SlideShare a Scribd company logo
1 of 63
Download to read offline
Section	4.4
                              Curve	Sketching	I

                                 V63.0121, Calculus	I



                                   March	31, 2009


        Announcements
                Quiz	4	this	week	(Sections	2.5–3.5)
                Office	hours	this	week: M 1–2, T 1–2, W 2–3, R 9–10

        .
.
Image	credit: Fast	Eddie	42
                                                        .   .   .   .   .   .
Office	Hours	and	other	help



      Day        Time      Who/What          Where	in	WWH
       M      1:00–2:00    Leingang	OH         718/618
              5:00–7:00    Curto	PS               517
       T      1:00–2:00    Leingang	OH         718/618
              4:00–5:50    Curto	PS               317
      W       2:00–3:00    Leingang	OH         718/618
      R     9:00–10:00am   Leingang	OH         718/618
      F       2:00–4:00    Curto	OH              1310




                                         .     .   .   .    .   .
CIMS/NYU professor	wins	Abel	Prize



     Mikhail	Gromov, born
     1943	in	Russia
     contributions	to
     geometry	and	topology
     discovered	the
     pseudoholomorphic
     curve
     Abel	Prize	is	the	highest
     in	mathematics




                                 .   .   .   .   .   .
Outline




  The	Procedure



  The	examples
     A cubic	function
     A quartic	function
     Worksheet




                          .   .   .   .   .   .
The	Increasing/Decreasing	Test

   Theorem	(The	Increasing/Decreasing	Test)
   If f′ > 0 on (a, b), then f is	increasing	on (a, b). If f′ < 0 on (a, b),
   then f is	decreasing	on (a, b).

   Proof.
   It	works	the	same	as	the	last	theorem. Pick	two	points x and y in
   (a, b) with x < y. We	must	show f(x) < f(y). By	MVT there	exists
   a	point c in (x, y) such	that

                           f(y) − f(x)
                                       = f′ (c) > 0.
                              y−x

   So
                       f(y) − f(x) = f′ (c)(y − x) > 0.



                                                    .     .   .    .    .      .
Theorem	(Concavity	Test)
     If f′′ (x) > 0 for	all x in I, then	the	graph	of f is	concave
     upward	on I
     If f′′ (x) < 0 for	all x in I, then	the	graph	of f is	concave
     downward	on I

Proof.
Suppose f′′ (x) > 0 on I. This	means f′ is	increasing	on I. Let a and
x be	in I. The	tangent	line	through (a, f(a)) is	the	graph	of

                        L(x) = f(a) + f′ (a)(x − a)

                                                      f(x) − f(a)
                                                                  = f′ (b).
By	MVT,	there	exists	a b between a and x with
                                                         x−a
So

         f(x) = f(a) + f′ (b)(x − a) ≥ f(a) + f′ (a)(x − a) = L(x)

                                                  .    .    .     .    .      .
Graphing	Checklist


   To	graph	a	function f, follow	this	plan:
    0. Find	when f is	positive, negative, zero, not	defined.
    1. Find f′ and	form	its	sign	chart. Conclude	information	about
       increasing/decreasing	and	local	max/min.
    2. Find f′′ and	form	its	sign	chart. Conclude	concave
       up/concave	down	and	inflection.
    3. Put	together	a	big	chart	to	assemble	monotonicity	and
       concavity	data
    4. Graph!




                                               .   .    .     .   .   .
Outline




  The	Procedure



  The	examples
     A cubic	function
     A quartic	function
     Worksheet




                          .   .   .   .   .   .
Graphing	a	cubic

  Example
  Graph f(x) = 2x3 − 3x2 − 12x.




                                  .   .   .   .   .   .
Graphing	a	cubic

  Example
  Graph f(x) = 2x3 − 3x2 − 12x.
  First, let’s	find	the	zeros. We	can	at	least	factor	out	one	power	of
  x:
                          f(x) = x(2x2 − 3x − 12)
  so f(0) = 0. The	other	factor	is	a	quadratic, so	we	the	other	two
  roots	are
                       √
                                                   √
                   3 ± 32 − 4(2)(−12)         3 ± 105
               x=                          =
                              4                    4
  It’s	OK to	skip	this	step	for	now	since	the	roots	are	so
  complicated.


