐‘›
This value is quite close to the required 1.5, and since the Goodman equations are
conservative therefore, the value of ๐‘› = 1.433 is acceptable.
37
Inspecting point K The retaining ring groove
At point (K) a flat bottom groove exists to accommodate the retaining ring. This point
is characterized by:
๐‘ก ๐‘  ๐‘ฃ ๐‘Ÿ๐‘ฆ ๐‘œ๐‘Ÿ ๐‘™ ๐‘ก ๐‘œ๐‘ก๐‘ก๐‘œ๐‘š ๐‘Ÿ๐‘œ๐‘œ๐‘ฃ ๐‘ 
= 0 ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘ก๐‘œ๐‘Ÿ๐‘ž๐‘ข ๐‘Ÿ ๐‘š
= 2354 ๐‘™ . ๐‘› ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘š๐‘œ๐‘š ๐‘›๐‘ก ๐‘Ÿ ๐‘š
๐‘š = = ๐‘š = 0
In order to check how critical point (K) is
Using table 4.3 to estimate the stress concentration factor as follows:
= ๐‘ก = 5.0
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘›
This quick check revealed a low safety factor.
For a detailed determination of point (K) specs, standard retaining ring specs could be
obtained from related tables and going online to (www.globalspec.com)
Using the shaft diameter of 1.625 in. to get
Groove width
= 0.068 ๐‘›.
Groove depth
๐‘ก = 0.048 ๐‘›.
Fillet radius at bottom of the groove
๐‘Ÿ = ๐‘›.
Therefore,
38
๐‘Ÿ
๐‘ก
/๐‘ก=1.42
= ๐ท โˆ’ 2๐‘ก
= 1.625 โˆ’ 2 0.048
= 1.529
๐‘› Using fig. 4.9 for flat groove on a round shaft
๐‘ก = 4.3
Fig. 4.6 yields
๐‘ž = 0.63
= 1 + ( ๐‘ก โˆ’ 1)
= 1 + 0.63(4.3 โˆ’ 1)
= 3.09
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘›
โ€ข Determination of D6
Since
๐ท
= 1.2~1.5
Then d=
Therefore
๐ท6 = = 1.354 ๐‘›
Round up to the next standard size
Therefore ๐ท6 = 1.4 ๐‘›
39
Inspecting point M
Point (M) is characterized by being a shoulder to axially hold the bearing. Only
bending is present due to a small moment. However, the cross-section area is small
too, which results in a high stress concentration especially the fillet radius is small to
accommodate the bearing.
Finding the Moment at point M
In the x-y plane
= 354 (10.25-0.75) โ€“198.72(10.25-2.75)-
869.5(10.25-8.5)
=351 ibf . ๐‘›
In the x-z plane
= 101(10.25-0.75)+546(10.25-2.75)-2389(10.25-
8.5)
=874 ibf. ๐‘›
Combined
=โˆš( ) ( )
=942 ibf . ๐‘›
Therefore
= 942 ๐‘™ . ๐‘›
And
๐‘š = ๐‘š = = 0
Using table 4.3 for a quick estimation of Kt for a sharp fillet shoulder where
= 0.02
40
And
๐‘ก = 2.7
Also
= 1 ๐‘›.
Therefore
๐‘Ÿ =d*0.02= 1 *0.02=0.02
Using fig. 4.6
๐‘ž = 0.7
= 1 + ( ๐‘ก โˆ’ 1)
= 1 + 0.7(2.7 โˆ’ 1)
= 2.19
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘›
This value of (nf) is satisfactory and should be checked as the bearing is selected.
As the shaft diameters at the critical positions were determined and by taking the
shoulders heights, to retain the gears and bearings, in consideration, other shaft
diameters could be estimated. These diameters will be checked when the bearings are
selected.
๐ท1 = ๐ท7 = 1 ๐‘›.
๐ท2 = ๐ท6 = 1.4 ๐‘›.
๐ท3 = ๐ท5 = 1.625 ๐‘›.
๐ท4 = 2.0 ๐‘›.
41
The rigidity of the shaft Deflection of the shaft
Any deflection in the shaft could have detrimental consequences on the mounted gears
and bearings with high noise levels due to the vibrations. Deflection analyses require a
full knowledge of the shaft geometry and dimensions. Table 4.4 exhibits rough
guidelines for the deflections and the maximum slopes under particular elements
mounted on the shaft. Fillets, grooves, and keyways do not have a tangible effect on
shaft deflection
Table 4. 4 Typical maximum ranges for slopes and transvers deflections.
The deflection is usually determined by double integration of the moment equation
= โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 40
M= ๐‘ฅ โŒฉ๐‘ฅ ๐‘ฅ โŒช ๐‘โŒฉ๐‘ฅ ๐‘ฅ โŒช โŒฉ๐‘ฅ ๐‘ฅ โŒช 0 ๐‘ฅ
At the shoulder
42
Y P P
Shoulder
X
RA RB
A D G H I J M B
n
Previous sectio
Next section
Figure 4. 11 A stepped shaft subjected to concentrated loads.
Divide the moment equation by the second moment of area (I) of the previous section
of the shaft. The equation becomes.
๏‚ท At the distance (๐‘ฅ ) where the shoulder exists, add a step change in ( โ„ ) as
follows:
๐‘ ๐‘ก ๐‘ . /
๐‘ ๐‘ก ๐‘ ( ) ( )
๏‚ท At the distance (๐‘ฅ ) where the shoulder exists, add a ramp change in ( โ„ ) as
follows:
๐‘ ๐‘™๐‘œ๐‘ ๐‘š [
. /
๐‘ฅ
]
๐‘š [
. / . /
๐‘ฅ
]
( )
๐‘›
( )
๐‘›
43
Xz plane
Shoulder H
( ) ๐‘™ ๐‘›
( ) ( )
( ) ( ) ๐‘™ ๐‘›
( ) ๐‘™ ๐‘›
๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘›
( ) ๐‘™ ๐‘›
( ) ๐‘™ ๐‘›
๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘›
๐‘š ๐‘ ๐‘™๐‘œ๐‘ ๐‘ ๐‘™๐‘œ๐‘
๐‘š ๐‘™ ๐‘›
๐‘ ๐‘ก ๐‘ ( ) ( )
๐‘ ๐‘ก ๐‘ ๐‘™ ๐‘›
Shoulder I
( ) ๐‘™ ๐‘›
( ) ๐‘™ ๐‘›
๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘›
๐‘š ๐‘ ๐‘™๐‘œ๐‘ ๐‘ ๐‘™๐‘œ๐‘
44
๐‘š ๐‘™ ๐‘›
๐‘ ๐‘ก ๐‘ ( ) ( )
๐‘ ๐‘ก ๐‘ ๐‘™ ๐‘›
Units Poin
t G
point H Sectio
n GH
sectio
n HI
point I point J Section IJ
on
AH
on HI on HI on IB
Wt
lb 546 2389
M Lb.in 202 687.25 3275 3922
I In4
0.3
42
0.34
2
0.78
5
0.78
5
0.34
2
0.342
M/I Lb/in3
590 200
8
875.
14
4170 9570 1146
1
ฮ”(M/I
)
Lb/in3
-1133.19 1436 3338 5400 2046.5
x In. 2 2.75 6.75 7.75
ฮ”x In. 0.75 4 1
ฮ”(M/I
)/ ฮ”x
Lb/in4
1890
.7
823.
8
1890.6
ฮ”m Lb/in4
-1067 1067
Step
Slope
45
The moment equation
( ) โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
๐‘ฅ โŒฉ โŒช . / โŒฉ๐‘ฅ โŒช ๐‘š โŒฉ โŒช โŒฉ โŒช
. / โŒฉ โŒช ๐‘š โŒฉ๐‘ฅ โŒช
๐‘ฅ โŒฉ โŒช โŒฉ๐‘ฅ โŒช โŒฉ โŒช
โŒฉ โŒช โŒฉ โŒช โŒฉ๐‘ฅ โŒช
But
0
590
2008
875.14
4,170
9570
11461
2739.06
0
0
2000
4000
6000
8000
10000
12000
14000
0 2 4 6 8 10 12
M/I
xz
plane
46
๐‘ฆ
๐‘ฅ
Double integration yields
๐‘ฆ
๐‘ฅ
๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
๐‘ฆ ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ
Boundary conditions
X=0 , y=0 therefore C2 =0
X=l , y=0
And substituting
E=30Mpsi for steel
๐‘ฆ
๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช -
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ-
The deflection
๐‘ฆ , ๐‘ฅ ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
47
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
The slope
, ๐‘ฅ - ๐‘œ๐‘Ÿ ๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ
๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช -
๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ
๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช -
๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ
๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช -
๐‘œ๐‘Ÿ ๐‘ฅ
x
[in.]
Point Fittings y
[in.]
dy/dx
[deg.]
0 A Left bearing 0 0.0221
2 G Gear 3 - 0.00076 0.0210
2.75 H Shoulder H - 0.00102
6.75 I Shoulder I - 0.00184
7.75 J Gear 4 - 0.00167 0.0203
10 B Right
Bearing
0 0.0671
48
๐‘ ๐‘ก ๐‘ . /
๐‘ ๐‘ก ๐‘ ( ) ( )
๏‚ท At the distance (๐‘ฅ ) where the shoulder exists, add a ramp change in ( โ„ ) as
follows:
๐‘ ๐‘™๐‘œ๐‘ ๐‘š [
. /
๐‘ฅ
]
0
-0.00076
-0.00102
-0.00184
-0.00167
0
-0.0025
-0.002
-0.0015
-0.001
-0.0005
0
y
[in.]
x [in.]
Deflection
49
๐‘š [
. / . /
๐‘ฅ
]
( )
๐‘›
( )
๐‘›
X-Y plane Shoulder H
( ) ๐‘™ ๐‘›
( ) ( )
( ) ( ) ๐‘™ ๐‘›
( ) ๐‘™ ๐‘›
๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘›
( ) ๐‘™ ๐‘›
( ) ๐‘™ ๐‘›
๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘›
๐‘š ๐‘ ๐‘™๐‘œ๐‘ ๐‘ ๐‘™๐‘œ๐‘
๐‘š ๐‘™ ๐‘›
50
๐‘ ๐‘ก ๐‘ ( ) ( )
๐‘ ๐‘ก ๐‘ ๐‘™ ๐‘›
Shoulder I
( ) ๐‘™ ๐‘›
( ) ๐‘™ ๐‘›
๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘›
๐‘š ๐‘ ๐‘™๐‘œ๐‘ ๐‘ ๐‘™๐‘œ๐‘
๐‘š ๐‘™ ๐‘›
๐‘ ๐‘ก ๐‘ ( ) ( ) ๐‘ ๐‘ก ๐‘ ๐‘™
Units Point
G
point H Sectio
n GH
sectio
n HI
point I point J Section IJ
on
AH
on HI on HI on IB
Wr
lb 199 870
M Lb.in 708 824.5 1446 1601
I In4
0.34
2
0.34
2
0.78
5
0.785 0.342 0.342
M/I Lb/in3
206
9
240
9
1050.
5
1841 4225.
6
4678.
5
ฮ”(M/I) Lb/in3
-1360.45 1436 3338 2384.6 453
x In. 2 2.75 6.75 7.75
ฮ”x In. 0.75 4 1
ฮ”(M/I)
/ ฮ”x
Lb/in4
453.3 199 453
ฮ”m Lb/in4
-255 255
Step
Slope
51
The moment equation
( ) โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
๐‘ฅ โŒฉ โŒช . / โŒฉ๐‘ฅ โŒช ๐‘š โŒฉ โŒช โŒฉ โŒช
. / โŒฉ โŒช ๐‘š โŒฉ๐‘ฅ โŒช
๐‘ฅ โŒฉ โŒช โŒฉ๐‘ฅ โŒช โŒฉ โŒช
0
2069
2409
1050.55
1,841
4225.6
4678.5
1129.1117
0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
0 2 4 6 8 10 12
M/I
xy
plane
52
โŒฉ โŒช โŒฉ โŒช โŒฉ๐‘ฅ โŒช
But
๐‘ฆ
๐‘ฅ
Double integration yields
๐‘ฆ
๐‘ฅ
๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
๐‘ฆ ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช ๐‘ฅ
Boundary conditions
X=0 , y=0 therefore C2 =0
X=l , y=0
And substituting
E=30Mpsi for steel
๐‘ฆ
๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช -
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ-
The deflection
53
๐‘ฆ , ๐‘ฅ ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ 10
The slope
, ๐‘ฅ - ๐‘œ๐‘Ÿ ๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ
๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช -
๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ
๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช -
๐‘œ๐‘Ÿ ๐‘ฅ
๐‘ฆ
๐‘ฅ
, ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช
โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช -
๐‘œ๐‘Ÿ ๐‘ฅ
54
x
[in.]
Point Fittings y
[in.]
dy/dx
[deg.]
0 A Left bearing 0 0.0340
2 G Gear 3 - 0.000114 0.0301
2.75 H Shoulder H - 0.001680
6.75 I Shoulder I - 0.003053
7.75 J Gear 4 - 0.005927 0.00746
10 B Right
Bearing
0 0.00249
0 -0.000114
-0.00168
-0.003053
-0.005927
0
-0.007
-0.006
-0.005
-0.004
-0.003
-0.002
-0.001
0
0.001
y
[in.]
x [in.]
Deflection
55
The final bearing slope results show
slope
Bearings xz plane
[Deg.]
xy plane
[Deg.]
Total
[Deg.]
Total [rad.]
Left 0.0221 0.0340 0.056 0.000977
Right 0.0671 0.00249 0.068 0.001186
56
Shaft Design for Gear 2
23๐‘ก = - 546 ๐‘™
๐‘Ÿ = ๐‘ก tan โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 28
Therefore
23๐‘Ÿ = 23๐‘ก tan
23๐‘Ÿ = 546 tan 20
23๐‘Ÿ = 199 ๐‘™ q
Force analysis
โ€ข Determination of reaction forces on bearings.
x-z plane
๐‘ฅ ๐‘ฅ
( ) ( )
๐‘™
๐‘™
x-y plane
๐‘ฅ ๐‘ฅ
( ) ( )
lbf
lbf
57
873 873
0
0
100
200
300
400
500
600
700
800
900
1000
y
[in.]
x [in.]
torque diagram (
246 246
301 301
0
0
50
100
150
200
250
300
350
y
[in.]
x [in.]
shear force diagram
58
0
112.168
490
264
0
0
100
200
300
400
500
600
y
[in.]
x [in.]
moment diagram(x -z)
89 89
-110 -110
0
-150
-100
-50
0
50
100
y
[in.]
x [in.]
shear force diagram(x -y)
0
282.069
490
0
0
100
200
300
400
500
600
y
[in.]
x [in.]
moment diagram(x -y)
59
The Shear force and Bending moment diagrams
x-y plane
๐บ = = 89 ๐‘™
๐บ = -
๐บ = 89 โ€“ 199
๐บ = -110 ๐‘™
๐‘ฅ
( )
๐‘™ in
( ) ๐‘Ÿ
( )
( ) ( )
x-z plane
๐บ = = -246 ๐‘™
๐บ = +
๐บ = 245 + 546
0
119.366
564.279
515.172
0
0
100
200
300
400
500
600
y
[in.]
x [in.]
moment diagram(x -y)
60
๐บ =791
๐‘ฅ
( )
๐‘™ in
( ) ๐‘Ÿ
( )
( ) ( )
The total bending moment diagram
It could be found by superposition of the moments in the x-y plane and x-z plane.
๐บ =โˆš( ) ( )
=521 Ibf.in
The shoulder at point H
The bending moment is the highest at the shoulder (point I), the torque is high and
there is a stress concentration as well.
In the x-y plane
( ) ( )
( ) ( )
๐‘™ ๐‘›
In the x-z plane
( ) ( )
( ) ( )
๐‘™ in
Combined
H โˆš( ) ( )
61
H= 281 ibf. ๐‘›
Torque of shaft gear2
๐‘›
Estimation of the stress concentrations
For bearings
= 1.2~1.5
= 0.02~0.06
.
๐‘˜ = ๐‘ข๐‘ก โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 30
Using the 1030 CD steel is chosen for its low price with ๐‘บ๐’–๐’• = 76 ๐’Œ๐’‘๐’”๐’Š, Sy = 64 kpsi.
From table 4.2.
From table 4-1 use = 2.7 ๐‘˜๐‘๐‘  = โˆ’0.265
Then
๐‘˜ = 2.7(76)โˆ’0.265
= 0.8569
Let
๐‘˜ = 0.9 (๐‘ก๐‘œ ๐‘ ๐‘๐‘˜ ๐‘™ ๐‘ก ๐‘Ÿ โˆ’ ๐‘œ๐‘› ๐‘ค ๐‘› ๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘›)
๐‘˜๐‘ = ๐‘˜ = ๐‘˜ = 1
And
โ€ฒ
= 0.5 ๐‘ข๐‘ก ๐‘œ๐‘Ÿ ๐‘ข๐‘ก โ‰ค 200 ๐‘˜๐‘๐‘ 
62
Using eq. 29 = ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ
= 0.8569 0.9 0.5 76
= 29.305 ๐‘˜๐‘๐‘ 
Using DE-Goodman criterion to make the first estimate for the smaller diameter at the
shoulder
Assuming shoulder-fillet well-rounded or r/d=0.1
then From table 4.3
๐‘ก = 1.7
๐‘ก๐‘  = 1.5
Assume
= ๐‘ก ๐‘› ๐‘  = ๐‘ก๐‘  ๐‘š = = 0
The Goodman reduces to
( * โˆš (๐‘˜ ) (๐‘˜ ๐‘  ) โˆš (๐‘˜ ๐‘š) (๐‘˜ ๐‘  ๐‘š) +)
โˆš
( )
{ โˆš }
From using the standard size
= 0.938 ๐‘›.
A typical diameter ratio at the shoulder is
= 1.22
Therefore,
๐ท = 1.22 0.938 = 1.145 ๐‘›.
Round up to ๐ท = 1.19 ๐‘›.
63
Checking the acceptability of the estimates
๐ท
Assume fillet radius to diameter ratio
= 0.1
Therefore,
๐‘Ÿ = 0.1 0.938 = 0.0938 ๐‘›.
Using from table 4-5 get ๐‘ก = 1.63
Using fig.4.6 to find the sensitivity factor q.
Then ๐‘ž = 0.78
= 1 + ( ๐‘ก โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . ๐‘ž. 33
= 1 + 0.78(1.63 โˆ’ 1)
=1.49
Using fig. 4.7 for (r/d) =0.1 and (D/d) =1.26
then
๐‘ก๐‘  = 1.39
Using fig. 4.8 for r=0.0930 in. then
๐‘ž๐‘  = 0.61
๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 34
๐‘  = 1 + 0.61(1.39 โˆ’ 1)
๐‘  = 1.2379
= 0.8569 (๐‘›๐‘œ๐‘ก ๐‘ ๐‘› )
64
Kb=( ) ๐‘œ๐‘Ÿ 0.11 < โ‰ค 2 ๐‘›
Kb= ( )
= ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ
= 0.885 0.8569 0.5 76 = 28823 ๐‘˜๐‘๐‘ 
The Von Mises stresses for rotating round, solid shafts, neglecting axial loads are given by:
=( ( ) 0( ) ( ) 1
( )
๐‘๐‘ 
=( ( ) โ„
0( ) ( ) 1
* ( ) +
โˆš
( )
๐‘›
๐‘›
๐‘›
65
Check for Yielding
The von Mises maximum stress is :
๐‘š ๐‘ฅโ€ฒ= [( ๐‘š + )2 + 3( ๐‘š + )2]1โ„2
*(
๐‘˜ ( ๐‘š )
) (
๐‘˜ ๐‘ ( ๐‘š )
) +
๐‘›๐‘ฆ
๐‘ ๐‘ฆ ๐‘ ๐‘ฆ
= 3.9
The Keyway
From the total bending moment diagram, let the moment at the end of keyway close to
point (I) is
= 390 . ๐‘›
Assume that at the bottom of the keyway
= 0.02 ( ๐‘ ๐‘ก ๐‘› ๐‘Ÿ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก ๐‘œ๐‘›)
Therefore,
๐‘Ÿ =0.02*0.938
๐‘Ÿ =0.01876
Using fig. 4.5
๐‘ก = 2.49
And using fig. 4.6
๐‘ž = 0.58
66
= 1 + ( ๐‘ก โˆ’ 1)
= 1 + 0.58(2.49โˆ’ 1)
= 1.8642
Using fig. 4.7 ๐‘ก๐‘  = 2.1
Fig 4.8 gives ๐‘ž๐‘  = 0.74
Using eq.34 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1)
๐‘  = 1 + 0.74(2.1โˆ’ 1)
๐‘  = 1.814
( )
๐‘๐‘ 
* ( ) +
โˆš
( )
= 16935 psi
๐‘›
๐‘›
๐‘›
67
Inspecting point F The retaining ring groove
At point (F) a flat bottom groove exists to accommodate the retaining ring. This point is
characterized by:
๐‘ก ๐‘  ๐‘ฃ ๐‘Ÿ๐‘ฆ ๐‘œ๐‘Ÿ ๐‘™ ๐‘ก ๐‘œ๐‘ก๐‘ก๐‘œ๐‘š ๐‘Ÿ๐‘œ๐‘œ๐‘ฃ ๐‘ 
= 0 ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘ก๐‘œ๐‘Ÿ๐‘ž๐‘ข ๐‘Ÿ ๐‘š
= 281 ๐‘™ . ๐‘› ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘š๐‘œ๐‘š ๐‘›๐‘ก ๐‘Ÿ ๐‘š
๐‘š = = ๐‘š = 0
In order to check how critical point (K) is
Using table 4.3 to estimate the stress concentration factor as follows:
= ๐‘ก = 5.0
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘›
This quick check revealed a low safety factor.
For a detailed determination of point (K) specs, standard retaining ring specs could be
obtained from related tables and going online to ( www.globalspec.com )
Using the shaft diameter of 0.938 in. to get
Groove width
= 0.046 ๐‘›.
Groove depth
๐‘ก = 0.028 ๐‘›.
Fillet radius at bottom of the groove
๐‘Ÿ = ๐‘›.
Therefore,
68
๐‘Ÿ
๐‘ก
๐‘ก
= ๐ท โˆ’ 2๐‘ก
= 0.938 โˆ’ 2 0.028
= 0.882
๐‘› Using fig. 4.9 ๐‘ก = 3.57
Fig. 4.6 yields
๐‘ž = 0.59
= 1 + ( ๐‘ก โˆ’ 1)
= 1 + 0.59(3.57 โˆ’ 1)
= 2.51
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘› โ€ข Determination of D
Since
๐ท/d = 1.2~1.5
Then d=
