SlideShare a Scribd company logo
Inequalities & Graphs
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2      Oblique asymptote:
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2
                                                 x2
                                                        4
                x2      Oblique asymptote:
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2
                                                 x2
                                                        4
                x2      Oblique asymptote:
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2
                                                 x2
                                                        4
                x2      Oblique asymptote:
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1         x2
                x2                1
                              x2
                             x2  x  2
                            x2  x  2  0
                          x  2 x  1  0
                         x  2 or x  1
Inequalities & Graphs
                 x2
e.g. i  Solve     1          x2
                x2                 1
                               x2
                              x2  x  2
                             x2  x  2  0
                           x  2 x  1  0
                          x  2 or x  1

                                x2
                                    1
                               x2
                         x  2 or  1  x  2
(ii) (1990)




Consider the graph y  x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
   dy
  0 for x  0
   dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
 dy   1
    
 dx 2 x
 dy
  0 for x  0
 dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
   dy
  0 for x  0
   dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
   dy
  0 for x  0                   curve is increasing for x  0
   dx
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                    n
                  1  2    n   xdx
                                    0
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                    n
                  1  2    n   xdx
                                    0
                                           n
                                  2 x x 
                                 
                                  3     0
                                         
                                  2
                                  n n
                                  3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                    n
                  1  2    n   xdx
                                    0
                                           n
                                  2 x x 
                                 
                                  3     0
                                         
                                  2
                                  n n
                                  3
                                   n
                                       2
               1  2    n   xdx  n n
                                0
                                       3
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
 L.H .S  1
        1
c) Use mathematical induction to show that;
               4n  3
  1 2  n         n for all integers n  1
                 6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
c) Use mathematical induction to show that;
               4n  3
  1 2  n         n for all integers n  1
                 6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                         L.H .S  R.H .S
c) Use mathematical induction to show that;
               4n  3
  1 2  n         n for all integers n  1
                 6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                       L.H .S  R.H .S
                   Hence the result is true for n = 1
c) Use mathematical induction to show that;
               4n  3
  1 2  n         n for all integers n  1
                 6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
c) Use mathematical induction to show that;
               4n  3
  1 2  n         n for all integers n  1
                 6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
              i.e. 1  2    k                 k
                                           6
c) Use mathematical induction to show that;
               4n  3
  1 2  n         n for all integers n  1
                 6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
               i.e. 1  2    k                k
                                           6
Prove the result is true for n  k  1
c) Use mathematical induction to show that;
               4n  3
  1 2  n         n for all integers n  1
                 6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
                i.e. 1  2    k               k
                                           6
Prove the result is true for n  k  1
                                            4k  7
        i.e. Prove 1  2    k  1                k 1
                                               6
Proof:
Proof:   1  2  k 1  1  2  k  k 1
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                k  k 1
                            6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                           4k  3 k  6 k  1
                                   2
                        
                                     6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                           4k  3 k  6 k  1
                                    2
                        
                                      6
                           16k 3  24k 2  9k  6 k  1
                        
                                        6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                           4k  3 k  6 k  1
                                     2
                        
                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                           4k  3 k  6 k  1
                                     2
                        
                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
                            k  14k  12  1  6 k  1
                         
                                          6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                           4k  3 k  6 k  1
                                     2
                        
                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                              6
                            k  14k  12  1  6 k  1
                         
                                           6
                            k  14k  1  6 k  1
                                            2
                         
                                         6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                   k  k 1
                             6
                            4k  3 k  6 k  1
                                      2
                        
                                        6
                            16k 3  24k 2  9k  6 k  1
                        
                                           6
                             k  116k 2  8k  1  1  6 k  1
                        
                                               6
                             k  14k  12  1  6 k  1
                         
                                            6
                             k  14k  1  6 k  1
                                             2
                         
                                          6
                           4k  1 k  1  6 k  1
                         
                                          6
                         
                           4k  7  k  1
                                    6
Hence the result is true for n = k +1 if it is also true for n =k
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
           2                          4n  3
             n n  1 2  n               n
           3                            6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1 2  n                n
            3                            6
2                                          410000   3
  10000 10000  1  2    10000                     10000
3                                                6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1 2  n                n
            3                            6
2                                          410000   3
  10000 10000  1  2    10000                     10000
3                                                6
          666700  1  2    10000  666700
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1 2  n                n
            3                            6
2                                          410000   3
  10000 10000  1  2    10000                     10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1 2  n                n
            3                            6
2                                          410000   3
  10000 10000  1  2    10000                     10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred


