SlideShare a Scribd company logo
1 of 30
Download to read offline
Shohei Shimizu
Shiga University / Osaka University
Japan
1
A non-Gaussian model for causal
discovery in the presence of hidden
common causes
2016 Munich Workshop on
Causal Inference and Information Theory
Abstract
• Managing hidden common causes is
essential in causal discovery
• Non-causally-related observed variables
can be correlated due to hidden common
causes
• Propose a linear non-Gaussian model for
estimating causal direction in cases with
hidden common causes
2
Motivation
Illustrative example
Strong correlation btw chocolate
consumption and number of Nobel
laureates (Messerli12NEJM)
4
2002-2011Chocolate consumption (kg/yr/capita)
Num.Nobellaureatesper10millionpop.
Corr. 0.791
P-value < 0.001
Eating more chocolate increases
num. Nobel laureates?
• Interpretational drift (Maurage+13, J. Nutrition)
5
Chclt Nobel
?Chclt Nobel
or
GDP GDP
Chclt Nobel
or
GDP
Corr. 0.791
P-value < 0.001
Nobel
Chocolate
Hidden
Common
cause
Manage this gap!
Hidden
Common
cause
Hidden
Common
cause
Formulating the problem
Structural causal models
(Pearl, 2000,2009; cf. Bollen, 1989)
• A framework for describing causal relations
• Generally speaking, if the value of 𝑥1 has
been changed and then that of 𝑥2 changes,
then 𝑥1 causes 𝑥2
7
 
 2122
111
,,
,
efxgx
efgx


x1 x2
f
e1 e2
GDP
NobelChclt
Challenge in causal discovery
8
Hidden common cause
 
 2122
111
,,
,
efxgx
efgx


Data matrix
x1
x2
 21... ,~ xxpdii
obs.1
Assume that either of
the three generated
the data
Estimate which of the
three models generated
the data
obs.nobs.2 …
x1 x2
f
x1 x2
f
x1 x2
f
e1 e2 e1 e2 e1 e2
     fpepep ,, 21
Hidden common cause Hidden common cause
 
 222
1211
,
,,
efgx
efxgx

  
 222
111
,
,
efgx
efgx


     fpepep ,, 21      fpepep ,, 21
Under what conditions
can we manage the gap?
• We have shown that it is possible under the three
assumptions: i) linearity; ii) Acyclicty;
iii) non-Gaussianity (Hoyer+08IJAR; Shimizu+14JMLR):
• Classical Bayesian network approach incapable
9
x1 x2
?
x1 x2
or
f1 f1
x1 x2
f1
or
21211212
11121
efxbx
efx




21212
11122121
efx
efxbx




22212
11121
efx
efx




Basic non-Gaussian model
(No hidden common cause)
S. Shimizu, P. O. Hoyer, A. Hyvärinen
and A. Kerminen
Journal of Machine Learning Research
2006
Linear Non-Gaussian Acyclic
Model (LiNGAM) (Shimizu et al., 2006)
• Identifiable: causal directions and coefficients
• Various extensions including nonlinear (Hoyer+08NIPS,
Zhang+09UAI) and cyclic (Lacerda+08UAI) models
11
i
ij
jiji exbx  
x1 x2
x3
21b
23b13b
2e
3e
1e
Linearity
Acyclicity
Non-Gaussian errors ei
Independence of errors ei
(no hidden common causes)
1212
Different directions give
different data distributions
Gaussian Non-Gaussian
(ex. uniform)
Model 1:
Model 2:
x1
x2
x1
x2
e1
e2
x1
x2
e1
e2
x1
x2
x1
x2
x1
x2
212
11
8.0 exx
ex


22
121 8.0
ex
exx


    1varvar 21  xx
    ,021  eEeE
13
Independent Component Analysis
(ICA) (Jutten & Herault, 1991; Comon, 1994; Hyvarinen et al., 2001)
• Observed variables are modeled by
where
– Hidden variables are non-Gaussian and
independent
• Then, mixing matrix A is identifiable up to
permutation and scaling of the columns
Asx 
 pjsj ,,1 


p
j
jiji sax
1
or
ix
Sketch of the identifiability proof
• Different directions give different zero/non-
zero patterns of the mixing matrices
– No zeros on the diagonal in the causal model
– No permutation indeterminacy
14
 


















