SlideShare a Scribd company logo
2017
 Definisi electronic spectra (spektra
elektronik)
 Teori transisi elektronik
 Teori yang menjelaskan electronic spectra :
warna senyawa kompleks
 DiagramTanabeTsugano
 Deret spektrokimia
 Kemagnetan seny. kompleks
 Moment magnetik seny. kompleks
 Bil. Oksidasi bervariasi
 Warna
 Kemagnetan
 Ikatan kovalen koordinasi
 Interaksi asam-basa lewis
Berbagai warna senyawa logam transisi periode 4
titanium oxide
sodium chromate
potassium
ferricyanide
nickel(II) nitrate
hexahydrate
zinc sulfate
heptahydrate
scandium oxide
vanadyl sulfate
dihydrate
manganese(II)
chloride
tetrahydrate cobalt(II)
chloride
hexahydrate
copper(II) sulfate
pentahydrate
 Gemstone owe their color from trace
transition-metal ions
 Corundum mineral, Al2O3: Colorless
 Cr  Al : Ruby
 Mn  Al: Amethyst
 Fe  Al: Topaz
 Ti &Co  Al: Sapphire
 Beryl mineral, Be3 Al2Si6O18: Colorless
 Cr  Al : Emerald
 Fe  Al : Aquamarine
6
warna berbagai senyawa kompleks dalam
larutan air :
3+ 3+ 2+ 2+ 2+ 2+ 2+
Ti , Cr , Mn , Fe , Co , Ni , Cu .
Mn(II) Mn(VI) Mn(VII)
V(V)
Cr(VI)
Mn(VII)
Warna seny. Kompleks dgn biloks bervariasi
[V(H2O)6]2+ [V(H2O)6]3+
[Cr(NH3)6]3+
[Cr(NH3)5Cl]2+
 VBT : ikatan
 CFT : elektronik spektra : warna dan
kemagnetan (spektra UV danVisible)
 MOT : ikatan
 LFT : elektronik spektra : warna dan
kemagnetan
 Mempelajari tentang spektra senyawa
kompleks berdasarkan tingkat energi
elektron dari suatu orbital (spektra
elektronik)
-->Aplikasi : bonding dan structure
 Absorpsi energi cahaya berada dalam daerah
sinar tampak oleh suatu senyawa ---->>
spektrum visible ---->> warna
 Absorpsi mengakibatkan terjadinya transisi
antara tingkat energi elektronik (transisi
elektronik)
Energi cahaya yang diserap oleh molekul
mengakibatkan transisi elektron ke tingkat
energi yang lebih tinggi setara (sama dengan)
perbedaan energi pada tingkat energi orbital
Warna senyawa kompleks
 Teori yang menjelaskan tentang eksitasi yang
teramati pada sebuah senyawa kompleks
Theory to explain electronic
excitations/transitions observed for metal
complexes
Selection rules
(determine intensities)
Laporte rule
g  g forbidden (that is, d-d forbidden)
but g  u allowed (that is, d-p allowed)
Spin rule
Transitions between states of different multiplicities forbidden
Transitions between states of same multiplicities allowed
Since these selection rules must be strictly obeyed,
why do many d-block metal complexes exhibit ‘d–d’
bands in their electronic spectra?
These rules are relaxed by molecular vibrations, and spin-orbit coupling
Breakdown of selection rules
 Vibrounic Coupling
Spin-allowed ‘d–d’ transitions remain Laporte-forbidden
and their observation is explained by a mechanism called
‘vibronic coupling
An octahedral complex possesses a centre of symmetry,
but molecular vibrations result in its temporary loss. At an
instant when the molecule does not possess a centre of
symmetry, mixing of d and p orbitals can occur. Since the
lifetime of the vibration (1013 s) is longer than that of an
electronic transition (1018 s), a ‘d–d’ transition involving an
orbital of mixed pd character can occur although the
absorption is still relatively weak
 Spin Orbit Coupling :
A spin-forbidden transition becomes
‘allowed’ if, for example, a singlet state mixes
to some extent with a triplet state.
but for first row metals, the degree of mixing
is small and so bands associated with ‘spin-
forbidden’ transitions are very weak
 In a molecule which is noncentrosymmetric
(e.g. tetrahedral), p–d mixing can occur to
a greater extent and so the probability of ‘d–d’
transitions is greater than in a
centrosymmetric complex.This leads to
tetrahedral complexes being more intensely
coloured than octahedral complexes.
 Macam-macam transisi elektronik :
a. transisi dalam tingkat energi orbital d ion
logam (d-d ‘ transition)
b.Transisi antara ion logam dengan ligan dalam
orbital molekul (charge transfer)
- LMCT (ligand to metal CT)
- MLCT (metal to ligandCT)
Intensitas absorbsi oleh transisi CT lebih tinggi
dibandingkan transisi d-d’
Absorption bands in electronic spectra are usually
broad; the absorption of a photon of light occurs in
10-18 s whereas molecular vibrations and rotations
occur more slowly
Therefore, an electronic transition is a ‘snapshot’ of
a molecule in a particular vibrational and rotational
state, and it follows that the electronic spectrum will
record a range of energies corresponding to
different vibrational and rotational states.
 Elektronic spectra :

