SlideShare a Scribd company logo
What is a solar cell?
• A structure that converts solar energy directly to
DC electric energy.
– It supplies a voltage and a current to a resistive load
(light, battery, motor).
• It is like a battery because it supplies DC power.
• It is different from a battery in the sense that the
voltage supplied by the cell changes with changes
in the resistance of the load.
Basic Physics of Solar Cells
• Silicon (Si) is from group 4 of the period
table. When many Si atoms are in close
proximity, the energy states form bands of
forbidden energy states.
• One of these bands is called the band
gap(Eg) and the absorption of light in Si is a
strong function of Eg.
Basic Physics of Solar Cells
• Si is covalently bonded: It shares electrons.
– When a Si atom is replaced with a group 3 (Al, B) it
forms a positive particle called a hole that can move
around the crystal through diffusion or drift (electric
field).
– When a Si atom is replaced with a group 5 (As, P) it
forms an electron that can move around the crystal.
– By selectively doping the Si Crystal when can change
the resistivity and which type of carrier transfers charge
(carries current). Because we can selectively dope a Si
crystal it is called a semiconductor.
Photovoltaic effect
Definition:
The generation
of voltage across the
PN junction in a
semiconductor due
to the absorption of
light radiation is
called photovoltaic
effect. The Devices
based on this effect
is called photovoltaic
device.
Light
energy
n-type semiconductor
p- type semiconductor
Electrical
Power
p-n junction
Basics of solar cells
• If two differently contaminated semiconductor layers are
combined, then a so-called p-n-junction results on the boundary
of the layers.
• By doping trivalent element, we get p-type semiconductor. (with
excess amount of hole)
• By doping pentavalent element, we get n-type semiconductor
( with excess amount of electron)
n-type semiconductor
p- type semiconductor
p-n junction layer
Solar Cell Principle
 Operating diode in fourth quadrant generates power
Solar Energy Spectrum
•
• Power reaching earth 1.37 KW/m2
Electron Hole Formation
• Photovoltaic energy conversion relies on the number
of photons striking the earth. (photon is a flux of light
particles)
• On a clear day, about 4.4 x 1017
photons strike a square
centimeter of the Earth's surface every second.
• Only some of these photons - those with energy in
excess of the band gap - can be converted into
electricity by the solar cell.
• When such photon enters the semiconductor, it may
be absorbed and promote an electron from the valence band
to the conduction band.
• Therefore, a vacant is created in the valence band and it is
called hole.
• Now, the electron in the conduction band and hole in
valence band combine together and forms electron-hole pairs.
hole
Valence band
Conduction band
electron
Photons
A solar panel (or) Solar array
Single solar cell
• The single solar cell constitute the n-type layer
sandwiched with p-type layer.
• The most commonly known solar cell is configured as a
large-area p-n junction made from silicon wafer.
• A single cell can produce only very tiny amounts of electricity
• It can be used only to light up a small light bulb or power a
calculator.
• Single photovoltaic cells are used in many small electronic
appliances such as watches and calculators
N-type
P-type
Single Solar cell
Solar panel (or) solar array (or) Solar module
The solar panel (or) solar array is the interconnection of
number of solar module to get efficient power.
• A solar module consists of number of interconnected
solar cells.
• These interconnected cells embedded between two
glass plate to protect from the bad whether.
• Since absorption area of module is high, more energy
can be produced.
Based on the types of crystal used, soar cells can be classified as,
1. Monocrystalline silicon cells
2. Polycrystalline silicon cells
3. Amorphous silicon cells
1. The Monocrystalline silicon cell is produced from
pure silicon (single crystal). Since the Monocrystalline
silicon is pure and defect free, the efficiency of cell will be
higher.
2. In polycrystalline solar cell, liquid silicon is used as raw material
and polycrystalline silicon was obtained followed by solidification
process. The materials contain various crystalline sizes. Hence,
the efficiency of this type of cell is less than Monocrystalline cell.
Types of Solar cell
Amorphous silicon is obtained by depositing silicon film
on the substrate like glass plate.
•The layer thickness amounts to less than 1µm – the
thickness of a human hair for comparison is 50-100 µm.
•The efficiency of amorphous cells is much lower than that
of the other two cell types.
• As a result, they are used mainly in low power
equipment, such as watches and pocket calculators,
or as facade elements.
Amorphous Silicon
Comparison of Types of solar cell
Material Efficiency (%)
Monocrystalline silicon 14-17
Polycrystalline silicon 13-15
Amorphous silicon 5-7
• There are two currents in a solar cell
1. Current due to reverse biased junction (IS) (Diode Current)
2. Current due to photovoltaic effect (IL) [Also called reverse
current]
3. The two currents are in opposite directions