Therefore
Round up to the next standard size
๐ท6 = = 0.781 Therefore
69
Inspecting point D
in the x-y plane
( ) ( )
( ) ( )
๐‘™ ๐‘›
In the x-z plane
( ) ( )
( ) ( )
๐‘™ in
Combined
=โˆš( ) ( )
=777 ibf . ๐‘›
Therefore
= 777 ๐‘™ . ๐‘›
And
๐‘š = ๐‘š = = 0
Using table 4.3 for a quick estimation of Kt for a sharp fillet shoulder where
= 0.02
And
๐‘ก = 2.49
Also
= 0.750 ๐‘›.
Therefore
๐‘Ÿ =d*0.02= 0.750*0.02=0.015
Using fig. 4.6
70
๐‘ž = 0.61
= 1 +0.61(2.49 โˆ’ 1)
= 1.909
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘›
This value of (nf) is satisfactory and should be checked as the bearing is selected.
๐ท1 = 0.750 ๐‘›.
๐ท2 = 0.781 ๐‘›.
๐ท3 = 0.938 ๐‘›.
๐ท4 = 1.19 n
71
Shaft Design for Gear 5
45๐‘ก = 2389 ๐‘™
๐‘Ÿ = ๐‘ก tan โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 28
Therefore
45๐‘Ÿ = 23๐‘ก tan
45๐‘Ÿ = 2389 tan 20
45๐‘Ÿ = 870 ๐‘™ .
Force analysis
โ€ข Determination of reaction forces on bearings.
x-z plane
๐‘ฅ ๐‘ฅ
( ) ( )
๐‘™
๐‘™
x-y plane
72
๐‘ฅ ๐‘ฅ
( ) ( )
lbf
lbf
16723 16723
0
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
y
[in.]
x [in.]
torque diagram (
1303
395
0
0
200
400
600
800
1000
1200
1400
y
[in.]
x [in.]
shear force diagram
73
0
2443
0
0
0
500
1000
1500
2000
2500
3000
y
[in.]
x [in.]
moment diagram(x -z)
395 395
-395 -395
0
-500
-400
-300
-200
-100
0
100
200
300
400
500
y
[in.]
x [in.]
shear force diagram(x -y)
0
891
0
0
100
200
300
400
500
600
700
800
900
1000
y
[in.]
x [in.]
moment diagram(x -y)
74
Figure 4. 3 Freebody diagram, torque, shear force and bending moment diagrams for the shaft.
The Shear force and Bending moment diagrams
x-y plane
๐บ = = 475 ๐‘™
๐บ = -
๐บ = 475 โ€“ 870
๐บ = -395 ๐‘™
๐‘ฅ
( )
๐‘™ in
( ) ๐‘Ÿ
( )
( ) ( )
0
0
0
2600
0
0
500
1000
1500
2000
2500
3000
y
[in.]
x [in.]
moment diagram(x -y)
75
x-z plane
๐‘ฅ
( )
๐‘™ in
( ) ๐‘ก
( )
( ) ( )
The total bending moment diagram
It could be found by superposition of the moments in the x-y plane and x-z plane.
๐บ =โˆš( ) ( )
=2600 Ibf.in
The shoulder at point I
In the x-y plane
( ) ( )
( ) ( )
๐‘™ ๐‘›
In the x-z plane
( ) ( )
( ) ( )
๐‘™ in
Combined
I โˆš( ) ( )
I = 1213 ibf. ๐‘›
76
๐‘›
The midrange torque is ๐‘š = 16723 ๐‘™ . ๐‘›
๐‘š = = 0
Estimation of the stress concentrations
A 1030 CD steel is chosen for its low price with ๐‘บ๐’–๐’• = 76 ๐’Œ๐’‘๐’”๐’Š, Sy =64 kpsi. From
table 4.2.
therefore,
= 2.7 ๐‘˜๐‘๐‘  = โˆ’0.265
Then
๐‘˜ = 2.7(76)โˆ’0.265
= 0.8569
Let
๐‘˜ = 0.9 (๐‘ก๐‘œ ๐‘ ๐‘๐‘˜ ๐‘™ ๐‘ก ๐‘Ÿ โˆ’ ๐‘œ๐‘› ๐‘ค ๐‘› ๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘›)
๐‘˜๐‘ = ๐‘˜ = ๐‘˜ = 1
โ€ฒ
= 0.5 ๐‘ข๐‘ก ๐‘œ๐‘Ÿ ๐‘ข๐‘ก โ‰ค 200 ๐‘˜๐‘๐‘ 
Using eq. 29 = ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ
= 0.8569 0.9 0.5 76
= 29.305 ๐‘˜๐‘๐‘ 
Using DE-Goodman criterion to make the first estimate for the smaller diameter at the
shoulder
77
โˆš * โˆš (๐‘˜ ) (๐‘˜ ๐‘  ) โˆš (๐‘˜ ๐‘š) (๐‘˜ ๐‘  ๐‘š) +
Assuming shoulder-fillet well-rounded or r/d=0.1
then From table 4.3
๐‘ก = 1.7
๐‘ก๐‘  = 1.5
Assume
= ๐‘ก ๐‘› ๐‘  = ๐‘ก๐‘ 
with
๐‘š = = 0
The Goodman reduces to
โˆš
( )
{ โˆš }
Since the Goodman criterion is conservative, then it possible to select the next standard
size below 1.76 which is
=1.812 in
A typical diameter ratio at the shoulder is
= 1.2
Therefore,
๐ท = 1.2 1.812 = 2.17 ๐‘›.
Round up to ๐ท = 2.25 ๐‘›.
A nominal 2.25 in. CD shaft is used
Checking the acceptability of the estimates
78
๐ท
Assume fillet radius to diameter ratio
๐‘Ÿ
Therefore,
๐‘Ÿ = 0.1 1.825 = 0.1825 ๐‘›.
. Using using fig 4.5 to find stress concentration
๐‘ก=1.61
Using fig.4.6 to find the sensitivity factor q.
Then
๐‘ž = 0.81
= 1 + ( ๐‘ก โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . ๐‘ž. 33
= 1 + 0.81(1.61โˆ’ 1)
=1.5
Using fig. 4.7 for (r/d) =0.1 and (D/d) =1.23
then
๐‘ก๐‘  = 1.4
Using fig. 4.8 for r=0.2 in. then
๐‘ž๐‘  = 0.95
๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 34
๐‘  = 1 + 0.95(1.4 โˆ’ 1)
๐‘  = 1.37
= 0.8569 (๐‘›๐‘œ๐‘ก ๐‘ ๐‘› )
79
Kb=( ) ๐‘œ๐‘Ÿ 0.11 < โ‰ค 2 ๐‘›
Using eq. 35
Kb=( )
Using eq. 29
= 0.824 0.8569 0.5 76
= 26.83 ๐‘˜๐‘๐‘ 
The Von Mises stresses for rotating round, solid shafts, neglecting axial loads are given by:
=( ( ) 0( ) ( ) 1
( )
๐‘๐‘ 
=( ( ) โ„
0( ) ( ) 1
* ( ) +
โˆš
( )
๐‘›
๐‘›
๐‘›
80
Check for Yielding
The von Mises maximum stress is :
๐‘š ๐‘ฅโ€ฒ= [( ๐‘š + )2 + 3( ๐‘š + )2]1โ„2
*(
๐‘˜ ( ๐‘š )
) (
๐‘˜ ๐‘ ( ๐‘š )
) +
๐‘›๐‘ฆ
= 1.73
The Keyway
= 1320 . ๐‘›
Assume that at the bottom of the keyway
= 0.02 ( ๐‘ ๐‘ก ๐‘› ๐‘Ÿ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก ๐‘œ๐‘›)
Therefore,
๐‘Ÿ =0.02*1.812
81
๐‘Ÿ =0.0362
Using fig. 4.5
๐‘ก = 2.5
And using fig. 4.6
๐‘ž = 0.7
Using eq.33
= 1 + ( ๐‘ก โˆ’ 1)
= 1 + 0.7(2.5โˆ’ 1)
= 2.03
Using fig. 4.7 ๐‘ก๐‘  = 2
Fig 4.8 gives9 ๐‘ž๐‘  = 0.86
Using eq.34 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1)
๐‘  = 1 + 0.86(2.05โˆ’ 1)
๐‘  = 1.9
( )
๐‘๐‘ 
* ( ) +
82
โˆš
( )
=47135 psi
๐‘›
๐‘›
๐‘›
Use the steel 1050 CD Sut =1000kpsi and Sy=84kpsi
Ka=2.7( ) =0.797
= ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ
= 0.797 0.9 0.5 100
= 35865 k psi
q=0.75
= 1 + 0.75( ๐‘ก โˆ’ 1)
= 1 + 0.75(2.5โˆ’ 1)
= 2.1
( )
๐‘๐‘ 
๐‘›
๐‘›
๐‘›
83
Inspecting point K The retaining ring groove
At point (K) a flat bottom groove exists to accommodate the retaining ring. This point is
characterized by:
๐‘ก ๐‘  ๐‘ฃ ๐‘Ÿ๐‘ฆ ๐‘œ๐‘Ÿ ๐‘™ ๐‘ก ๐‘œ๐‘ก๐‘ก๐‘œ๐‘š ๐‘Ÿ๐‘œ๐‘œ๐‘ฃ ๐‘ 
= 0 ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘ก๐‘œ๐‘Ÿ๐‘ž๐‘ข ๐‘Ÿ ๐‘š
= 4124 ๐‘™ . ๐‘› ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘š๐‘œ๐‘š ๐‘›๐‘ก ๐‘Ÿ ๐‘š
๐‘š = = ๐‘š = 0
In order to check how critical point (K) is
Using table 4.3 to estimate the stress concentration factor as follows:
= ๐‘ก = 5.0
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘›
low safety factor.
standard retaining ring specs could be obtained from related tables and going online to
(www.globalspec.com)
Using the shaft diameter of 2.0 in. to get
Groove width
= 0.068 ๐‘›.
Groove depth
๐‘ก = 0.052 ๐‘›.
Fillet radius at bottom of the groove
๐‘Ÿ = ๐‘›.
Therefore,
๐‘Ÿ
๐‘ก
84
๐‘ก
= ๐ท โˆ’ 2๐‘ก
= 1.812 โ€“ (2 0.052)
= 1.708
๐‘› Using fig.
4.9.
๐‘ก = 4.48
Fig. 4.6 yields
๐‘ž = 0.6
= 1 + ( ๐‘ก โˆ’ 1)
= 1 + 0.6(4.48 โˆ’ 1)
= 3
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘›
โ€ข Determination of D
Since
๐ท/d = 1.2~1.5
Then d=
Therefore
๐ท6 = = 1.750
Round up to the next standard size
Therefore ๐ท6 = 1.750 ๐‘›
85
Inspecting point m
Point (M) is characterized by being a shoulder to axially hold the bearing. Only bending
is present due to a small moment. However, the cross-section area is small too, which
results in a high stress concentration especially the fillet radius is small to accommodate
the bearing.
Finding the Moment at point d
n the x-y plane
( ) ( )
( ) ( )
๐‘™ ๐‘›
In the x-z plane
( ) ( )
( ) ( )
๐‘™ in
Combined
=โˆš( ) ( )
=5024 ibf . ๐‘›
Therefore
= 5024 ๐‘™ . ๐‘›
And
๐‘š = ๐‘š = = 0
Using table 4.3 for a quick estimation of Kt for a sharp fillet shoulder where
= 0.02
And
๐‘ก = 2.39
Also
= 1.688 ๐‘›.
86
Therefore
๐‘Ÿ =d*0.02= 1.938*0.02=0.03876
Using fig. 4.6
๐‘ž = 0.75
= 1 + 0.75(2.39 โˆ’ 1)
= 2.0425
โ€ฒ = =
( )( )
( )
๐‘๐‘ 
๐‘›
This value of (nf) is satisfactory and should be checked as the bearing is selected.
๐ท1 = ๐ท7 = 1.688 ๐‘›.
๐ท2 = ๐ท6 = 1.750 ๐‘›.pll
๐ท3 = ๐ท5 = 1.812 ๐‘›.
๐ท4 = 2.25 n
87
chapter5
Bearing Selection
Bearings are selected based on the design requirements and the previous calculations for the
shaft and gears which are summarized below.
๐บ ๐‘Ÿ ๐‘› ๐‘Ÿ ๐‘› ๐‘™ = 13 000 ๐‘œ๐‘ข๐‘Ÿ๐‘ 
๐‘œ๐‘ข๐‘›๐‘ก ๐‘Ÿ ๐‘  ๐‘ก ๐‘ ๐‘ = 455 ๐‘Ÿ๐‘๐‘š.
๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘œ๐‘Ÿ ๐‘  ๐‘ง = 1 ๐‘›.
๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘Ÿ ๐‘› ๐‘ค ๐‘ก = 1 ๐‘›.
๐‘™ ๐‘™ ๐‘ก๐‘ฆ = 99 %
Right bearing reactions
๐‘ง = 1742 ๐‘™ Rby = 714 RA= 1883๐‘™ Left
bearing reactions
๐‘ง = 101 ๐‘™ ๐‘ฆ = 354 ๐‘™ = 368
Due to the higher load on the right side of the shaft, the right bearing is considered more
critical.
Right bearing selection procedure:
The design dimensionless life measure for the bearing is determined by using eq. 5.3
88
=
Assuming a ball bearing with
= 3
And using eq. 5.2 [
( )( ) โ„
]
= 1 ๐‘œ๐‘Ÿ ๐‘ ๐‘ก ๐‘ฆ ๐‘™๐‘œ ๐‘ .
[
( ) โ„
]
10 = 22086ibf
10 = 22086 0.00444
10 = 98 ๐‘˜
Checking this load with SKF bearing catalogue for ball bearings in the vicinity of 1 in.
diameter, as shown in table. 5.1. It sounds that the load is too high for a deep groove ball
bearing. Repeating the load calculation for a roller bearing with
89
[
( ) โ„
]
10 = 17266
10 = 17266 0.00444
10 = 76.66 ๐‘˜
Checking this load with SKF bearing catalogue for roller bearings in the vicinity of 1 in.
diameter, as shown in table. 5.2. The tables show that the following roller bearing matches
the load.
= 83๐‘˜
๐ท=30๐‘š๐‘š=1.188 in
๐‘‚๐ท = 72 ๐‘š๐‘š = 2.834 ๐‘›.
= 27 ๐‘š๐‘š = 1.063 ๐‘›.
90
Left bearing selection
Choosing a ball bearing with
= 3
And using eq. 5.2
[
( )( ) โ„
]
= 1 ๐‘œ๐‘Ÿ ๐‘ ๐‘ก ๐‘ฆ ๐‘™๐‘œ ๐‘ .
[
( ) โ„
]
10 = 4316
10 = 4316 0.00444
10 = 19.16๐‘˜
Searching table 5.1 that gives the specifications of deep groove ball bearings in the proximity
of 1 in bore and applied load of 19.16kN.
The bearings in this category that matches these requirements is SKF 6305.
The left bearing specifications are
๐ท = 25๐‘š๐‘š = 1 ๐‘›.
๐‘‚๐ท = 62 ๐‘š๐‘š โ‰ˆ 2.5 ๐‘›.
= 17 ๐‘š๐‘š = 0.67 ๐‘›.
= 23.4๐‘˜ = 5270 ๐‘™ .
๐‘œ๐‘ข๐‘™ ๐‘Ÿ ๐‘š ๐‘ก ๐‘Ÿ = 1.3~1.4 ๐‘›.
๐‘š ๐‘ฅ ๐‘š๐‘ข๐‘š ๐‘™๐‘™ ๐‘ก ๐‘Ÿ ๐‘ข๐‘  = 0.08 ๐‘›.
The right bearing bore is 1.1811 in. which is slightly larger than the estimated one. However,
this has no effect of the design since the diameter of the next step of the shaft is 1.4 in. that
provide the required shoulder for the bearing.
91
Bearing of Gear 2
Left bearing Selection
๐บ ๐‘Ÿ ๐‘› ๐‘Ÿ ๐‘› ๐‘™ = 13 000
High counter shaft speed =1992 rpm.
๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘œ๐‘Ÿ ๐‘  ๐‘ง = 0.750 ๐‘›.
๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘Ÿ ๐‘› ๐‘ค ๐‘ก = 1 ๐‘›.
๐‘™ ๐‘™ ๐‘ก๐‘ฆ = 99 %
๐‘ง = 245 ๐‘ฆ = 89 = 260 ๐‘™
=
Assuming a ball bearing with
= 3
[
( ) โ„
]
10 = 5491.946
10 = 4988 0.00444
10 = 22.14 ๐‘˜
At Table 5.1 ( C= 26 kN)
92
ID = 25mm
OD = 62mm
W = 17mm
Right bearing Selection
B๐‘ง =301 i B๐‘ฆ = 110 B= 320 ๐‘™
Assuming a roller bearing with
=
=10/3
[
( ) โ„
]
10 = 4569 ๐‘™
10 = 4569 0.00444
10 = 20.28 ๐‘˜
93
At Table 5.2 ( C = 22.9 kN)
ID = 17mm
OD = 62mm
W = 17mm
Bearing of Gear 5
Left bearing Selection
๐บ ๐‘Ÿ ๐‘› ๐‘Ÿ ๐‘› ๐‘™ = 13 000
High counter shaft speed =104
๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘œ๐‘Ÿ ๐‘  ๐‘ง = 1.688 ๐‘›.
๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘Ÿ ๐‘› ๐‘ค ๐‘ก = 1 ๐‘›.
๐‘™ ๐‘™ ๐‘ก๐‘ฆ = 99 %
๐‘ง = 1086 ๐‘ฆ = 475 = 1185 ๐‘™
=
Assuming a roller bearing with
= 10/3
94
[
( ) โ„
]
10 = 6975
10 = 6975 0.00444
10 = 31 ๐‘˜
At Table 5.2 ( C= 44.6 kN)
ID = 45mm
OD =75 mm
W = 16mm
Right bearing Selection
B๐‘ง = 1086 B๐‘ฆ = 395 ๐‘™ B = 1155 ๐‘™
Assuming a roller bearing with
= 10/3
[
( ) โ„
]
10 = 6798 ๐‘™
10 = 6798 0.00444
10 = 30.18 ๐‘˜
At Table 5.2 ( C = 44.6 kN)
ID = 45mm
OD = 75mm
W = 16mm
95
Chapter 6
Key and Keyway Design
For Gear4 & Gear 3.
From the previous data
Bore [in.] Hub length [in.] Torque lbf.in. Safety factor
Gear 3 1.625 1.5
3822 2
Gear 4 1.625 2.0
Using table 6.3 for a square key
Shaft diameter w h Keyway depth
1.625 1 5/8 3/8 3/8 3/16
Choosing key material of 1020 CD steel with ๐‘บ๐’š = ๐Ÿ“๐Ÿ• ๐’Œ๐’‘๐’”๐’Š.
The lateral force on the key at the surface of the shaft is:
=
The area prone to bearing stress is
๐‘™ ๐‘™
The bearing stress is
96
๐‘™
But ๐‘›
๐‘› ๐‘™
๐‘™
๐‘›
๐‘ฆ
๐‘›
Retaining Rings
The retaining ring is selected based on the diameter of the shaft at which the groove is
required. The selected ring specs are associated with ring groove dimensions which are
supposed to commensurate with the designed dimensions. Table 6.4 is a typical sample of
retaining ring specifications.
The summary of the retaining rings to retain the gears and bearings are listed in the table
below:
Dimension Both Gears Tolerance Left
Bearing
Tolerance Right
Bearing
Tolerance
Shaft Dia. 1.625 1.023 1.375
Groove Dia. 1.529 ยฑ 0.005 0.961 ยฑ 0.004 1.291 ยฑ 0.004
Groove Width 0.068
+
0.004
โˆ’ 0.000
0.046
+ 0.004
โˆ’ 0.000 0.056
+ 0.004
โˆ’ 0.000
Groove Depth 0.048 0.031 0.042
Max. groove
fillet radius
0.010 0.010 0.010
Mini. Edge
margin
0.144 0.105 0.105
Allowable axial
thrust
14 800 lbf 6 000
lbf
9700 lbf
All dimensions are in inches.
h
w
F
97
For Gear 2
From the previous data
Bore [in.] Hub length [in.] Torque lbf.in. Safety factor
Gear 2 0.938 1.5 873 2
Using table 6.3 for a square key
Shaft diameter w h Keyway depth
0.938 7.5/8 1/4 1/4 1/8
Choosing key material of 1020 CD steel with ๐‘บ๐’š = ๐Ÿ“๐Ÿ• ๐’Œ๐’‘๐’”๐’Š.
The lateral force on the key at the surface of the shaft is:
=
The area prone to bearing stress is
๐‘™ ๐‘™
The bearing stress is
๐‘™
But ๐‘›
๐‘› ๐‘™
๐‘™
๐‘›
๐‘ฆ
๐‘™ ๐‘›
98
For Gear 5
From the previous data
Bore [in.] Hub length [in.] Torque lbf.in. Safety factor
Gear 2 1.812 2 16723 2
Using table 6.3 for a square key
Shaft diameter w h Keyway depth
1.812 1 13/16 1/2 1/2 1/4
Choosing key material of 1045 CD steel with ๐‘บ๐’š = 7๐Ÿ• ๐’Œ๐’‘๐’”๐’Š.
The lateral force on the key at the surface of the shaft is:
=
The area prone to bearing stress is
๐‘™ ๐‘™
The bearing stress is
๐‘™
But ๐‘›
๐‘›
๐‘™
๐‘›
๐‘ฆ
๐‘›
99
Chapter 7
Eg:
Hexagonal-head bolts and nuts are used to keep the head of a pressure vessel tight with the
vessel. The joint is identical of 0.75 in. thickness for the vessel and its head. They are made
of grade 25 cast-iron. The separating force is 36 k lbf. The bolt specs are:
๐‘› ๐‘›
( ) ๐ท ๐‘ก ๐‘Ÿ๐‘š ๐‘› ๐‘˜ ,๐‘˜๐‘š, ๐‘› .
( ) ๐‘› ๐‘ก ๐‘›๐‘ข๐‘š ๐‘Ÿ ๐‘œ ๐‘œ๐‘™๐‘ก๐‘  ๐‘Ÿ ๐‘ž๐‘ข ๐‘Ÿ . ๐‘™๐‘œ ๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘  2 ๐‘› ๐‘ก ๐‘œ๐‘™๐‘ก๐‘  ๐‘š ๐‘ฆ
๐‘Ÿ ๐‘ข๐‘  ๐‘ค ๐‘› ๐‘ก ๐‘—๐‘œ ๐‘›๐‘ก ๐‘  ๐‘ก ๐‘˜ ๐‘› ๐‘ ๐‘Ÿ๐‘ก.
Solution
๐‘™ ๐‘›
To find the bolt length, nut thickness should be
determined from table 7.3
100
๐‘ก ๐‘›
Adding two threads after the nut to the total length of the bolt therefore the length of these two
threads is
( )
๐‘™ ๐‘ก
๐‘›
Round up to the next standard size
L=2.5 in
๐‘›
The length of the threaded part is
๐‘›
The length of the unthreaded part is
๐‘™ ๐‘›
The length of the threaded part in the grip is
๐‘™ ๐‘™ ๐‘™ ๐‘›
Using fig.(4.7)
๐‘›
๐‘›
๐‘™ ๐‘™
๐‘™ ๐‘›
101
For No 25-cast iron wall
Select =14 ๐‘๐‘ 
For two identical members in the grip
(
๐‘™
๐‘™
)
( )
๐‘™ ๐‘›
Using table 7.5 to find
/in
๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ
The joint stiffness
Using table 7.6 to obtain the minimum proof strength of grade 5 SAE bolt
๐‘˜๐‘™
๐‘›
(
๐‘›
)
Rearrangement gives
๐‘›
102
Roundup to 6 bolts and check for n
๐‘›
The value of n is higher than the required value (2)
The tightening torque is
(my first design is end, At the end of my project i use my data and make a gear
box drawing picture .)