 1T1g←1A1g and 1T2g←1A1g
 [Co(NH3)6]Cl3
 Absorbs violet/blue, ends up being orange-yellow
 2 absorption bands, symmetrical, Oh
 [CoCl(NH3)5]Cl2
 Absorbs green, ends up being magenta
 2 absorption bands, broadening on one
 C4v symmetry
Group theory analysis of term splitting
Free ion
term for d2
3F, 3P, 1G, 1D, 1S
Real complexes
Tanabe-Sugano diagrams
d2
• show correlation of
spectroscopic transitions
observed for ideal Oh complexes
with electronic states
• energy axes are parameterized
in terms of Δo and the Racah
parameter (B) which measures
repulsion between terms of the
same multiplicity
d2 complex: Electronic transitions and spectra
only 2 of 3 predicted transitions
observed
TS diagramsOther dn configurations
d1 d9
d3
d2 d8
d3
Other configurations
The limit between
high spin and low spin
The d5 case
All possible transitions forbidden
Very weak signals, faint color
symmetry labels
Charge transfer spectra
LMCT
MLCT
Ligand character
Metal character
Metal character
Ligand character
Much more intense bands
[Cr(NH3)6]3+
Determining Do from spectra
d1
d9
One transition allowed of energy Do
Lowest energy transition = Do
mixing
mixing
Determining Do from spectra
Ground state mixing
E (T1gA2g) - E (T1gT2g) = Do
56
 Melibatkan serapan cahaya tampak.
 Warna yang tampak adalah warna komplemen
dari warna yang diserap.
Blue light
absorbed
Red light
transmitted
 Warna yang tampak adalah komplemen dari
Warna yang diserap
Warna yg
diserap
Warna
tampak
CFT
LFT : MOT dan CFT
 CFT : energi orbital d ion logam terpisah
(split) akibat adanya medan elektrostatik dari
ligan
 Model explaining bonding for transition metal
complexes
 • Originally developed to explain properties for
crystalline material
 • Basic idea:
 Electrostatic interaction between lone-pair electrons result in coordination.
 CFT - Electrostatic between metal ion and donor atom
i) Separate metal and ligand
high energy
ii) Coordinated Metal - ligand
stabilized
iii) Destabilization due to
ligand -d electron repulsion
iv) Splitting due to octahedral
field.
i
ii
iii
iv
Crystal FieldTheory - Describes bonding in Metal Complexes
 Basic Assumption in CFT:
 Electrostatic interaction between ligand and metal
d-orbitals align along the octahedral
axis will be affected the most.
More directly the ligand attacks the
metal orbital, the higher the the
energy of the d-orbital.
In an octahedral field the
degeneracy of the five d-orbitals is
lifted
Ligands
approach
metal
d-orbitals not pointing directly at axis are least
affected (stabilized) by electrostatic interaction
d-orbitals pointing directly at axis are
affected most by electrostatic
interaction
 Octahedral field Splitting Pattern:

The energy gap is
referred to as
D(10 Dq) , the
crystal field
splitting energy.
The dz2 and dx2-y2 orbitals lie on the same axes as negative charges.
Therefore, there is a large, unfavorable interaction between ligand (-) orbitals.
These orbitals form the degenerate high energy pair of energy levels.
The dxy , dyx and dxz orbitals bisect the negative charges.
Therefore, there is a smaller repulsion between ligand & metal for these
orbitals.
These orbitals form the degenerate low energy set of energy levels.
 Color of the Complex depends on magnitude of D
 1. Metal: Larger metal  larger D
 Higher Oxidation State  larger D
 2. Ligand: Spectrochemical series
 Cl- < F- < H2O < NH3 < en < NO2
- < (N-bonded) < CN-
 Weak field Ligand: Low electrostatic interaction: small CF
splitting.
 High field Ligand: High electrostatic interaction: large CF
splitting.
Spectrochemical series: Increasing D
 Electron configuration of metal ion:
 s-electrons are lost first.
 Ti3+ is a d1, V3+ is d2 , and Cr3+ is
d3
 Hund's rule:
 First three electrons are in
separate d orbitals with their spins
parallel.
 Fourth e- has choice:
 Higher orbital if D is small; High
spin
 Lower orbital if D is large: Low
spin.
 Weak field ligands
 Small D , High spin complex
 Strong field Ligands
 Large D , Low spin complex
Electron Configuration for Octahedral complexes of metal ion having d1 to
d10 configuration [M(H2O)6]+n.
Only the d4 through d7 cases have both high-spin and low spin configuration.
Electron configurations
for octahedral
complexes of metal ions
having from d1 to d10
configurations. Only
the d4 through d7 cases
have both high-spin and
low-spin configurations.
 The Colors of Some Complexes of
the Co3+ Ion
The complex with fluoride ion, [CoF6]3+ , is high spin and has one absorption band.
The other complexes are low spin and have two absorption bands. In all but one
case, one of these absorptionsis in the visible region of the spectrum.The
wavelengths refer to the center of that absorption band.
Complex Ion Wavelength of Color of Light Color of Complex
light absorbed Absorbed
[CoF6] 3+ 700 (nm) Red Green
[Co(C2O4)3] 3+ 600, 420 Yellow, violet Dark green
[Co(H2O)6] 3+ 600, 400 Yellow, violet Blue-green
[Co(NH3)6] 3+ 475, 340 Blue, violet Yellow-orange
[Co(en)3] 3+ 470, 340 Blue, ultraviolet Yellow-orange
[Co(CN)6] 3+ 310 Ultraviolet PaleYellow
 Warna seny. kompleks berkaitan dengan
adanya transisi elektron antar sub level
orbital d yang terpisah (split)
 Panjang gelombang pada serapan maks seny.
komplek dapat digunakan untuk menghitung
energi pemisahan antar sub level orbital d
yang terpisah
Ephoton = hn = hc/l = D
 Absorpsi radiasi UV-visible radiation oleh
atom, ion, molekul:
 Terjadi jika radiasi memiliki energi yang sama yang
dibutuhkan oleh atom, ion, molekul untuk eksitasi
elektron dari ground state ke excited state.
white
light
red light
absorbed
green light
observed
71
Quantum-mechanical
description
 Absorption of light may occur
when the frequency of the
incoming photon, multiplied by
the Plank constant, is equal to the
difference in energy between
these two levels.
72
Example:
 Ion cupric hidrat menyerap foton pada frekuensi Hz or 600
nm.
 Energi yang melibatkan transisi elektron pada ion
adalah
 Dapat dikatakan bahwa ion (Cu(H2O)6)2+ berwarna biru maka
ini berarti ion menyerap foton pada panjang gelombang 600 nm
(oranye) sehingga memberikan warna biru pada mata kita
34 14 -1 -19
(6.63 10 J s)(5 10 s ) 3 10 JE hn 
D   
2+
2 6Cu[H O]
14
5 10
2+
2 6Cu[H O]
74
Example
 Ti memiliki konfigurasi , sehingga ion menjadi
ion. Ini berarti pada groundstate, 1 elektron akan menempati level
energi terendah pada d orbitals, sedangkan level energi yang lebih
tinggi kosong, setelah menyerap foton dengan energi tertentu, level
energi terendah pada d orbitals akan kosong.
3+
2 6Ti[H O]
2 2
4s 3d
3+
Ti
1
d
75
ion absorbs light in the visible region; the wavelenght corresponding
to maximum absorption is 498 nm.
Crystal field splitting :
Itu adalah energi yang dibutuhkan untuk mengeksitasisatu elektron pada
ion
-34 8
-19
-9
(6.63 10 Js)(3 10 m/s)
3.99 10 J=240 kJ/mol
498 10 m
hc
hn
l
D    
3+
2 6Ti[H O]
3+
2 6Ti[H O]
76
Spliting d-orbital sebesar 240 kJ per mol sesuai dengan panjang
gelombang cahaya warna blue-green ; absorpsi cahaya ini
mempromosikan elektron ke level energi yang lebih tinggi pada d
orbitals, yang merepresentasikan keadaan tereksitasi dari kompleks
Apabila kita melewatkan cahaya pada larutan maka cahaya
warna blue-green akan diabsorb dan larutan akan menampakkan
warna violet .
3+
2 6Ti[H O]
3+
2 6Ti[H O]
 Spektra larutan [Ti(H2O)6 ]3+
 Serapan senyawa Co (III)
warna senyawa kompleks kobalt (III) dalam larutan air
dengan berbagai macam ligan
Kiri : weak-field ligand – serapan pada energi rendah -
λ warna merah - warna tampak : hijau
Kanan : strong-field ligan – serapan pada energi besar
- λ warna ungu - warna tampak : oranye/kuning
 Perbedaan warna disebabkan oleh perbedaan
besarnya D
▪ D besar = energy untuk menyerap cahaya besar
▪ Panjang gelombang pendek
▪ D kecil = energy untuk menyerap cahaya kecil
▪ Panjang gelombang panjang
 Besarnya D tergantung pada:
▪ ligand
▪ logam
 Logam
a. logam ukuran besar  D besar
[Fe(H2O)6]3+
[Co(H2O)6]2+
[Ni(H2O)6]2+
[Cu(H2O)6]2+
[Zn(H2O)6]2+
b. biloks logam tinggi  D besar
[V(H2O)6]2+ [V(H2O)6]3+
Mn(II) Mn(VI) Mn(VII)
 Deret yang menyatakan urutan kekuatan ligan
berdasarkan besarnya ∆ yang dihasilkan
 Deret kekuatan ligan berdasarkan besarnya
∆o
 Deret kekuatan logam berdasarkan besarnya
∆o
 Menggabungkan penjelasan tentang orbital
molekul dengan perbedaan tingkat energi
pemisahan orbital /splitting
N  C *
Splitting from  - bonding: Weak and Strong Field ligands
Contoh ligan Cl- (weak) danCN- (strong)
Cl
N  C
M
N  C
 - bonding as before
Now  - bonding between p & dxy, dxz, dyz
 - bonding as before
Now  - bonding between CN- * & dxy, dxz, dyz
No  - bonding with CN- 
M
sp hybridized for -bonding,
left over p orbitals make  and * orbitals
 Ligan dengan orbital p terisi
s*
p*
dxy, dxz, dyz
  
