SlideShare a Scribd company logo
1 of 57
Download to read offline
Section	4.4
                         Curve	Sketching	II
                             V63.0121, Calculus	I



                                April	2, 2009



       .

.
Image	credit: svenwerk
                                                    .   .   .   .   .   .
Graphing	Checklist


   To	graph	a	function f, follow	this	plan:
    0. Find	when f is	positive, negative, zero, not	defined.
    1. Find f′ and	form	its	sign	chart. Conclude	information	about
       increasing/decreasing	and	local	max/min.
    2. Find f′′ and	form	its	sign	chart. Conclude	concave
       up/concave	down	and	inflection.
    3. Put	together	a	big	chart	to	assemble	monotonicity	and
       concavity	data
    4. Graph!




                                               .   .    .     .   .   .
Outline




  More	Examples
    Points	of	nondifferentiability
    Horizontal	asymptotes
    Vertical	asymptotes
    Trigonometric	and	polynomial	together
    Logarithmic




                                            .   .   .   .   .   .
Example
                   √
                       |x|
Graph f(x) = x +




                             .   .   .   .   .   .
Example
                   √
                       |x|
Graph f(x) = x +

    This	function	looks	strange	because	of	the	absolute	value.
    But	whenever	we	become	nervous, we	can	just	take	cases.
    First, look	at f by	itself. We	can	tell	that f(0) = 0 and	that
    f(x) > 0 if x is	positive. Are	there	negative	numbers	which
    are	zeroes	for f? Yes, if x = −1 then
         √               √
    x + |x| = −1 + 1 = 0. No	other	zeros	exist.




                                              .    .   .    .    .   .
Asymptotic	behavior


      Asymptotically, it’s	clear	that lim f(x) = ∞, because	both
                                    x→∞
      terms	tend	to ∞.
      What	about x → −∞? This	is	now	indeterminate	of	the	form
      −∞ + ∞. To	resolve	it, first	let y = −x to	make	it	look	more
      familiar:
                (  √)                     √           √
           lim x + −x = lim (−y + y) = lim ( y − y)
                              y→∞                y→∞
          x→−∞

      Now	multiply	by	the	conjugate:
                             √
                                          y − y2
                               y+y
                   √
              lim ( y − y) · √                   = −∞
                                    = lim √
                               y + y y→∞ y + y
             y→∞




                                             .    .    .   .   .    .
The	derivative

   First, assume x > 0, so

                               d(   √)     1
                    f′ (x) =      x+ x =1+ √
                               dx         2x

   This	is	always	positive. Also, we	see	that lim f′ (x) = ∞ and
                                              x→0+
         ′
   lim f (x) = 1. If x is	negative, we	have
   x→∞

                          d(     √)           1
                  f′ (x) =    x + −x = 1 − √
                          dx               2 −x
                                  √
   Again, this	looks	weird	because −x appears	to	be	a	negative
   number. But	since x < 0, −x > 0.



                                                .    .   .   .     .   .
Monotonicity


  We	see	that f′ (x) = 0 when
                √
           1          1         1          1
       1= √   =⇒ −x =   =⇒ −x =   =⇒ x = −
                      2         4          4
         2 −x

  Notice	also	that lim f′ (x) = −∞ and lim f′ (x) = 1. We	can’t
                                        x→−∞
                  x→0−
  make	a	multi-factor	sign	chart	because	of	the	absolute	value, but
  the	conclusion	is	this:

                                                               .′ (x)
                                                               f
                            0 −∓ .
                            .. . . ∞
                     .                        .
                     +                        +
                     ↗     −4 ↘ 0             ↗
                           . .1 . .
                     .                        .                f
                                                               .(x)
                       .   max cusp




                                               .   .   .   .            .   .
Concavity
  If x > 0, then
                                (               )
                           d           1               1
                   ′′
                                    1 + x−1/2       = − x−3/2
                   f (x) =
                           dx          2               4

  This	is	negative	whenever x < 0. If x < 0, then
                        (                )
                     d       1                  1
              ′′                   −1/2
                                           = − (−x)−3/2
                          1 − (−x)
             f (x) =
                     dx      2                  4

  which	is	also	always	negative	for	negative x. Another	way	to
                           1
  write	this	is f′′ (x) = − |x|−3/2 . Here	is	the	sign	chart:
                           4

                                                                      f′′
                                                                    . . (x)
                        −
                        .−             −.
                                       .∞             −
                                                      .−
                                                                    .
                        .                             .
                        ⌢                             ⌢
                                        0
                                        .                             f
                                                                      .(x)

                                                       .   .    .   .     .   .
Synthesis


   Now	we	can	put	these	things	together.