                                                .    .       .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

                         .




                                             .    .      .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

                         .            .          . −2
                                                 x
                                    2
                                    .
                  .                              x
                                                 . +1
                 −
                 .1
                                                 .′ (x)
                                                 f
                  .                   .
                 −                  2
                                    .
                 .1                              f
                                                 .(x)




                                             .    .       .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
                    .                             x
                                                  . +1
                   −
                   .1
                                                  .′ (x)
                                                  f
                    .                 .
                   −                2
                                    .
                   .1                             f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
               −
               ..          .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
                    .                 .
                   −                2
                                    .
                   .1                             f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
               −
               ..          .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
               ..
               +                      .
                 −                  2
                                    .
                 .1                               f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
               −
               ..          .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
                           −
               ..          .
               +                      .
                 −                  2
                                    .
                 .1                               f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
               −
               ..          .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
                           −
               ..          .              .
               +                          +
                                      .
                 −                  2
                                    .
                 .1                               f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
              −
              ..           .              .
                           +              +
                                                  x
                                                  . +1
                −
                .1
                                                  .′ (x)
                                                  f
                           −
              ..           .              .
              +                           +
                                      .
              ↗−                    2
                                    .
              . .1                                f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
              −
              ..           .              .
                           +              +
                                                  x
                                                  . +1
                −
                .1
                                                  .′ (x)
                                                  f
                          −
              ..          .               .
              +                           +
                                      .
              ↗−          ↘         2
                                    .
              . .1        .                       f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
              −
              ..           .              .
                           +              +
                                                  x
                                                  . +1
                −
                .1
                                                  .′ (x)
                                                  f
                          −
              ..          .               .
              +                           +
                                      .
              ↗−          ↘               ↗
                                    2
                                    .
              . .1        .               .       f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
              −
              ..           .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
                          −
              ..          .               .
              +                           +
                                      .
              ↗−          ↘               ↗
                                    2
                                    .
              . .1        .               .       f
                                                  .(x)
                m
                . ax




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..                .
                                           +
                                      .            . −2
                                                   x
                                    2
                                    .
              −
              ..           .               .
                           +               +
                                                   x
                                                   . +1
                 −
                 .1
                                                   .′ (x)
                                                   f
                          −
              ..          .                .
              +                            +
                                       .
              ↗−          ↘                ↗
                                     2
                                     .
              . .1        .                .       f
                                                   .(x)
                m
                . ax               m
                                   . in




                                               .   .        .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .




                                              .     .   .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                               .
                                                    f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−            .
                                                    f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−                .+
                                   +
                               .
                                                    f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−                .+
                                   +
                               .
                 .
                 ⌢                                  f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−                .+
                                   +
                               .
                 .                 .
                 ⌢                 ⌣                f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−                 .+
                                    +
                                .
                 .                  .
                 ⌢                  ⌣               f
                             .                      .(x)
                             1/2
                              I
                              .P




                                              .     .      .   .   .   .
One	sign	chart	to	rule	them	all




                  .




                                  .   .   .   .   .   .
One	sign	chart	to	rule	them	all




                                      .′ (x)
                                      f
               −      −
          . . ..      .           .
          +                       +
                            .
          ↗− ↘        ↘           ↗
                          2
                          .
          . .1 .      .           .   m
                                      . onotonicity




                                      .        .   .   .   .   .
One	sign	chart	to	rule	them	all




                                     .′ (x)
                                     f
                −       −
         ..     ..      .       .
         +                      +
                            .
         ↗−     ↘       ↘.      ↗
                           2
         . .1   .       .       .    m
                                     .′′ onotonicity
                                     f
                                     . (x)
         −
         .−     −
                .− .    .+      .+
                        +       +
         .      .       .       .
         ⌢      ⌢ 1/2   ⌣       ⌣    c
                                     . oncavity
                   .




