SlideShare a Scribd company logo
1
Introduction
Photovoltaic effect
Electron-hole formation
A solar panel (or) solar array
Types of Solar cell
Principle, construction and working of
Solar cell
Advantage, disadvantage and
application
2
Solar cell: Solar cell is a photovoltaic device that converts
the light energy into electrical energy based on
the principles of photovoltaic effect
Albert Einstein was awarded the 1921 Nobel Prize in physics
for his research on the photoelectric effect—a phenomenon
central to the generation of electricity through solar cells.
In the early stages, the solar cell was developed only with 4 to
6 % efficiency( because of inadequate materials and problems
in focusing the solar radiations). But, after 1989, the solar cells
with more than 50% efficiency was developed.
1. Introduction
3
Materials for Solar cell
Solar cells are composed of various semiconducting materials
1. Crystalline silicon
2. Cadmium telluride
3. Copper indium diselenide
4. Gallium arsenide
5. Indium phosphide
6. Zinc sulphide
Note: Semiconductors are materials, which become
electrically conductive when supplied with light or heat, but
which operate as insulators at low temperatures
4
• Over 95% of all the solar cells produced worldwide are
composed of the semiconductor material Silicon (Si). As the
second most abundant element in earth`s crust, silicon has
the advantage, of being available in sufficient quantities.
• To produce a solar cell, the semiconductor is contaminated
or "doped".
• "Doping" is the intentional introduction of chemical
elements into the semiconductor.
• By doing this, depending upon the type of dopant, one can
obtain a surplus of either positive charge carriers (called
p-conducting semiconductor layer) or negative charge
carriers (called n-conducting semiconductor layer).
5
• If two differently contaminated semiconductor layers are
combined, then a so-called p-n-junction results on the
boundary of the layers.
• By doping trivalent element, we get p-type semiconductor.
(with excess amount of hole)
• By doping pentavalent element, we get n-type
semiconductor ( with excess amount of electron)
n-type semiconductor
p- type semiconductor
p-n junction layer
6
2. Photovoltaic effect
Definition:
The generation
of voltage across the
PN junction in a
semiconductor due
to the absorption of
light radiation is
called photovoltaic
effect. The Devices
based on this effect
is called photovoltaic
device.
Light
energy
n-type semiconductor
p- type semiconductor
Electrical
Power
p-n junction
7
3. electron-hole formation
• Photovoltaic energy conversion relies on the number
of photons strikes on the earth. (photon is a flux of
light particles)
• On a clear day, about 4.4 x 1017 photons strike a square
centimeter of the Earth's surface every second.
• Only some of these photons - those with energy in
excess of the band gap - can be converted into
electricity by the solar cell.
• When such photon enters the semiconductor, it may
be absorbed and promote an electron from the
valence band to the conduction band.
8
• Therefore, a vacant is created in the valence band and it is
called hole.
• Now, the electron in the conduction band and hole in
valence band combine together and forms electron-hole pairs.
hole
Valence band
Conduction band
electron
Photons
9
4. A solar panel (or) Solar array
Single solar cell
• The single solar cell constitute the n-type layer
sandwiched with p-type layer.
• The most commonly known solar cell is configured as a
large-area p-n junction made from silicon wafer.
• A single cell can produce only very tiny amounts of electricity
• It can be used only to light up a small light bulb or power a
calculator.
• Single photovoltaic cells are used in many small electronic
appliances such as watches and calculators
10
N-type
P-type
Single Solar cell
11
Solar panel (or) solar array (or) Solar module
The solar panel (or) solar array is the interconnection of
number of solar module to get efficient power.
• A solar module consists of number of interconnected
solar cells.
• These interconnected cells embedded between two
glass plate to protect from the bad whether.
• Since absorption area of module is high, more energy
can be produced.
12
13
Based on the types of crystal used, soar cells can be classified as,
1. Monocrystalline silicon cells
2. Polycrystalline silicon cells
3. Amorphous silicon cells
1. The Monocrystalline silicon cell is produced from
pure silicon (single crystal). Since the Monocrystalline
silicon is pure and defect free, the efficiency of cell will be
higher.
2. In polycrystalline solar cell, liquid silicon is used as raw material
and polycrystalline silicon was obtained followed by solidification
process. The materials contain various crystalline sizes. Hence,
the efficiency of this type of cell is less than Monocrystalline cell.
5. Types of Solar cell
14
3. Amorphous silicon was obtained by depositing silicon
film on the substrate like glass plate.
•The layer thickness amounts to less than 1µm – the
thickness of a human hair for comparison is 50-100 µm.