                                                           .′ (x)
                                                           f
                          0 −∓ .
                          .. . . ∞
                   .                       .
                   +                       +
                   ↗     −4 ↘ 0            ↗
                         . 1. .
                   .                       .               m
                                                           .′′ onotonicity
                                                           f
                                                           . (x)
                   −
                   .−         −. .
                              .−∞
                               −           −
                                           .−
                   .          ..           .
                   ⌢          ⌢0           ⌢               c
                                                           . oncavity
                          .1                               f
                                                           .(x)
        0
        ..                       0
                                 ..
                           4.
                    .        1. .          .
        −                        0
        .1                                                 s
                                                           . hape
                         −
                         . .4
   .                 .
       zero              max cusp




                                               .   .   .     .      .   .
Graph


                                  f
                                  .(x)



                        .−1, 1)
                        ( 44
        . −1, 0)           .
        (
            .                      .                         x
                                                             .
                                       . 0, 0)
                                       (


                          .1                                 f
                                                             .(x)
          0
          ..                    0
                                ..
                           4.
                   .         1. .                .
          −                     0
          .1                                                 s
                                                             . hape
                         −
                         . .4
   .                .
         zero            max cusp




                                                 .   .   .   .      .   .
Example
                    2
Graph f(x) = xe−x




                        .   .   .   .   .   .
Example
                    2
Graph f(x) = xe−x
Before	taking	derivatives, we	notice	that f is	odd, that f(0) = 0,
and lim f(x) = 0
    x→∞




                                              .    .    .   .    .   .
Monotonicity
  Now
                                           (       )
                            2      2                    2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                     (     √ )(      √)      2
                   = 1 − 2x 1 + 2x e−x

                2
  The	factor e−x is	always	positive	so	it	doesn’t	figure	into	the	sign
  of f′ (x). So	our	sign	chart	looks	like	this:

                                                                         √
                                                     −
          .                         ..               .
                                           0
                                           .
          +                         +
                                         √.                      .−
                                                                 1           2x
                                         . 1/2
                                                                         √
          −
          .                         .                .
                         0
                         ..         +                +
                         √                                       1
                                                                 .+          2x
                     −
                     .        1/2
                                                                 ′
                                                                 f
                                                                 . (x)
          −                                          −
          .                .                         .
                         0
                         ..                0
                                           .
                           +
                                         √.
                         √
          ↘                ↗                         ↘
          .          − 1/2 . .                       .           f
                                                                 .(x)
                    ..                   . 1/2
                                          max
                       min

                                                 .       .   .       .       .    .
Concavity
  Now	we	look	at f′′ (x):
                                               (        )
                       2               2                     2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                             2
          = 2x(2x2 − 3)e−x

          −            −
          .            .          .               .
                             0
                             ..   +               +
                                                              .x
                                                              2
                             0
                             .
                                                              √     √
          −            −          −
          .            .          .               .
                                        0
                                        .         +
                                      √.                      . 2x − 3
                                      . 3/2
                                                              √     √
          −
          .            .          .               .
                 0
                 ..    +          +               +
                 √                                            . 2x + 3
            − 3/2
            .
                                                              .′′ (x)
                                                              f
         −
         .−                       −
                                  . − ..
              .. . +                          .+
              0+             0
                             ..          0    +
              √                    ⌢ √3
         .        .                .          .
         ⌢        ⌣                           ⌣
                             0
                             .                                f
                                                              .(x)
            − 3/2 .
           ..                        . . /2
              IP             IP         IP


                                              .       .   .      .      .   .
Synthesis



                                                                     .′ (x)
                                                                     f
      −            −0 +           +.−                        −
      .            . .. .       . . √. .                     .
                                      0
                      √
      ↘            ↘ 1/2 .
                         ↗        ↗      ↘                   ↘
      .            ..             . . 1/2.                   .       m
                                                                     . onotonic
                    −
                                                                     .′′ (x)
                                                                     f
      −
      .−                  + 0−
                          . + .. . −       −0
                                           . − ..
                .. . +                                   .+
                0+                                       +
                √.                          . √3
      .                    ⌣. .
                           .                             .
      ⌢             ⌣         0⌢            ⌢            ⌣           c
                                                                     . oncavity
              − 3/2
              .                               . /2