More Related Content

What's hot

Vehicle to grid technology
Vehicle to grid technologyVehicle to grid technology
Vehicle to grid technology
MD. Anamul Haque
 
Seminar report on paper battery
Seminar report on paper batterySeminar report on paper battery
Seminar report on paper battery
manish katara
 
Mini-Project-1 Report
Mini-Project-1 ReportMini-Project-1 Report
Mini-Project-1 ReportVASAV SHETHNA
 
Porous carbon in Supercapacitor Shameel Farhan 090614
Porous carbon in Supercapacitor Shameel Farhan  090614Porous carbon in Supercapacitor Shameel Farhan  090614
Porous carbon in Supercapacitor Shameel Farhan 090614shameel farhan
 
Walk n charge (ppt)
Walk n charge (ppt)Walk n charge (ppt)
Walk n charge (ppt)
Arpit Kurel
 
lead acid battery
lead acid batterylead acid battery
lead acid battery
Saeram Butt
 
Fuel Cells - A Seminar Presentation
Fuel Cells - A Seminar PresentationFuel Cells - A Seminar Presentation
Fuel Cells - A Seminar Presentation
JJ Technical Solutions
 
UltraCapacitor
UltraCapacitorUltraCapacitor
UltraCapacitor
dhimancool
 
Paper battery document and report
Paper battery document and reportPaper battery document and report
Paper battery document and report
eshu455
 
Solar cell
Solar cellSolar cell
Solar cell
Virendra thakur
 
Solar mobile charger
Solar mobile chargerSolar mobile charger
Solar mobile chargerApoorva Tappa
 
Ultracapacitors
UltracapacitorsUltracapacitors
Ultracapacitors
Tariq Tauheed
 
Battery Types and Battery technology
Battery Types and Battery technologyBattery Types and Battery technology
Battery Types and Battery technology
SRM UNIVERSITY
 
Lecture on Lead Acid Battery
Lecture on Lead Acid BatteryLecture on Lead Acid Battery
Lecture on Lead Acid Battery
Aniket Singh
 
Carbon nanotubes in solar panel technology
Carbon nanotubes in solar panel technologyCarbon nanotubes in solar panel technology
Carbon nanotubes in solar panel technology
ketchup 007
 
Nuclear Battery Seminar Report
Nuclear Battery Seminar ReportNuclear Battery Seminar Report
Nuclear Battery Seminar Report
Pratik Patil
 
Paper battery
Paper batteryPaper battery
Paper battery
Student
 
Hybrid supercapacitor
Hybrid supercapacitorHybrid supercapacitor
Hybrid supercapacitor
Dr. M. Ahila
 
presentation on SUPERCAPACITOR
presentation on SUPERCAPACITORpresentation on SUPERCAPACITOR
presentation on SUPERCAPACITOR
Gaurav Shukla
 

What's hot (20)

Vehicle to grid technology
Vehicle to grid technologyVehicle to grid technology
Vehicle to grid technology
 
Seminar report on paper battery
Seminar report on paper batterySeminar report on paper battery
Seminar report on paper battery
 