d* = eg
= t2g
6
4p
4s
3d
6 Ligands
Cl- sp orbitals
Metal LigandMolecule
12 Cl- p orbitals
E (Cl- p) < E (M d) !!!
Decrease Doct
 Weak Field Ligand
     
 - bonding: p orbitals give Weak Field Ligands (Cl- example)
Input d e-’s
Cl
-bonding orbitals
*-antibonding orbitals
 Ligan yang memiliki orbital π * kosong
Ligan Phi-akseptor
s*
p*
dxy, dxz, dyz
  
d* = eg
= t2g
6
4p
4s
3d
6 Ligands
CN- sp orbitals
Metal LigandMolecule
12 CN- * orbitals
E (CN- * ) > E (M d) !!!
Increase Doct
 Strong Field Ligand
 - bonding: * orbitals give Strong Field Ligands
Input d e-’s
N  C *
-bonding orbitals
*- antibonding orbitals
Molecular OrbitalTheory Explains Field Strength of Ligands
1) Ligand p orbitals cause  - bonding that raises t2g energies
Weak Field Ligands
2) Ligand * orbitals cause  - bonding that lowers t2g energies
Strong Field Ligands
3) sp3 hybridized ligands do not change t2g orbitals very much
Medium Field Ligands
dxy, dxz, dyz
d* = eg
= t2g
12 Cl- p orbitals
dxy, dxz, dyz
d* = eg
= t2g
12 CN- * orbitals
*

No p or * orbitals for -bonding !!!
 Metal to ligand : M---L
Phi akseptor/phi acid
 Ligan to metal : L---M
phi donor/phi base
 Ligan
a.Weak field ligan
interaksi elektrostatik ligan dengan
logam rendah - ∆ kecil
b. Strong field ligan
interaksi elektrostatik ligan dengan logam
tinggi - ∆ besar
 Ligan diklasifikasikan berdasarkan kemampuan
donor atau akseptor π
 Ligan dgn orbital p terisi ----- π donor
Ligan dgn orbital π * atau d kosong ---- π akseptor
 Kemagnetan senyawa kompleks
berhubungan dengan bagaimana elektron
terdistribusi pada orbital d.
 Kemagnetan senyawa kompleks diukur pada
suatu medan magnet.
 Senyawa kompleks dengan elektron tidak
berpasangan : menghasilkan medan magnet /
tertarik pada medan magnet.
 Senyawa kompleks dengan elektron
berpasangan : tidak menghasilkan medan
magnet / menolak medan magnet.
 Momen magnetik
Suatu ukuran yang berkaitan dengan jumlah
elektron tidak berpasangan.
 Moment magnetik :
Dimana :
 Dengan g = 2,0003 = 2 dalam Bohr magneton,
dan momentum orbital diabaikan, maka
 Dan S = n/2, maka momen magnetik :
 Satuan moment magnetik = BM (Bohr
Magneton)
1 BM = 9,27 x 10-24 Joule/Tesla
1. Hitung moment magnetik komplek Cr(III) dan
Ti (III)
2. Moment magnetik Kompleks Co(II) adalah
4,0BM. Prediksikan konfigurasi elektron
orbital d pada kompleks tersebut!
3. Moment magnetik Kompleks Fe(III) adalah
5,3BM. Prediksikan konfigurasi elektron
orbital d pada kompleks tersebut!
 Jawab :
1. Cr3+
n = 3
μs = √3(3+2) BM
= 3,87 BM
 Jawab :
3. Fe 3+ , n = 5
a. dihitung μs untuk kompleks high spin dan low
spin.
b. kemudian tentukan mana yang nilainya paling
mendekati nilai sebenarnya/eksperimen (5,3 BM)
c.kemudian tulis konfigurasi elektron high spin
atau low spin sesuai hasil b. Misal : untuk
jawaban highspin, maka konf elektronny t2g3eg2
4. PadaT = 298 K diketahui bahwa momen
magnetik kompleks [Cr(NH3)6]Cl2 adalah
4,85BM. Nyatakan apakah kompleks tersebut
high spin?
 TUGAS :
Baca buku Huhey, Douglas, dan buku teks
Anorganik lain yang menjelaskan tentang
spektra elektronik senyawa kompleks dan
kemagnetan
Silahkan berlatih menghitung momen
magnetik dari soal-soal yang ada di buku teks