                            Exercise 10F

More Related Content

Viewers also liked

EvoluçãO Roma Prof Arrais Hist
EvoluçãO Roma Prof Arrais HistEvoluçãO Roma Prof Arrais Hist
EvoluçãO Roma Prof Arrais Hist
Pre-Vestibular Sentido
 
Promotion and valorization of CULTURAL HERITAGE to CUNEO
Promotion and valorization of CULTURAL HERITAGE to CUNEOPromotion and valorization of CULTURAL HERITAGE to CUNEO
Promotion and valorization of CULTURAL HERITAGE to CUNEO
Rocco Alberto Currà
 
Trabajobiografias1.docx
Trabajobiografias1.docxTrabajobiografias1.docx
Trabajobiografias1.docx
Jhoanna Andrea
 
Dominique presentation
Dominique presentationDominique presentation
Dominique presentation
COGS Presentations
 
Woka Cafe en BBVA , 18 mayo, 2009
Woka Cafe en BBVA , 18 mayo, 2009Woka Cafe en BBVA , 18 mayo, 2009
Woka Cafe en BBVA , 18 mayo, 2009
Ignacio Villoch
 
Ksua Aitp Student Recruitment
Ksua Aitp Student RecruitmentKsua Aitp Student Recruitment
Ksua Aitp Student Recruitment
Joe Keefe
 
azdor.gov Forms 140NR
azdor.gov Forms 140NRazdor.gov Forms 140NR
azdor.gov Forms 140NR
taxman taxman
 
Buscandovidas
BuscandovidasBuscandovidas
Buscandovidas
bataleo
 
Greek Art3 mythological monsters
Greek Art3 mythological monstersGreek Art3 mythological monsters
Greek Art3 mythological monsters
lizhayes
 
Quiksilver Universitário de Surf 2012 - 2ª etapa
Quiksilver Universitário de Surf 2012 - 2ª etapaQuiksilver Universitário de Surf 2012 - 2ª etapa
Quiksilver Universitário de Surf 2012 - 2ª etapa
ibrasurf
 
Luis Capucha
Luis CapuchaLuis Capucha
Ayuda Para El Blog La Perla
Ayuda Para El Blog La PerlaAyuda Para El Blog La Perla
Ayuda Para El Blog La Perla
JOSE DOMINGUEZ
 
proyecto (NET)
proyecto (NET)proyecto (NET)
proyecto (NET)
netcata
 
XXIII Torneo Internacional De Voley Playa
XXIII Torneo Internacional De Voley PlayaXXIII Torneo Internacional De Voley Playa
XXIII Torneo Internacional De Voley Playa
vpsuances
 
łazienki 1
łazienki 1łazienki 1
łazienki 1Knauf
 
Franz Heinrich Louis Corinth Giohanna B. Rodriguez Garcia
Franz Heinrich Louis Corinth Giohanna B. Rodriguez GarciaFranz Heinrich Louis Corinth Giohanna B. Rodriguez Garcia
Franz Heinrich Louis Corinth Giohanna B. Rodriguez Garcia
eskuadrooon
 
Franzu.Doc
Franzu.DocFranzu.Doc
Franzu.Doc
franzulytrejo
 
Trabajo sobre manga de sergio 2
Trabajo sobre manga de sergio 2Trabajo sobre manga de sergio 2
Trabajo sobre manga de sergio 2
sergonfer
 
Korea Of Super File
Korea Of Super FileKorea Of Super File
Korea Of Super File
guest458113
 

Viewers also liked (20)

EvoluçãO Roma Prof Arrais Hist
EvoluçãO Roma Prof Arrais HistEvoluçãO Roma Prof Arrais Hist
EvoluçãO Roma Prof Arrais Hist
 
Promotion and valorization of CULTURAL HERITAGE to CUNEO
Promotion and valorization of CULTURAL HERITAGE to CUNEOPromotion and valorization of CULTURAL HERITAGE to CUNEO
Promotion and valorization of CULTURAL HERITAGE to CUNEO
 
Trabajobiografias1.docx
Trabajobiografias1.docxTrabajobiografias1.docx
Trabajobiografias1.docx
 
Dominique presentation
Dominique presentationDominique presentation
Dominique presentation
 
Woka Cafe en BBVA , 18 mayo, 2009
Woka Cafe en BBVA , 18 mayo, 2009Woka Cafe en BBVA , 18 mayo, 2009
Woka Cafe en BBVA , 18 mayo, 2009
 