Mini-Project-1 Report
Mini-Project-1 ReportMini-Project-1 Report
Mini-Project-1 Report
 
Porous carbon in Supercapacitor Shameel Farhan 090614
Porous carbon in Supercapacitor Shameel Farhan  090614Porous carbon in Supercapacitor Shameel Farhan  090614
Porous carbon in Supercapacitor Shameel Farhan 090614
 
Walk n charge (ppt)
Walk n charge (ppt)Walk n charge (ppt)
Walk n charge (ppt)
 
Supercapacitors as an Energy Storage Device
Supercapacitors as an Energy Storage DeviceSupercapacitors as an Energy Storage Device
Supercapacitors as an Energy Storage Device
 
lead acid battery
lead acid batterylead acid battery
lead acid battery
 
Fuel Cells - A Seminar Presentation
Fuel Cells - A Seminar PresentationFuel Cells - A Seminar Presentation
Fuel Cells - A Seminar Presentation
 
UltraCapacitor
UltraCapacitorUltraCapacitor
UltraCapacitor
 
Paper battery document and report
Paper battery document and reportPaper battery document and report
Paper battery document and report
 
Solar cell
Solar cellSolar cell
Solar cell
 
Solar mobile charger
Solar mobile chargerSolar mobile charger
Solar mobile charger
 
Ultracapacitors
UltracapacitorsUltracapacitors
Ultracapacitors
 
Battery Types and Battery technology
Battery Types and Battery technologyBattery Types and Battery technology
Battery Types and Battery technology
 
Lecture on Lead Acid Battery
Lecture on Lead Acid BatteryLecture on Lead Acid Battery
Lecture on Lead Acid Battery
 
Carbon nanotubes in solar panel technology
Carbon nanotubes in solar panel technologyCarbon nanotubes in solar panel technology
Carbon nanotubes in solar panel technology
 
Nuclear Battery Seminar Report
Nuclear Battery Seminar ReportNuclear Battery Seminar Report
Nuclear Battery Seminar Report
 
Paper battery
Paper batteryPaper battery
Paper battery
 
Hybrid supercapacitor
Hybrid supercapacitorHybrid supercapacitor
Hybrid supercapacitor
 
presentation on SUPERCAPACITOR
presentation on SUPERCAPACITORpresentation on SUPERCAPACITOR
presentation on SUPERCAPACITOR
 

Similar to UNIT 1 Solar Cell theory.pdf

A presentation on solar cells
A presentation on solar cellsA presentation on solar cells
A presentation on solar cells
Karansinh Parmar
 
Solar cell
Solar cellSolar cell
Solar cell
Arafat Jamil
 
Presentation on Solar Cell
Presentation on Solar Cell Presentation on Solar Cell
Presentation on Solar Cell
Kevin Bettner "California Free Solar "
 
Presentation on solar cell
Presentation on solar cellPresentation on solar cell
Presentation on solar cellOmar SYED
 
Solar cell.ppt
Solar cell.pptSolar cell.ppt
Solar cell.ppt
Arslan Ijaz
 
Unit 2
Unit 2Unit 2
Unit 2
Arul Jothi
 
Solar cells or photo voltoic cells
Solar cells or photo voltoic cellsSolar cells or photo voltoic cells
Solar cells or photo voltoic cellsPoojith Chowdhary
 
Pv fundamentals by Ecoepicsolar training division
Pv fundamentals by Ecoepicsolar training divisionPv fundamentals by Ecoepicsolar training division
Pv fundamentals by Ecoepicsolar training division
ecoepicsolar
 
Solar cell
Solar cellSolar cell
Solar cell
Dongguk University
 
lecture_4_20.ppt
lecture_4_20.pptlecture_4_20.ppt
lecture_4_20.ppt
TayybaMaqsood
 
solar cell 2.ppt
solar cell 2.pptsolar cell 2.ppt
solar cell 2.ppt
nitin9675082136
 