More Related Content

What's hot

45715687 aplikasi-senyawa-kompleks
45715687 aplikasi-senyawa-kompleks45715687 aplikasi-senyawa-kompleks
45715687 aplikasi-senyawa-kompleks
andragrup01
 
Reaktivitas Ion-Ion Logam Transisi
Reaktivitas Ion-Ion Logam TransisiReaktivitas Ion-Ion Logam Transisi
Reaktivitas Ion-Ion Logam Transisi
Rihlatul adni
 
Laporan Praktikum Kimia Anorganik II - Kimia Tembaga
Laporan Praktikum Kimia Anorganik II - Kimia TembagaLaporan Praktikum Kimia Anorganik II - Kimia Tembaga
Laporan Praktikum Kimia Anorganik II - Kimia TembagaAndrio Suwuh
 
Asam karboksilat dan turunannya
Asam karboksilat dan turunannyaAsam karboksilat dan turunannya
Asam karboksilat dan turunannya
Indra Yudhipratama
 
Kinetika kimia (pertemuan 4)
Kinetika kimia (pertemuan 4)Kinetika kimia (pertemuan 4)
Kinetika kimia (pertemuan 4)Utami Irawati
 
Reaksi Redoks pada Mekanisme Reaksi Square Planar
Reaksi Redoks pada Mekanisme Reaksi Square PlanarReaksi Redoks pada Mekanisme Reaksi Square Planar
Reaksi Redoks pada Mekanisme Reaksi Square PlanarAnindia Larasati
 
Pembuatan SiO2 dengan metode sol gel
Pembuatan SiO2 dengan metode sol gelPembuatan SiO2 dengan metode sol gel
Pembuatan SiO2 dengan metode sol gel
Prayoga Wibhawa
 
Titrasi asam basa
Titrasi asam basaTitrasi asam basa
Karbanion dan reaksinya
Karbanion dan reaksinyaKarbanion dan reaksinya
Karbanion dan reaksinya
Agres Tarigan
 
asam anhidrida
asam anhidridaasam anhidrida
asam anhidrida
Klik Bayoe
 
TOM (Teori Orbital Molekul)
TOM (Teori Orbital Molekul)TOM (Teori Orbital Molekul)
TOM (Teori Orbital Molekul)
Farikha Uly
 
Nukleofilik dan elektrofilik_by:echang
Nukleofilik dan elektrofilik_by:echangNukleofilik dan elektrofilik_by:echang
Nukleofilik dan elektrofilik_by:echangreza_kaligis
 
KOMPLEKSOMETRI
KOMPLEKSOMETRIKOMPLEKSOMETRI
KOMPLEKSOMETRI
Toni Pujianto
 
spektroscopy UV-VIS
spektroscopy UV-VISspektroscopy UV-VIS
spektroscopy UV-VIS
Rolly Scavengers
 
Lkpd ppl ikatan kimia pertemuan 1 (mg)docx
Lkpd ppl ikatan kimia pertemuan 1 (mg)docxLkpd ppl ikatan kimia pertemuan 1 (mg)docx
Lkpd ppl ikatan kimia pertemuan 1 (mg)docx
monggaviranita
 
Ppt hidrokarbon
Ppt hidrokarbonPpt hidrokarbon
Ppt hidrokarbonsari_sari
 
Golongan alkali dan alkali tanah
Golongan alkali dan alkali tanahGolongan alkali dan alkali tanah
Golongan alkali dan alkali tanahOlivia Tifani
 

What's hot (20)

Kimia Organik semester 7
Kimia Organik semester 7Kimia Organik semester 7
Kimia Organik semester 7
 
45715687 aplikasi-senyawa-kompleks
45715687 aplikasi-senyawa-kompleks45715687 aplikasi-senyawa-kompleks
45715687 aplikasi-senyawa-kompleks
 
Reaktivitas Ion-Ion Logam Transisi
Reaktivitas Ion-Ion Logam TransisiReaktivitas Ion-Ion Logam Transisi
Reaktivitas Ion-Ion Logam Transisi
 
Laporan Praktikum Kimia Anorganik II - Kimia Tembaga
Laporan Praktikum Kimia Anorganik II - Kimia TembagaLaporan Praktikum Kimia Anorganik II - Kimia Tembaga
Laporan Praktikum Kimia Anorganik II - Kimia Tembaga
 
Asam karboksilat dan turunannya
Asam karboksilat dan turunannyaAsam karboksilat dan turunannya
Asam karboksilat dan turunannya
 
Kinetika kimia (pertemuan 4)
Kinetika kimia (pertemuan 4)Kinetika kimia (pertemuan 4)
Kinetika kimia (pertemuan 4)
 
Reaksi Redoks pada Mekanisme Reaksi Square Planar
Reaksi Redoks pada Mekanisme Reaksi Square PlanarReaksi Redoks pada Mekanisme Reaksi Square Planar
Reaksi Redoks pada Mekanisme Reaksi Square Planar
 
Pembuatan SiO2 dengan metode sol gel
Pembuatan SiO2 dengan metode sol gelPembuatan SiO2 dengan metode sol gel
Pembuatan SiO2 dengan metode sol gel
 
Titrasi asam basa
Titrasi asam basaTitrasi asam basa
Titrasi asam basa
 
Karbanion dan reaksinya
Karbanion dan reaksinyaKarbanion dan reaksinya
Karbanion dan reaksinya
 
Kaidah markovnikov
Kaidah markovnikovKaidah markovnikov
Kaidah markovnikov
 
asam anhidrida
asam anhidridaasam anhidrida
asam anhidrida
 
TOM (Teori Orbital Molekul)
TOM (Teori Orbital Molekul)TOM (Teori Orbital Molekul)
TOM (Teori Orbital Molekul)
 
Nukleofilik dan elektrofilik_by:echang
Nukleofilik dan elektrofilik_by:echangNukleofilik dan elektrofilik_by:echang
Nukleofilik dan elektrofilik_by:echang
 