               √                             √
             − 2e3 . √1                 .√1 . 2e3
                   3                            3
                      − 2e
             .                                                       f
                                                                     .(x)
                                0
                                ..        2e
                .       .                  . √.
               √. √                    √.
       .             − 1/2 .    ..                           .
                                0                                    s
                                                                     . hape
             −
            .. ..                      . 1/2 . 3/2
                  3/2
                          .        .       .
                                        max IP
               IP min          IP



                                              .      .   .       .    .        .
Graph

                                 f
                                 .(x)

                                       (√        )(
                                                           √)
                                                    √
                                       . 1/2, √1            3
                                               2e .   3/2,
                                            .              2e3
                                                 .
                                   .                                     x
                                                                         .
                                       . 0, 0)
                                       (
                        .
   (          √)
      √                       .
   . − 3/2, − 2e3 ( √               )
                 3
                     . − 1/2, − √1
                                 2e
                      √                       √
                   − 2e3 √1             .√1 . 2e3
                          3                      3
                            −
                            . 2e
                   .                                                     f
                                                                         .(x)
                                     0
                                     ..   2e
                        .     .         √. √.
                       √√
             .     − ..
                   . . 3/2 1/2 . . . . . .1/2.. 3/2          .
                                     0                                   s
                                                                         . hape
                           −.
               .                        max IP
                       IP min       IP
                                                 .   .   .       .   .   .
Example
               1  1
Graph f(x) =     +2
               x  x




                      .   .   .   .   .   .
Step	0
   Find	when f is	positive, negative, zero, not	defined.




                                                .   .     .   .   .   .
Step	0
   Find	when f is	positive, negative, zero, not	defined. We	need	to
   factor f:
                                           x+1
                                1     1
                         f(x) = + 2 =            .
                                             x2
                                x    x
   This	means f is 0 at −1 and	has	trouble	at 0. In	fact,
                               x+1
                                   = ∞,
                            lim
                            x→0 x2

   so x = 0 is	a	vertical	asymptote	of	the	graph.




                                                .   .   .   .   .    .
Step	0
   Find	when f is	positive, negative, zero, not	defined. We	need	to
   factor f:
                                           x+1
                                1     1
                         f(x) = + 2 =            .
                                             x2
                                x    x
   This	means f is 0 at −1 and	has	trouble	at 0. In	fact,
                              x+1
                                  = ∞,
                           lim
                           x→0 x2

   so x = 0 is	a	vertical	asymptote	of	the	graph. We	can	make	a	sign
   chart	as	follows:
                 −
                 .                          .
                     0
                     ..                     +
                                 .                  x
                                                    . +1
                     −
                     .1
                 .                          .
                               0
                               ..
                 +                          +
                                                    .2
                                                    x
                               0
                               .
                 −
                 .   .. .                   .
                               ∞
                     0+        ..           +
                                                    f
                                                    .(x)
                     −         0
                               .
                     .1
                                                .   .      .   .   .   .
For	horizontal	asymptotes, notice	that

                               x+1
                         lim       = 0,
                                x2
                         x→∞

so y = 0 is	a	horizontal	asymptote	of	the	graph. The	same	is	true
at −∞.




                                            .   .    .   .    .     .
Monotonicity




               .   .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                          −
              .                           .
                   0
                   ..
              +                       .           −
                                                  . (x + 2)
                  −
                  .2
              −
              .                           .
                                     0
                                     ..   +
                                                  .3
                                                  x
                                     0
                                     .




                                              .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                          .
                                    0
                                    ..   +
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              −                          −
              .             .            .
                                    ∞
                   0
                   ..               ..
                            +
                  −
                  .2                0
                                    .            f
                                                 .(x)




                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                          .
                                    0
                                    ..   +
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              − ..                       −
              .             .            .
                                    ∞
                 0                  ..
                            +
                −
              ↘ .2                  0
                                    .
              .                                  f
                                                 .(x)




                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                          .
                                    0
                                    ..   +
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              − ..                       −
              .             .            .
                                    ∞
                 0                  ..
                            +
                −
              ↘ .2          ↗       0
                                    .
              .             .                    f
                                                 .(x)




                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                     .. .
                                    0+
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              − ..                  ∞−
              .             .       .. .
                 0          +
                −
              ↘ .2          ↗       0↘
                                    ..
              .             .                    f
                                                 .(x)




                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                     .. .
                                    0+
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              − ..                  ∞−
              .             .       .. .
                  0         +
                 −
              ↘ .2          ↗       0↘
                                    ..
              .             .                    f
                                                 .(x)
                m
                . in