Silicon Photovoltaic Basics
Silicon Photovoltaic Basics Silicon Photovoltaic Basics
Silicon Photovoltaic Basics
Gavin Harper
 
Renewable energy sources
Renewable energy sourcesRenewable energy sources
Renewable energy sources
PRAVIN SINGARE
 
solar cell 21-22.pptx
solar cell 21-22.pptxsolar cell 21-22.pptx
solar cell 21-22.pptx
NagasaiT
 
solar cell
solar cellsolar cell
solar cell
Punit Kathiriya
 
uses of Solar cell
uses of Solar cell uses of Solar cell
uses of Solar cell
Ali Ali
 
Solar cell materials me
Solar cell materials meSolar cell materials me
Solar cell materials me
Senthil Kumar
 
Solar cell
Solar cellSolar cell
Solar cell
VASISTA THITUVEEDI
 

Similar to UNIT 1 Solar Cell theory.pdf (20)

A presentation on solar cells
A presentation on solar cellsA presentation on solar cells
A presentation on solar cells
 
Solar cell
Solar cellSolar cell
Solar cell
 
Presentation on Solar Cell
Presentation on Solar Cell Presentation on Solar Cell
Presentation on Solar Cell
 
Presentation on solar cell
Presentation on solar cellPresentation on solar cell
Presentation on solar cell
 
Solar cell.ppt
Solar cell.pptSolar cell.ppt
Solar cell.ppt
 
Unit 2
Unit 2Unit 2
Unit 2
 
Solar cells or photo voltoic cells
Solar cells or photo voltoic cellsSolar cells or photo voltoic cells
Solar cells or photo voltoic cells
 
Pv fundamentals by Ecoepicsolar training division
Pv fundamentals by Ecoepicsolar training divisionPv fundamentals by Ecoepicsolar training division
Pv fundamentals by Ecoepicsolar training division
 
Solar cell
Solar cellSolar cell
Solar cell
 
lecture_4_20.ppt
lecture_4_20.pptlecture_4_20.ppt
lecture_4_20.ppt
 
CH7_Solar Cell_ M A Islam_ppt
CH7_Solar Cell_ M A Islam_pptCH7_Solar Cell_ M A Islam_ppt
CH7_Solar Cell_ M A Islam_ppt
 
solar cell 2.ppt
solar cell 2.pptsolar cell 2.ppt
solar cell 2.ppt
 
Silicon Photovoltaic Basics
Silicon Photovoltaic Basics Silicon Photovoltaic Basics
Silicon Photovoltaic Basics
 
Renewable energy sources
Renewable energy sourcesRenewable energy sources
Renewable energy sources
 
solar cell 21-22.pptx
solar cell 21-22.pptxsolar cell 21-22.pptx
solar cell 21-22.pptx
 
solar cell
solar cellsolar cell
solar cell
 
uses of Solar cell
uses of Solar cell uses of Solar cell
uses of Solar cell
 
Solar cell materials me
Solar cell materials meSolar cell materials me
Solar cell materials me
 
physics of solar cell
physics of solar cellphysics of solar cell
physics of solar cell
 
Solar cell
Solar cellSolar cell
Solar cell
 

Recently uploaded

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 

Recently uploaded (20)