KOMPLEKSOMETRI
KOMPLEKSOMETRIKOMPLEKSOMETRI
KOMPLEKSOMETRI
 
spektroscopy UV-VIS
spektroscopy UV-VISspektroscopy UV-VIS
spektroscopy UV-VIS
 
Lkpd ppl ikatan kimia pertemuan 1 (mg)docx
Lkpd ppl ikatan kimia pertemuan 1 (mg)docxLkpd ppl ikatan kimia pertemuan 1 (mg)docx
Lkpd ppl ikatan kimia pertemuan 1 (mg)docx
 
Ppt hidrokarbon
Ppt hidrokarbonPpt hidrokarbon
Ppt hidrokarbon
 
Pemisahan kation gol.iv
Pemisahan kation gol.ivPemisahan kation gol.iv
Pemisahan kation gol.iv
 
Golongan alkali dan alkali tanah
Golongan alkali dan alkali tanahGolongan alkali dan alkali tanah
Golongan alkali dan alkali tanah
 

Similar to Warna &amp; kemagnetan senyawa kompleks 2017 1

Crystal field theory
Crystal field theoryCrystal field theory
Crystal field theorysurya287
 
Bonding in Coordination Compounds
Bonding in Coordination CompoundsBonding in Coordination Compounds
Bonding in Coordination Compounds
Chris Sonntag
 
CFT 1.pptx
CFT 1.pptxCFT 1.pptx
CFT 1.pptx
MdSohaib7
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFTSANTHANAM V
 
d & f-block elements 12th Chemistry.pdf
d & f-block elements 12th Chemistry.pdfd & f-block elements 12th Chemistry.pdf
d & f-block elements 12th Chemistry.pdf
KapilPooniya
 
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENTINORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
shahzadebaujiti
 
topic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxtopic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptx
Jaimin Surani
 
Crystal field theory
Crystal field theory   Crystal field theory
Crystal field theory
Shivaji Burungale
 
Chapter 8-d-f-block-elements
Chapter 8-d-f-block-elementsChapter 8-d-f-block-elements
Chapter 8-d-f-block-elements
Ashima Aggarwal
 
Evidence of Metal Ligand Bonding.pptx
Evidence of Metal Ligand Bonding.pptxEvidence of Metal Ligand Bonding.pptx
Evidence of Metal Ligand Bonding.pptx
Sudha durairaj
 
Inorganic chemistry
Inorganic chemistryInorganic chemistry
Inorganic chemistryadinakazmi
 
d- and f- block elements (part 1)
d- and f- block elements (part 1)d- and f- block elements (part 1)
d- and f- block elements (part 1)
Arunesh Gupta
 
d and f block elements.pptx
d and f block elements.pptxd and f block elements.pptx
d and f block elements.pptx
PariJain51
 
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
ABDERRAHMANE REGGAD
 
Coordination chemistry-2
Coordination chemistry-2Coordination chemistry-2
Coordination chemistry-2
Dr. Krishna Swamy. G
 
Class 12th d block 421 unit 4.pdf
Class 12th d block         421 unit 4.pdfClass 12th d block         421 unit 4.pdf
Class 12th d block 421 unit 4.pdf
singhvinodrawat893
 
d block.pptx
d block.pptxd block.pptx
d block.pptx
charul somani
 
Ligand field theory - Supratim Chakraborty
Ligand field theory - Supratim ChakrabortyLigand field theory - Supratim Chakraborty
Ligand field theory - Supratim Chakraborty
SupratimChakraborty19
 
Chapter 8 the d and f block elements
Chapter 8 the d and f block elementsChapter 8 the d and f block elements
Chapter 8 the d and f block elements
suresh gdvm
 
Electronic spectra
Electronic spectraElectronic spectra
Electronic spectra
mohammed rida
 

Similar to Warna &amp; kemagnetan senyawa kompleks 2017 1 (20)

Crystal field theory
Crystal field theoryCrystal field theory
Crystal field theory
 
Bonding in Coordination Compounds
Bonding in Coordination CompoundsBonding in Coordination Compounds
Bonding in Coordination Compounds
 
CFT 1.pptx
CFT 1.pptxCFT 1.pptx
CFT 1.pptx
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFT
 
d & f-block elements 12th Chemistry.pdf
d & f-block elements 12th Chemistry.pdfd & f-block elements 12th Chemistry.pdf
d & f-block elements 12th Chemistry.pdf
 
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENTINORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
 
topic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxtopic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptx
 
Crystal field theory
Crystal field theory   Crystal field theory
Crystal field theory
 
Chapter 8-d-f-block-elements
Chapter 8-d-f-block-elementsChapter 8-d-f-block-elements
Chapter 8-d-f-block-elements
 
Evidence of Metal Ligand Bonding.pptx
Evidence of Metal Ligand Bonding.pptxEvidence of Metal Ligand Bonding.pptx
Evidence of Metal Ligand Bonding.pptx
 
Inorganic chemistry
Inorganic chemistryInorganic chemistry
Inorganic chemistry
 
d- and f- block elements (part 1)
d- and f- block elements (part 1)d- and f- block elements (part 1)
d- and f- block elements (part 1)
 
d and f block elements.pptx
d and f block elements.pptxd and f block elements.pptx
d and f block elements.pptx
 
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
 
Coordination chemistry-2
Coordination chemistry-2Coordination chemistry-2
Coordination chemistry-2
 
Class 12th d block 421 unit 4.pdf
Class 12th d block         421 unit 4.pdfClass 12th d block         421 unit 4.pdf
Class 12th d block 421 unit 4.pdf
 
d block.pptx
d block.pptxd block.pptx
d block.pptx
 
Ligand field theory - Supratim Chakraborty
Ligand field theory - Supratim ChakrabortyLigand field theory - Supratim Chakraborty
Ligand field theory - Supratim Chakraborty
 
Chapter 8 the d and f block elements
Chapter 8 the d and f block elementsChapter 8 the d and f block elements
Chapter 8 the d and f block elements
 
Electronic spectra
Electronic spectraElectronic spectra
Electronic spectra
 

Recently uploaded

The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
Steve Thomason
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 

Recently uploaded (20)