                                     .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                      .′ (x)
                                      f
                −        −
         ..     ..       .       .
         +                       +
                               .
         ↗−     ↘        ↘       ↗
                             2
                             .
         . .1   .        .       .    m
                                      .′′ onotonicity
                                      f
                                      . (x)
         −
         .−     −
                .− . .+          .+
                         +       +
         .      ⌢ 1/2 .
                .                .
         ⌢               ⌣       ⌣    c
                                      . oncavity
                    .
                  −                   f
                  . 61/2              .(x)
                           −.
                           . 20
             7
             ..        .
            −                2
                             .
            .1      .                 . hape	of f
                                      s
                    1/2
           m
           . ax      I
                     .P    m
                           . in




                                      .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                      .′ (x)
                                      f
                −        −
         ..     ..       .       .
         +                       +
                               .
         ↗−     ↘        ↘       ↗
                             2
                             .
         . .1   .        .       .    m
                                      .′′ onotonicity
                                      f
                                      . (x)
         −
         .−     −
                .− . .+          .+
                         +       +
         .      ⌢ 1/2 .
                .                .
         ⌢               ⌣       ⌣    c
                                      . oncavity
                    .
                  −                   f
                  . 61/2              .(x)
                           −.
                           . 20
             7
             ..        .
          ..1
            −                2
                             .
                    .                 . hape	of f
                                      s
                    1/2
           m
           . ax      I
                     .P    m
                           . in




                                      .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                       .′ (x)
                                       f
                 −        −
         ..      ..       .       .
         +                        +
                                .
         ↗−      ↘        ↘       ↗
                              2
                              .
         . .1    .        .       .    m
                                       .′′ onotonicity
                                       f
                                       . (x)
         −
         .−      −
                 .− . .+          .+
                          +       +
         .       ⌢ 1/2 .
                 .                .
         ⌢                ⌣       ⌣    c
                                       . oncavity
                     .
                   −                   f
                   . 61/2              .(x)
                            −.
                            . 20
              7
              ..        .
          . . 1 . 1/2
             −                2
                              .
                     .                 . hape	of f
                                       s
            m
            . ax      I
                      .P    m
                            . in




                                       .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                       .′ (x)
                                       f
                 −        −
         ..      ..       .       .
         +                        +
                                .
         ↗−      ↘        ↘       ↗
                              2
                              .
         . .1    .        .       .    m
                                       .′′ onotonicity
                                       f
                                       . (x)
         −
         .−      −
                 .− . .+          .+
                          +       +
         .       ⌢ 1/2 .
                 .                .
         ⌢                ⌣       ⌣    c
                                       . oncavity
                     .
                   −                   f
                   . 61/2              .(x)
                            −.
                            . 20
              7
              ..        .
          . . 1 . 1/2 .
             −                2
                              .
                     .                 . hape	of f
                                       s
            m
            . ax      I
                      .P    m
                            . in




                                       .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                       .′ (x)
                                       f
                 −        −
         ..      ..       .       .
         +                        +
                                .
         ↗−      ↘        ↘       ↗
                              2
                              .
         . .1    .        .       .    m
                                       .′′ onotonicity
                                       f
                                       . (x)
         −
         .−      −
                 .− . .+          .+
                          +       +
         .       ⌢ 1/2 .
                 .                .
         ⌢                ⌣       ⌣    c
                                       . oncavity
                     .
                   −                   f
                   . 61/2              .(x)
                            −.
                            . 20
              7
              ..        .
          . . 1 . 1/2 .            .
             −                2
                              .
                     .                 . hape	of f
                                       s
            m
            . ax      I
                      .P    m
                            . in




                                       .        .   .    .   .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graphing	a	quartic




   Example
   Graph f(x) = x4 − 4x3 + 10




                                .   .   .   .   .   .
Graphing	a	quartic




   Example
   Graph f(x) = x4 − 4x3 + 10
   We	know f(0) = 10 and lim f(x) = +∞. Not	too	many	other
                           x→±∞
   points	on	the	graph	are	evident.