2
1
212
1
1
01
e
e
bx
x

21212
11
exbx
ex


A sx
 


















2
112
2
1
10
1
e
eb
x
x

A sx22
12121
ex
exbx


x1
x2
e1
e2
x1
x2
e1
e2
0
0
Model 1:
Model 2:
LiNGAM with hidden
common causes
P. O. Hoyer, S. Shimizu, A. Kerminen,
and M. Palviainen
Int. J. Approximate Reasoning
2008
qf
2121
1
22
1
1
11
exbfx
efx
Q
q
qq
Q
q
qq








i
ij
jij
Q
q
qiqi exbfx   1

• Extension to incorporate non-Gaussian hidden
common causes
LiNGAM with hidden
common causes (Hoyer+08IJAR)
16
where are independent:),,1( Qqfq 
x1 x2 2e1e
1f 2f
i
ij
jij
Q
q
qiqi exbfx   1

2
:2 f
ef1
:1 f
ef
qfWLG, hidden common causes
are assumed to be independent
Independent hidden
common causes
17
x1 x2 2e1e
1f
e 2f
e
x1 x2 2e1e
1f 2f
Dependent hidden
common causes






























2
1
2221
11
2221
11
2
1
00
2
1
f
f
aa
a
e
e
aa
a
f
f
f
f
Non-Gaussian
x2
x1
Gaussian e1,e2, f1
x2
• Faithfulness on 𝑥𝑖, 𝑓𝑖 + Number of 𝑓𝑖 given
Different directions give different
zero/non-zero patterns (Hoyer+08IJAR)
18
x1 x2
f1
x1 x2
f1
x1 x2
f1
Models
1.
2.
3.






**0
*0*






***
*0*






**0
***
A
A
Previous estimation methods
(Hoyer+08IJAR; Henao+11JMLR)
• Explicitly model hidden common causes
• Do model comparison based on maximum
likelihood principle or Bayesian approach
• Need to specify their number and distributions,
which is difficult in general
19
x1 x2
f1
x1 x2
orfQ f1 fQ
… …
2e1e2e1e
Our proposal:
A Bayesian LiNGAM
approach
S. Shimizu and K. Bollen.
Journal of Machine Learning Research,
2014
and something extra
Key idea (1/2)
• Transform the model to a model with
no hidden common causes
21
)1(
1x )1(
2x
)(
2
m
x
)1(
1x
x1 x2
f1 fQ…
2e1e
)1(
2e)1(
1e
)(
2
m
e)(
1
m
e
……
21b
21b
21b
)(
2
m

)1(
2
LiNGAM with no hidden
common causes but with
possibly different
intercepts over obs.
LiNGAM with
hidden common
causes
)1(
1
)(
1
m

Key idea (2/2)
• Include the sums of hidden common causes as
the model parameters, i.e., observation-specific
intercepts:
• Not explicitly model hidden common causes
– Neither necessary to specify the number of hidden
common causes Q nor estimate the coefficients
22
)(
2
m

)(
2
)(
121
1
)(
2
)(
2
mm
Q
q
m
qq
m
exbfx  
m-th obs.:
q2
Obs.-specific
intercept
• Compare the marginal likelihoods wth data stndrdzd
• Once a direction has been estimated, compute the
posterior of the connection strength b21 or b12
• Many obs.-specific intercepts
– Similar to mixed models and multi-level models
– Informative prior
)()(
121
)(
2
)(
2
)(
1
)(
1
)(
1
m
i
mmm
mmm
exbx
ex




Bayesian model selection
23
),,1;2,1()(
nmim
i 
Model 3 (x1  x2)
)(
2
)(
2
)(
2
)(
1
)(
212
)(
1
)(
1
mmm
mmmm
ex
exbx




Model 4 (x1  x2)
Prior for the observation-specific
intercepts
• Motivation: Central limit theorem
– Sums of independent variables tend to be more Gaussian
• Approximate the density by a bell-shaped curve dist.
– Dependent due to hidden common causes
• Select the hyper-parameter values
that maximize the marginal likelihood
24
 