The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 

Warna &amp; kemagnetan senyawa kompleks 2017 1

  • 2.  Definisi electronic spectra (spektra elektronik)  Teori transisi elektronik  Teori yang menjelaskan electronic spectra : warna senyawa kompleks  DiagramTanabeTsugano  Deret spektrokimia  Kemagnetan seny. kompleks  Moment magnetik seny. kompleks
  • 3.  Bil. Oksidasi bervariasi  Warna  Kemagnetan  Ikatan kovalen koordinasi  Interaksi asam-basa lewis
  • 4. Berbagai warna senyawa logam transisi periode 4 titanium oxide sodium chromate potassium ferricyanide nickel(II) nitrate hexahydrate zinc sulfate heptahydrate scandium oxide vanadyl sulfate dihydrate manganese(II) chloride tetrahydrate cobalt(II) chloride hexahydrate copper(II) sulfate pentahydrate
  • 5.  Gemstone owe their color from trace transition-metal ions  Corundum mineral, Al2O3: Colorless  Cr  Al : Ruby  Mn  Al: Amethyst  Fe  Al: Topaz  Ti &Co  Al: Sapphire  Beryl mineral, Be3 Al2Si6O18: Colorless  Cr  Al : Emerald  Fe  Al : Aquamarine
  • 6. 6 warna berbagai senyawa kompleks dalam larutan air : 3+ 3+ 2+ 2+ 2+ 2+ 2+ Ti , Cr , Mn , Fe , Co , Ni , Cu .
  • 7. Mn(II) Mn(VI) Mn(VII) V(V) Cr(VI) Mn(VII) Warna seny. Kompleks dgn biloks bervariasi
  • 9.  VBT : ikatan  CFT : elektronik spektra : warna dan kemagnetan (spektra UV danVisible)  MOT : ikatan  LFT : elektronik spektra : warna dan kemagnetan
  • 10.  Mempelajari tentang spektra senyawa kompleks berdasarkan tingkat energi elektron dari suatu orbital (spektra elektronik) -->Aplikasi : bonding dan structure
  • 11.  Absorpsi energi cahaya berada dalam daerah sinar tampak oleh suatu senyawa ---->> spektrum visible ---->> warna  Absorpsi mengakibatkan terjadinya transisi antara tingkat energi elektronik (transisi elektronik) Energi cahaya yang diserap oleh molekul mengakibatkan transisi elektron ke tingkat energi yang lebih tinggi setara (sama dengan) perbedaan energi pada tingkat energi orbital
  • 13.
  • 14.
  • 15.  Teori yang menjelaskan tentang eksitasi yang teramati pada sebuah senyawa kompleks Theory to explain electronic excitations/transitions observed for metal complexes
  • 16.
  • 17. Selection rules (determine intensities) Laporte rule g  g forbidden (that is, d-d forbidden) but g  u allowed (that is, d-p allowed) Spin rule Transitions between states of different multiplicities forbidden Transitions between states of same multiplicities allowed
  • 18.
  • 19. Since these selection rules must be strictly obeyed, why do many d-block metal complexes exhibit ‘d–d’ bands in their electronic spectra? These rules are relaxed by molecular vibrations, and spin-orbit coupling
  • 21.  Vibrounic Coupling Spin-allowed ‘d–d’ transitions remain Laporte-forbidden and their observation is explained by a mechanism called ‘vibronic coupling An octahedral complex possesses a centre of symmetry, but molecular vibrations result in its temporary loss. At an instant when the molecule does not possess a centre of symmetry, mixing of d and p orbitals can occur. Since the lifetime of the vibration (1013 s) is longer than that of an electronic transition (1018 s), a ‘d–d’ transition involving an orbital of mixed pd character can occur although the absorption is still relatively weak
  • 22.  Spin Orbit Coupling : A spin-forbidden transition becomes ‘allowed’ if, for example, a singlet state mixes to some extent with a triplet state. but for first row metals, the degree of mixing is small and so bands associated with ‘spin- forbidden’ transitions are very weak
  • 23.  In a molecule which is noncentrosymmetric (e.g. tetrahedral), p–d mixing can occur to a greater extent and so the probability of ‘d–d’ transitions is greater than in a centrosymmetric complex.This leads to tetrahedral complexes being more intensely coloured than octahedral complexes.
  • 24.
  • 25.
  • 26.
  • 27.  Macam-macam transisi elektronik : a. transisi dalam tingkat energi orbital d ion logam (d-d ‘ transition) b.Transisi antara ion logam dengan ligan dalam orbital molekul (charge transfer) - LMCT (ligand to metal CT) - MLCT (metal to ligandCT) Intensitas absorbsi oleh transisi CT lebih tinggi dibandingkan transisi d-d’
  • 28. Absorption bands in electronic spectra are usually broad; the absorption of a photon of light occurs in 10-18 s whereas molecular vibrations and rotations occur more slowly Therefore, an electronic transition is a ‘snapshot’ of a molecule in a particular vibrational and rotational state, and it follows that the electronic spectrum will record a range of energies corresponding to different vibrational and rotational states.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.  1T1g←1A1g and 1T2g←1A1g  [Co(NH3)6]Cl3  Absorbs violet/blue, ends up being orange-yellow  2 absorption bands, symmetrical, Oh  [CoCl(NH3)5]Cl2  Absorbs green, ends up being magenta  2 absorption bands, broadening on one  C4v symmetry
  • 36. Group theory analysis of term splitting
  • 37.
  • 38. Free ion term for d2 3F, 3P, 1G, 1D, 1S Real complexes
  • 39. Tanabe-Sugano diagrams d2 • show correlation of spectroscopic transitions observed for ideal Oh complexes with electronic states • energy axes are parameterized in terms of Δo and the Racah parameter (B) which measures repulsion between terms of the same multiplicity
  • 40. d2 complex: Electronic transitions and spectra only 2 of 3 predicted transitions observed
  • 41. TS diagramsOther dn configurations d1 d9 d3 d2 d8
  • 42. d3 Other configurations The limit between high spin and low spin
  • 43.
  • 44. The d5 case All possible transitions forbidden Very weak signals, faint color
  • 46.
  • 47.
  • 48.
  • 49.
  • 50. Charge transfer spectra LMCT MLCT Ligand character Metal character Metal character Ligand character Much more intense bands