More Related Content

What's hot

Belt conveyor example calculation
Belt conveyor example calculationBelt conveyor example calculation
Belt conveyor example calculationssuser16d252
ย 
design of knuckle joint may 2020
design of knuckle joint may 2020design of knuckle joint may 2020
design of knuckle joint may 2020Gaurav Mistry
ย 
Chain and belt drive
Chain and belt driveChain and belt drive
Chain and belt driveAkash Lal
ย 
Design of Gear Box
Design of Gear BoxDesign of Gear Box
Design of Gear BoxAbhi23396
ย 
5 shaft shafts subjected to combined twisting moment and bending moment
5 shaft   shafts subjected to combined twisting moment and bending moment5 shaft   shafts subjected to combined twisting moment and bending moment
5 shaft shafts subjected to combined twisting moment and bending momentDr.R. SELVAM
ย 
Unit 2.3 Design of Coupling
Unit 2.3 Design of CouplingUnit 2.3 Design of Coupling
Unit 2.3 Design of CouplingYugal Kishor Sahu
ย 
Design of shaft couplings
Design of shaft couplingsDesign of shaft couplings
Design of shaft couplingsmishini anil
ย 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTESASHOK KUMAR RAJENDRAN
ย 
Belt tension calculation
Belt tension calculationBelt tension calculation
Belt tension calculationKalyan Halder
ย 
Design of Transmission System- GEAR BOX
Design of Transmission System- GEAR BOXDesign of Transmission System- GEAR BOX
Design of Transmission System- GEAR BOXMohan2405
ย 
V-belt drive Design Procedure
V-belt drive   Design ProcedureV-belt drive   Design Procedure
V-belt drive Design ProcedureVARUN BABUNELSON
ย 
Brakes and dynamometer knw
Brakes and dynamometer knwBrakes and dynamometer knw
Brakes and dynamometer knwKiran Wakchaure
ย 
Design of belt drives
Design of belt drivesDesign of belt drives
Design of belt drivesDevan P.D
ย 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTESASHOK KUMAR RAJENDRAN
ย 
Internal Expanding shoe brake.pdf
Internal Expanding shoe brake.pdfInternal Expanding shoe brake.pdf
Internal Expanding shoe brake.pdfmeet kalola
ย 
Gearbox Design Team1-4_Project4
Gearbox Design Team1-4_Project4Gearbox Design Team1-4_Project4
Gearbox Design Team1-4_Project4Trent Hosokawa
ย 

What's hot (20)

Belt conveyor example calculation
Belt conveyor example calculationBelt conveyor example calculation
Belt conveyor example calculation
ย 
Bearing
Bearing Bearing
Bearing
ย 
design of knuckle joint may 2020
design of knuckle joint may 2020design of knuckle joint may 2020
design of knuckle joint may 2020
ย 
Chain and belt drive
Chain and belt driveChain and belt drive
Chain and belt drive
ย 
Design of Gear Box
Design of Gear BoxDesign of Gear Box
Design of Gear Box
ย 
Cam mech
Cam mechCam mech
Cam mech
ย 
Gears mom2 2
Gears mom2 2Gears mom2 2
Gears mom2 2
ย 
5 shaft shafts subjected to combined twisting moment and bending moment
5 shaft   shafts subjected to combined twisting moment and bending moment5 shaft   shafts subjected to combined twisting moment and bending moment
5 shaft shafts subjected to combined twisting moment and bending moment
ย 
Unit 2.3 Design of Coupling
Unit 2.3 Design of CouplingUnit 2.3 Design of Coupling
Unit 2.3 Design of Coupling
ย 
Design of shaft couplings
Design of shaft couplingsDesign of shaft couplings
Design of shaft couplings
ย 
Helical gear
Helical gearHelical gear
Helical gear
ย 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ย 
Belt tension calculation
Belt tension calculationBelt tension calculation
Belt tension calculation
ย 
Design of Transmission System- GEAR BOX
Design of Transmission System- GEAR BOXDesign of Transmission System- GEAR BOX
Design of Transmission System- GEAR BOX
ย 
V-belt drive Design Procedure
V-belt drive   Design ProcedureV-belt drive   Design Procedure
V-belt drive Design Procedure
ย 
Brakes and dynamometer knw
Brakes and dynamometer knwBrakes and dynamometer knw
Brakes and dynamometer knw
ย 
Design of belt drives
Design of belt drivesDesign of belt drives
Design of belt drives
ย 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ย 
Internal Expanding shoe brake.pdf
Internal Expanding shoe brake.pdfInternal Expanding shoe brake.pdf
Internal Expanding shoe brake.pdf
ย 
Gearbox Design Team1-4_Project4
Gearbox Design Team1-4_Project4Gearbox Design Team1-4_Project4
Gearbox Design Team1-4_Project4
ย 