Q
q
m
qq
m
Q
q
m
qq
m
ff
1
)(
2
)(
2
1
)(
1
)(
1 , 
~)(
2
)(
1






m
m


t-distribution with sd ,
correlation , and DOF12
21,
v
}8.0,.6.0,4.0{, 21 
)(m
qf
(here, 8)
Error distributions and other
priors used in the experiment
• Error distributions
– Fixed to be the Laplace distribution
– Possible to be estimated assuming a family of
generalized Gaussian distributions, for
example
• Priors for the other parameters
25
)75.0,0(~
)75.0,0(~
)1,1(~
2
21
2
12
12
Nb
Nb
U 
)1,0(~)(
)1,0(~)(
2
1
Uestd
Uestd
)(),( 21 epep
Experiment on sociology data
Sociology data
• Source: General Social Survey (n=1380)
– Non-farm background, ages 35-44, white, male, in the labor
force, no missing data for any of the covariates, 1972-2006
• 15 pairs with known temporal directions
(Duncan+1972)
27
Status attainment model
(Duncan et al., 1972)
x2: Son’s Income
Numbers of successes
(n=1380)
28
FE
✔
✔
Cf. LiNGAM-GU-UK (Chen+13NECO) 0.20; PNL(Zhang+09UAI): 0.60
Known (temporal)
orderings of 15 pairs
Son’s
Education
Father’s
Education
Son’s
Income
Son’s
Occupation
…
f1
f1
Conclusion
Conclusion
• Estimation of causal direction in the presence of
hidden common causes is a major challenge in
causal discovery
• Proposed a linear non-Gaussian SEM approach
– Not necessary to model individual hidden common
causes
• Future directions
– Cyclic cases: Using some prior for forcing the
identifiability condition of Lacerda+08UAI?
– Non-stationarity: Combining with Kun’s method
(Huang+15IJACI)?
30

More Related Content

Similar to A non-Gaussian model for causal discovery in the presence of hidden common causes

Network Metrics and Measurements in the Era of the Digital Economies
Network Metrics and Measurements in the Era of the Digital EconomiesNetwork Metrics and Measurements in the Era of the Digital Economies
Network Metrics and Measurements in the Era of the Digital EconomiesPavel Loskot
 
Regression analysis
Regression analysisRegression analysis
Regression analysisSohag Babu
 
Regression vs Neural Net
Regression vs Neural NetRegression vs Neural Net
Regression vs Neural NetRatul Alahy
 
Ydb ji n8 itc ko6esvj8 kgerx k8tc ko4sx k
Ydb ji n8 itc ko6esvj8 kgerx k8tc ko4sx kYdb ji n8 itc ko6esvj8 kgerx k8tc ko4sx k
Ydb ji n8 itc ko6esvj8 kgerx k8tc ko4sx kAdikesavaperumal
 
4_CSI_ROBUSTNESS-PART1.pdf
4_CSI_ROBUSTNESS-PART1.pdf4_CSI_ROBUSTNESS-PART1.pdf
4_CSI_ROBUSTNESS-PART1.pdfDPSTech
 
Module 6: Outlier Detection for Two Sample Case
Module 6: Outlier Detection for Two Sample CaseModule 6: Outlier Detection for Two Sample Case
Module 6: Outlier Detection for Two Sample CaseStats Statswork
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceArthur Charpentier
 
Rethinking of Generalization
Rethinking of GeneralizationRethinking of Generalization
Rethinking of GeneralizationHikaru Ibayashi
 
Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016Christian Robert
 
Introduction to Optial Flow
Introduction to Optial FlowIntroduction to Optial Flow
Introduction to Optial FlowSylvain_Lobry
 
Multiple Regression.ppt
Multiple Regression.pptMultiple Regression.ppt
Multiple Regression.pptEkoGaniarto
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
On Extension of Weibull Distribution with Bayesian Analysis using S-Plus Soft...
On Extension of Weibull Distribution with Bayesian Analysis using S-Plus Soft...On Extension of Weibull Distribution with Bayesian Analysis using S-Plus Soft...
On Extension of Weibull Distribution with Bayesian Analysis using S-Plus Soft...Dr. Amarjeet Singh
 
Lecture Notes in Econometrics Arsen Palestini.pdf
Lecture Notes in Econometrics Arsen Palestini.pdfLecture Notes in Econometrics Arsen Palestini.pdf
Lecture Notes in Econometrics Arsen Palestini.pdfMDNomanCh
 
optimizedBell.pptx
optimizedBell.pptxoptimizedBell.pptx
optimizedBell.pptxRichard Gill
 
Econometric (Indonesia's Economy).pptx
Econometric (Indonesia's Economy).pptxEconometric (Indonesia's Economy).pptx
Econometric (Indonesia's Economy).pptxIndraYu2
 

Similar to A non-Gaussian model for causal discovery in the presence of hidden common causes (20)

MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
 
Network Metrics and Measurements in the Era of the Digital Economies
Network Metrics and Measurements in the Era of the Digital EconomiesNetwork Metrics and Measurements in the Era of the Digital Economies
Network Metrics and Measurements in the Era of the Digital Economies
 
Regression analysis
Regression analysisRegression analysis
Regression analysis
 
Regression vs Neural Net
Regression vs Neural NetRegression vs Neural Net
Regression vs Neural Net
 
Ydb ji n8 itc ko6esvj8 kgerx k8tc ko4sx k
Ydb ji n8 itc ko6esvj8 kgerx k8tc ko4sx kYdb ji n8 itc ko6esvj8 kgerx k8tc ko4sx k
Ydb ji n8 itc ko6esvj8 kgerx k8tc ko4sx k
 
4_CSI_ROBUSTNESS-PART1.pdf
4_CSI_ROBUSTNESS-PART1.pdf4_CSI_ROBUSTNESS-PART1.pdf
4_CSI_ROBUSTNESS-PART1.pdf
 
Module 6: Outlier Detection for Two Sample Case
Module 6: Outlier Detection for Two Sample CaseModule 6: Outlier Detection for Two Sample Case
Module 6: Outlier Detection for Two Sample Case
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Rethinking of Generalization
Rethinking of GeneralizationRethinking of Generalization
Rethinking of Generalization
 
Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016
 
GARCH
GARCHGARCH
GARCH
 
Introduction to Optial Flow
Introduction to Optial FlowIntroduction to Optial Flow
Introduction to Optial Flow
 
Multiple Regression.ppt
Multiple Regression.pptMultiple Regression.ppt
Multiple Regression.ppt
 
Stat1008 Tutorial
Stat1008 TutorialStat1008 Tutorial
Stat1008 Tutorial
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
On Extension of Weibull Distribution with Bayesian Analysis using S-Plus Soft...
On Extension of Weibull Distribution with Bayesian Analysis using S-Plus Soft...On Extension of Weibull Distribution with Bayesian Analysis using S-Plus Soft...
On Extension of Weibull Distribution with Bayesian Analysis using S-Plus Soft...
 
Lecture Notes in Econometrics Arsen Palestini.pdf
Lecture Notes in Econometrics Arsen Palestini.pdfLecture Notes in Econometrics Arsen Palestini.pdf
Lecture Notes in Econometrics Arsen Palestini.pdf
 
optimizedBell.pptx
optimizedBell.pptxoptimizedBell.pptx
optimizedBell.pptx
 
06 mlp
06 mlp06 mlp
06 mlp
 
Econometric (Indonesia's Economy).pptx
Econometric (Indonesia's Economy).pptxEconometric (Indonesia's Economy).pptx
Econometric (Indonesia's Economy).pptx
 

More from Shiga University, RIKEN

統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-Shiga University, RIKEN
 
非ガウス性を利用した 因果構造探索
非ガウス性を利用した因果構造探索非ガウス性を利用した因果構造探索
非ガウス性を利用した 因果構造探索Shiga University, RIKEN
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説Shiga University, RIKEN
 
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索するShiga University, RIKEN
 
構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性Shiga University, RIKEN
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展Shiga University, RIKEN
 
Linear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation ModelsLinear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation ModelsShiga University, RIKEN
 

More from Shiga University, RIKEN (7)

統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
 
非ガウス性を利用した 因果構造探索
非ガウス性を利用した因果構造探索非ガウス性を利用した因果構造探索
非ガウス性を利用した 因果構造探索
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索する
 
構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
 
Linear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation ModelsLinear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation Models
 

Recently uploaded

Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
TOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxTOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxdharshini369nike
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 

Recently uploaded (20)

Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
TOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxTOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptx
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 

A non-Gaussian model for causal discovery in the presence of hidden common causes