•The efficiency of amorphous cells is much lower than that
of the other two cell types.
• As a result, they are used mainly in low power
equipment, such as watches and pocket calculators,
or as facade elements.
15
Comparison of Types of solar cell
Material Efficiency (%)
Monocrystalline silicon 14-17
Polycrystalline silicon 13-15
Amorphous silicon 5-7
16
6. Principle, construction and working of Solar cell
Principle: The solar cells are based on the principles
of photovoltaic effect.The photovoltaic effect is the
photogeneration of charge carriers in a light absorbing
materials as a result of absorption of light radiation.
Construction
• Solar cell (crystalline Silicon) consists of a n-type
semiconductor (emitter) layer and p-type semiconductor
layer (base). The two layers are sandwiched and hence
there is formation of p-n junction.
• The surface is coated with anti-refection coating to avoid the
loss of incident light energy due to reflection.
17
18
19
• A proper metal contacts are made on the n-type and p-
type side of the semiconductor for electrical connection
Working:
• When a solar panel exposed to sunlight , the light energies
are absorbed by a semiconduction materials.
• Due to this absorded enrgy, the electrons are libereted
and produce the external DC current.
• The DC current is converted into 240-volt AC current using
an inverter for different applications.
20
Mechanism:
• First, the sunlight is absorbed by a solar cell in a solar
panel.
• The absorbed light causes electrons in the material to
increase in energy. At the same time making them free to
move around in the material.
• However, the electrons remain at this higher energy for
only a short time before returning to their original lower
energy position.
• Therefore, to collect the carriers before they lose the
energy gained from the light, a PN junction is typically
used.
21
• A PN junction consists of two different regions of a
semiconductor material (usually silicon), with one side
called the p type region and the other the n-type region.
• During the incident of light energy, in p-type material,
electrons can gain energy and move into the n-type region.
• Then they can no longer go back to their original low
energy position and remain at a higher energy.
• The process of moving a light- generated carrier from
p-type region to n-type region is called collection.
• These collections of carriers (electrons) can be either
extracted from the device to give a current, or it can remain in
the device and gives rise to a voltage.
22
• The electrons that leave the solar cell as current give
up their energy to whatever is connected to the solar
cell, and then re-enter the solar cell. Once back in the
solar cell, the process begins again:
23
The mechanism of electricity production- Different stages
Conduction band High density
Valence band Low density
E
The above diagram shows the formation of p-n junction in a solar
cell. The valence band is a low-density band and conduction
band is high-density band.
24
Stage-1
Therefore, the hole
(vacancy position left
by the electron in the
valence band) is
generates. Hence, there
is a formation of
electron-hole pair on
the sides of p-n
junction.
When light falls on the semiconductor surface, the electron
from valence band promoted to conduction band.
Conduction band High density
Valence band Low density
E
25
Stage-2
In the stage 2, the electron and holes are diffuse across the
p-n junction and there is a formation of electron-hole pair.
Conduction band High density
Valence band Low density
E
junction
26
Stage-3
In the stage 3, As electron continuous to diffuse, the negative
charge build on emitter side and positive charge build on the
base side.
Conduction band High density
Valence band Low density
E
junction
27
Stage-4
When the PN junction is connected with external circuit, the
current flows.
Conduction band High density
Valence band Low density
E
junction
Power
28
7. Advantage, disadvantage and application of Solar cell
Advantage
1. It is clean and non-polluting
2. It is a renewable energy
3. Solar cells do not produce noise and they are totally
silent.
4. They require very little maintenance
5. They are long lasting sources of energy which can be
used almost anywhere
6. They have long life time
7. There are no fuel costs or fuel supply problems
29
Disadvantage
1. Solar power cannot be obtained in night time
2. Solar cells (or) solar panels are very expensive
3. Energy has to be stored in batteries
4. Air pollution and whether can affect the production
of electricity
5. They need large are of land to produce more
efficient power supply
30
Applications
1.Soar pumps are used for water supply.
1.Domestic power supply for appliances include
refrigeration, washing machine, television and lighting
1.Ocean navigation aids: Number of lighthouses and
most buoys are powered by solar cells
1.Telecommunication systems: radio transceivers on
mountain tops, or telephone boxes in the country can
often be solar powered
1.Electric power generation in space: To providing
electrical power to satellites in an orbit around the Earth