                                         .   .   .   .   .   .
Monotonicity



                  f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
  We	make	its	sign	chart.

                 . ..        .           .
                 +0          +           +
                                                  . x2
                                                  4
                   0
                   .
                 −           −
                 .           .         .. .
                                       0+
                                                  . x − 3)
                                                  (
                                       3
                                       .
                                                  .′ (x)
                                                  f
                −0          −
                . ..        .          .. .
                                       0+
                ↘0          ↘          3↗
                ..                     ..
                            .                     f
                                                  .(x)
                                     m
                                     . in




                                              .            .   .   .   .   .
Concavity



                    f′′ (x) = 12x2 − 24x = 12x(x − 2)
  Here	is	its	sign	chart:

                   −0
                   . ..      .           .
                             +           +
                                                    1
                                                    . 2x
                     0
                     .
                   −         −
                   .         .           .
                                    0
                                    ..   +
                                                    . −2
                                                    x
                                    2
                                    .
                                                    .′′ (x)
                                                    f
                            −
                            .−
                  . + ..                 .+
                  +0                0
                                    ..   +
                   ..       .            .
                   ⌣0       ⌢            ⌣
                                    2
                                    .               f
                                                    .(x)
                       I
                       .P          I
                                   .P




                                                .        .    .   .   .   .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
                0
                .           2
                            .      3
                                   .             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
              ..0           2
                            .      3
                                   .             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
              ..     .
                0           2
                            .      3
                                   .             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
              ..     .           ..
                0           2
                            .      3             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
              ..     .           ...
                0           2
                            .      3             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Graph

                   y
                   .




        . 0, 10)
        (
                   .
                   .                                      x
                                                          .
                                  .
                                            .
                       . 2, −6)
                       (
                                      . 3, −17)
                                      (


                                           .      .   .       .   .   .
Worksheet
    .
    Image: Erick	Cifuentes
.




                                         .   .   .   .   .   .
Worksheet	Problem	1
  Problem
  Graph f(x) = x3 − 3x2 + 3x




                               .   .   .   .   .   .
Worksheet	Problem	1
  Problem
  Graph f(x) = x3 − 3x2 + 3x




                 5




     1                         1       2               3




                 5



                                   .       .   .   .       .   .
Worksheet	Problem	2
  Problem
  Graph f(x) = x4 − 3x2 + 2x




                               .   .   .   .   .   .
Worksheet	Problem	2
  Problem
  Graph f(x) = x4 − 3x2 + 2x

                               8


                               6


                               4


                               2


     2             1                   1               2

                               2


                               4


                                   .       .   .   .       .   .
Worksheet	Problem	3
  Problem
  Graph f(x) = cos x − x




                           .   .   .   .   .   .
Worksheet	Problem	3
  Problem
  Graph f(x) = cos x − x



                           5




            5                  5           10



                           5



                       10



                                   .   .    .   .   .   .
Worksheet	Problem	4
  Problem
  Graph f(x) = x ln x2




                         .   .   .   .   .   .
Worksheet	Problem	4
  Problem
  Graph f(x) = x ln x2

                             6


                             4


                             2


     3         2         1       1           2           3

                             2


                             4


                             6


                                     .   .       .   .       .   .
Worksheet	Problem	5
  Problem
                     2
  Graph f(x) = e−x




                         .   .   .   .   .   .
Worksheet	Problem	5
  Problem
                     2
  Graph f(x) = e−x

                             1.0


                             0.8


                             0.6


                             0.4


                             0.2



     3        2          1         1           2           3
                                       .   .       .   .       .   .

