SlideShare a Scribd company logo
1 of 16
Download to read offline
Created by S.S. in Jan 2008 
Discovery of Linear Acyclic Models 
Using Independent Component Analysis 
Shohei Shimizu, Patrik Hoyer, 
Aapo Hyvarinen and Antti Kerminen 
LiNGAM homepage: http://www.cs.helsinki.fi/group/neuroinf/lingam/
2 
Independent Component Analysis 
(Hyvarinen et al., 2001) 
x  As 
m 㬍1 m 㬍n n 㬍1 
• A is unknown, cov(s)=I 
– Typically, A is square (m=n) 
i s 
• are assumed to be non-Gaussian and mutually 
independent 
• Non-Gaussian and independence are 
the key assumptions in ICA 
• Estimable including the rotation (Comon, 1994)
3 
Linear acyclic models 
(Bollen, 1989; Pearl, 2000; Spirtes et al., 2000) 
• Continuous variables 
• Directed acyclic graph (DAG) 
• The value assigned to each variable is a linear 
combination of those previously assigned, plus a 
disturbance term ei 
• Disturbances (errors) are independent and have non-zero 
variances 
x  Bx  e i 
i ij j e x b x    
k j k i 
( ) ( ) 
or
4 
Our goal 
• We know 
– Data X is generated by 
• We do NOT know 
x  Bx  e 
– Connection strengths: B 
– Order: k(i) 
– Disturbances: ei 
• What we observe is data X only 
• Goal 
– Estimate B and k using data X only!
5 Can we recover the original 
network? 
Original network 
?
6 
Can we recover the original 
network using ICA? 
Yes! 
Original network Estimated network
7 
Discovery of linear acyclic models 
from non-experimental data 
• Existing methods (Bollen,1989; Pearl, 2000; Spirtes et al., 2000) 
– Gaussian assumption on disturbances ei 
– Produce many equivalent models 
• Our LiNGAM approach (Shimizu et al, UAI2005, 2006 JMLR) 
– Replace Gaussian assumption by non-Gaussian assumption 
– Can identify the connection strengths and structure 
 
Gaussnianity 
Non-Gaussianity 
Equivalent models 
No Equivalent models 
x1 x2 
x3 
x1 x2 
x3 
x1 x2 
x3 
x1 x2 
x3 
x1 x2 
x3 
x1 x2 
x3
8 Linear Non-Gaussian Acyclic Models 
(LiNGAM) 
• As usual, linear acyclic models, 
but disturbances are assumed to be 
non-Gaussian: 
i ij j e x b x    
• Examples 
x  Bx  e i 
k j k i 
( ) ( ) 
or 
i e
Outline of LiNGAM algorithm 9 
x2 
x3 
x4 
x1 
Non-significant edges 
x2 
x3 
x4 
x1 
1. Estimate B by ICA 
+ post-processing 
2. Find an order k(i) (DAG) 
3. Prune non-significant edges 
x2 
x3 
x4 
x1
10 Key ideas 
i x 
• Observed variables are linear combinations of 
non-Gaussian independent disturbances 
x  Bx  
e 
( )1 
x I B e 
   
Ae 
 
– The classic case of ICA (Independent Component Analysis) 
• Permutation indeterminacy in ICA can be solved 
– Can be shown that the correct permutation is the only one which 
has no zeros in the diagonal (Shimizu et al., 2005; 2006) 
• Pruning edges can be done by many existing methods 
– Imposing sparseness, testing, model fit etc. 
i e
11 
Examples of estimated networks 
• All the edges correctly identified 
• All the connection strengths approximately correct 
Original network Estimated network
12 What kind of mistakes LiNGAM might make? 
• One falsely added edge (x1x7, -0.019) 
• One missing edge (x1x6, 0.0088) 
Original network Estimated network
13 
Real data example 1 
• Galton’s height data (Galton, 1886) 
– x1: child height 
– x2: `midparent’ height 
• (father’s height + 1.08 mother’s height)/2 
– 928 observations 
• Estimates: 

 
 

 

 
x 
1 
0 0.67 
• Estimated direction:
e 
1 
2 
x 
1 
2 
2 
0.012 0 
e 
x 
x 
1 2 x  x child  midparent
14 
Real data example 2 
• Fuller’s corn data (Fuller, 1987) 
– x1: Yield of corn 
– x2: Soil Nitrogen 
– 11 observations 
• Estimates: 

 
 	 

 
x 
1 
0 0.34 
• Estimated direction:

More Related Content

What's hot

【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデルMasashi Komori
 
20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)Masakazu Shinoda
 
傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装takehikoihayashi
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)MLSE
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門Kawamoto_Kazuhiko
 