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 

UNIT 1 Solar Cell theory.pdf

  • 1. What is a solar cell? • A structure that converts solar energy directly to DC electric energy. – It supplies a voltage and a current to a resistive load (light, battery, motor). • It is like a battery because it supplies DC power. • It is different from a battery in the sense that the voltage supplied by the cell changes with changes in the resistance of the load.
  • 2. Basic Physics of Solar Cells • Silicon (Si) is from group 4 of the period table. When many Si atoms are in close proximity, the energy states form bands of forbidden energy states. • One of these bands is called the band gap(Eg) and the absorption of light in Si is a strong function of Eg.
  • 3. Basic Physics of Solar Cells • Si is covalently bonded: It shares electrons. – When a Si atom is replaced with a group 3 (Al, B) it forms a positive particle called a hole that can move around the crystal through diffusion or drift (electric field). – When a Si atom is replaced with a group 5 (As, P) it forms an electron that can move around the crystal. – By selectively doping the Si Crystal when can change the resistivity and which type of carrier transfers charge (carries current). Because we can selectively dope a Si crystal it is called a semiconductor.
  • 4. Photovoltaic effect Definition: The generation of voltage across the PN junction in a semiconductor due to the absorption of light radiation is called photovoltaic effect. The Devices based on this effect is called photovoltaic device. Light energy n-type semiconductor p- type semiconductor Electrical Power p-n junction
  • 5. Basics of solar cells • If two differently contaminated semiconductor layers are combined, then a so-called p-n-junction results on the boundary of the layers. • By doping trivalent element, we get p-type semiconductor. (with excess amount of hole) • By doping pentavalent element, we get n-type semiconductor ( with excess amount of electron) n-type semiconductor p- type semiconductor p-n junction layer
  • 6. Solar Cell Principle  Operating diode in fourth quadrant generates power
  • 7. Solar Energy Spectrum • • Power reaching earth 1.37 KW/m2
  • 8. Electron Hole Formation • Photovoltaic energy conversion relies on the number of photons striking the earth. (photon is a flux of light particles) • On a clear day, about 4.4 x 1017 photons strike a square centimeter of the Earth's surface every second. • Only some of these photons - those with energy in excess of the band gap - can be converted into electricity by the solar cell. • When such photon enters the semiconductor, it may be absorbed and promote an electron from the valence band to the conduction band.
  • 9. • Therefore, a vacant is created in the valence band and it is called hole. • Now, the electron in the conduction band and hole in valence band combine together and forms electron-hole pairs. hole Valence band Conduction band electron Photons
  • 10. A solar panel (or) Solar array Single solar cell • The single solar cell constitute the n-type layer sandwiched with p-type layer. • The most commonly known solar cell is configured as a large-area p-n junction made from silicon wafer. • A single cell can produce only very tiny amounts of electricity • It can be used only to light up a small light bulb or power a calculator. • Single photovoltaic cells are used in many small electronic appliances such as watches and calculators
  • 12. Solar panel (or) solar array (or) Solar module The solar panel (or) solar array is the interconnection of number of solar module to get efficient power. • A solar module consists of number of interconnected solar cells. • These interconnected cells embedded between two glass plate to protect from the bad whether. • Since absorption area of module is high, more energy can be produced.
  • 13.
  • 14. Based on the types of crystal used, soar cells can be classified as, 1. Monocrystalline silicon cells 2. Polycrystalline silicon cells 3. Amorphous silicon cells 1. The Monocrystalline silicon cell is produced from pure silicon (single crystal). Since the Monocrystalline silicon is pure and defect free, the efficiency of cell will be higher. 2. In polycrystalline solar cell, liquid silicon is used as raw material and polycrystalline silicon was obtained followed by solidification process. The materials contain various crystalline sizes. Hence, the efficiency of this type of cell is less than Monocrystalline cell. Types of Solar cell
  • 15. Amorphous silicon is obtained by depositing silicon film on the substrate like glass plate. •The layer thickness amounts to less than 1µm – the thickness of a human hair for comparison is 50-100 µm. •The efficiency of amorphous cells is much lower than that of the other two cell types. • As a result, they are used mainly in low power equipment, such as watches and pocket calculators, or as facade elements. Amorphous Silicon
  • 16. Comparison of Types of solar cell Material Efficiency (%) Monocrystalline silicon 14-17 Polycrystalline silicon 13-15 Amorphous silicon 5-7
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22. • There are two currents in a solar cell 1. Current due to reverse biased junction (IS) (Diode Current) 2. Current due to photovoltaic effect (IL) [Also called reverse current] 3. The two currents are in opposite directions