More Related Content

What's hot

Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and modelsTarun Gehlot
 
Difrentiation
DifrentiationDifrentiation
Difrentiationlecturer
 
01 derivadas
01   derivadas01   derivadas
01 derivadasklorofila
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manualMahrukh Khalid
 
Lesson 20: (More) Optimization Problems
Lesson 20: (More) Optimization ProblemsLesson 20: (More) Optimization Problems
Lesson 20: (More) Optimization ProblemsMatthew Leingang
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)yustar1026
 
JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12Aidia Propitious
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553Destiny Nooppynuchy
 
2Bytesprog2 course_2014_c9_graph
2Bytesprog2 course_2014_c9_graph2Bytesprog2 course_2014_c9_graph
2Bytesprog2 course_2014_c9_graphkinan keshkeh
 
Eight Regression Algorithms
Eight Regression AlgorithmsEight Regression Algorithms
Eight Regression Algorithmsguestfee8698
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberAPEX INSTITUTE
 

What's hot (20)

Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
 
Chap 1
Chap 1Chap 1
Chap 1
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
 
Math 21a Midterm I Review
Math 21a Midterm I ReviewMath 21a Midterm I Review
Math 21a Midterm I Review
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Lesson 20: (More) Optimization Problems
Lesson 20: (More) Optimization ProblemsLesson 20: (More) Optimization Problems
Lesson 20: (More) Optimization Problems
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 
JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
9-8 Notes
9-8 Notes9-8 Notes
9-8 Notes
 
2Bytesprog2 course_2014_c9_graph
2Bytesprog2 course_2014_c9_graph2Bytesprog2 course_2014_c9_graph
2Bytesprog2 course_2014_c9_graph
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 
Eight Regression Algorithms
Eight Regression AlgorithmsEight Regression Algorithms
Eight Regression Algorithms
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 

Viewers also liked

Lesson03 The Concept Of Limit 027 Slides
Lesson03   The Concept Of Limit 027 SlidesLesson03   The Concept Of Limit 027 Slides
Lesson03 The Concept Of Limit 027 SlidesMatthew Leingang
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session SlidesMatthew Leingang
 
Lesson 17: The Mean Value Theorem
Lesson 17: The Mean Value TheoremLesson 17: The Mean Value Theorem
Lesson 17: The Mean Value TheoremMatthew Leingang
 

Viewers also liked (8)

Lesson 29: Areas
Lesson 29: AreasLesson 29: Areas
Lesson 29: Areas
 
Lesson 24: Optimization
Lesson 24: OptimizationLesson 24: Optimization
Lesson 24: Optimization
 
Lesson03 The Concept Of Limit 027 Slides
Lesson03   The Concept Of Limit 027 SlidesLesson03   The Concept Of Limit 027 Slides
Lesson03 The Concept Of Limit 027 Slides
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Lesson 17: The Mean Value Theorem
Lesson 17: The Mean Value TheoremLesson 17: The Mean Value Theorem
Lesson 17: The Mean Value Theorem
 

Similar to Lesson 21: Curve Sketching (Section 4 version)

Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Mel Anthony Pepito
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersMatthew Leingang
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesMatthew Leingang
 
Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)Matthew Leingang
 
Lesson 22: Optimization II (Section 10 version)
Lesson 22: Optimization II (Section 10 version)Lesson 22: Optimization II (Section 10 version)
Lesson 22: Optimization II (Section 10 version)Matthew Leingang
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topSEENET-MTP
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Matthew Leingang
 
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Matthew Leingang
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial DerivativesMatthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
Taylor Polynomials and Series
Taylor Polynomials and SeriesTaylor Polynomials and Series
Taylor Polynomials and SeriesMatthew Leingang
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Matthew Leingang
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienNhan Nguyen
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesMatthew Leingang
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsMatthew Leingang
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 

Similar to Lesson 21: Curve Sketching (Section 4 version) (20)

Lesson 18: Graphing
Lesson 18: GraphingLesson 18: Graphing
Lesson 18: Graphing
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange Multipliers
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of Curves
 
Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)
 