Ksua Aitp Student Recruitment
Ksua Aitp Student RecruitmentKsua Aitp Student Recruitment
Ksua Aitp Student Recruitment
 
azdor.gov Forms 140NR
azdor.gov Forms 140NRazdor.gov Forms 140NR
azdor.gov Forms 140NR
 
Buscandovidas
BuscandovidasBuscandovidas
Buscandovidas
 
Greek Art3 mythological monsters
Greek Art3 mythological monstersGreek Art3 mythological monsters
Greek Art3 mythological monsters
 
Quiksilver Universitário de Surf 2012 - 2ª etapa
Quiksilver Universitário de Surf 2012 - 2ª etapaQuiksilver Universitário de Surf 2012 - 2ª etapa
Quiksilver Universitário de Surf 2012 - 2ª etapa
 
Luis Capucha
Luis CapuchaLuis Capucha
Luis Capucha
 
Ayuda Para El Blog La Perla
Ayuda Para El Blog La PerlaAyuda Para El Blog La Perla
Ayuda Para El Blog La Perla
 
proyecto (NET)
proyecto (NET)proyecto (NET)
proyecto (NET)
 
XXIII Torneo Internacional De Voley Playa
XXIII Torneo Internacional De Voley PlayaXXIII Torneo Internacional De Voley Playa
XXIII Torneo Internacional De Voley Playa
 
łazienki 1
łazienki 1łazienki 1
łazienki 1
 
Franz Heinrich Louis Corinth Giohanna B. Rodriguez Garcia
Franz Heinrich Louis Corinth Giohanna B. Rodriguez GarciaFranz Heinrich Louis Corinth Giohanna B. Rodriguez Garcia
Franz Heinrich Louis Corinth Giohanna B. Rodriguez Garcia
 
Franzu.Doc
Franzu.DocFranzu.Doc
Franzu.Doc
 
Trabajo sobre manga de sergio 2
Trabajo sobre manga de sergio 2Trabajo sobre manga de sergio 2
Trabajo sobre manga de sergio 2
 
Korea Of Super File
Korea Of Super FileKorea Of Super File
Korea Of Super File
 
Luis garcia fotos
Luis garcia fotosLuis garcia fotos
Luis garcia fotos
 

Similar to X2 T08 03 inequalities & graphs

11X1 T09 04 concavity
11X1 T09 04 concavity11X1 T09 04 concavity
11X1 T09 04 concavity
Nigel Simmons
 
Lesson 9: Gaussian Elimination
Lesson 9: Gaussian EliminationLesson 9: Gaussian Elimination
Lesson 9: Gaussian Elimination
Matthew Leingang
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
Nigel Simmons
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
Nigel Simmons
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
Nigel Simmons
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear Independence
Matthew Leingang
 
Proj Stat
Proj StatProj Stat
Proj Stat
guestab507
 
12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X
Nigel Simmons
 
2.8 Function Operations and Composition
2.8 Function Operations and Composition2.8 Function Operations and Composition
2.8 Function Operations and Composition
smiller5
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)
Matthew Leingang
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data Fitting
Matthew Leingang
 
Understand Of Linear Algebra
Understand Of Linear AlgebraUnderstand Of Linear Algebra
Understand Of Linear Algebra
Edward Yoon
 
An Excellent Boring Presentation
An Excellent Boring PresentationAn Excellent Boring Presentation
An Excellent Boring Presentation
Ishtiaque Zico
 
3.1 Quadratic Functions and Models
3.1 Quadratic Functions and Models3.1 Quadratic Functions and Models
3.1 Quadratic Functions and Models
smiller5
 
Lesson 21: Curve Sketching II (Section 10 version)
Lesson 21: Curve Sketching II (Section 10 version)Lesson 21: Curve Sketching II (Section 10 version)
Lesson 21: Curve Sketching II (Section 10 version)
Matthew Leingang
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
Matthew Leingang
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
Nigel Simmons
 
Lesson 21: Curve Sketching II (Section 4 version)
Lesson 21: Curve Sketching  II (Section 4 version)Lesson 21: Curve Sketching  II (Section 4 version)
Lesson 21: Curve Sketching II (Section 4 version)
Matthew Leingang
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
Matthew Leingang
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
coburgmaths
 

Similar to X2 T08 03 inequalities & graphs (20)

11X1 T09 04 concavity
11X1 T09 04 concavity11X1 T09 04 concavity
11X1 T09 04 concavity
 
Lesson 9: Gaussian Elimination
Lesson 9: Gaussian EliminationLesson 9: Gaussian Elimination
Lesson 9: Gaussian Elimination
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear Independence
 