                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                      .. .
                                     0+
                                                 .3
                                                 x
                                     0
                                     .
                                                 .′ (x)
                                                 f
              − ..                  ∞−
              .             .       .. .
                  0         +
                 −
              ↘ .2          ↗        0↘
                                     ..
              .             .                    f
                                                 .(x)
                m
                . in                V
                                    .A



                                             .        .   .   .   .   .
Concavity




            .   .   .   .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                           .
                                               0
                                               ..
            +                                           +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
                                               ∞
                 0
                 ..                            ..
                −
                .3                             0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                           .
                                               0
                                               ..
            +                                           +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                               ∞
               0                               ..
              −
              .3                               0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                           .
                                               0
                                               ..
            +                                           +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           ∞
               0                               ..
                                  +
              −
              .3                               0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
               0                  +
              −
              .3                               0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
              0                   +
           .
           ⌢ .3
              −                                0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
              0                   +
           .                      .
           ⌢ .3                   ⌣
              −                                0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
              0                   +
           .                      .            ..
           ⌢ .3                   ⌣            0⌣
              −                                                 f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
               0                  +
           .                      .            ..
           ⌢ .3                   ⌣            0⌣
              −                                                 f
                                                                .(x)
              I
              .P




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                   .. .
                                                0+
            +
                                                                .4
                                                                x
                                                0
                                                .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
               0                  +
           .                      .             ..
           ⌢ .3                   ⌣             0⌣
              −                                                 f
                                                                .(x)
              I
              .P                               V
                                               .A




                                                    .       .    .       .   .   .
Synthesis
                                       .

                                                   .′
                 − ..                 ∞−
                 .             .      .. .
                   0                               f
                               +
                   −
                 ↘ .2          ↗      0↘
                                      ..
                 .             .                   m
                                                   . onotonicity
                                                   .′′
        −
        . − ..                        ∞−
                                      .. . −
                          .+
            0                                      f
                          +
         .                .           ..
         ⌢ .3             ⌣           0⌣
            −                                      c
                                                   . oncavity

         −        −
         . 2/9    . 1/4               ∞
     0
     .                         0
                               ..               0f
                                                ..
                                      ..
            .        .
                                               ∞s
                                               . . hape	of f
    −
    .∞ . .3
       −−                      .1 .        .
                   −           −+
                   .2                 0
                                      .    +




                                           .   .     .    .    .   .
Synthesis
                                       .

                                                   .′
                 − ..                 ∞−
                 .             .      .. .
                   0                               f
                               +
                   −
                 ↘ .2          ↗      0↘
                                      ..
                 .             .                   m
                                                   . onotonicity
                                                   .′′
        −
        . − ..                        ∞−
                                      .. . −
                          .+
            0                                      f
                          +
         .                .           ..
         ⌢ .3             ⌣           0⌣
            −                                      c
                                                   . oncavity

         −        −
         . 2/9    . 1/4               ∞
     0
     .                         0
                               ..               0f
                                                ..
                                      ..
            .        .
                                               ∞s
                                               . . hape	of f
    −
    .∞ . .3
       −−                      .1 .        .
                   −           −+
                   .2                 0
                                      .    +
    H
    .A




                                           .   .     .    .    .   .
Synthesis
                                       .

                                                   .′
                 − ..                 ∞−
                 .             .      .. .
                   0                               f
                               +
                   −
                 ↘ .2          ↗      0↘
                                      ..
                 .             .                   m
                                                   . onotonicity
                                                   .′′
        −
        . − ..                        ∞−
                                      .. . −
                          .+
            0                                      f
                          +
         .                .           ..
         ⌢ .3             ⌣           0⌣
            −                                      c
                                                   . oncavity

         −        −
         . 2/9    . 1/4               ∞
     0
     .                         0
                               ..               0f
                                                ..
                                      ..
            .        .
                                               ∞s
                                               . . hape	of f
    −
    .∞ . .3
       −−                      .1 .        .
                   −           −+
                   .2                 0
                                      .    +
    .A .
    H




                                           .   .     .    .    .   .
Synthesis
                                       .