Lesson 22: Optimization II (Section 10 version)
Lesson 22: Optimization II (Section 10 version)Lesson 22: Optimization II (Section 10 version)
Lesson 22: Optimization II (Section 10 version)
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski top
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Taylor Polynomials and Series
Taylor Polynomials and SeriesTaylor Polynomials and Series
Taylor Polynomials and Series
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bien
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation Rules
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 

Recently uploaded

Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 

Recently uploaded (20)

Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 

Lesson 21: Curve Sketching (Section 4 version)

  • 1. Section 4.4 Curve Sketching I V63.0121, Calculus I March 31, 2009 Announcements Quiz 4 this week (Sections 2.5–3.5) Office hours this week: M 1–2, T 1–2, W 2–3, R 9–10 . . Image credit: Fast Eddie 42 . . . . . .
  • 2. Office Hours and other help Day Time Who/What Where in WWH M 1:00–2:00 Leingang OH 718/618 5:00–7:00 Curto PS 517 T 1:00–2:00 Leingang OH 718/618 4:00–5:50 Curto PS 317 W 2:00–3:00 Leingang OH 718/618 R 9:00–10:00am Leingang OH 718/618 F 2:00–4:00 Curto OH 1310 . . . . . .
  • 3. CIMS/NYU professor wins Abel Prize Mikhail Gromov, born 1943 in Russia contributions to geometry and topology discovered the pseudoholomorphic curve Abel Prize is the highest in mathematics . . . . . .
  • 4. Outline The Procedure The examples A cubic function A quartic function Worksheet . . . . . .
  • 5. The Increasing/Decreasing Test Theorem (The Increasing/Decreasing Test) If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f is decreasing on (a, b). Proof. It works the same as the last theorem. Pick two points x and y in (a, b) with x < y. We must show f(x) < f(y). By MVT there exists a point c in (x, y) such that f(y) − f(x) = f′ (c) > 0. y−x So f(y) − f(x) = f′ (c)(y − x) > 0. . . . . . .
  • 6. Theorem (Concavity Test) If f′′ (x) > 0 for all x in I, then the graph of f is concave upward on I If f′′ (x) < 0 for all x in I, then the graph of f is concave downward on I Proof. Suppose f′′ (x) > 0 on I. This means f′ is increasing on I. Let a and x be in I. The tangent line through (a, f(a)) is the graph of L(x) = f(a) + f′ (a)(x − a) f(x) − f(a) = f′ (b). By MVT, there exists a b between a and x with x−a So f(x) = f(a) + f′ (b)(x − a) ≥ f(a) + f′ (a)(x − a) = L(x) . . . . . .
  • 7. Graphing Checklist To graph a function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . .
  • 8. Outline The Procedure The examples A cubic function A quartic function Worksheet . . . . . .
  • 9. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. . . . . . .
  • 10. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. First, let’s find the zeros. We can at least factor out one power of x: f(x) = x(2x2 − 3x − 12) so f(0) = 0. The other factor is a quadratic, so we the other two roots are √ √ 3 ± 32 − 4(2)(−12) 3 ± 105 x= = 4 4 It’s OK to skip this step for now since the roots are so complicated. . . . . . .
  • 11. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . . . . .
  • 12. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . −2 x 2 . . x . +1 − .1 .′ (x) f . . − 2 . .1 f .(x) . . . . . .
  • 13. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . . x . +1 − .1 .′ (x) f . . − 2 . .1 f .(x) . . . . . .
  • 14. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f . . − 2 . .1 f .(x) . . . . . .
  • 15. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f .. + . − 2 . .1 f .(x) . . . . . .
  • 16. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . + . − 2 . .1 f .(x) . . . . . .
  • 17. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . − 2 . .1 f .(x) . . . . . .
  • 18. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− 2 . . .1 f .(x) . . . . . .
  • 19. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− ↘ 2 . . .1 . f .(x) . . . . . .
  • 20. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− ↘ ↗ 2 . . .1 . . f .(x) . . . . . .
  • 21. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− ↘ ↗ 2 . . .1 . . f .(x) m . ax . . . . . .