Similar to machine design ,gear box design mahamad jawhar.pdf

project designa.docx
project designa.docxproject designa.docx
project designa.docxMahamad Jawhar
ย 
STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS  STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS ASHIKA DILSHAN
ย 
Capรญtulo 09 solda
Capรญtulo 09   soldaCapรญtulo 09   solda
Capรญtulo 09 soldaJhayson Carvalho
ย 
Rudder & Steering Design
Rudder & Steering Design  Rudder & Steering Design
Rudder & Steering Design Md. Ashifur Rahaman
ย 
Episode 39 : Hopper Design
Episode 39 :  Hopper Design Episode 39 :  Hopper Design
Episode 39 : Hopper Design SAJJAD KHUDHUR ABBAS
ย 
Solution manual 7 8
Solution manual 7 8Solution manual 7 8
Solution manual 7 8Rafi Flydarkzz
ย 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI codeMahmoud Al-Sharawi
ย 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionfercrotti
ย 
Equations Senior Design Project
Equations Senior Design ProjectEquations Senior Design Project
Equations Senior Design ProjectJesse M. Thomas
ย 
Formula Book.pdf
Formula Book.pdfFormula Book.pdf
Formula Book.pdfDrAungKoLatt
ย 
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualAircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualRigeler
ย 
Solution manual 10 12
Solution manual 10 12Solution manual 10 12
Solution manual 10 12Rafi Flydarkzz
ย 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdfnabal_iitb
ย 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shafttejasp
ย 
IDP PROJECT column.pptxvjfhhfudyytststrrsrsr
IDP PROJECT column.pptxvjfhhfudyytststrrsrsrIDP PROJECT column.pptxvjfhhfudyytststrrsrsr
IDP PROJECT column.pptxvjfhhfudyytststrrsrsrct571999
ย 
Capรญtulo 08 parafusos
Capรญtulo 08   parafusosCapรญtulo 08   parafusos
Capรญtulo 08 parafusosJhayson Carvalho
ย 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6eSAT Publishing House
ย 

Similar to machine design ,gear box design mahamad jawhar.pdf (20)

2-3n.docx
2-3n.docx2-3n.docx
2-3n.docx
ย 
Shi20396 ch18
Shi20396 ch18Shi20396 ch18
Shi20396 ch18
ย 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
ย 
STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS  STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS
ย 
Capรญtulo 09 solda
Capรญtulo 09   soldaCapรญtulo 09   solda
Capรญtulo 09 solda
ย 
Rudder & Steering Design
Rudder & Steering Design  Rudder & Steering Design
Rudder & Steering Design
ย 
Episode 39 : Hopper Design
Episode 39 :  Hopper Design Episode 39 :  Hopper Design
Episode 39 : Hopper Design
ย 
Solution manual 7 8
Solution manual 7 8Solution manual 7 8
Solution manual 7 8
ย 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI code
ย 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
ย 
Equations Senior Design Project
Equations Senior Design ProjectEquations Senior Design Project
Equations Senior Design Project
ย 
Formula Book.pdf
Formula Book.pdfFormula Book.pdf
Formula Book.pdf
ย 
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualAircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
ย 
Solution manual 10 12
Solution manual 10 12Solution manual 10 12
Solution manual 10 12
ย 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
ย 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shaft
ย 
IDP PROJECT column.pptxvjfhhfudyytststrrsrsr
IDP PROJECT column.pptxvjfhhfudyytststrrsrsrIDP PROJECT column.pptxvjfhhfudyytststrrsrsr
IDP PROJECT column.pptxvjfhhfudyytststrrsrsr
ย 
Shi20396 ch07
Shi20396 ch07Shi20396 ch07
Shi20396 ch07
ย 
Capรญtulo 08 parafusos
Capรญtulo 08   parafusosCapรญtulo 08   parafusos
Capรญtulo 08 parafusos
ย 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6
ย 

More from Mahamad Jawhar

text book Programmable-Logic-Controllers plc.pdf
text book Programmable-Logic-Controllers plc.pdftext book Programmable-Logic-Controllers plc.pdf
text book Programmable-Logic-Controllers plc.pdfMahamad Jawhar
ย 
robotic2.docx
robotic2.docxrobotic2.docx
robotic2.docxMahamad Jawhar
ย 
Power Plant Engineering - (Malestrom) (1).pdf
Power Plant Engineering - (Malestrom) (1).pdfPower Plant Engineering - (Malestrom) (1).pdf
Power Plant Engineering - (Malestrom) (1).pdfMahamad Jawhar
ย 
I-Section-US-1003.pdf
I-Section-US-1003.pdfI-Section-US-1003.pdf
I-Section-US-1003.pdfMahamad Jawhar
ย 
lect 01 (1).pdf
lect 01 (1).pdflect 01 (1).pdf
lect 01 (1).pdfMahamad Jawhar
ย 
plasma cutting.pdf
plasma cutting.pdfplasma cutting.pdf
plasma cutting.pdfMahamad Jawhar
ย 
Grad. Proj. Poster Templete akam.docx
Grad. Proj. Poster Templete akam.docxGrad. Proj. Poster Templete akam.docx
Grad. Proj. Poster Templete akam.docxMahamad Jawhar
ย 
project format writting 2.docx
project format writting 2.docxproject format writting 2.docx
project format writting 2.docxMahamad Jawhar
ย 
PLC 1 (2).docx
PLC 1 (2).docxPLC 1 (2).docx
PLC 1 (2).docxMahamad Jawhar
ย 
Project Cooling Tower.pptx
Project Cooling Tower.pptxProject Cooling Tower.pptx
Project Cooling Tower.pptxMahamad Jawhar
ย 
final project.docx
final project.docxfinal project.docx
final project.docxMahamad Jawhar
ย 
final project1.docx
final project1.docxfinal project1.docx
final project1.docxMahamad Jawhar
ย 
project cooling tower.docx
project cooling tower.docxproject cooling tower.docx
project cooling tower.docxMahamad Jawhar
ย 

More from Mahamad Jawhar (20)

text book Programmable-Logic-Controllers plc.pdf
text book Programmable-Logic-Controllers plc.pdftext book Programmable-Logic-Controllers plc.pdf
text book Programmable-Logic-Controllers plc.pdf
ย 
2.pdf
2.pdf2.pdf
2.pdf
ย 
3.pdf
3.pdf3.pdf
3.pdf
ย 
1.pdf
1.pdf1.pdf
1.pdf
ย 
robotic2.docx
robotic2.docxrobotic2.docx
robotic2.docx
ย 
Power Plant Engineering - (Malestrom) (1).pdf
Power Plant Engineering - (Malestrom) (1).pdfPower Plant Engineering - (Malestrom) (1).pdf
Power Plant Engineering - (Malestrom) (1).pdf
ย 
ref3.pdf
ref3.pdfref3.pdf
ref3.pdf
ย 
I-Section-US-1003.pdf
I-Section-US-1003.pdfI-Section-US-1003.pdf
I-Section-US-1003.pdf
ย 
ref.pdf
ref.pdfref.pdf
ref.pdf
ย 
lect 01 (1).pdf
lect 01 (1).pdflect 01 (1).pdf
lect 01 (1).pdf
ย 
plasma cutting.pdf
plasma cutting.pdfplasma cutting.pdf
plasma cutting.pdf
ย 
Grad. Proj. Poster Templete akam.docx
Grad. Proj. Poster Templete akam.docxGrad. Proj. Poster Templete akam.docx
Grad. Proj. Poster Templete akam.docx
ย 
project format writting 2.docx
project format writting 2.docxproject format writting 2.docx
project format writting 2.docx
ย 
PLC4.docx
PLC4.docxPLC4.docx
PLC4.docx
ย 
PLC 1 (2).docx
PLC 1 (2).docxPLC 1 (2).docx
PLC 1 (2).docx
ย 
Project Cooling Tower.pptx
Project Cooling Tower.pptxProject Cooling Tower.pptx
Project Cooling Tower.pptx
ย 
final project.docx
final project.docxfinal project.docx
final project.docx
ย 
final project1.docx
final project1.docxfinal project1.docx
final project1.docx
ย 
project cooling tower.docx
project cooling tower.docxproject cooling tower.docx
project cooling tower.docx
ย 
robotic.docx
robotic.docxrobotic.docx
robotic.docx
ย 

Recently uploaded

Delhi Call Girls Greater Noida 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Greater Noida 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip CallDelhi Call Girls Greater Noida 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Greater Noida 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Callshivangimorya083
ย 
Full Masii Russian Call Girls In Dwarka (Delhi) 9711199012 ๐Ÿ’‹โœ”๐Ÿ’•๐Ÿ˜˜We are availab...
Full Masii Russian Call Girls In Dwarka (Delhi) 9711199012 ๐Ÿ’‹โœ”๐Ÿ’•๐Ÿ˜˜We are availab...Full Masii Russian Call Girls In Dwarka (Delhi) 9711199012 ๐Ÿ’‹โœ”๐Ÿ’•๐Ÿ˜˜We are availab...
Full Masii Russian Call Girls In Dwarka (Delhi) 9711199012 ๐Ÿ’‹โœ”๐Ÿ’•๐Ÿ˜˜We are availab...shivangimorya083
ย 
Notes of bca Question paper for exams and tests
Notes of bca Question paper for exams and testsNotes of bca Question paper for exams and tests
Notes of bca Question paper for exams and testspriyanshukumar97908
ย 
VIP Call Girls Service Cuttack Aishwarya 8250192130 Independent Escort Servic...
VIP Call Girls Service Cuttack Aishwarya 8250192130 Independent Escort Servic...VIP Call Girls Service Cuttack Aishwarya 8250192130 Independent Escort Servic...
VIP Call Girls Service Cuttack Aishwarya 8250192130 Independent Escort Servic...Suhani Kapoor
ย 
VIP Call Girl Bhilai Aashi 8250192130 Independent Escort Service Bhilai
VIP Call Girl Bhilai Aashi 8250192130 Independent Escort Service BhilaiVIP Call Girl Bhilai Aashi 8250192130 Independent Escort Service Bhilai
VIP Call Girl Bhilai Aashi 8250192130 Independent Escort Service BhilaiSuhani Kapoor
ย 
Dark Dubai Call Girls O525547819 Skin Call Girls Dubai
Dark Dubai Call Girls O525547819 Skin Call Girls DubaiDark Dubai Call Girls O525547819 Skin Call Girls Dubai
Dark Dubai Call Girls O525547819 Skin Call Girls Dubaikojalkojal131
ย 
VIP Russian Call Girls in Amravati Deepika 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Amravati Deepika 8250192130 Independent Escort Serv...VIP Russian Call Girls in Amravati Deepika 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Amravati Deepika 8250192130 Independent Escort Serv...Suhani Kapoor
ย 
VIP Russian Call Girls Amravati Chhaya 8250192130 Independent Escort Service ...
VIP Russian Call Girls Amravati Chhaya 8250192130 Independent Escort Service ...VIP Russian Call Girls Amravati Chhaya 8250192130 Independent Escort Service ...
VIP Russian Call Girls Amravati Chhaya 8250192130 Independent Escort Service ...Suhani Kapoor
ย 
Delhi Call Girls Patparganj 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Patparganj 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip CallDelhi Call Girls Patparganj 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Patparganj 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Callshivangimorya083
ย 
Call Girls In Bhikaji Cama Place 24/7โœก๏ธ9711147426โœก๏ธ Escorts Service
Call Girls In Bhikaji Cama Place 24/7โœก๏ธ9711147426โœก๏ธ Escorts ServiceCall Girls In Bhikaji Cama Place 24/7โœก๏ธ9711147426โœก๏ธ Escorts Service
Call Girls In Bhikaji Cama Place 24/7โœก๏ธ9711147426โœก๏ธ Escorts Servicejennyeacort
ย 
CFO_SB_Career History_Multi Sector Experience
CFO_SB_Career History_Multi Sector ExperienceCFO_SB_Career History_Multi Sector Experience
CFO_SB_Career History_Multi Sector ExperienceSanjay Bokadia
ย 
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call GirlsDelhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girlsshivangimorya083
ย 
Internshala Student Partner 6.0 Jadavpur University Certificate
Internshala Student Partner 6.0 Jadavpur University CertificateInternshala Student Partner 6.0 Jadavpur University Certificate
Internshala Student Partner 6.0 Jadavpur University CertificateSoham Mondal
ย 
Experience Certificate - Marketing Analyst-Soham Mondal.pdf
Experience Certificate - Marketing Analyst-Soham Mondal.pdfExperience Certificate - Marketing Analyst-Soham Mondal.pdf
Experience Certificate - Marketing Analyst-Soham Mondal.pdfSoham Mondal
ย 
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...Suhani Kapoor
ย 
Delhi Call Girls South Delhi 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls South Delhi 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip CallDelhi Call Girls South Delhi 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls South Delhi 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Callshivangimorya083
ย 
PM Job Search Council Info Session - PMI Silver Spring Chapter
PM Job Search Council Info Session - PMI Silver Spring ChapterPM Job Search Council Info Session - PMI Silver Spring Chapter
PM Job Search Council Info Session - PMI Silver Spring ChapterHector Del Castillo, CPM, CPMM
ย 
ๅฅณ็Ž‹ๅคงๅญฆ็ก•ๅฃซๆฏ•ไธš่ฏๆˆ็ปฉๅ•(ๅŠ ๆ€ฅๅŠž็†)่ฎค่ฏๆตทๅค–ๆฏ•ไธš่ฏ
ๅฅณ็Ž‹ๅคงๅญฆ็ก•ๅฃซๆฏ•ไธš่ฏๆˆ็ปฉๅ•(ๅŠ ๆ€ฅๅŠž็†)่ฎค่ฏๆตทๅค–ๆฏ•ไธš่ฏๅฅณ็Ž‹ๅคงๅญฆ็ก•ๅฃซๆฏ•ไธš่ฏๆˆ็ปฉๅ•(ๅŠ ๆ€ฅๅŠž็†)่ฎค่ฏๆตทๅค–ๆฏ•ไธš่ฏ
ๅฅณ็Ž‹ๅคงๅญฆ็ก•ๅฃซๆฏ•ไธš่ฏๆˆ็ปฉๅ•(ๅŠ ๆ€ฅๅŠž็†)่ฎค่ฏๆตทๅค–ๆฏ•ไธš่ฏobuhobo
ย 
Production Day 1.pptxjvjbvbcbcb bj bvcbj
Production Day 1.pptxjvjbvbcbcb bj bvcbjProduction Day 1.pptxjvjbvbcbcb bj bvcbj
Production Day 1.pptxjvjbvbcbcb bj bvcbjLewisJB
ย 
Neha +91-9537192988-Friendly Ahmedabad Call Girls has Complete Authority for ...
Neha +91-9537192988-Friendly Ahmedabad Call Girls has Complete Authority for ...Neha +91-9537192988-Friendly Ahmedabad Call Girls has Complete Authority for ...
Neha +91-9537192988-Friendly Ahmedabad Call Girls has Complete Authority for ...Niya Khan
ย 

Recently uploaded (20)