                                                   .′
                 − ..                 ∞−
                 .             .      .. .
                   0                               f
                               +
                   −
                 ↘ .2          ↗      0↘
                                      ..
                 .             .                   m
                                                   . onotonicity
                                                   .′′
        −
        . − ..                        ∞−
                                      .. . −
                          .+
            0                                      f
                          +
         .                .           ..
         ⌢ .3             ⌣           0⌣
            −                                      c
                                                   . oncavity

         −        −
         . 2/9    . 1/4               ∞
     0
     .                         0
                               ..               0f
                                                ..
                                      ..
             .       .
                                               ∞s
                                               . . hape	of f
    −
    .∞ . .3
       −−                      .1 .        .
                   −           −+
                   .2                 0
                                      .    +
    .A .   I
           .P
    H




                                           .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P .
           I
    H




                                         .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P . . in
           I
    H           m




                                         .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P . . in .
           I
    H           m




                                         .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P . . in .       0
                             .
           I
    H           m




                                         .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P . . in .       0.
                             .
           I
    H           m




                                         .   .     .    .    .   .
Synthesis
                                  .

                                               .′
                 − ..             ∞−
                 .           .    .. .
                   0                           f
                             +
                   −
                 ↘ .2        ↗    0↘
                                  ..
                 .           .                 m
                                               . onotonicity
                                               .′′
        −
        . − ..                    ∞−
                                  .. . −
                        .+
            0                                  f
                        +
         .              .         ..
         ⌢ .3           ⌣         0⌣
            −                                  c
                                               . oncavity

         −      −
         . 2/9  . 1/4             ∞
     0
     .                       0
                             ..             0f
                                            ..
                                  ..
             .     .
                                           ∞s
                                           . . hape	of f
    −
    .∞ . .3
       −−                    .1 .  0.
                 −           −+.
                 .2                  +
    .A .   .P . . in .       0 . .A
                             .
           I
    H           m                 V




                                      .    .     .    .    .   .
Synthesis
                                  .

                                               .′
                 − ..             ∞−
                 .           .    .. .
                   0                           f
                             +
                   −
                 ↘ .2        ↗    0↘
                                  ..
                 .           .                 m
                                               . onotonicity
                                               .′′
        −
        . − ..                    ∞−
                                  .. . −
                        .+
            0                                  f
                        +
         .              .         ..
         ⌢ .3           ⌣         0⌣
            −                                  c
                                               . oncavity

         −      −
         . 2/9  . 1/4             ∞
     0
     .                       0
                             ..             0f
                                            ..
                                  ..
             .     .
                                           ∞s
                                           . . hape	of f
    −
    .∞ . .3
       −−                    .1 .  0.
                 −           −+.
                 .2                  +
    .A .   .P . . in .       0 . .A .
                             .
           I
    H           m                 V




                                      .    .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4             ∞
     0
     .                       0
                             ..         0f
                                        ..
                                  ..
             .     .
                                       ∞s
                                       . . hape	of f
    −
    .∞ . .3
       −−                    .1 .  0.
                 −           −+.
                 .2                  +
    .A .   .P . . in .       0 . .A . . A
                             .
           I
    H           m                 V    H




                                         .   .     .    .   .    .
Graph

                                  y
                                  .




                                  .               x
                                                  .
              .    .
        . −3, −2/9) . −2, −1/4)
        (            (



                                      .   .   .       .   .   .
Problem
Graph f(x) = cos x − x




                         .   .   .   .   .   .
Problem
Graph f(x) = cos x − x



                         5




          5                  5           10



                         5



                     10




                                 .   .    .   .   .   .
Problem
Graph f(x) = x ln x2




                       .   .   .   .   .   .
Problem
Graph f(x) = x ln x2

                           6


                           4


                           2


   3         2         1       1           2           3

                           2


                           4


                           6



                                   .   .       .   .       .   .

More Related Content

What's hot

11X1 T09 04 concavity
11X1 T09 04 concavity11X1 T09 04 concavity
11X1 T09 04 concavityNigel Simmons
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Matthew Leingang
 
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsLesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienNhan Nguyen
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear IndependenceMatthew Leingang
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Difrentiation
DifrentiationDifrentiation
Difrentiationlecturer
 
Documents.mx eduv
Documents.mx eduvDocuments.mx eduv
Documents.mx eduvOsmar Meraz
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsNigel Simmons
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
L16 indeterminate forms (l'hopital's rule)
L16 indeterminate forms (l'hopital's rule)L16 indeterminate forms (l'hopital's rule)
L16 indeterminate forms (l'hopital's rule)James Tagara
 
CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10fungfung Chen
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial DerivativesMatthew Leingang
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritSelvin Hadi
 
Maths ch15 key
Maths ch15 keyMaths ch15 key
Maths ch15 keyGary Tsang
 

What's hot (20)

Review for final exam
Review for final examReview for final exam
Review for final exam
 