2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰logics-of-blue
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心takehikoihayashi
 
GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論Koichiro Gibo
 
DARM勉強会第3回 (missing data analysis)
DARM勉強会第3回 (missing data analysis)DARM勉強会第3回 (missing data analysis)
DARM勉強会第3回 (missing data analysis)Masaru Tokuoka
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)Kota Matsui
 
2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデルlogics-of-blue
 
PRML 1.6 情報理論
PRML 1.6 情報理論PRML 1.6 情報理論
PRML 1.6 情報理論sleepy_yoshi
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章Shuyo Nakatani
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-Shiga University, RIKEN
 
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章Shushi Namba
 
【書きかけ】一般化線形モデルの流れ
【書きかけ】一般化線形モデルの流れ【書きかけ】一般化線形モデルの流れ
【書きかけ】一般化線形モデルの流れTomoshige Nakamura
 
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう 「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう Junpei Tsuji
 
PRML輪読#8
PRML輪読#8PRML輪読#8
PRML輪読#8matsuolab
 
反応時間データをどう分析し図示するか
反応時間データをどう分析し図示するか反応時間データをどう分析し図示するか
反応時間データをどう分析し図示するかSAKAUE, Tatsuya
 

What's hot (20)

【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
 
20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)
 
傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
 
2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心
 
GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論
 
DARM勉強会第3回 (missing data analysis)
DARM勉強会第3回 (missing data analysis)DARM勉強会第3回 (missing data analysis)
DARM勉強会第3回 (missing data analysis)
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
 
2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル
 
PRML 1.6 情報理論
PRML 1.6 情報理論PRML 1.6 情報理論
PRML 1.6 情報理論
 
Chapter2.3.6
Chapter2.3.6Chapter2.3.6
Chapter2.3.6
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
 
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
 
【書きかけ】一般化線形モデルの流れ
【書きかけ】一般化線形モデルの流れ【書きかけ】一般化線形モデルの流れ
【書きかけ】一般化線形モデルの流れ
 
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう 「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう
 
PRML輪読#8
PRML輪読#8PRML輪読#8
PRML輪読#8
 
反応時間データをどう分析し図示するか
反応時間データをどう分析し図示するか反応時間データをどう分析し図示するか
反応時間データをどう分析し図示するか
 

Similar to Discovery of Linear Acyclic Models Using Independent Component Analysis

A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...Shiga University, RIKEN
 
Graphical Models 4dummies
Graphical Models 4dummiesGraphical Models 4dummies
Graphical Models 4dummiesxamdam
 
Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...
Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...
Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...Sangwoo Mo
 
Introduction to Supervised ML Concepts and Algorithms
Introduction to Supervised ML Concepts and AlgorithmsIntroduction to Supervised ML Concepts and Algorithms
Introduction to Supervised ML Concepts and AlgorithmsNBER
 
Network Metrics and Measurements in the Era of the Digital Economies
Network Metrics and Measurements in the Era of the Digital EconomiesNetwork Metrics and Measurements in the Era of the Digital Economies
Network Metrics and Measurements in the Era of the Digital EconomiesPavel Loskot
 
Non-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discoveryNon-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discoveryShiga University, RIKEN
 
Risk Classification with an Adaptive Naive Bayes Kernel Machine Model
Risk Classification with an Adaptive Naive Bayes Kernel Machine ModelRisk Classification with an Adaptive Naive Bayes Kernel Machine Model
Risk Classification with an Adaptive Naive Bayes Kernel Machine ModelJessica Minnier
 
Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...
Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...
Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...Chris Rackauckas
 
Standard Statistical Feature analysis of Image Features for Facial Images usi...
Standard Statistical Feature analysis of Image Features for Facial Images usi...Standard Statistical Feature analysis of Image Features for Facial Images usi...
Standard Statistical Feature analysis of Image Features for Facial Images usi...Bulbul Agrawal
 
Dependency patterns for latent variable discovery
Dependency patterns for latent variable discovery Dependency patterns for latent variable discovery
Dependency patterns for latent variable discovery Bayesian Intelligence
 
Choosing to grow a graph
Choosing to grow a graphChoosing to grow a graph
Choosing to grow a graphAustin Benson
 
NS-CUK Seminar: H.B.Kim, Review on "Sequential Recommendation with Graph Neu...
NS-CUK Seminar: H.B.Kim,  Review on "Sequential Recommendation with Graph Neu...NS-CUK Seminar: H.B.Kim,  Review on "Sequential Recommendation with Graph Neu...
NS-CUK Seminar: H.B.Kim, Review on "Sequential Recommendation with Graph Neu...ssuser4b1f48
 