  • 1. Shohei Shimizu Shiga University / Osaka University Japan 1 A non-Gaussian model for causal discovery in the presence of hidden common causes 2016 Munich Workshop on Causal Inference and Information Theory
  • 2. Abstract • Managing hidden common causes is essential in causal discovery • Non-causally-related observed variables can be correlated due to hidden common causes • Propose a linear non-Gaussian model for estimating causal direction in cases with hidden common causes 2
  • 4. Strong correlation btw chocolate consumption and number of Nobel laureates (Messerli12NEJM) 4 2002-2011Chocolate consumption (kg/yr/capita) Num.Nobellaureatesper10millionpop. Corr. 0.791 P-value < 0.001
  • 5. Eating more chocolate increases num. Nobel laureates? • Interpretational drift (Maurage+13, J. Nutrition) 5 Chclt Nobel ?Chclt Nobel or GDP GDP Chclt Nobel or GDP Corr. 0.791 P-value < 0.001 Nobel Chocolate Hidden Common cause Manage this gap! Hidden Common cause Hidden Common cause
  • 7. Structural causal models (Pearl, 2000,2009; cf. Bollen, 1989) • A framework for describing causal relations • Generally speaking, if the value of 𝑥1 has been changed and then that of 𝑥2 changes, then 𝑥1 causes 𝑥2 7    2122 111 ,, , efxgx efgx   x1 x2 f e1 e2 GDP NobelChclt
  • 8. Challenge in causal discovery 8 Hidden common cause    2122 111 ,, , efxgx efgx   Data matrix x1 x2  21... ,~ xxpdii obs.1 Assume that either of the three generated the data Estimate which of the three models generated the data obs.nobs.2 … x1 x2 f x1 x2 f x1 x2 f e1 e2 e1 e2 e1 e2      fpepep ,, 21 Hidden common cause Hidden common cause    222 1211 , ,, efgx efxgx      222 111 , , efgx efgx        fpepep ,, 21      fpepep ,, 21
  • 9. Under what conditions can we manage the gap? • We have shown that it is possible under the three assumptions: i) linearity; ii) Acyclicty; iii) non-Gaussianity (Hoyer+08IJAR; Shimizu+14JMLR): • Classical Bayesian network approach incapable 9 x1 x2 ? x1 x2 or f1 f1 x1 x2 f1 or 21211212 11121 efxbx efx     21212 11122121 efx efxbx     22212 11121 efx efx    
  • 10. Basic non-Gaussian model (No hidden common cause) S. Shimizu, P. O. Hoyer, A. Hyvärinen and A. Kerminen Journal of Machine Learning Research 2006
  • 11. Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al., 2006) • Identifiable: causal directions and coefficients • Various extensions including nonlinear (Hoyer+08NIPS, Zhang+09UAI) and cyclic (Lacerda+08UAI) models 11 i ij jiji exbx   x1 x2 x3 21b 23b13b 2e 3e 1e Linearity Acyclicity Non-Gaussian errors ei Independence of errors ei (no hidden common causes)
  • 12. 1212 Different directions give different data distributions Gaussian Non-Gaussian (ex. uniform) Model 1: Model 2: x1 x2 x1 x2 e1 e2 x1 x2 e1 e2 x1 x2 x1 x2 x1 x2 212 11 8.0 exx ex   22 121 8.0 ex exx       1varvar 21  xx     ,021  eEeE
  • 13. 13 Independent Component Analysis (ICA) (Jutten & Herault, 1991; Comon, 1994; Hyvarinen et al., 2001) • Observed variables are modeled by where – Hidden variables are non-Gaussian and independent • Then, mixing matrix A is identifiable up to permutation and scaling of the columns Asx   pjsj ,,1    p j jiji sax 1 or ix
  • 14. Sketch of the identifiability proof • Different directions give different zero/non- zero patterns of the mixing matrices – No zeros on the diagonal in the causal model – No permutation indeterminacy 14                     2 1 212 1 1 01 e e bx x  21212 11 exbx ex   A sx                     2 112 2 1 10 1 e eb x x  A sx22 12121 ex exbx   x1 x2 e1 e2 x1 x2 e1 e2 0 0 Model 1: Model 2:
  • 15. LiNGAM with hidden common causes P. O. Hoyer, S. Shimizu, A. Kerminen, and M. Palviainen Int. J. Approximate Reasoning 2008
  • 16. qf 2121 1 22 1 1 11 exbfx efx Q q qq Q q qq         i ij jij Q q qiqi exbfx   1  • Extension to incorporate non-Gaussian hidden common causes LiNGAM with hidden common causes (Hoyer+08IJAR) 16 where are independent:),,1( Qqfq  x1 x2 2e1e 1f 2f