  • 52.
  • 53. Determining Do from spectra d1 d9 One transition allowed of energy Do
  • 54. Lowest energy transition = Do mixing mixing Determining Do from spectra
  • 55. Ground state mixing E (T1gA2g) - E (T1gT2g) = Do
  • 56. 56  Melibatkan serapan cahaya tampak.  Warna yang tampak adalah warna komplemen dari warna yang diserap. Blue light absorbed Red light transmitted
  • 57.  Warna yang tampak adalah komplemen dari Warna yang diserap Warna yg diserap Warna tampak
  • 59.  CFT : energi orbital d ion logam terpisah (split) akibat adanya medan elektrostatik dari ligan
  • 60.  Model explaining bonding for transition metal complexes  • Originally developed to explain properties for crystalline material  • Basic idea:  Electrostatic interaction between lone-pair electrons result in coordination.
  • 61.  CFT - Electrostatic between metal ion and donor atom i) Separate metal and ligand high energy ii) Coordinated Metal - ligand stabilized iii) Destabilization due to ligand -d electron repulsion iv) Splitting due to octahedral field. i ii iii iv
  • 62. Crystal FieldTheory - Describes bonding in Metal Complexes  Basic Assumption in CFT:  Electrostatic interaction between ligand and metal d-orbitals align along the octahedral axis will be affected the most. More directly the ligand attacks the metal orbital, the higher the the energy of the d-orbital. In an octahedral field the degeneracy of the five d-orbitals is lifted
  • 63. Ligands approach metal d-orbitals not pointing directly at axis are least affected (stabilized) by electrostatic interaction d-orbitals pointing directly at axis are affected most by electrostatic interaction
  • 64.  Octahedral field Splitting Pattern:  The energy gap is referred to as D(10 Dq) , the crystal field splitting energy. The dz2 and dx2-y2 orbitals lie on the same axes as negative charges. Therefore, there is a large, unfavorable interaction between ligand (-) orbitals. These orbitals form the degenerate high energy pair of energy levels. The dxy , dyx and dxz orbitals bisect the negative charges. Therefore, there is a smaller repulsion between ligand & metal for these orbitals. These orbitals form the degenerate low energy set of energy levels.
  • 65.  Color of the Complex depends on magnitude of D  1. Metal: Larger metal  larger D  Higher Oxidation State  larger D  2. Ligand: Spectrochemical series  Cl- < F- < H2O < NH3 < en < NO2 - < (N-bonded) < CN-  Weak field Ligand: Low electrostatic interaction: small CF splitting.  High field Ligand: High electrostatic interaction: large CF splitting. Spectrochemical series: Increasing D
  • 66.  Electron configuration of metal ion:  s-electrons are lost first.  Ti3+ is a d1, V3+ is d2 , and Cr3+ is d3  Hund's rule:  First three electrons are in separate d orbitals with their spins parallel.  Fourth e- has choice:  Higher orbital if D is small; High spin  Lower orbital if D is large: Low spin.  Weak field ligands  Small D , High spin complex  Strong field Ligands  Large D , Low spin complex
  • 67. Electron Configuration for Octahedral complexes of metal ion having d1 to d10 configuration [M(H2O)6]+n. Only the d4 through d7 cases have both high-spin and low spin configuration. Electron configurations for octahedral complexes of metal ions having from d1 to d10 configurations. Only the d4 through d7 cases have both high-spin and low-spin configurations.
  • 68.  The Colors of Some Complexes of the Co3+ Ion The complex with fluoride ion, [CoF6]3+ , is high spin and has one absorption band. The other complexes are low spin and have two absorption bands. In all but one case, one of these absorptionsis in the visible region of the spectrum.The wavelengths refer to the center of that absorption band. Complex Ion Wavelength of Color of Light Color of Complex light absorbed Absorbed [CoF6] 3+ 700 (nm) Red Green [Co(C2O4)3] 3+ 600, 420 Yellow, violet Dark green [Co(H2O)6] 3+ 600, 400 Yellow, violet Blue-green [Co(NH3)6] 3+ 475, 340 Blue, violet Yellow-orange [Co(en)3] 3+ 470, 340 Blue, ultraviolet Yellow-orange [Co(CN)6] 3+ 310 Ultraviolet PaleYellow
  • 69.  Warna seny. kompleks berkaitan dengan adanya transisi elektron antar sub level orbital d yang terpisah (split)  Panjang gelombang pada serapan maks seny. komplek dapat digunakan untuk menghitung energi pemisahan antar sub level orbital d yang terpisah Ephoton = hn = hc/l = D
  • 70.  Absorpsi radiasi UV-visible radiation oleh atom, ion, molekul:  Terjadi jika radiasi memiliki energi yang sama yang dibutuhkan oleh atom, ion, molekul untuk eksitasi elektron dari ground state ke excited state. white light red light absorbed green light observed
  • 71. 71 Quantum-mechanical description  Absorption of light may occur when the frequency of the incoming photon, multiplied by the Plank constant, is equal to the difference in energy between these two levels.
  • 72. 72 Example:  Ion cupric hidrat menyerap foton pada frekuensi Hz or 600 nm.  Energi yang melibatkan transisi elektron pada ion adalah  Dapat dikatakan bahwa ion (Cu(H2O)6)2+ berwarna biru maka ini berarti ion menyerap foton pada panjang gelombang 600 nm (oranye) sehingga memberikan warna biru pada mata kita 34 14 -1 -19 (6.63 10 J s)(5 10 s ) 3 10 JE hn  D    2+ 2 6Cu[H O] 14 5 10 2+ 2 6Cu[H O]
  • 73.
  • 74. 74 Example  Ti memiliki konfigurasi , sehingga ion menjadi ion. Ini berarti pada groundstate, 1 elektron akan menempati level energi terendah pada d orbitals, sedangkan level energi yang lebih tinggi kosong, setelah menyerap foton dengan energi tertentu, level energi terendah pada d orbitals akan kosong. 3+ 2 6Ti[H O] 2 2 4s 3d 3+ Ti 1 d