More Related Content

Similar to solar cell 2.ppt

solar cell 21-22.pptx
solar cell 21-22.pptxsolar cell 21-22.pptx
solar cell 21-22.pptx
NagasaiT
 
Unit 2
Unit 2Unit 2
Unit 2
Arul Jothi
 
energy resources.pdf
energy resources.pdfenergy resources.pdf
energy resources.pdf
AnujYadav321578
 
Solar cell materials me
Solar cell materials meSolar cell materials me
Solar cell materials me
Senthil Kumar
 
A presentation on solar cells
A presentation on solar cellsA presentation on solar cells
A presentation on solar cells
Karansinh Parmar
 
Solar cells or photo voltoic cells
Solar cells or photo voltoic cellsSolar cells or photo voltoic cells
Solar cells or photo voltoic cellsPoojith Chowdhary
 
Presentation on Solar Cell
Presentation on Solar Cell Presentation on Solar Cell
Presentation on Solar Cell
Kevin Bettner "California Free Solar "
 
Presentation on solar cell
Presentation on solar cellPresentation on solar cell
Presentation on solar cellOmar SYED
 
Solar cell
Solar cellSolar cell
Solar cell
Arafat Jamil
 
Basics of Solar Cell.pptx
Basics of Solar Cell.pptxBasics of Solar Cell.pptx
Basics of Solar Cell.pptx
FahimFaisalAmio
 
solar cell
solar cellsolar cell
solar cell
Punit Kathiriya
 
solar pv module: a brief overview
solar pv module: a brief overviewsolar pv module: a brief overview
solar pv module: a brief overview
vaibhav birla
 
Solar cell presentation
Solar cell presentationSolar cell presentation
Solar cell presentation
faridhossan
 
SOLAR ENERGY & PV CELLS BY G.DINESHPIRAN
SOLAR ENERGY & PV CELLS BY G.DINESHPIRANSOLAR ENERGY & PV CELLS BY G.DINESHPIRAN
SOLAR ENERGY & PV CELLS BY G.DINESHPIRAN
Dinesh Piran-Gdp
 
Solar energy PV cells
Solar energy PV cellsSolar energy PV cells
Solar energy PV cells
Stalin Kesavan
 
CIVE685_SolarPotovoltaics_07Oct20-Updated.pdf
CIVE685_SolarPotovoltaics_07Oct20-Updated.pdfCIVE685_SolarPotovoltaics_07Oct20-Updated.pdf
CIVE685_SolarPotovoltaics_07Oct20-Updated.pdf
Sara972447
 
Presentation on solar cell
Presentation on solar cellPresentation on solar cell
Presentation on solar cell
raghab panigrahi
 
Solar Photovoltaic.ppt
Solar Photovoltaic.pptSolar Photovoltaic.ppt
Solar Photovoltaic.ppt
AnonymousPerson72
 
Solar cell
Solar cellSolar cell
Solar cell
BARKHADAS
 

Similar to solar cell 2.ppt (20)

solar cell 21-22.pptx
solar cell 21-22.pptxsolar cell 21-22.pptx
solar cell 21-22.pptx
 
Unit 2
Unit 2Unit 2
Unit 2
 
energy resources.pdf
energy resources.pdfenergy resources.pdf
energy resources.pdf
 
Solar cell materials me
Solar cell materials meSolar cell materials me
Solar cell materials me
 
A presentation on solar cells
A presentation on solar cellsA presentation on solar cells
A presentation on solar cells
 
Solar cells or photo voltoic cells
Solar cells or photo voltoic cellsSolar cells or photo voltoic cells
Solar cells or photo voltoic cells
 
Presentation on Solar Cell
Presentation on Solar Cell Presentation on Solar Cell
Presentation on Solar Cell
 