11X1 T09 04 concavity
11X1 T09 04 concavity11X1 T09 04 concavity
11X1 T09 04 concavity
 
Chap 1
Chap 1Chap 1
Chap 1
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞
 
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsLesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential Functions
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bien
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear Independence
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
 
Documents.mx eduv
Documents.mx eduvDocuments.mx eduv
Documents.mx eduv
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
L16 indeterminate forms (l'hopital's rule)
L16 indeterminate forms (l'hopital's rule)L16 indeterminate forms (l'hopital's rule)
L16 indeterminate forms (l'hopital's rule)
 
CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
 
Dev004
Dev004Dev004
Dev004
 
Maths ch15 key
Maths ch15 keyMaths ch15 key
Maths ch15 key
 

Viewers also liked

Viewers also liked (8)

R lecture co2_math 21-1
R lecture co2_math 21-1R lecture co2_math 21-1
R lecture co2_math 21-1
 
Tracing of cartesian curve
Tracing of cartesian curveTracing of cartesian curve
Tracing of cartesian curve
 
Math14 lesson 3
Math14 lesson 3Math14 lesson 3
Math14 lesson 3
 
Lecture co1 math 21-1
Lecture co1 math 21-1Lecture co1 math 21-1
Lecture co1 math 21-1
 
Curve tracing
Curve tracingCurve tracing
Curve tracing
 
Topic 4 - Curve
Topic 4 - CurveTopic 4 - Curve
Topic 4 - Curve
 
Analytical geometry
Analytical geometryAnalytical geometry
Analytical geometry
 
Setting out of curve (Survey)
Setting out of curve (Survey)Setting out of curve (Survey)
Setting out of curve (Survey)
 

Similar to Lesson 21: Curve Sketching II (Section 4 version)

Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesMatthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IIguestf32826
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers IIMatthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesMatthew Leingang
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Lesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsLesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsMatthew Leingang
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at InfinityMatthew Leingang
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers IMatthew Leingang
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsMatthew Leingang
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsMatthew Leingang
 
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Matthew Leingang
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsMatthew Leingang
 
Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Matthew Leingang
 
Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Matthew Leingang
 
Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Matthew Leingang
 

Similar to Lesson 21: Curve Sketching II (Section 4 version) (20)

Lesson 18: Graphing
Lesson 18: GraphingLesson 18: Graphing
Lesson 18: Graphing
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation Rules
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of Curves
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange Multipliers
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Lesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsLesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functions
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers I
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
 
Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)
 
Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)
 
Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)
 
9-8 Notes
9-8 Notes9-8 Notes
9-8 Notes
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Recently uploaded

Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 

Recently uploaded (20)

TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 

Lesson 21: Curve Sketching II (Section 4 version)