Delhi Call Girls Greater Noida 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Greater Noida 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip CallDelhi Call Girls Greater Noida 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Greater Noida 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
ย 
Full Masii Russian Call Girls In Dwarka (Delhi) 9711199012 ๐Ÿ’‹โœ”๐Ÿ’•๐Ÿ˜˜We are availab...
Full Masii Russian Call Girls In Dwarka (Delhi) 9711199012 ๐Ÿ’‹โœ”๐Ÿ’•๐Ÿ˜˜We are availab...Full Masii Russian Call Girls In Dwarka (Delhi) 9711199012 ๐Ÿ’‹โœ”๐Ÿ’•๐Ÿ˜˜We are availab...
Full Masii Russian Call Girls In Dwarka (Delhi) 9711199012 ๐Ÿ’‹โœ”๐Ÿ’•๐Ÿ˜˜We are availab...
ย 
Notes of bca Question paper for exams and tests
Notes of bca Question paper for exams and testsNotes of bca Question paper for exams and tests
Notes of bca Question paper for exams and tests
ย 
VIP Call Girls Service Cuttack Aishwarya 8250192130 Independent Escort Servic...
VIP Call Girls Service Cuttack Aishwarya 8250192130 Independent Escort Servic...VIP Call Girls Service Cuttack Aishwarya 8250192130 Independent Escort Servic...
VIP Call Girls Service Cuttack Aishwarya 8250192130 Independent Escort Servic...
ย 
VIP Call Girl Bhilai Aashi 8250192130 Independent Escort Service Bhilai
VIP Call Girl Bhilai Aashi 8250192130 Independent Escort Service BhilaiVIP Call Girl Bhilai Aashi 8250192130 Independent Escort Service Bhilai
VIP Call Girl Bhilai Aashi 8250192130 Independent Escort Service Bhilai
ย 
Dark Dubai Call Girls O525547819 Skin Call Girls Dubai
Dark Dubai Call Girls O525547819 Skin Call Girls DubaiDark Dubai Call Girls O525547819 Skin Call Girls Dubai
Dark Dubai Call Girls O525547819 Skin Call Girls Dubai
ย 
VIP Russian Call Girls in Amravati Deepika 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Amravati Deepika 8250192130 Independent Escort Serv...VIP Russian Call Girls in Amravati Deepika 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Amravati Deepika 8250192130 Independent Escort Serv...
ย 
VIP Russian Call Girls Amravati Chhaya 8250192130 Independent Escort Service ...
VIP Russian Call Girls Amravati Chhaya 8250192130 Independent Escort Service ...VIP Russian Call Girls Amravati Chhaya 8250192130 Independent Escort Service ...
VIP Russian Call Girls Amravati Chhaya 8250192130 Independent Escort Service ...
ย 
Delhi Call Girls Patparganj 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Patparganj 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip CallDelhi Call Girls Patparganj 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Patparganj 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
ย 
Call Girls In Bhikaji Cama Place 24/7โœก๏ธ9711147426โœก๏ธ Escorts Service
Call Girls In Bhikaji Cama Place 24/7โœก๏ธ9711147426โœก๏ธ Escorts ServiceCall Girls In Bhikaji Cama Place 24/7โœก๏ธ9711147426โœก๏ธ Escorts Service
Call Girls In Bhikaji Cama Place 24/7โœก๏ธ9711147426โœก๏ธ Escorts Service
ย 
CFO_SB_Career History_Multi Sector Experience
CFO_SB_Career History_Multi Sector ExperienceCFO_SB_Career History_Multi Sector Experience
CFO_SB_Career History_Multi Sector Experience
ย 
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call GirlsDelhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
ย 
Internshala Student Partner 6.0 Jadavpur University Certificate
Internshala Student Partner 6.0 Jadavpur University CertificateInternshala Student Partner 6.0 Jadavpur University Certificate
Internshala Student Partner 6.0 Jadavpur University Certificate
ย 
Experience Certificate - Marketing Analyst-Soham Mondal.pdf
Experience Certificate - Marketing Analyst-Soham Mondal.pdfExperience Certificate - Marketing Analyst-Soham Mondal.pdf
Experience Certificate - Marketing Analyst-Soham Mondal.pdf
ย 
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
ย 
Delhi Call Girls South Delhi 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls South Delhi 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip CallDelhi Call Girls South Delhi 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls South Delhi 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
ย 
PM Job Search Council Info Session - PMI Silver Spring Chapter
PM Job Search Council Info Session - PMI Silver Spring ChapterPM Job Search Council Info Session - PMI Silver Spring Chapter
PM Job Search Council Info Session - PMI Silver Spring Chapter
ย 
ๅฅณ็Ž‹ๅคงๅญฆ็ก•ๅฃซๆฏ•ไธš่ฏๆˆ็ปฉๅ•(ๅŠ ๆ€ฅๅŠž็†)่ฎค่ฏๆตทๅค–ๆฏ•ไธš่ฏ
ๅฅณ็Ž‹ๅคงๅญฆ็ก•ๅฃซๆฏ•ไธš่ฏๆˆ็ปฉๅ•(ๅŠ ๆ€ฅๅŠž็†)่ฎค่ฏๆตทๅค–ๆฏ•ไธš่ฏๅฅณ็Ž‹ๅคงๅญฆ็ก•ๅฃซๆฏ•ไธš่ฏๆˆ็ปฉๅ•(ๅŠ ๆ€ฅๅŠž็†)่ฎค่ฏๆตทๅค–ๆฏ•ไธš่ฏ
ๅฅณ็Ž‹ๅคงๅญฆ็ก•ๅฃซๆฏ•ไธš่ฏๆˆ็ปฉๅ•(ๅŠ ๆ€ฅๅŠž็†)่ฎค่ฏๆตทๅค–ๆฏ•ไธš่ฏ
ย 
Production Day 1.pptxjvjbvbcbcb bj bvcbj
Production Day 1.pptxjvjbvbcbcb bj bvcbjProduction Day 1.pptxjvjbvbcbcb bj bvcbj
Production Day 1.pptxjvjbvbcbcb bj bvcbj
ย 
Neha +91-9537192988-Friendly Ahmedabad Call Girls has Complete Authority for ...
Neha +91-9537192988-Friendly Ahmedabad Call Girls has Complete Authority for ...Neha +91-9537192988-Friendly Ahmedabad Call Girls has Complete Authority for ...
Neha +91-9537192988-Friendly Ahmedabad Call Girls has Complete Authority for ...
ย 