Proj Stat
Proj StatProj Stat
Proj Stat
 
12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X
 
2.8 Function Operations and Composition
2.8 Function Operations and Composition2.8 Function Operations and Composition
2.8 Function Operations and Composition
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data Fitting
 
Understand Of Linear Algebra
Understand Of Linear AlgebraUnderstand Of Linear Algebra
Understand Of Linear Algebra
 
An Excellent Boring Presentation
An Excellent Boring PresentationAn Excellent Boring Presentation
An Excellent Boring Presentation
 
3.1 Quadratic Functions and Models
3.1 Quadratic Functions and Models3.1 Quadratic Functions and Models
3.1 Quadratic Functions and Models
 
Lesson 21: Curve Sketching II (Section 10 version)
Lesson 21: Curve Sketching II (Section 10 version)Lesson 21: Curve Sketching II (Section 10 version)
Lesson 21: Curve Sketching II (Section 10 version)
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Lesson 21: Curve Sketching II (Section 4 version)
Lesson 21: Curve Sketching  II (Section 4 version)Lesson 21: Curve Sketching  II (Section 4 version)
Lesson 21: Curve Sketching II (Section 4 version)
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
Celine George
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 

Recently uploaded (20)

Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 

X2 T08 03 inequalities & graphs

  • 2. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 3. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 4. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 5. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 6. Inequalities & Graphs x2 e.g. i  Solve 1 x2 Oblique asymptote:
  • 7. Inequalities & Graphs x2 e.g. i  Solve 1 x2  x2 4 x2 Oblique asymptote: x2 x2
  • 8. Inequalities & Graphs x2 e.g. i  Solve 1 x2  x2 4 x2 Oblique asymptote: x2 x2
  • 9. Inequalities & Graphs x2 e.g. i  Solve 1 x2  x2 4 x2 Oblique asymptote: x2 x2
  • 10. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 11. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 12. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1
  • 13. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1 x2 1 x2 x  2 or  1  x  2
  • 14. (ii) (1990) Consider the graph y  x
  • 15. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0
  • 16. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx
  • 17. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x
  • 18. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x dy   0 for x  0 dx
  • 19. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1  dx 2 x dy   0 for x  0 dx
  • 20. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0 dx
  • 21. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0  curve is increasing for x  0 dx
  • 22. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 23. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 24. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve
  • 25. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0
  • 26. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x   3 0  2  n n 3
  • 27. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x   3 0  2  n n 3 n 2  1  2    n   xdx  n n 0 3
  • 28. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6
  • 29. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1
  • 30. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 L.H .S  1 1
  • 31. c) Use mathematical induction to show that; 4n  3 1 2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6
  • 32. c) Use mathematical induction to show that; 4n  3 1 2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S
  • 33. c) Use mathematical induction to show that; 4n  3 1 2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1
  • 34. c) Use mathematical induction to show that; 4n  3 1 2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer
  • 35. c) Use mathematical induction to show that; 4n  3 1 2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6
  • 36. c) Use mathematical induction to show that; 4n  3 1 2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1
  • 37. c) Use mathematical induction to show that; 4n  3 1 2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1 4k  7 i.e. Prove 1  2    k  1  k 1 6
  • 39. Proof: 1  2  k 1  1  2  k  k 1
  • 40. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6
  • 41. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6 4k  3 k  6 k  1 2  6
  • 42. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6 4k  3 k  6 k  1 2  6 16k 3  24k 2  9k  6 k  1  6
  • 43. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6 4k  3 k  6 k  1 2  6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6
  • 44. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6 4k  3 k  6 k  1 2  6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6 k  14k  12  1  6 k  1  6
  • 45. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6 4k  3 k  6 k  1 2  6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6 k  14k  12  1  6 k  1  6 k  14k  1  6 k  1 2  6
  • 46. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6 4k  3 k  6 k  1 2  6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6 k  14k  12  1  6 k  1  6 k  14k  1  6 k  1 2  6 4k  1 k  1  6 k  1  6  4k  7  k  1 6
  • 47. Hence the result is true for n = k +1 if it is also true for n =k
  • 48. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n
  • 49. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred
  • 50. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1 2  n  n 3 6
  • 51. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1 2  n  n 3 6 2 410000   3 10000 10000  1  2    10000  10000 3 6
  • 52. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1 2  n  n 3 6 2 410000   3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700
  • 53. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1 2  n  n 3 6 2 410000   3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred
  • 54. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1 2  n  n 3 6 2 410000   3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred Exercise 10F