  • 17. i ij jij Q q qiqi exbfx   1  2 :2 f ef1 :1 f ef qfWLG, hidden common causes are assumed to be independent Independent hidden common causes 17 x1 x2 2e1e 1f e 2f e x1 x2 2e1e 1f 2f Dependent hidden common causes                               2 1 2221 11 2221 11 2 1 00 2 1 f f aa a e e aa a f f f f
  • 18. Non-Gaussian x2 x1 Gaussian e1,e2, f1 x2 • Faithfulness on 𝑥𝑖, 𝑓𝑖 + Number of 𝑓𝑖 given Different directions give different zero/non-zero patterns (Hoyer+08IJAR) 18 x1 x2 f1 x1 x2 f1 x1 x2 f1 Models 1. 2. 3.       **0 *0*       *** *0*       **0 *** A A
  • 19. Previous estimation methods (Hoyer+08IJAR; Henao+11JMLR) • Explicitly model hidden common causes • Do model comparison based on maximum likelihood principle or Bayesian approach • Need to specify their number and distributions, which is difficult in general 19 x1 x2 f1 x1 x2 orfQ f1 fQ … … 2e1e2e1e
  • 20. Our proposal: A Bayesian LiNGAM approach S. Shimizu and K. Bollen. Journal of Machine Learning Research, 2014 and something extra
  • 21. Key idea (1/2) • Transform the model to a model with no hidden common causes 21 )1( 1x )1( 2x )( 2 m x )1( 1x x1 x2 f1 fQ… 2e1e )1( 2e)1( 1e )( 2 m e)( 1 m e …… 21b 21b 21b )( 2 m  )1( 2 LiNGAM with no hidden common causes but with possibly different intercepts over obs. LiNGAM with hidden common causes )1( 1 )( 1 m 
  • 22. Key idea (2/2) • Include the sums of hidden common causes as the model parameters, i.e., observation-specific intercepts: • Not explicitly model hidden common causes – Neither necessary to specify the number of hidden common causes Q nor estimate the coefficients 22 )( 2 m  )( 2 )( 121 1 )( 2 )( 2 mm Q q m qq m exbfx   m-th obs.: q2 Obs.-specific intercept
  • 23. • Compare the marginal likelihoods wth data stndrdzd • Once a direction has been estimated, compute the posterior of the connection strength b21 or b12 • Many obs.-specific intercepts – Similar to mixed models and multi-level models – Informative prior )()( 121 )( 2 )( 2 )( 1 )( 1 )( 1 m i mmm mmm exbx ex     Bayesian model selection 23 ),,1;2,1()( nmim i  Model 3 (x1  x2) )( 2 )( 2 )( 2 )( 1 )( 212 )( 1 )( 1 mmm mmmm ex exbx     Model 4 (x1  x2)
  • 24. Prior for the observation-specific intercepts • Motivation: Central limit theorem – Sums of independent variables tend to be more Gaussian • Approximate the density by a bell-shaped curve dist. – Dependent due to hidden common causes • Select the hyper-parameter values that maximize the marginal likelihood 24    Q q m qq m Q q m qq m ff 1 )( 2 )( 2 1 )( 1 )( 1 ,  ~)( 2 )( 1       m m   t-distribution with sd , correlation , and DOF12 21, v }8.0,.6.0,4.0{, 21  )(m qf (here, 8)
  • 25. Error distributions and other priors used in the experiment • Error distributions – Fixed to be the Laplace distribution – Possible to be estimated assuming a family of generalized Gaussian distributions, for example • Priors for the other parameters 25 )75.0,0(~ )75.0,0(~ )1,1(~ 2 21 2 12 12 Nb Nb U  )1,0(~)( )1,0(~)( 2 1 Uestd Uestd )(),( 21 epep
  • 27. Sociology data • Source: General Social Survey (n=1380) – Non-farm background, ages 35-44, white, male, in the labor force, no missing data for any of the covariates, 1972-2006 • 15 pairs with known temporal directions (Duncan+1972) 27 Status attainment model (Duncan et al., 1972) x2: Son’s Income
  • 28. Numbers of successes (n=1380) 28 FE ✔ ✔ Cf. LiNGAM-GU-UK (Chen+13NECO) 0.20; PNL(Zhang+09UAI): 0.60 Known (temporal) orderings of 15 pairs Son’s Education Father’s Education Son’s Income Son’s Occupation … f1 f1
  • 30. Conclusion • Estimation of causal direction in the presence of hidden common causes is a major challenge in causal discovery • Proposed a linear non-Gaussian SEM approach – Not necessary to model individual hidden common causes • Future directions – Cyclic cases: Using some prior for forcing the identifiability condition of Lacerda+08UAI? – Non-stationarity: Combining with Kun’s method (Huang+15IJACI)? 30