machine design ,gear box design mahamad jawhar.pdf

  • 1. 1 Gear Box Name: Muhammad Jawhar Anwar Class: 4 Stage โ€“A Subject: Design Project Department: Mechanical and Mechatronics Supervised by : DR. Buland College of Engineering Salahaddin University-Erbil Academic Year 2021-2022
  • 2. 2 Specifications Units value Power to be delivered Hp 27.6 Input speed rpm 1992 Output speed Range ยฑ3 rpm 103 Height in 24 Width x Length in 14 x 14 Gear and bearing life Hour (s) >13000 I/P and O/P shafts extension in 4 I/P and O/P shafts orientation In-line (reverted gearbox) Shock level Usually low and occasional moderate shocks Chapter2 Speed, Torque, and Gear Ratios โ€ข Calculation of the Number of Teeth for each gear โˆš ` ( ) (๐‘š โˆš๐‘š ( ๐‘š) ) ( ( )) . โˆš( ) ( ( )) )
  • 3. 3 ( ) ( ) ( ) ( ) ( ) ( ) ( ๐‘ ๐‘Ÿ๐‘๐‘š ) ( ๐‘ก ๐‘™ ๐‘  ๐‘ ) ( ๐‘Ÿ ๐‘ฃ ๐‘Ÿ ) . ๐‘  ๐‘š ๐‘› / ๐‘™ ๐‘ก ( ) ( ) ( ) ( ) . / ( ) ( )
  • 4. 4 . / ( ) ๐‘ž ( )( ) ( )( ) ๐‘ž Gear N T d V W # rpm Ibf.ft in Ft//min Ibf 2 16 1992 72.81 3.2 1668 546 3 70 455.3 318.55 14 1668 546 4 16 455.3 318.55 3.2 381.24 2389 5 70 104.07 1393.65 14 381.24 2389
  • 5. 5 Chapter 3 โˆš ( ) โˆš๐‘™ ๐‘› for steel pinion and steel mating gear ๐‘ก ๐‘ก ๐‘› ๐‘›๐‘ก ๐‘™ ๐‘ก๐‘Ÿ ๐‘›๐‘ ๐‘š ๐‘ก๐‘ก ๐‘™๐‘œ is the overload factor. Usually =1 (no shocks) also see table 3.2. is the size factor =1 (as suggested by AGMA) ( โˆš ) ( ) ๐‘ž ( ) ( ) ๐‘ž ( ) ( ) ( ) ( โˆš ) size factor ( ) ๐‘ž ( ) because is uncrowned teeth . / ๐‘ž for 1<F<17in.
  • 6. 6 ( ) . / ๐‘ž ( ) . / Round up to F= 3 in ( ( ) ( )) We choice commercial condition because Qv =7 ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))
  • 7. 7 ๐‘š ( ๐‘š ๐‘š ) ( ) ( ) ( ) โˆš โˆš ( ) ( ) ( ) ( ) ( ) ๐‘ก ๐‘› ( ) rev Using fig 3.3 to find
  • 8. 8 So Using table 3-4 the type of steel gear ๐‘Ÿ ๐‘ก ๐‘Ÿ ๐‘œ๐‘Ÿ ๐‘› Bending of gear 4
  • 10. 10 Then we use fig 3.5 L= rev psi ๐‘›
  • 11. 11 Wear of gear 5 โˆš โˆš ( ) ( ) Choosing grade 1 through hardened steel to 250HB Using fig 3.6 at HB=250 to find ๐‘›
  • 12. 12 Bending of gear 5 N5=70 , then J=0.415 Choosing the same material grade1 Using fig 3.7 at HB=250 St= 77.3 HB+ 12 800 psi ๐‘›
  • 13. 13 Wear of gear 2 Using eq 15 ( โˆš ) Gear 2&3 is lower than 4&5 therefore Select F=2.25 in. ( ) ( ( ) ( )) Using eq 20 ( ) ( ) ( ) ( ) ( ( ) ( )) Using eq 14 โˆš โˆš ( ) ( ) Using eq 24
  • 14. 14 rev Use fig 3.3 Use table 3.4 & ant try grade 1, flame hardened steel ๐‘› Bending of gear 2 N2=16 teeth then J=0.27 Using fig 3.5 as rev , Using eq 26 Using the same material from table 3.5 flame hardened steel Using eq 27 ๐‘›
  • 15. 15 Wear of gear 3 rev โˆš โˆš ( ) ( ) Choosing grade 1 through hardened steel to 200HB Using fig 3.6 then ๐‘› Bending of gear 3 N3=70 then J=0.415 from fig 3.4 Fig 3.5 Using the same material grade 1
  • 16. 16 ๐‘› Gear Material grade Treatment Wear stress psi Bending stress psi d in F in 2 1 Flame- hardened 170000 45000 3.2 2.25 3 1 Through- hardened to 200HB 90000 28000 14 2.25 4 3 Carburized and hardened 180000 55000 3.2 3.0 5 2 Through- hardened to 250HB 109600 32125 14 3.0
  • 17. 17 Chapter 4 Shaft Design Determination of the axial location of gears and bearings Figure 4. 1 Shaft layout for the reverted gearbox indicating the estimated axial distances between the gears and bearings, distances are in inches. The face width of each gear is known 2 = 3 = 1.5 ๐‘›. Similarly 4 = 5 = 2.0 ๐‘›.
  • 18. 18 Figure 4. 2 Counter shaft diameters, shoulders and the axial locations of the gears and bearing. From the previous chapter 23๐‘ก = 546 ๐‘™ 45๐‘ก = -2389 ๐‘™ ๐‘Ÿ = ๐‘ก tan โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 28 Therefore 23๐‘Ÿ = 23๐‘ก tan 23๐‘Ÿ = 546 tan 20 23๐‘Ÿ = โˆ’198.72 ๐‘™ Similarly 45๐‘Ÿ = 45๐‘ก tan = tan =2389 tan20 = -869.5 ibf The next step is to select a suitable material for the shaft followed by a rough estimation of the shaft diameters at different axial locations. This could be achieved by determination of
  • 19. 19 the fatigue and static stress capacity based on the infinite life of the shaft and a minimum safety factor of 1.5. Force analysis โ€ข Determination of reaction forces on bearings. x-z plane ๐‘ฅ ๐‘ฅ ๐‘ฅ ( ) ( ) ( ) ๐‘™ ๐‘™ x-y plane ๐‘ฅ ๐‘ฅ ๐‘ฅ ( ) ( ) ( ) lbf lbf
  • 20. 20 0 0 3822 3822 0 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 y [in.] x [in.] torque diagram
  • 21. 21 101 101 647 647 -1742 -1742 0 -2000 -1500 -1000 -500 0 500 1000 y [in.] x [in.] shear force diagram 0 202 3275 3922 2180 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 y [in.] x [in.] moment diagram(x -z)
  • 22. 22 354 354 155.28 155.25 -714.22 -714.22 0 -800 -600 -400 -200 0 200 400 600 y [in.] x [in.] shear force diagram(x -y) 0 708 1446 887 0 0 200 400 600 800 1000 1200 1400 1600 y [in.] x [in.] moment diagram(x -y) 0 736 3580 4236 2354 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 y [in.] x [in.] moment diagram(x -y)
  • 23. 23 Figure 4. 3 Free body diagram, torque, shear force and bending moment diagrams for the shaft. โ€ข The torque diagram T3= * T3= 546 * = 3822 ibf .in T3= * T3= - 2389 * = -3822 ibf .in The Shear force and Bending moment diagrams x-y plane ๐บ = = 354 ๐‘™ ๐บ = - ๐บ = 354 โ€“ 198.72 ๐บ = 155.28 ๐‘™ = ๐บ โˆ’ = 155.28 โ€“ 869.5 = โˆ’714.22 Ibf = =0
  • 24. 24 ๐‘ฅ ( ) ๐‘™ in ( ) ( ) ( ) ( ) ๐‘™ ๐‘› ( ) ( ) ( ) ( ) ( ) ( ) ๐‘™ ๐‘› x-z plane ๐บ = = 101 ๐‘™ ๐บ = + ๐บ = 101 + 546 ๐บ = 647 ๐‘™ = ๐บ โˆ’ = 647 โ€“ 2389 = โˆ’1742 ibf = ๐‘ฅ ๐‘™ ๐‘› ( ) ( ) ( ) ( ) ๐‘™ ๐‘› ( ) ( ) ( ) ( ) ( ) ( ) ๐‘™ ๐‘›
  • 25. 25 The total bending moment diagram It could be found by superposition of the moments in the x-y plane and x-z plane. ๐บ =โˆš( ) ( ) =736 Ibf.in Similarly MJ=โˆš( ) ( ) = 4236Ibf . ๐‘› MK=2354 lbf.in The shoulder at point I The bending moment is the highest at the shoulder (point I), the torque is high and there is a stress concentration as well. In the x-y plane ( ) ( ) ( ) ( ) ๐‘™ ๐‘› In the x-z plane ( ) ( ) ( ) ( ) ๐‘™ in Combined
  • 26. 26 โˆš( ) ( ) = 3580 ibf. ๐‘› At point I, is alternating moment usually referred to as and defined by ๐‘š ๐‘ฅ ๐‘š ๐‘› While the midrange moment is defined as ๐‘š ๐‘ฅ ๐‘š ๐‘› The midrange torque is ๐‘š = 3822 ๐‘™ . ๐‘› ๐‘š = = 0
  • 27. 27 Estimation of the stress concentrations For bearings = 1.2~1.5 Where ๐ท ๐‘  ๐‘ก ๐‘™ ๐‘Ÿ ๐‘Ÿ ๐‘š ๐‘ก ๐‘Ÿ ๐‘œ ๐‘ก ๐‘  ๐‘ก ๐‘ก ๐‘ก ๐‘  ๐‘œ๐‘ข๐‘™ ๐‘Ÿ, ๐‘›. ๐‘  ๐‘ก ๐‘ ๐‘š ๐‘™๐‘™ ๐‘Ÿ ๐‘š ๐‘ก ๐‘Ÿ ๐‘œ ๐‘ก ๐‘  ๐‘ก ๐‘ก ๐‘ก ๐‘  ๐‘œ๐‘ข๐‘™ ๐‘Ÿ, ๐‘›. The upper limit of 1.5 could be used as a first estimation and a worst-case scenario. The fillet radius should also be sized to coincide with that of a standard bearing or gear. = 0.02~0.06 Where ๐‘Ÿ ๐‘  ๐‘ก ๐‘™๐‘™ ๐‘ก ๐‘Ÿ ๐‘ข๐‘ , ๐‘›. ๐‘  ๐‘ก ๐‘Ÿ ๐‘› ๐‘œ๐‘Ÿ ๐‘œ๐‘Ÿ ๐‘ก ๐‘ ๐‘š ๐‘™๐‘™ ๐‘Ÿ ๐‘  ๐‘ก ๐‘š ๐‘ก ๐‘Ÿ ๐‘ก ๐‘ก ๐‘  ๐‘œ๐‘ข๐‘™ ๐‘Ÿ, ๐‘›. The Marin equation for the determination of the endurance limit is = ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . ๐‘ž. 29 Table 4. 1 Parameters for Marin surface modification factor ka.
  • 28. 28 Table 4. 2 A 1040 CD steel is chosen for its low price with ๐‘บ๐’–๐’• = 85 ๐’Œ๐’‘๐’”๐’Š, Sy = 71 kpsi. From table 4.2. therefore, ๐‘› ๐‘Ÿ ๐‘™ ๐‘ ๐‘ก ๐‘› ๐‘ก ๐‘™ 4.1 = 2.7 ๐‘˜๐‘๐‘  = โˆ’0.265 Then ๐‘˜ = 2.7(85)โˆ’0.265 = 0.831
  • 29. 29 Let ๐‘˜ = 0.9 (๐‘ก๐‘œ ๐‘ ๐‘๐‘˜ ๐‘™ ๐‘ก ๐‘Ÿ โˆ’ ๐‘œ๐‘› ๐‘ค ๐‘› ๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘›) ๐‘˜๐‘ = ๐‘˜ = ๐‘˜ = 1 And โ€ฒ = 0.5 ๐‘ข๐‘ก ๐‘œ๐‘Ÿ ๐‘ข๐‘ก โ‰ค 200 ๐‘˜๐‘๐‘  โ€ฒ = 100 ๐‘˜๐‘๐‘  ๐‘œ๐‘Ÿ ๐‘ข๐‘ก > 200 ๐‘˜๐‘๐‘  Using eq. 29 = 0.831 0.9 0.5 85 = 31.78 ๐‘˜๐‘๐‘  Using DE-Goodman criterion to make the first estimate for the smaller diameter at the shoulder โˆš * โˆš (๐‘˜ ) (๐‘˜ ๐‘  ) โˆš (๐‘˜ ๐‘š) (๐‘˜ ๐‘  ๐‘š) + Assuming shoulder-fillet well-rounded or r/d=0.1 then From table 4.3 ๐‘ก = 1.7 ๐‘ก๐‘  = 1.5 Assume = ๐‘ก ๐‘› ๐‘  = ๐‘ก๐‘  with
  • 30. 30 โˆš { โˆš } Since the Goodman criterion is conservative, then it possible to select the next standard size below 1.65 which is =1 = 1.625 ๐‘›. A typical diameter ratio at the shoulder is = 1.2 Therefore, ๐ท = 1.2 1.625 = 1.95 ๐‘›. Round up to ๐ท = 2.0 ๐‘›. A nominal 2.0 in. CD shaft is used Checking the acceptability of the estimates ๐ท Assume fillet radius to diameter ratio ๐‘Ÿ = 0.1 Therefore, ๐‘Ÿ = 0.1 1.625 = 0.16 ๐‘›.
  • 31. 31 Using ๐‘ก๐‘œ ๐‘› ๐‘ก ๐‘ ๐‘ก๐‘Ÿ ๐‘ ๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘›๐‘ก๐‘Ÿ ๐‘ก ๐‘œ๐‘› ๐‘˜๐‘ก ๐‘ก = 1.6 Using fig.4.6 to find the sensitivity factor q. Then ๐‘ž = 0.82 = 1 + ( ๐‘ก โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . ๐‘ž. 33 = 1 + 0.82(1.6 โˆ’ 1) =1.49 Using fig. 4.7 for (r/d) =0.1 and (D/d) =1.23 then ๐‘ก๐‘  = 1.35 Using fig. 4.8 for r=1.6 in. then ๐‘ž๐‘  = 0.95 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 34 ๐‘  = 1 + 0.95(1.35 โˆ’ 1) ๐‘  = 1.33 = 0.831 (๐‘›๐‘œ๐‘ก ๐‘ ๐‘› ) Kb=( ) ๐‘œ๐‘Ÿ 0.11 < โ‰ค 2 ๐‘› Using eq. 35 Kb=( )
  • 32. 32 Using eq. 29 = 0.831 0.835 0.5 85 = 29.49 ๐‘˜๐‘๐‘  The Von Mises stresses for rotating round, solid shafts, neglecting axial loads are given by: =( ( ) 0( ) ( ) 1 ( ) ๐‘๐‘  =( ( ) โ„ 0( ) ( ) 1 * ( ) + โˆš ( ) ๐‘› ๐‘› ๐‘› Check for Yielding
  • 33. 33 The von Mises maximum stress is : ๐‘š ๐‘ฅโ€ฒ= [( ๐‘š + )2 + 3( ๐‘š + )2]1โ„2 *( ๐‘˜ ( ๐‘š ) ) ( ๐‘˜ ๐‘ ( ๐‘š ) ) + To check for yielding, Eq. 30 is compared to the yield strength, then ๐‘›๐‘ฆ = Note: for a quick conservative check, the sum of alternating stress and the midrange stress is always greater or equal to the maximum stress therefore, the results will be conservative. Therefore, ๐‘›๐‘ฆ ๐‘ ๐‘ฆ ๐‘ ๐‘ฆ ๐‘›๐‘ฆ = 3
  • 34. 34 The Keyway The keyway is a groove made in the shaft to fix the gear mounted on the shaft in position. This keyway affects the diameter of the shaft and reduces its strength. The keyway extends to a point just to the right of point (I). From the total bending moment diagram, let the moment at the end of keyway close to point (I) is = 3 750๐‘™ . ๐‘› Assume that at the bottom of the keyway = 0.02 ( ๐‘ ๐‘ก ๐‘› ๐‘Ÿ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก ๐‘œ๐‘›) Therefore, ๐‘Ÿ ๐‘Ÿ . Using fig. 4.5 ๐‘ก = 2.4 And using fig. 4.6 ๐‘ž = 0.69 Using eq.33 = 1 + ( ๐‘ก โˆ’ 1) = 1 + 0.69(2.4 โˆ’ 1) = 1.966 Using fig. 4.7 ๐‘ก๐‘  = 2.2 Fig 4.8 gives9 ๐‘ž๐‘  = 0.9 Using eq.34 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) ๐‘  = 1 + 0.9(2.2 โˆ’ 1) ๐‘  = 2
  • 35. 35 ( ) ๐‘๐‘  * ( ) + โˆš ( ) =15722 psi ๐‘› ๐‘› ๐‘› Note: the results show that the keyway is more critical than the shoulder. Therefore, to overcome the conundrum, it is recommended to change the shaft material to a higher strength or to change its diameter to a larger size. Trying steel 1050 CD with ๐‘บ๐’–๐’• = ๐Ÿ๐ŸŽ๐ŸŽ ๐’Œ๐’‘๐’”๐’Š, ๐‘บ๐’š = ๐Ÿ–๐Ÿ’ ๐’Œ๐’‘๐’”๐’Š. From table 4.2. and recalculating the factors affected by ๐‘ข๐‘ก. Using eq.30 ๐‘˜ = ๐‘ข๐‘ก ๐‘˜ = 2.7(100)โˆ’0.265 = 0.797 Using eq. 29 = 0.797 0.835 0.5 100
  • 36. 36 = 33.275 ๐‘˜๐‘๐‘  Fig. 4.6 gives ๐‘ž = 0.73 = 1 + ( ๐‘ก โˆ’ 1) = 1 + 0.73(2.4 โˆ’ 1) = 2.022 ( ) ๐‘๐‘  ๐‘› ๐‘› ๐‘› This value is quite close to the required 1.5, and since the Goodman equations are conservative therefore, the value of ๐‘› = 1.433 is acceptable.
  • 37. 37 Inspecting point K The retaining ring groove At point (K) a flat bottom groove exists to accommodate the retaining ring. This point is characterized by: ๐‘ก ๐‘  ๐‘ฃ ๐‘Ÿ๐‘ฆ ๐‘œ๐‘Ÿ ๐‘™ ๐‘ก ๐‘œ๐‘ก๐‘ก๐‘œ๐‘š ๐‘Ÿ๐‘œ๐‘œ๐‘ฃ ๐‘  = 0 ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘ก๐‘œ๐‘Ÿ๐‘ž๐‘ข ๐‘Ÿ ๐‘š = 2354 ๐‘™ . ๐‘› ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘š๐‘œ๐‘š ๐‘›๐‘ก ๐‘Ÿ ๐‘š ๐‘š = = ๐‘š = 0 In order to check how critical point (K) is Using table 4.3 to estimate the stress concentration factor as follows: = ๐‘ก = 5.0 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› This quick check revealed a low safety factor. For a detailed determination of point (K) specs, standard retaining ring specs could be obtained from related tables and going online to (www.globalspec.com) Using the shaft diameter of 1.625 in. to get Groove width = 0.068 ๐‘›. Groove depth ๐‘ก = 0.048 ๐‘›. Fillet radius at bottom of the groove ๐‘Ÿ = ๐‘›. Therefore,
  • 38. 38 ๐‘Ÿ ๐‘ก /๐‘ก=1.42 = ๐ท โˆ’ 2๐‘ก = 1.625 โˆ’ 2 0.048 = 1.529 ๐‘› Using fig. 4.9 for flat groove on a round shaft ๐‘ก = 4.3 Fig. 4.6 yields ๐‘ž = 0.63 = 1 + ( ๐‘ก โˆ’ 1) = 1 + 0.63(4.3 โˆ’ 1) = 3.09 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› โ€ข Determination of D6 Since ๐ท = 1.2~1.5 Then d= Therefore ๐ท6 = = 1.354 ๐‘› Round up to the next standard size Therefore ๐ท6 = 1.4 ๐‘›
  • 39. 39 Inspecting point M Point (M) is characterized by being a shoulder to axially hold the bearing. Only bending is present due to a small moment. However, the cross-section area is small too, which results in a high stress concentration especially the fillet radius is small to accommodate the bearing. Finding the Moment at point M In the x-y plane = 354 (10.25-0.75) โ€“198.72(10.25-2.75)- 869.5(10.25-8.5) =351 ibf . ๐‘› In the x-z plane = 101(10.25-0.75)+546(10.25-2.75)-2389(10.25- 8.5) =874 ibf. ๐‘› Combined =โˆš( ) ( ) =942 ibf . ๐‘› Therefore = 942 ๐‘™ . ๐‘› And ๐‘š = ๐‘š = = 0 Using table 4.3 for a quick estimation of Kt for a sharp fillet shoulder where = 0.02
  • 40. 40 And ๐‘ก = 2.7 Also = 1 ๐‘›. Therefore ๐‘Ÿ =d*0.02= 1 *0.02=0.02 Using fig. 4.6 ๐‘ž = 0.7 = 1 + ( ๐‘ก โˆ’ 1) = 1 + 0.7(2.7 โˆ’ 1) = 2.19 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› This value of (nf) is satisfactory and should be checked as the bearing is selected. As the shaft diameters at the critical positions were determined and by taking the shoulders heights, to retain the gears and bearings, in consideration, other shaft diameters could be estimated. These diameters will be checked when the bearings are selected. ๐ท1 = ๐ท7 = 1 ๐‘›. ๐ท2 = ๐ท6 = 1.4 ๐‘›. ๐ท3 = ๐ท5 = 1.625 ๐‘›. ๐ท4 = 2.0 ๐‘›.