  • 22. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− ↘ ↗ 2 . . .1 . . f .(x) m . ax m . in . . . . . .
  • 23. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . . . . . . .
  • 24. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f . f . .(x) 1/2 . . . . . .
  • 25. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− . f . .(x) 1/2 . . . . . .
  • 26. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− .+ + . f . .(x) 1/2 . . . . . .
  • 27. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− .+ + . . ⌢ f . .(x) 1/2 . . . . . .
  • 28. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− .+ + . . . ⌢ ⌣ f . .(x) 1/2 . . . . . .
  • 29. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− .+ + . . . ⌢ ⌣ f . .(x) 1/2 I .P . . . . . .
  • 31. One sign chart to rule them all .′ (x) f − − . . .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m . onotonicity . . . . . .
  • 32. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘. ↗ 2 . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . . . . ⌢ ⌢ 1/2 ⌣ ⌣ c . oncavity . . . . . . .
  • 33. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . − 2 . .1 . . hape of f s 1/2 m . ax I .P m . in . . . . . .
  • 34. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . ..1 − 2 . . . hape of f s 1/2 m . ax I .P m . in . . . . . .
  • 35. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . . . 1 . 1/2 − 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 36. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . . . 1 . 1/2 . − 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 37. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . . . 1 . 1/2 . . − 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 38. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 39. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 40. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 41. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 42. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 43. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 . . . . . .
  • 44. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 We know f(0) = 10 and lim f(x) = +∞. Not too many other x→±∞ points on the graph are evident. . . . . . .
  • 45. Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. . . +0 + + . x2 4 0 . − − . . .. . 0+ . x − 3) ( 3 . .′ (x) f −0 − . .. . .. . 0+ ↘0 ↘ 3↗ .. .. . f .(x) m . in . . . . . .
  • 46. Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0 . .. . . + + 1 . 2x 0 . − − . . . 0 .. + . −2 x 2 . .′′ (x) f − .− . + .. .+ +0 0 .. + .. . . ⌣0 ⌢ ⌣ 2 . f .(x) I .P I .P . . . . . .
  • 47. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 0 . 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 48. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 ..0 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 49. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 .. . 0 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 50. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 .. . .. 0 2 . 3 s . hape I .P I .P . inm . . . . . .
  • 51. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 .. . ... 0 2 . 3 s . hape I .P I .P . inm . . . . . .
  • 52. Graph y . . 0, 10) ( . . x . . . . 2, −6) ( . 3, −17) ( . . . . . .
  • 53. Worksheet . Image: Erick Cifuentes . . . . . . .
  • 54. Worksheet Problem 1 Problem Graph f(x) = x3 − 3x2 + 3x . . . . . .
  • 55. Worksheet Problem 1 Problem Graph f(x) = x3 − 3x2 + 3x 5 1 1 2 3 5 . . . . . .
  • 56. Worksheet Problem 2 Problem Graph f(x) = x4 − 3x2 + 2x . . . . . .
  • 57. Worksheet Problem 2 Problem Graph f(x) = x4 − 3x2 + 2x 8 6 4 2 2 1 1 2 2 4 . . . . . .
  • 58. Worksheet Problem 3 Problem Graph f(x) = cos x − x . . . . . .
  • 59. Worksheet Problem 3 Problem Graph f(x) = cos x − x 5 5 5 10 5 10 . . . . . .
  • 60. Worksheet Problem 4 Problem Graph f(x) = x ln x2 . . . . . .
  • 61. Worksheet Problem 4 Problem Graph f(x) = x ln x2 6 4 2 3 2 1 1 2 3 2 4 6 . . . . . .
  • 62. Worksheet Problem 5 Problem 2 Graph f(x) = e−x . . . . . .
  • 63. Worksheet Problem 5 Problem 2 Graph f(x) = e−x 1.0 0.8 0.6 0.4 0.2 3 2 1 1 2 3 . . . . . .