  • 75. 75 ion absorbs light in the visible region; the wavelenght corresponding to maximum absorption is 498 nm. Crystal field splitting : Itu adalah energi yang dibutuhkan untuk mengeksitasisatu elektron pada ion -34 8 -19 -9 (6.63 10 Js)(3 10 m/s) 3.99 10 J=240 kJ/mol 498 10 m hc hn l D     3+ 2 6Ti[H O] 3+ 2 6Ti[H O]
  • 76. 76 Spliting d-orbital sebesar 240 kJ per mol sesuai dengan panjang gelombang cahaya warna blue-green ; absorpsi cahaya ini mempromosikan elektron ke level energi yang lebih tinggi pada d orbitals, yang merepresentasikan keadaan tereksitasi dari kompleks Apabila kita melewatkan cahaya pada larutan maka cahaya warna blue-green akan diabsorb dan larutan akan menampakkan warna violet . 3+ 2 6Ti[H O] 3+ 2 6Ti[H O]
  • 77.  Spektra larutan [Ti(H2O)6 ]3+
  • 78.  Serapan senyawa Co (III) warna senyawa kompleks kobalt (III) dalam larutan air dengan berbagai macam ligan Kiri : weak-field ligand – serapan pada energi rendah - λ warna merah - warna tampak : hijau Kanan : strong-field ligan – serapan pada energi besar - λ warna ungu - warna tampak : oranye/kuning
  • 79.
  • 80.  Perbedaan warna disebabkan oleh perbedaan besarnya D ▪ D besar = energy untuk menyerap cahaya besar ▪ Panjang gelombang pendek ▪ D kecil = energy untuk menyerap cahaya kecil ▪ Panjang gelombang panjang  Besarnya D tergantung pada: ▪ ligand ▪ logam
  • 81.  Logam a. logam ukuran besar  D besar [Fe(H2O)6]3+ [Co(H2O)6]2+ [Ni(H2O)6]2+ [Cu(H2O)6]2+ [Zn(H2O)6]2+
  • 82.
  • 83. b. biloks logam tinggi  D besar [V(H2O)6]2+ [V(H2O)6]3+ Mn(II) Mn(VI) Mn(VII)
  • 84.  Deret yang menyatakan urutan kekuatan ligan berdasarkan besarnya ∆ yang dihasilkan
  • 85.  Deret kekuatan ligan berdasarkan besarnya ∆o
  • 86.  Deret kekuatan logam berdasarkan besarnya ∆o
  • 87.  Menggabungkan penjelasan tentang orbital molekul dengan perbedaan tingkat energi pemisahan orbital /splitting
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97. N  C * Splitting from  - bonding: Weak and Strong Field ligands Contoh ligan Cl- (weak) danCN- (strong) Cl N  C M N  C  - bonding as before Now  - bonding between p & dxy, dxz, dyz  - bonding as before Now  - bonding between CN- * & dxy, dxz, dyz No  - bonding with CN-  M sp hybridized for -bonding, left over p orbitals make  and * orbitals
  • 98.  Ligan dengan orbital p terisi
  • 99.
  • 100. s* p* dxy, dxz, dyz    d* = eg = t2g 6 4p 4s 3d 6 Ligands Cl- sp orbitals Metal LigandMolecule 12 Cl- p orbitals E (Cl- p) < E (M d) !!! Decrease Doct  Weak Field Ligand        - bonding: p orbitals give Weak Field Ligands (Cl- example) Input d e-’s Cl -bonding orbitals *-antibonding orbitals
  • 101.
  • 102.  Ligan yang memiliki orbital π * kosong
  • 103.
  • 105.
  • 106. s* p* dxy, dxz, dyz    d* = eg = t2g 6 4p 4s 3d 6 Ligands CN- sp orbitals Metal LigandMolecule 12 CN- * orbitals E (CN- * ) > E (M d) !!! Increase Doct  Strong Field Ligand  - bonding: * orbitals give Strong Field Ligands Input d e-’s N  C * -bonding orbitals *- antibonding orbitals
  • 107.
  • 108. Molecular OrbitalTheory Explains Field Strength of Ligands 1) Ligand p orbitals cause  - bonding that raises t2g energies Weak Field Ligands 2) Ligand * orbitals cause  - bonding that lowers t2g energies Strong Field Ligands 3) sp3 hybridized ligands do not change t2g orbitals very much Medium Field Ligands dxy, dxz, dyz d* = eg = t2g 12 Cl- p orbitals dxy, dxz, dyz d* = eg = t2g 12 CN- * orbitals *  No p or * orbitals for -bonding !!!
  • 109.
  • 110.  Metal to ligand : M---L Phi akseptor/phi acid  Ligan to metal : L---M phi donor/phi base
  • 111.  Ligan a.Weak field ligan interaksi elektrostatik ligan dengan logam rendah - ∆ kecil b. Strong field ligan interaksi elektrostatik ligan dengan logam tinggi - ∆ besar
  • 112.
  • 113.  Ligan diklasifikasikan berdasarkan kemampuan donor atau akseptor π  Ligan dgn orbital p terisi ----- π donor Ligan dgn orbital π * atau d kosong ---- π akseptor
  • 114.
  • 115.
  • 116.
  • 117.  Kemagnetan senyawa kompleks berhubungan dengan bagaimana elektron terdistribusi pada orbital d.  Kemagnetan senyawa kompleks diukur pada suatu medan magnet.
  • 118.
  • 119.  Senyawa kompleks dengan elektron tidak berpasangan : menghasilkan medan magnet / tertarik pada medan magnet.  Senyawa kompleks dengan elektron berpasangan : tidak menghasilkan medan magnet / menolak medan magnet.
  • 120.  Momen magnetik Suatu ukuran yang berkaitan dengan jumlah elektron tidak berpasangan.
  • 121.  Moment magnetik : Dimana :
  • 122.  Dengan g = 2,0003 = 2 dalam Bohr magneton, dan momentum orbital diabaikan, maka
  • 123.  Dan S = n/2, maka momen magnetik :  Satuan moment magnetik = BM (Bohr Magneton) 1 BM = 9,27 x 10-24 Joule/Tesla
  • 124.
  • 125. 1. Hitung moment magnetik komplek Cr(III) dan Ti (III) 2. Moment magnetik Kompleks Co(II) adalah 4,0BM. Prediksikan konfigurasi elektron orbital d pada kompleks tersebut! 3. Moment magnetik Kompleks Fe(III) adalah 5,3BM. Prediksikan konfigurasi elektron orbital d pada kompleks tersebut!
  • 126.  Jawab : 1. Cr3+ n = 3 μs = √3(3+2) BM = 3,87 BM
  • 127.  Jawab : 3. Fe 3+ , n = 5 a. dihitung μs untuk kompleks high spin dan low spin. b. kemudian tentukan mana yang nilainya paling mendekati nilai sebenarnya/eksperimen (5,3 BM) c.kemudian tulis konfigurasi elektron high spin atau low spin sesuai hasil b. Misal : untuk jawaban highspin, maka konf elektronny t2g3eg2
  • 128. 4. PadaT = 298 K diketahui bahwa momen magnetik kompleks [Cr(NH3)6]Cl2 adalah 4,85BM. Nyatakan apakah kompleks tersebut high spin?
  • 129.  TUGAS : Baca buku Huhey, Douglas, dan buku teks Anorganik lain yang menjelaskan tentang spektra elektronik senyawa kompleks dan kemagnetan Silahkan berlatih menghitung momen magnetik dari soal-soal yang ada di buku teks