  • 41. 41 The rigidity of the shaft Deflection of the shaft Any deflection in the shaft could have detrimental consequences on the mounted gears and bearings with high noise levels due to the vibrations. Deflection analyses require a full knowledge of the shaft geometry and dimensions. Table 4.4 exhibits rough guidelines for the deflections and the maximum slopes under particular elements mounted on the shaft. Fillets, grooves, and keyways do not have a tangible effect on shaft deflection Table 4. 4 Typical maximum ranges for slopes and transvers deflections. The deflection is usually determined by double integration of the moment equation = โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 40 M= ๐‘ฅ โŒฉ๐‘ฅ ๐‘ฅ โŒช ๐‘โŒฉ๐‘ฅ ๐‘ฅ โŒช โŒฉ๐‘ฅ ๐‘ฅ โŒช 0 ๐‘ฅ At the shoulder
  • 42. 42 Y P P Shoulder X RA RB A D G H I J M B n Previous sectio Next section Figure 4. 11 A stepped shaft subjected to concentrated loads. Divide the moment equation by the second moment of area (I) of the previous section of the shaft. The equation becomes. ๏‚ท At the distance (๐‘ฅ ) where the shoulder exists, add a step change in ( โ„ ) as follows: ๐‘ ๐‘ก ๐‘ . / ๐‘ ๐‘ก ๐‘ ( ) ( ) ๏‚ท At the distance (๐‘ฅ ) where the shoulder exists, add a ramp change in ( โ„ ) as follows: ๐‘ ๐‘™๐‘œ๐‘ ๐‘š [ . / ๐‘ฅ ] ๐‘š [ . / . / ๐‘ฅ ] ( ) ๐‘› ( ) ๐‘›
  • 43. 43 Xz plane Shoulder H ( ) ๐‘™ ๐‘› ( ) ( ) ( ) ( ) ๐‘™ ๐‘› ( ) ๐‘™ ๐‘› ๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘› ( ) ๐‘™ ๐‘› ( ) ๐‘™ ๐‘› ๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘› ๐‘š ๐‘ ๐‘™๐‘œ๐‘ ๐‘ ๐‘™๐‘œ๐‘ ๐‘š ๐‘™ ๐‘› ๐‘ ๐‘ก ๐‘ ( ) ( ) ๐‘ ๐‘ก ๐‘ ๐‘™ ๐‘› Shoulder I ( ) ๐‘™ ๐‘› ( ) ๐‘™ ๐‘› ๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘› ๐‘š ๐‘ ๐‘™๐‘œ๐‘ ๐‘ ๐‘™๐‘œ๐‘
  • 44. 44 ๐‘š ๐‘™ ๐‘› ๐‘ ๐‘ก ๐‘ ( ) ( ) ๐‘ ๐‘ก ๐‘ ๐‘™ ๐‘› Units Poin t G point H Sectio n GH sectio n HI point I point J Section IJ on AH on HI on HI on IB Wt lb 546 2389 M Lb.in 202 687.25 3275 3922 I In4 0.3 42 0.34 2 0.78 5 0.78 5 0.34 2 0.342 M/I Lb/in3 590 200 8 875. 14 4170 9570 1146 1 ฮ”(M/I ) Lb/in3 -1133.19 1436 3338 5400 2046.5 x In. 2 2.75 6.75 7.75 ฮ”x In. 0.75 4 1 ฮ”(M/I )/ ฮ”x Lb/in4 1890 .7 823. 8 1890.6 ฮ”m Lb/in4 -1067 1067 Step Slope
  • 45. 45 The moment equation ( ) โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ โŒฉ โŒช . / โŒฉ๐‘ฅ โŒช ๐‘š โŒฉ โŒช โŒฉ โŒช . / โŒฉ โŒช ๐‘š โŒฉ๐‘ฅ โŒช ๐‘ฅ โŒฉ โŒช โŒฉ๐‘ฅ โŒช โŒฉ โŒช โŒฉ โŒช โŒฉ โŒช โŒฉ๐‘ฅ โŒช But 0 590 2008 875.14 4,170 9570 11461 2739.06 0 0 2000 4000 6000 8000 10000 12000 14000 0 2 4 6 8 10 12 M/I xz plane
  • 46. 46 ๐‘ฆ ๐‘ฅ Double integration yields ๐‘ฆ ๐‘ฅ ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฆ ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ Boundary conditions X=0 , y=0 therefore C2 =0 X=l , y=0 And substituting E=30Mpsi for steel ๐‘ฆ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช - ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- The deflection ๐‘ฆ , ๐‘ฅ ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ
  • 47. 47 ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ The slope , ๐‘ฅ - ๐‘œ๐‘Ÿ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ x [in.] Point Fittings y [in.] dy/dx [deg.] 0 A Left bearing 0 0.0221 2 G Gear 3 - 0.00076 0.0210 2.75 H Shoulder H - 0.00102 6.75 I Shoulder I - 0.00184 7.75 J Gear 4 - 0.00167 0.0203 10 B Right Bearing 0 0.0671
  • 48. 48 ๐‘ ๐‘ก ๐‘ . / ๐‘ ๐‘ก ๐‘ ( ) ( ) ๏‚ท At the distance (๐‘ฅ ) where the shoulder exists, add a ramp change in ( โ„ ) as follows: ๐‘ ๐‘™๐‘œ๐‘ ๐‘š [ . / ๐‘ฅ ] 0 -0.00076 -0.00102 -0.00184 -0.00167 0 -0.0025 -0.002 -0.0015 -0.001 -0.0005 0 y [in.] x [in.] Deflection
  • 49. 49 ๐‘š [ . / . / ๐‘ฅ ] ( ) ๐‘› ( ) ๐‘› X-Y plane Shoulder H ( ) ๐‘™ ๐‘› ( ) ( ) ( ) ( ) ๐‘™ ๐‘› ( ) ๐‘™ ๐‘› ๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘› ( ) ๐‘™ ๐‘› ( ) ๐‘™ ๐‘› ๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘› ๐‘š ๐‘ ๐‘™๐‘œ๐‘ ๐‘ ๐‘™๐‘œ๐‘ ๐‘š ๐‘™ ๐‘›
  • 50. 50 ๐‘ ๐‘ก ๐‘ ( ) ( ) ๐‘ ๐‘ก ๐‘ ๐‘™ ๐‘› Shoulder I ( ) ๐‘™ ๐‘› ( ) ๐‘™ ๐‘› ๐‘ ๐‘™๐‘œ๐‘ ๐‘™ ๐‘› ๐‘š ๐‘ ๐‘™๐‘œ๐‘ ๐‘ ๐‘™๐‘œ๐‘ ๐‘š ๐‘™ ๐‘› ๐‘ ๐‘ก ๐‘ ( ) ( ) ๐‘ ๐‘ก ๐‘ ๐‘™ Units Point G point H Sectio n GH sectio n HI point I point J Section IJ on AH on HI on HI on IB Wr lb 199 870 M Lb.in 708 824.5 1446 1601 I In4 0.34 2 0.34 2 0.78 5 0.785 0.342 0.342 M/I Lb/in3 206 9 240 9 1050. 5 1841 4225. 6 4678. 5 ฮ”(M/I) Lb/in3 -1360.45 1436 3338 2384.6 453 x In. 2 2.75 6.75 7.75 ฮ”x In. 0.75 4 1 ฮ”(M/I) / ฮ”x Lb/in4 453.3 199 453 ฮ”m Lb/in4 -255 255 Step Slope
  • 51. 51 The moment equation ( ) โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ โŒฉ โŒช . / โŒฉ๐‘ฅ โŒช ๐‘š โŒฉ โŒช โŒฉ โŒช . / โŒฉ โŒช ๐‘š โŒฉ๐‘ฅ โŒช ๐‘ฅ โŒฉ โŒช โŒฉ๐‘ฅ โŒช โŒฉ โŒช 0 2069 2409 1050.55 1,841 4225.6 4678.5 1129.1117 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 2 4 6 8 10 12 M/I xy plane
  • 52. 52 โŒฉ โŒช โŒฉ โŒช โŒฉ๐‘ฅ โŒช But ๐‘ฆ ๐‘ฅ Double integration yields ๐‘ฆ ๐‘ฅ ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฆ ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ Boundary conditions X=0 , y=0 therefore C2 =0 X=l , y=0 And substituting E=30Mpsi for steel ๐‘ฆ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช - ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- The deflection
  • 53. 53 ๐‘ฆ , ๐‘ฅ ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช ๐‘ฅ- ๐‘œ๐‘Ÿ ๐‘ฅ 10 The slope , ๐‘ฅ - ๐‘œ๐‘Ÿ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ ๐‘ฆ ๐‘ฅ , ๐‘ฅ โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช โŒฉ๐‘ฅ โŒช - ๐‘œ๐‘Ÿ ๐‘ฅ
  • 54. 54 x [in.] Point Fittings y [in.] dy/dx [deg.] 0 A Left bearing 0 0.0340 2 G Gear 3 - 0.000114 0.0301 2.75 H Shoulder H - 0.001680 6.75 I Shoulder I - 0.003053 7.75 J Gear 4 - 0.005927 0.00746 10 B Right Bearing 0 0.00249 0 -0.000114 -0.00168 -0.003053 -0.005927 0 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 y [in.] x [in.] Deflection
  • 55. 55 The final bearing slope results show slope Bearings xz plane [Deg.] xy plane [Deg.] Total [Deg.] Total [rad.] Left 0.0221 0.0340 0.056 0.000977 Right 0.0671 0.00249 0.068 0.001186
  • 56. 56 Shaft Design for Gear 2 23๐‘ก = - 546 ๐‘™ ๐‘Ÿ = ๐‘ก tan โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 28 Therefore 23๐‘Ÿ = 23๐‘ก tan 23๐‘Ÿ = 546 tan 20 23๐‘Ÿ = 199 ๐‘™ q Force analysis โ€ข Determination of reaction forces on bearings. x-z plane ๐‘ฅ ๐‘ฅ ( ) ( ) ๐‘™ ๐‘™ x-y plane ๐‘ฅ ๐‘ฅ ( ) ( ) lbf lbf
  • 57. 57 873 873 0 0 100 200 300 400 500 600 700 800 900 1000 y [in.] x [in.] torque diagram ( 246 246 301 301 0 0 50 100 150 200 250 300 350 y [in.] x [in.] shear force diagram
  • 58. 58 0 112.168 490 264 0 0 100 200 300 400 500 600 y [in.] x [in.] moment diagram(x -z) 89 89 -110 -110 0 -150 -100 -50 0 50 100 y [in.] x [in.] shear force diagram(x -y) 0 282.069 490 0 0 100 200 300 400 500 600 y [in.] x [in.] moment diagram(x -y)
  • 59. 59 The Shear force and Bending moment diagrams x-y plane ๐บ = = 89 ๐‘™ ๐บ = - ๐บ = 89 โ€“ 199 ๐บ = -110 ๐‘™ ๐‘ฅ ( ) ๐‘™ in ( ) ๐‘Ÿ ( ) ( ) ( ) x-z plane ๐บ = = -246 ๐‘™ ๐บ = + ๐บ = 245 + 546 0 119.366 564.279 515.172 0 0 100 200 300 400 500 600 y [in.] x [in.] moment diagram(x -y)
  • 60. 60 ๐บ =791 ๐‘ฅ ( ) ๐‘™ in ( ) ๐‘Ÿ ( ) ( ) ( ) The total bending moment diagram It could be found by superposition of the moments in the x-y plane and x-z plane. ๐บ =โˆš( ) ( ) =521 Ibf.in The shoulder at point H The bending moment is the highest at the shoulder (point I), the torque is high and there is a stress concentration as well. In the x-y plane ( ) ( ) ( ) ( ) ๐‘™ ๐‘› In the x-z plane ( ) ( ) ( ) ( ) ๐‘™ in Combined H โˆš( ) ( )
  • 61. 61 H= 281 ibf. ๐‘› Torque of shaft gear2 ๐‘› Estimation of the stress concentrations For bearings = 1.2~1.5 = 0.02~0.06 . ๐‘˜ = ๐‘ข๐‘ก โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 30 Using the 1030 CD steel is chosen for its low price with ๐‘บ๐’–๐’• = 76 ๐’Œ๐’‘๐’”๐’Š, Sy = 64 kpsi. From table 4.2. From table 4-1 use = 2.7 ๐‘˜๐‘๐‘  = โˆ’0.265 Then ๐‘˜ = 2.7(76)โˆ’0.265 = 0.8569 Let ๐‘˜ = 0.9 (๐‘ก๐‘œ ๐‘ ๐‘๐‘˜ ๐‘™ ๐‘ก ๐‘Ÿ โˆ’ ๐‘œ๐‘› ๐‘ค ๐‘› ๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘›) ๐‘˜๐‘ = ๐‘˜ = ๐‘˜ = 1 And โ€ฒ = 0.5 ๐‘ข๐‘ก ๐‘œ๐‘Ÿ ๐‘ข๐‘ก โ‰ค 200 ๐‘˜๐‘๐‘ 
  • 62. 62 Using eq. 29 = ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ = 0.8569 0.9 0.5 76 = 29.305 ๐‘˜๐‘๐‘  Using DE-Goodman criterion to make the first estimate for the smaller diameter at the shoulder Assuming shoulder-fillet well-rounded or r/d=0.1 then From table 4.3 ๐‘ก = 1.7 ๐‘ก๐‘  = 1.5 Assume = ๐‘ก ๐‘› ๐‘  = ๐‘ก๐‘  ๐‘š = = 0 The Goodman reduces to ( * โˆš (๐‘˜ ) (๐‘˜ ๐‘  ) โˆš (๐‘˜ ๐‘š) (๐‘˜ ๐‘  ๐‘š) +) โˆš ( ) { โˆš } From using the standard size = 0.938 ๐‘›. A typical diameter ratio at the shoulder is = 1.22 Therefore, ๐ท = 1.22 0.938 = 1.145 ๐‘›. Round up to ๐ท = 1.19 ๐‘›.
  • 63. 63 Checking the acceptability of the estimates ๐ท Assume fillet radius to diameter ratio = 0.1 Therefore, ๐‘Ÿ = 0.1 0.938 = 0.0938 ๐‘›. Using from table 4-5 get ๐‘ก = 1.63 Using fig.4.6 to find the sensitivity factor q. Then ๐‘ž = 0.78 = 1 + ( ๐‘ก โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . ๐‘ž. 33 = 1 + 0.78(1.63 โˆ’ 1) =1.49 Using fig. 4.7 for (r/d) =0.1 and (D/d) =1.26 then ๐‘ก๐‘  = 1.39 Using fig. 4.8 for r=0.0930 in. then ๐‘ž๐‘  = 0.61 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 34 ๐‘  = 1 + 0.61(1.39 โˆ’ 1) ๐‘  = 1.2379 = 0.8569 (๐‘›๐‘œ๐‘ก ๐‘ ๐‘› )
  • 64. 64 Kb=( ) ๐‘œ๐‘Ÿ 0.11 < โ‰ค 2 ๐‘› Kb= ( ) = ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ = 0.885 0.8569 0.5 76 = 28823 ๐‘˜๐‘๐‘  The Von Mises stresses for rotating round, solid shafts, neglecting axial loads are given by: =( ( ) 0( ) ( ) 1 ( ) ๐‘๐‘  =( ( ) โ„ 0( ) ( ) 1 * ( ) + โˆš ( ) ๐‘› ๐‘› ๐‘›
  • 65. 65 Check for Yielding The von Mises maximum stress is : ๐‘š ๐‘ฅโ€ฒ= [( ๐‘š + )2 + 3( ๐‘š + )2]1โ„2 *( ๐‘˜ ( ๐‘š ) ) ( ๐‘˜ ๐‘ ( ๐‘š ) ) + ๐‘›๐‘ฆ ๐‘ ๐‘ฆ ๐‘ ๐‘ฆ = 3.9 The Keyway From the total bending moment diagram, let the moment at the end of keyway close to point (I) is = 390 . ๐‘› Assume that at the bottom of the keyway = 0.02 ( ๐‘ ๐‘ก ๐‘› ๐‘Ÿ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก ๐‘œ๐‘›) Therefore, ๐‘Ÿ =0.02*0.938 ๐‘Ÿ =0.01876 Using fig. 4.5 ๐‘ก = 2.49 And using fig. 4.6 ๐‘ž = 0.58
  • 66. 66 = 1 + ( ๐‘ก โˆ’ 1) = 1 + 0.58(2.49โˆ’ 1) = 1.8642 Using fig. 4.7 ๐‘ก๐‘  = 2.1 Fig 4.8 gives ๐‘ž๐‘  = 0.74 Using eq.34 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) ๐‘  = 1 + 0.74(2.1โˆ’ 1) ๐‘  = 1.814 ( ) ๐‘๐‘  * ( ) + โˆš ( ) = 16935 psi ๐‘› ๐‘› ๐‘›
  • 67. 67 Inspecting point F The retaining ring groove At point (F) a flat bottom groove exists to accommodate the retaining ring. This point is characterized by: ๐‘ก ๐‘  ๐‘ฃ ๐‘Ÿ๐‘ฆ ๐‘œ๐‘Ÿ ๐‘™ ๐‘ก ๐‘œ๐‘ก๐‘ก๐‘œ๐‘š ๐‘Ÿ๐‘œ๐‘œ๐‘ฃ ๐‘  = 0 ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘ก๐‘œ๐‘Ÿ๐‘ž๐‘ข ๐‘Ÿ ๐‘š = 281 ๐‘™ . ๐‘› ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘š๐‘œ๐‘š ๐‘›๐‘ก ๐‘Ÿ ๐‘š ๐‘š = = ๐‘š = 0 In order to check how critical point (K) is Using table 4.3 to estimate the stress concentration factor as follows: = ๐‘ก = 5.0 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› This quick check revealed a low safety factor. For a detailed determination of point (K) specs, standard retaining ring specs could be obtained from related tables and going online to ( www.globalspec.com ) Using the shaft diameter of 0.938 in. to get Groove width = 0.046 ๐‘›. Groove depth ๐‘ก = 0.028 ๐‘›. Fillet radius at bottom of the groove ๐‘Ÿ = ๐‘›. Therefore,
  • 68. 68 ๐‘Ÿ ๐‘ก ๐‘ก = ๐ท โˆ’ 2๐‘ก = 0.938 โˆ’ 2 0.028 = 0.882 ๐‘› Using fig. 4.9 ๐‘ก = 3.57 Fig. 4.6 yields ๐‘ž = 0.59 = 1 + ( ๐‘ก โˆ’ 1) = 1 + 0.59(3.57 โˆ’ 1) = 2.51 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› โ€ข Determination of D Since ๐ท/d = 1.2~1.5 Then d= Therefore Round up to the next standard size ๐ท6 = = 0.781 Therefore
  • 69. 69 Inspecting point D in the x-y plane ( ) ( ) ( ) ( ) ๐‘™ ๐‘› In the x-z plane ( ) ( ) ( ) ( ) ๐‘™ in Combined =โˆš( ) ( ) =777 ibf . ๐‘› Therefore = 777 ๐‘™ . ๐‘› And ๐‘š = ๐‘š = = 0 Using table 4.3 for a quick estimation of Kt for a sharp fillet shoulder where = 0.02 And ๐‘ก = 2.49 Also = 0.750 ๐‘›. Therefore ๐‘Ÿ =d*0.02= 0.750*0.02=0.015 Using fig. 4.6
  • 70. 70 ๐‘ž = 0.61 = 1 +0.61(2.49 โˆ’ 1) = 1.909 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› This value of (nf) is satisfactory and should be checked as the bearing is selected. ๐ท1 = 0.750 ๐‘›. ๐ท2 = 0.781 ๐‘›. ๐ท3 = 0.938 ๐‘›. ๐ท4 = 1.19 n
  • 71. 71 Shaft Design for Gear 5 45๐‘ก = 2389 ๐‘™ ๐‘Ÿ = ๐‘ก tan โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 28 Therefore 45๐‘Ÿ = 23๐‘ก tan 45๐‘Ÿ = 2389 tan 20 45๐‘Ÿ = 870 ๐‘™ . Force analysis โ€ข Determination of reaction forces on bearings. x-z plane ๐‘ฅ ๐‘ฅ ( ) ( ) ๐‘™ ๐‘™ x-y plane
  • 72. 72 ๐‘ฅ ๐‘ฅ ( ) ( ) lbf lbf 16723 16723 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 y [in.] x [in.] torque diagram ( 1303 395 0 0 200 400 600 800 1000 1200 1400 y [in.] x [in.] shear force diagram
  • 73. 73 0 2443 0 0 0 500 1000 1500 2000 2500 3000 y [in.] x [in.] moment diagram(x -z) 395 395 -395 -395 0 -500 -400 -300 -200 -100 0 100 200 300 400 500 y [in.] x [in.] shear force diagram(x -y) 0 891 0 0 100 200 300 400 500 600 700 800 900 1000 y [in.] x [in.] moment diagram(x -y)