Neural netorksmatching
Neural netorksmatchingNeural netorksmatching
Neural netorksmatchingMasa Kato
 
Lecture artificial neural networks and pattern recognition
Lecture   artificial neural networks and pattern recognitionLecture   artificial neural networks and pattern recognition
Lecture artificial neural networks and pattern recognitionHưng Đặng
 
Lecture artificial neural networks and pattern recognition
Lecture   artificial neural networks and pattern recognitionLecture   artificial neural networks and pattern recognition
Lecture artificial neural networks and pattern recognitionHưng Đặng
 
GAUSSIAN PRESENTATION (1).ppt
GAUSSIAN PRESENTATION (1).pptGAUSSIAN PRESENTATION (1).ppt
GAUSSIAN PRESENTATION (1).pptsudhavathsavi
 
GAUSSIAN PRESENTATION.ppt
GAUSSIAN PRESENTATION.pptGAUSSIAN PRESENTATION.ppt
GAUSSIAN PRESENTATION.pptsudhavathsavi
 

Similar to Discovery of Linear Acyclic Models Using Independent Component Analysis (20)

A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...
 
Graphical Models 4dummies
Graphical Models 4dummiesGraphical Models 4dummies
Graphical Models 4dummies
 
Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...
Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...
Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...
 
Introduction to Supervised ML Concepts and Algorithms
Introduction to Supervised ML Concepts and AlgorithmsIntroduction to Supervised ML Concepts and Algorithms
Introduction to Supervised ML Concepts and Algorithms
 
Network Metrics and Measurements in the Era of the Digital Economies
Network Metrics and Measurements in the Era of the Digital EconomiesNetwork Metrics and Measurements in the Era of the Digital Economies
Network Metrics and Measurements in the Era of the Digital Economies
 
nber_slides.pdf
nber_slides.pdfnber_slides.pdf
nber_slides.pdf
 
Non-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discoveryNon-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discovery
 
Risk Classification with an Adaptive Naive Bayes Kernel Machine Model
Risk Classification with an Adaptive Naive Bayes Kernel Machine ModelRisk Classification with an Adaptive Naive Bayes Kernel Machine Model
Risk Classification with an Adaptive Naive Bayes Kernel Machine Model
 
MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
 
Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...
Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...
Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...
 
Standard Statistical Feature analysis of Image Features for Facial Images usi...
Standard Statistical Feature analysis of Image Features for Facial Images usi...Standard Statistical Feature analysis of Image Features for Facial Images usi...
Standard Statistical Feature analysis of Image Features for Facial Images usi...
 
Dependency patterns for latent variable discovery
Dependency patterns for latent variable discovery Dependency patterns for latent variable discovery
Dependency patterns for latent variable discovery
 
Choosing to grow a graph
Choosing to grow a graphChoosing to grow a graph
Choosing to grow a graph
 
NS-CUK Seminar: H.B.Kim, Review on "Sequential Recommendation with Graph Neu...
NS-CUK Seminar: H.B.Kim,  Review on "Sequential Recommendation with Graph Neu...NS-CUK Seminar: H.B.Kim,  Review on "Sequential Recommendation with Graph Neu...
NS-CUK Seminar: H.B.Kim, Review on "Sequential Recommendation with Graph Neu...
 
OOD_PPT.pptx
OOD_PPT.pptxOOD_PPT.pptx
OOD_PPT.pptx
 
Neural netorksmatching
Neural netorksmatchingNeural netorksmatching
Neural netorksmatching
 
Lecture artificial neural networks and pattern recognition
Lecture   artificial neural networks and pattern recognitionLecture   artificial neural networks and pattern recognition
Lecture artificial neural networks and pattern recognition
 
Lecture artificial neural networks and pattern recognition
Lecture   artificial neural networks and pattern recognitionLecture   artificial neural networks and pattern recognition
Lecture artificial neural networks and pattern recognition
 
GAUSSIAN PRESENTATION (1).ppt
GAUSSIAN PRESENTATION (1).pptGAUSSIAN PRESENTATION (1).ppt
GAUSSIAN PRESENTATION (1).ppt
 
GAUSSIAN PRESENTATION.ppt
GAUSSIAN PRESENTATION.pptGAUSSIAN PRESENTATION.ppt
GAUSSIAN PRESENTATION.ppt
 

Recently uploaded

POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Cherry
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
Genome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxGenome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxCherry
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptxArvind Kumar
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Cherry
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cherry
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsSérgio Sacani
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Cherry
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfCherry
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Cherry
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxCherry
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 

Recently uploaded (20)

POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Genome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxGenome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptx
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdf
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 