  • 1. Section 4.4 Curve Sketching II V63.0121, Calculus I April 2, 2009 . . Image credit: svenwerk . . . . . .
  • 2. Graphing Checklist To graph a function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . .
  • 3. Outline More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . .
  • 4. Example √ |x| Graph f(x) = x + . . . . . .
  • 5. Example √ |x| Graph f(x) = x + This function looks strange because of the absolute value. But whenever we become nervous, we can just take cases. First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? Yes, if x = −1 then √ √ x + |x| = −1 + 1 = 0. No other zeros exist. . . . . . .
  • 6. Asymptotic behavior Asymptotically, it’s clear that lim f(x) = ∞, because both x→∞ terms tend to ∞. What about x → −∞? This is now indeterminate of the form −∞ + ∞. To resolve it, first let y = −x to make it look more familiar: ( √) √ √ lim x + −x = lim (−y + y) = lim ( y − y) y→∞ y→∞ x→−∞ Now multiply by the conjugate: √ y − y2 y+y √ lim ( y − y) · √ = −∞ = lim √ y + y y→∞ y + y y→∞ . . . . . .
  • 7. The derivative First, assume x > 0, so d( √) 1 f′ (x) = x+ x =1+ √ dx 2x This is always positive. Also, we see that lim f′ (x) = ∞ and x→0+ ′ lim f (x) = 1. If x is negative, we have x→∞ d( √) 1 f′ (x) = x + −x = 1 − √ dx 2 −x √ Again, this looks weird because −x appears to be a negative number. But since x < 0, −x > 0. . . . . . .
  • 8. Monotonicity We see that f′ (x) = 0 when √ 1 1 1 1 1= √ =⇒ −x = =⇒ −x = =⇒ x = − 2 4 4 2 −x Notice also that lim f′ (x) = −∞ and lim f′ (x) = 1. We can’t x→−∞ x→0− make a multi-factor sign chart because of the absolute value, but the conclusion is this: .′ (x) f 0 −∓ . .. . . ∞ . . + + ↗ −4 ↘ 0 ↗ . .1 . . . . f .(x) . max cusp . . . . . .
  • 9. Concavity If x > 0, then ( ) d 1 1 ′′ 1 + x−1/2 = − x−3/2 f (x) = dx 2 4 This is negative whenever x < 0. If x < 0, then ( ) d 1 1 ′′ −1/2 = − (−x)−3/2 1 − (−x) f (x) = dx 2 4 which is also always negative for negative x. Another way to 1 write this is f′′ (x) = − |x|−3/2 . Here is the sign chart: 4 f′′ . . (x) − .− −. .∞ − .− . . . ⌢ ⌢ 0 . f .(x) . . . . . .
  • 10. Synthesis Now we can put these things together. .′ (x) f 0 −∓ . .. . . ∞ . . + + ↗ −4 ↘ 0 ↗ . 1. . . . m .′′ onotonicity f . (x) − .− −. . .−∞ − − .− . .. . ⌢ ⌢0 ⌢ c . oncavity .1 f .(x) 0 .. 0 .. 4. . 1. . . − 0 .1 s . hape − . .4 . . zero max cusp . . . . . .
  • 11. Graph f .(x) .−1, 1) ( 44 . −1, 0) . ( . . x . . 0, 0) ( .1 f .(x) 0 .. 0 .. 4. . 1. . . − 0 .1 s . hape − . .4 . . zero max cusp . . . . . .
  • 12. Example 2 Graph f(x) = xe−x . . . . . .
  • 13. Example 2 Graph f(x) = xe−x Before taking derivatives, we notice that f is odd, that f(0) = 0, and lim f(x) = 0 x→∞ . . . . . .
  • 14. Monotonicity Now ( ) 2 2 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x ( √ )( √) 2 = 1 − 2x 1 + 2x e−x 2 The factor e−x is always positive so it doesn’t figure into the sign of f′ (x). So our sign chart looks like this: √ − . .. . 0 . + + √. .− 1 2x . 1/2 √ − . . . 0 .. + + √ 1 .+ 2x − . 1/2 ′ f . (x) − − . . . 0 .. 0 . + √. √ ↘ ↗ ↘ . − 1/2 . . . f .(x) .. . 1/2 max min . . . . . .
  • 15. Concavity Now we look at f′′ (x): ( ) 2 2 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 = 2x(2x2 − 3)e−x − − . . . . 0 .. + + .x 2 0 . √ √ − − − . . . . 0 . + √. . 2x − 3 . 3/2 √ √ − . . . . 0 .. + + + √ . 2x + 3 − 3/2 . .′′ (x) f − .− − . − .. .. . + .+ 0+ 0 .. 0 + √ ⌢ √3 . . . . ⌢ ⌣ ⌣ 0 . f .(x) − 3/2 . .. . . /2 IP IP IP . . . . . .
  • 16. Synthesis .′ (x) f − −0 + +.− − . . .. . . . √. . . 0 √ ↘ ↘ 1/2 . ↗ ↗ ↘ ↘ . .. . . 1/2. . m . onotonic − .′′ (x) f − .− + 0− . + .. . − −0 . − .. .. . + .+ 0+ + √. . √3 . ⌣. . . . ⌢ ⌣ 0⌢ ⌢ ⌣ c . oncavity − 3/2 . . /2 √ √ − 2e3 . √1 .√1 . 2e3 3 3 − 2e . f .(x) 0 .. 2e . . . √. √. √ √. . − 1/2 . .. . 0 s . hape − .. .. . 1/2 . 3/2 3/2 . . . max IP IP min IP . . . . . .
  • 17. Graph f .(x) (√ )( √) √ . 1/2, √1 3 2e . 3/2, . 2e3 . . x . . 0, 0) ( . ( √) √ . . − 3/2, − 2e3 ( √ ) 3 . − 1/2, − √1 2e √ √ − 2e3 √1 .√1 . 2e3 3 3 − . 2e . f .(x) 0 .. 2e . . √. √. √√ . − .. . . 3/2 1/2 . . . . . .1/2.. 3/2 . 0 s . hape −. . max IP IP min IP . . . . . .
  • 18. Example 1 1 Graph f(x) = +2 x x . . . . . .
  • 19. Step 0 Find when f is positive, negative, zero, not defined. . . . . . .