  • 74. 74 Figure 4. 3 Freebody diagram, torque, shear force and bending moment diagrams for the shaft. The Shear force and Bending moment diagrams x-y plane ๐บ = = 475 ๐‘™ ๐บ = - ๐บ = 475 โ€“ 870 ๐บ = -395 ๐‘™ ๐‘ฅ ( ) ๐‘™ in ( ) ๐‘Ÿ ( ) ( ) ( ) 0 0 0 2600 0 0 500 1000 1500 2000 2500 3000 y [in.] x [in.] moment diagram(x -y)
  • 75. 75 x-z plane ๐‘ฅ ( ) ๐‘™ in ( ) ๐‘ก ( ) ( ) ( ) The total bending moment diagram It could be found by superposition of the moments in the x-y plane and x-z plane. ๐บ =โˆš( ) ( ) =2600 Ibf.in The shoulder at point I In the x-y plane ( ) ( ) ( ) ( ) ๐‘™ ๐‘› In the x-z plane ( ) ( ) ( ) ( ) ๐‘™ in Combined I โˆš( ) ( ) I = 1213 ibf. ๐‘›
  • 76. 76 ๐‘› The midrange torque is ๐‘š = 16723 ๐‘™ . ๐‘› ๐‘š = = 0 Estimation of the stress concentrations A 1030 CD steel is chosen for its low price with ๐‘บ๐’–๐’• = 76 ๐’Œ๐’‘๐’”๐’Š, Sy =64 kpsi. From table 4.2. therefore, = 2.7 ๐‘˜๐‘๐‘  = โˆ’0.265 Then ๐‘˜ = 2.7(76)โˆ’0.265 = 0.8569 Let ๐‘˜ = 0.9 (๐‘ก๐‘œ ๐‘ ๐‘๐‘˜ ๐‘™ ๐‘ก ๐‘Ÿ โˆ’ ๐‘œ๐‘› ๐‘ค ๐‘› ๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘›) ๐‘˜๐‘ = ๐‘˜ = ๐‘˜ = 1 โ€ฒ = 0.5 ๐‘ข๐‘ก ๐‘œ๐‘Ÿ ๐‘ข๐‘ก โ‰ค 200 ๐‘˜๐‘๐‘  Using eq. 29 = ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ = 0.8569 0.9 0.5 76 = 29.305 ๐‘˜๐‘๐‘  Using DE-Goodman criterion to make the first estimate for the smaller diameter at the shoulder
  • 77. 77 โˆš * โˆš (๐‘˜ ) (๐‘˜ ๐‘  ) โˆš (๐‘˜ ๐‘š) (๐‘˜ ๐‘  ๐‘š) + Assuming shoulder-fillet well-rounded or r/d=0.1 then From table 4.3 ๐‘ก = 1.7 ๐‘ก๐‘  = 1.5 Assume = ๐‘ก ๐‘› ๐‘  = ๐‘ก๐‘  with ๐‘š = = 0 The Goodman reduces to โˆš ( ) { โˆš } Since the Goodman criterion is conservative, then it possible to select the next standard size below 1.76 which is =1.812 in A typical diameter ratio at the shoulder is = 1.2 Therefore, ๐ท = 1.2 1.812 = 2.17 ๐‘›. Round up to ๐ท = 2.25 ๐‘›. A nominal 2.25 in. CD shaft is used Checking the acceptability of the estimates
  • 78. 78 ๐ท Assume fillet radius to diameter ratio ๐‘Ÿ Therefore, ๐‘Ÿ = 0.1 1.825 = 0.1825 ๐‘›. . Using using fig 4.5 to find stress concentration ๐‘ก=1.61 Using fig.4.6 to find the sensitivity factor q. Then ๐‘ž = 0.81 = 1 + ( ๐‘ก โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . ๐‘ž. 33 = 1 + 0.81(1.61โˆ’ 1) =1.5 Using fig. 4.7 for (r/d) =0.1 and (D/d) =1.23 then ๐‘ก๐‘  = 1.4 Using fig. 4.8 for r=0.2 in. then ๐‘ž๐‘  = 0.95 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘ž. 34 ๐‘  = 1 + 0.95(1.4 โˆ’ 1) ๐‘  = 1.37 = 0.8569 (๐‘›๐‘œ๐‘ก ๐‘ ๐‘› )
  • 79. 79 Kb=( ) ๐‘œ๐‘Ÿ 0.11 < โ‰ค 2 ๐‘› Using eq. 35 Kb=( ) Using eq. 29 = 0.824 0.8569 0.5 76 = 26.83 ๐‘˜๐‘๐‘  The Von Mises stresses for rotating round, solid shafts, neglecting axial loads are given by: =( ( ) 0( ) ( ) 1 ( ) ๐‘๐‘  =( ( ) โ„ 0( ) ( ) 1 * ( ) + โˆš ( ) ๐‘› ๐‘› ๐‘›
  • 80. 80 Check for Yielding The von Mises maximum stress is : ๐‘š ๐‘ฅโ€ฒ= [( ๐‘š + )2 + 3( ๐‘š + )2]1โ„2 *( ๐‘˜ ( ๐‘š ) ) ( ๐‘˜ ๐‘ ( ๐‘š ) ) + ๐‘›๐‘ฆ = 1.73 The Keyway = 1320 . ๐‘› Assume that at the bottom of the keyway = 0.02 ( ๐‘ ๐‘ก ๐‘› ๐‘Ÿ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก ๐‘œ๐‘›) Therefore, ๐‘Ÿ =0.02*1.812
  • 81. 81 ๐‘Ÿ =0.0362 Using fig. 4.5 ๐‘ก = 2.5 And using fig. 4.6 ๐‘ž = 0.7 Using eq.33 = 1 + ( ๐‘ก โˆ’ 1) = 1 + 0.7(2.5โˆ’ 1) = 2.03 Using fig. 4.7 ๐‘ก๐‘  = 2 Fig 4.8 gives9 ๐‘ž๐‘  = 0.86 Using eq.34 ๐‘  = 1 + ๐‘ž๐‘  ( ๐‘ก๐‘  โˆ’ 1) ๐‘  = 1 + 0.86(2.05โˆ’ 1) ๐‘  = 1.9 ( ) ๐‘๐‘  * ( ) +
  • 82. 82 โˆš ( ) =47135 psi ๐‘› ๐‘› ๐‘› Use the steel 1050 CD Sut =1000kpsi and Sy=84kpsi Ka=2.7( ) =0.797 = ๐‘˜ ๐‘˜ ๐‘˜๐‘๐‘˜ ๐‘˜ ๐‘˜ โ€ฒ = 0.797 0.9 0.5 100 = 35865 k psi q=0.75 = 1 + 0.75( ๐‘ก โˆ’ 1) = 1 + 0.75(2.5โˆ’ 1) = 2.1 ( ) ๐‘๐‘  ๐‘› ๐‘› ๐‘›
  • 83. 83 Inspecting point K The retaining ring groove At point (K) a flat bottom groove exists to accommodate the retaining ring. This point is characterized by: ๐‘ก ๐‘  ๐‘ฃ ๐‘Ÿ๐‘ฆ ๐‘œ๐‘Ÿ ๐‘™ ๐‘ก ๐‘œ๐‘ก๐‘ก๐‘œ๐‘š ๐‘Ÿ๐‘œ๐‘œ๐‘ฃ ๐‘  = 0 ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘ก๐‘œ๐‘Ÿ๐‘ž๐‘ข ๐‘Ÿ ๐‘š = 4124 ๐‘™ . ๐‘› ๐‘  ๐‘› ๐‘ ๐‘ก ๐‘ฆ ๐‘ก ๐‘š๐‘œ๐‘š ๐‘›๐‘ก ๐‘Ÿ ๐‘š ๐‘š = = ๐‘š = 0 In order to check how critical point (K) is Using table 4.3 to estimate the stress concentration factor as follows: = ๐‘ก = 5.0 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› low safety factor. standard retaining ring specs could be obtained from related tables and going online to (www.globalspec.com) Using the shaft diameter of 2.0 in. to get Groove width = 0.068 ๐‘›. Groove depth ๐‘ก = 0.052 ๐‘›. Fillet radius at bottom of the groove ๐‘Ÿ = ๐‘›. Therefore, ๐‘Ÿ ๐‘ก
  • 84. 84 ๐‘ก = ๐ท โˆ’ 2๐‘ก = 1.812 โ€“ (2 0.052) = 1.708 ๐‘› Using fig. 4.9. ๐‘ก = 4.48 Fig. 4.6 yields ๐‘ž = 0.6 = 1 + ( ๐‘ก โˆ’ 1) = 1 + 0.6(4.48 โˆ’ 1) = 3 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› โ€ข Determination of D Since ๐ท/d = 1.2~1.5 Then d= Therefore ๐ท6 = = 1.750 Round up to the next standard size Therefore ๐ท6 = 1.750 ๐‘›
  • 85. 85 Inspecting point m Point (M) is characterized by being a shoulder to axially hold the bearing. Only bending is present due to a small moment. However, the cross-section area is small too, which results in a high stress concentration especially the fillet radius is small to accommodate the bearing. Finding the Moment at point d n the x-y plane ( ) ( ) ( ) ( ) ๐‘™ ๐‘› In the x-z plane ( ) ( ) ( ) ( ) ๐‘™ in Combined =โˆš( ) ( ) =5024 ibf . ๐‘› Therefore = 5024 ๐‘™ . ๐‘› And ๐‘š = ๐‘š = = 0 Using table 4.3 for a quick estimation of Kt for a sharp fillet shoulder where = 0.02 And ๐‘ก = 2.39 Also = 1.688 ๐‘›.
  • 86. 86 Therefore ๐‘Ÿ =d*0.02= 1.938*0.02=0.03876 Using fig. 4.6 ๐‘ž = 0.75 = 1 + 0.75(2.39 โˆ’ 1) = 2.0425 โ€ฒ = = ( )( ) ( ) ๐‘๐‘  ๐‘› This value of (nf) is satisfactory and should be checked as the bearing is selected. ๐ท1 = ๐ท7 = 1.688 ๐‘›. ๐ท2 = ๐ท6 = 1.750 ๐‘›.pll ๐ท3 = ๐ท5 = 1.812 ๐‘›. ๐ท4 = 2.25 n
  • 87. 87 chapter5 Bearing Selection Bearings are selected based on the design requirements and the previous calculations for the shaft and gears which are summarized below. ๐บ ๐‘Ÿ ๐‘› ๐‘Ÿ ๐‘› ๐‘™ = 13 000 ๐‘œ๐‘ข๐‘Ÿ๐‘  ๐‘œ๐‘ข๐‘›๐‘ก ๐‘Ÿ ๐‘  ๐‘ก ๐‘ ๐‘ = 455 ๐‘Ÿ๐‘๐‘š. ๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘œ๐‘Ÿ ๐‘  ๐‘ง = 1 ๐‘›. ๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘Ÿ ๐‘› ๐‘ค ๐‘ก = 1 ๐‘›. ๐‘™ ๐‘™ ๐‘ก๐‘ฆ = 99 % Right bearing reactions ๐‘ง = 1742 ๐‘™ Rby = 714 RA= 1883๐‘™ Left bearing reactions ๐‘ง = 101 ๐‘™ ๐‘ฆ = 354 ๐‘™ = 368 Due to the higher load on the right side of the shaft, the right bearing is considered more critical. Right bearing selection procedure: The design dimensionless life measure for the bearing is determined by using eq. 5.3
  • 88. 88 = Assuming a ball bearing with = 3 And using eq. 5.2 [ ( )( ) โ„ ] = 1 ๐‘œ๐‘Ÿ ๐‘ ๐‘ก ๐‘ฆ ๐‘™๐‘œ ๐‘ . [ ( ) โ„ ] 10 = 22086ibf 10 = 22086 0.00444 10 = 98 ๐‘˜ Checking this load with SKF bearing catalogue for ball bearings in the vicinity of 1 in. diameter, as shown in table. 5.1. It sounds that the load is too high for a deep groove ball bearing. Repeating the load calculation for a roller bearing with
  • 89. 89 [ ( ) โ„ ] 10 = 17266 10 = 17266 0.00444 10 = 76.66 ๐‘˜ Checking this load with SKF bearing catalogue for roller bearings in the vicinity of 1 in. diameter, as shown in table. 5.2. The tables show that the following roller bearing matches the load. = 83๐‘˜ ๐ท=30๐‘š๐‘š=1.188 in ๐‘‚๐ท = 72 ๐‘š๐‘š = 2.834 ๐‘›. = 27 ๐‘š๐‘š = 1.063 ๐‘›.
  • 90. 90 Left bearing selection Choosing a ball bearing with = 3 And using eq. 5.2 [ ( )( ) โ„ ] = 1 ๐‘œ๐‘Ÿ ๐‘ ๐‘ก ๐‘ฆ ๐‘™๐‘œ ๐‘ . [ ( ) โ„ ] 10 = 4316 10 = 4316 0.00444 10 = 19.16๐‘˜ Searching table 5.1 that gives the specifications of deep groove ball bearings in the proximity of 1 in bore and applied load of 19.16kN. The bearings in this category that matches these requirements is SKF 6305. The left bearing specifications are ๐ท = 25๐‘š๐‘š = 1 ๐‘›. ๐‘‚๐ท = 62 ๐‘š๐‘š โ‰ˆ 2.5 ๐‘›. = 17 ๐‘š๐‘š = 0.67 ๐‘›. = 23.4๐‘˜ = 5270 ๐‘™ . ๐‘œ๐‘ข๐‘™ ๐‘Ÿ ๐‘š ๐‘ก ๐‘Ÿ = 1.3~1.4 ๐‘›. ๐‘š ๐‘ฅ ๐‘š๐‘ข๐‘š ๐‘™๐‘™ ๐‘ก ๐‘Ÿ ๐‘ข๐‘  = 0.08 ๐‘›. The right bearing bore is 1.1811 in. which is slightly larger than the estimated one. However, this has no effect of the design since the diameter of the next step of the shaft is 1.4 in. that provide the required shoulder for the bearing.
  • 91. 91 Bearing of Gear 2 Left bearing Selection ๐บ ๐‘Ÿ ๐‘› ๐‘Ÿ ๐‘› ๐‘™ = 13 000 High counter shaft speed =1992 rpm. ๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘œ๐‘Ÿ ๐‘  ๐‘ง = 0.750 ๐‘›. ๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘Ÿ ๐‘› ๐‘ค ๐‘ก = 1 ๐‘›. ๐‘™ ๐‘™ ๐‘ก๐‘ฆ = 99 % ๐‘ง = 245 ๐‘ฆ = 89 = 260 ๐‘™ = Assuming a ball bearing with = 3 [ ( ) โ„ ] 10 = 5491.946 10 = 4988 0.00444 10 = 22.14 ๐‘˜ At Table 5.1 ( C= 26 kN)
  • 92. 92 ID = 25mm OD = 62mm W = 17mm Right bearing Selection B๐‘ง =301 i B๐‘ฆ = 110 B= 320 ๐‘™ Assuming a roller bearing with = =10/3 [ ( ) โ„ ] 10 = 4569 ๐‘™ 10 = 4569 0.00444 10 = 20.28 ๐‘˜
  • 93. 93 At Table 5.2 ( C = 22.9 kN) ID = 17mm OD = 62mm W = 17mm Bearing of Gear 5 Left bearing Selection ๐บ ๐‘Ÿ ๐‘› ๐‘Ÿ ๐‘› ๐‘™ = 13 000 High counter shaft speed =104 ๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘œ๐‘Ÿ ๐‘  ๐‘ง = 1.688 ๐‘›. ๐‘ ๐‘ก ๐‘š ๐‘ก ๐‘Ÿ ๐‘› ๐‘ค ๐‘ก = 1 ๐‘›. ๐‘™ ๐‘™ ๐‘ก๐‘ฆ = 99 % ๐‘ง = 1086 ๐‘ฆ = 475 = 1185 ๐‘™ = Assuming a roller bearing with = 10/3
  • 94. 94 [ ( ) โ„ ] 10 = 6975 10 = 6975 0.00444 10 = 31 ๐‘˜ At Table 5.2 ( C= 44.6 kN) ID = 45mm OD =75 mm W = 16mm Right bearing Selection B๐‘ง = 1086 B๐‘ฆ = 395 ๐‘™ B = 1155 ๐‘™ Assuming a roller bearing with = 10/3 [ ( ) โ„ ] 10 = 6798 ๐‘™ 10 = 6798 0.00444 10 = 30.18 ๐‘˜ At Table 5.2 ( C = 44.6 kN) ID = 45mm OD = 75mm W = 16mm
  • 95. 95 Chapter 6 Key and Keyway Design For Gear4 & Gear 3. From the previous data Bore [in.] Hub length [in.] Torque lbf.in. Safety factor Gear 3 1.625 1.5 3822 2 Gear 4 1.625 2.0 Using table 6.3 for a square key Shaft diameter w h Keyway depth 1.625 1 5/8 3/8 3/8 3/16 Choosing key material of 1020 CD steel with ๐‘บ๐’š = ๐Ÿ“๐Ÿ• ๐’Œ๐’‘๐’”๐’Š. The lateral force on the key at the surface of the shaft is: = The area prone to bearing stress is ๐‘™ ๐‘™ The bearing stress is
  • 96. 96 ๐‘™ But ๐‘› ๐‘› ๐‘™ ๐‘™ ๐‘› ๐‘ฆ ๐‘› Retaining Rings The retaining ring is selected based on the diameter of the shaft at which the groove is required. The selected ring specs are associated with ring groove dimensions which are supposed to commensurate with the designed dimensions. Table 6.4 is a typical sample of retaining ring specifications. The summary of the retaining rings to retain the gears and bearings are listed in the table below: Dimension Both Gears Tolerance Left Bearing Tolerance Right Bearing Tolerance Shaft Dia. 1.625 1.023 1.375 Groove Dia. 1.529 ยฑ 0.005 0.961 ยฑ 0.004 1.291 ยฑ 0.004 Groove Width 0.068 + 0.004 โˆ’ 0.000 0.046 + 0.004 โˆ’ 0.000 0.056 + 0.004 โˆ’ 0.000 Groove Depth 0.048 0.031 0.042 Max. groove fillet radius 0.010 0.010 0.010 Mini. Edge margin 0.144 0.105 0.105 Allowable axial thrust 14 800 lbf 6 000 lbf 9700 lbf All dimensions are in inches. h w F
  • 97. 97 For Gear 2 From the previous data Bore [in.] Hub length [in.] Torque lbf.in. Safety factor Gear 2 0.938 1.5 873 2 Using table 6.3 for a square key Shaft diameter w h Keyway depth 0.938 7.5/8 1/4 1/4 1/8 Choosing key material of 1020 CD steel with ๐‘บ๐’š = ๐Ÿ“๐Ÿ• ๐’Œ๐’‘๐’”๐’Š. The lateral force on the key at the surface of the shaft is: = The area prone to bearing stress is ๐‘™ ๐‘™ The bearing stress is ๐‘™ But ๐‘› ๐‘› ๐‘™ ๐‘™ ๐‘› ๐‘ฆ ๐‘™ ๐‘›
  • 98. 98 For Gear 5 From the previous data Bore [in.] Hub length [in.] Torque lbf.in. Safety factor Gear 2 1.812 2 16723 2 Using table 6.3 for a square key Shaft diameter w h Keyway depth 1.812 1 13/16 1/2 1/2 1/4 Choosing key material of 1045 CD steel with ๐‘บ๐’š = 7๐Ÿ• ๐’Œ๐’‘๐’”๐’Š. The lateral force on the key at the surface of the shaft is: = The area prone to bearing stress is ๐‘™ ๐‘™ The bearing stress is ๐‘™ But ๐‘› ๐‘› ๐‘™ ๐‘› ๐‘ฆ ๐‘›
  • 99. 99 Chapter 7 Eg: Hexagonal-head bolts and nuts are used to keep the head of a pressure vessel tight with the vessel. The joint is identical of 0.75 in. thickness for the vessel and its head. They are made of grade 25 cast-iron. The separating force is 36 k lbf. The bolt specs are: ๐‘› ๐‘› ( ) ๐ท ๐‘ก ๐‘Ÿ๐‘š ๐‘› ๐‘˜ ,๐‘˜๐‘š, ๐‘› . ( ) ๐‘› ๐‘ก ๐‘›๐‘ข๐‘š ๐‘Ÿ ๐‘œ ๐‘œ๐‘™๐‘ก๐‘  ๐‘Ÿ ๐‘ž๐‘ข ๐‘Ÿ . ๐‘™๐‘œ ๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘  2 ๐‘› ๐‘ก ๐‘œ๐‘™๐‘ก๐‘  ๐‘š ๐‘ฆ ๐‘Ÿ ๐‘ข๐‘  ๐‘ค ๐‘› ๐‘ก ๐‘—๐‘œ ๐‘›๐‘ก ๐‘  ๐‘ก ๐‘˜ ๐‘› ๐‘ ๐‘Ÿ๐‘ก. Solution ๐‘™ ๐‘› To find the bolt length, nut thickness should be determined from table 7.3
  • 100. 100 ๐‘ก ๐‘› Adding two threads after the nut to the total length of the bolt therefore the length of these two threads is ( ) ๐‘™ ๐‘ก ๐‘› Round up to the next standard size L=2.5 in ๐‘› The length of the threaded part is ๐‘› The length of the unthreaded part is ๐‘™ ๐‘› The length of the threaded part in the grip is ๐‘™ ๐‘™ ๐‘™ ๐‘› Using fig.(4.7) ๐‘› ๐‘› ๐‘™ ๐‘™ ๐‘™ ๐‘›
  • 101. 101 For No 25-cast iron wall Select =14 ๐‘๐‘  For two identical members in the grip ( ๐‘™ ๐‘™ ) ( ) ๐‘™ ๐‘› Using table 7.5 to find /in ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ The joint stiffness Using table 7.6 to obtain the minimum proof strength of grade 5 SAE bolt ๐‘˜๐‘™ ๐‘› ( ๐‘› ) Rearrangement gives ๐‘›
  • 102. 102 Roundup to 6 bolts and check for n ๐‘› The value of n is higher than the required value (2) The tightening torque is (my first design is end, At the end of my project i use my data and make a gear box drawing picture .)