Discovery of Linear Acyclic Models Using Independent Component Analysis

  • 1. Created by S.S. in Jan 2008 Discovery of Linear Acyclic Models Using Independent Component Analysis Shohei Shimizu, Patrik Hoyer, Aapo Hyvarinen and Antti Kerminen LiNGAM homepage: http://www.cs.helsinki.fi/group/neuroinf/lingam/
  • 2. 2 Independent Component Analysis (Hyvarinen et al., 2001) x As m 㬍1 m 㬍n n 㬍1 • A is unknown, cov(s)=I – Typically, A is square (m=n) i s • are assumed to be non-Gaussian and mutually independent • Non-Gaussian and independence are the key assumptions in ICA • Estimable including the rotation (Comon, 1994)
  • 3. 3 Linear acyclic models (Bollen, 1989; Pearl, 2000; Spirtes et al., 2000) • Continuous variables • Directed acyclic graph (DAG) • The value assigned to each variable is a linear combination of those previously assigned, plus a disturbance term ei • Disturbances (errors) are independent and have non-zero variances x Bx e i i ij j e x b x k j k i ( ) ( ) or
  • 4. 4 Our goal • We know – Data X is generated by • We do NOT know x Bx e – Connection strengths: B – Order: k(i) – Disturbances: ei • What we observe is data X only • Goal – Estimate B and k using data X only!
  • 5. 5 Can we recover the original network? Original network ?
  • 6. 6 Can we recover the original network using ICA? Yes! Original network Estimated network
  • 7. 7 Discovery of linear acyclic models from non-experimental data • Existing methods (Bollen,1989; Pearl, 2000; Spirtes et al., 2000) – Gaussian assumption on disturbances ei – Produce many equivalent models • Our LiNGAM approach (Shimizu et al, UAI2005, 2006 JMLR) – Replace Gaussian assumption by non-Gaussian assumption – Can identify the connection strengths and structure Gaussnianity Non-Gaussianity Equivalent models No Equivalent models x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3
  • 8. 8 Linear Non-Gaussian Acyclic Models (LiNGAM) • As usual, linear acyclic models, but disturbances are assumed to be non-Gaussian: i ij j e x b x • Examples x Bx e i k j k i ( ) ( ) or i e
  • 9. Outline of LiNGAM algorithm 9 x2 x3 x4 x1 Non-significant edges x2 x3 x4 x1 1. Estimate B by ICA + post-processing 2. Find an order k(i) (DAG) 3. Prune non-significant edges x2 x3 x4 x1
  • 10. 10 Key ideas i x • Observed variables are linear combinations of non-Gaussian independent disturbances x Bx e ( )1 x I B e Ae – The classic case of ICA (Independent Component Analysis) • Permutation indeterminacy in ICA can be solved – Can be shown that the correct permutation is the only one which has no zeros in the diagonal (Shimizu et al., 2005; 2006) • Pruning edges can be done by many existing methods – Imposing sparseness, testing, model fit etc. i e
  • 11. 11 Examples of estimated networks • All the edges correctly identified • All the connection strengths approximately correct Original network Estimated network
  • 12. 12 What kind of mistakes LiNGAM might make? • One falsely added edge (x1x7, -0.019) • One missing edge (x1x6, 0.0088) Original network Estimated network
  • 13. 13 Real data example 1 • Galton’s height data (Galton, 1886) – x1: child height – x2: `midparent’ height • (father’s height + 1.08 mother’s height)/2 – 928 observations • Estimates: x 1 0 0.67 • Estimated direction:
  • 14.
  • 15. e 1 2 x 1 2 2 0.012 0 e x x 1 2 x x child midparent
  • 16. 14 Real data example 2 • Fuller’s corn data (Fuller, 1987) – x1: Yield of corn – x2: Soil Nitrogen – 11 observations • Estimates: x 1 0 0.34 • Estimated direction:
  • 17.
  • 18.
  • 19. e 1 2 x 1 2 2 0.014 0 e x x 1 2 x x Yield Nitrogen
  • 20. 15 Conclusions • Discovery of linear acyclic models from non-experimental data is an important topic of current research • A common assumption is linear-Gaussianity, but this leads to a number of indistinguishable models • A non-Gaussian assumption allows all the connection strengths and structure of linear acyclic models to be identified • Basic method: ICA + permutation + pruning • Matlab/Octave code: http://www.cs.helsinki.fi/group/neuroinf/lingam/
  • 21. 16 References • S. Shimizu, A. Hyvärinen, Y. Kano, and P. O. Hoyer Discovery of non-gaussian linear causal models using ICA. In Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI2005), pp. 526- 533, 2005. • S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7: 2003--2030, 2006.