  • 20. Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: x+1 1 1 f(x) = + 2 = . x2 x x This means f is 0 at −1 and has trouble at 0. In fact, x+1 = ∞, lim x→0 x2 so x = 0 is a vertical asymptote of the graph. . . . . . .
  • 21. Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: x+1 1 1 f(x) = + 2 = . x2 x x This means f is 0 at −1 and has trouble at 0. In fact, x+1 = ∞, lim x→0 x2 so x = 0 is a vertical asymptote of the graph. We can make a sign chart as follows: − . . 0 .. + . x . +1 − .1 . . 0 .. + + .2 x 0 . − . .. . . ∞ 0+ .. + f .(x) − 0 . .1 . . . . . .
  • 22. For horizontal asymptotes, notice that x+1 lim = 0, x2 x→∞ so y = 0 is a horizontal asymptote of the graph. The same is true at −∞. . . . . . .
  • 23. Monotonicity . . . . . .
  • 24. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . . 0 .. + .3 x 0 . . . . . . .
  • 25. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . . 0 .. + .3 x 0 . .′ (x) f − − . . . ∞ 0 .. .. + − .2 0 . f .(x) . . . . . .
  • 26. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . . 0 .. + .3 x 0 . .′ (x) f − .. − . . . ∞ 0 .. + − ↘ .2 0 . . f .(x) . . . . . .
  • 27. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . . 0 .. + .3 x 0 . .′ (x) f − .. − . . . ∞ 0 .. + − ↘ .2 ↗ 0 . . . f .(x) . . . . . .
  • 28. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . .. . 0+ .3 x 0 . .′ (x) f − .. ∞− . . .. . 0 + − ↘ .2 ↗ 0↘ .. . . f .(x) . . . . . .
  • 29. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . .. . 0+ .3 x 0 . .′ (x) f − .. ∞− . . .. . 0 + − ↘ .2 ↗ 0↘ .. . . f .(x) m . in . . . . . .
  • 30. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . .. . 0+ .3 x 0 . .′ (x) f − .. ∞− . . .. . 0 + − ↘ .2 ↗ 0↘ .. . . f .(x) m . in V .A . . . . . .
  • 31. Concavity . . . . . .
  • 32. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . . 0 .. + + .4 x 0 . .′ (x) f ∞ 0 .. .. − .3 0 . f .(x) . . . . . .
  • 33. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . . 0 .. + + .4 x 0 . .′ (x) f − . − .. ∞ 0 .. − .3 0 . f .(x) . . . . . .
  • 34. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . . 0 .. + + .4 x 0 . .′ (x) f − . − .. .+ ∞ 0 .. + − .3 0 . f .(x) . . . . . .
  • 35. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + − .3 0 . f .(x) . . . . . .
  • 36. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . ⌢ .3 − 0 . f .(x) . . . . . .
  • 37. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . . ⌢ .3 ⌣ − 0 . f .(x) . . . . . .
  • 38. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . . .. ⌢ .3 ⌣ 0⌣ − f .(x) . . . . . .
  • 39. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . . .. ⌢ .3 ⌣ 0⌣ − f .(x) I .P . . . . . .
  • 40. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . . .. ⌢ .3 ⌣ 0⌣ − f .(x) I .P V .A . . . . . .
  • 41. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + . . . . . .
  • 42. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + H .A . . . . . .
  • 43. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . H . . . . . .
  • 44. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . I .P H . . . . . .
  • 45. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . I H . . . . . .
  • 46. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . . in I H m . . . . . .
  • 47. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . . in . I H m . . . . . .
  • 48. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . . in . 0 . I H m . . . . . .
  • 49. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . . in . 0. . I H m . . . . . .
  • 50. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . 0. − −+. .2 + .A . .P . . in . 0 . .A . I H m V . . . . . .
  • 51. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . 0. − −+. .2 + .A . .P . . in . 0 . .A . . I H m V . . . . . .
  • 52. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . 0. − −+. .2 + .A . .P . . in . 0 . .A . . A . I H m V H . . . . . .
  • 53. Graph y . . x . . . . −3, −2/9) . −2, −1/4) ( ( . . . . . .
  • 54. Problem Graph f(x) = cos x − x . . . . . .
  • 55. Problem Graph f(x) = cos x − x 5 5 5 10 5 10 . . . . . .
  • 56. Problem Graph f(x) = x ln x2 . . . . . .
  • 57. Problem Graph f(x) = x ln x2 6 4 2 3 2 1 1 2 3 2 4 6 . . . . . .