Presentation on solar cell
Presentation on solar cellPresentation on solar cell
Presentation on solar cell
 
Solar cell
Solar cellSolar cell
Solar cell
 
Basics of Solar Cell.pptx
Basics of Solar Cell.pptxBasics of Solar Cell.pptx
Basics of Solar Cell.pptx
 
solar cell
solar cellsolar cell
solar cell
 
Solar pv cell
Solar pv cellSolar pv cell
Solar pv cell
 
solar pv module: a brief overview
solar pv module: a brief overviewsolar pv module: a brief overview
solar pv module: a brief overview
 
Solar cell presentation
Solar cell presentationSolar cell presentation
Solar cell presentation
 
SOLAR ENERGY & PV CELLS BY G.DINESHPIRAN
SOLAR ENERGY & PV CELLS BY G.DINESHPIRANSOLAR ENERGY & PV CELLS BY G.DINESHPIRAN
SOLAR ENERGY & PV CELLS BY G.DINESHPIRAN
 
Solar energy PV cells
Solar energy PV cellsSolar energy PV cells
Solar energy PV cells
 
CIVE685_SolarPotovoltaics_07Oct20-Updated.pdf
CIVE685_SolarPotovoltaics_07Oct20-Updated.pdfCIVE685_SolarPotovoltaics_07Oct20-Updated.pdf
CIVE685_SolarPotovoltaics_07Oct20-Updated.pdf
 
Presentation on solar cell
Presentation on solar cellPresentation on solar cell
Presentation on solar cell
 
Solar Photovoltaic.ppt
Solar Photovoltaic.pptSolar Photovoltaic.ppt
Solar Photovoltaic.ppt
 
Solar cell
Solar cellSolar cell
Solar cell
 

Recently uploaded

Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 

Recently uploaded (20)

Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 

solar cell 2.ppt

  • 1. 1 Introduction Photovoltaic effect Electron-hole formation A solar panel (or) solar array Types of Solar cell Principle, construction and working of Solar cell Advantage, disadvantage and application
  • 2. 2 Solar cell: Solar cell is a photovoltaic device that converts the light energy into electrical energy based on the principles of photovoltaic effect Albert Einstein was awarded the 1921 Nobel Prize in physics for his research on the photoelectric effect—a phenomenon central to the generation of electricity through solar cells. In the early stages, the solar cell was developed only with 4 to 6 % efficiency( because of inadequate materials and problems in focusing the solar radiations). But, after 1989, the solar cells with more than 50% efficiency was developed. 1. Introduction
  • 3. 3 Materials for Solar cell Solar cells are composed of various semiconducting materials 1. Crystalline silicon 2. Cadmium telluride 3. Copper indium diselenide 4. Gallium arsenide 5. Indium phosphide 6. Zinc sulphide Note: Semiconductors are materials, which become electrically conductive when supplied with light or heat, but which operate as insulators at low temperatures
  • 4. 4 • Over 95% of all the solar cells produced worldwide are composed of the semiconductor material Silicon (Si). As the second most abundant element in earth`s crust, silicon has the advantage, of being available in sufficient quantities. • To produce a solar cell, the semiconductor is contaminated or "doped". • "Doping" is the intentional introduction of chemical elements into the semiconductor. • By doing this, depending upon the type of dopant, one can obtain a surplus of either positive charge carriers (called p-conducting semiconductor layer) or negative charge carriers (called n-conducting semiconductor layer).
  • 5. 5 • If two differently contaminated semiconductor layers are combined, then a so-called p-n-junction results on the boundary of the layers. • By doping trivalent element, we get p-type semiconductor. (with excess amount of hole) • By doping pentavalent element, we get n-type semiconductor ( with excess amount of electron) n-type semiconductor p- type semiconductor p-n junction layer
  • 6. 6 2. Photovoltaic effect Definition: The generation of voltage across the PN junction in a semiconductor due to the absorption of light radiation is called photovoltaic effect. The Devices based on this effect is called photovoltaic device. Light energy n-type semiconductor p- type semiconductor Electrical Power p-n junction
  • 7. 7 3. electron-hole formation • Photovoltaic energy conversion relies on the number of photons strikes on the earth. (photon is a flux of light particles) • On a clear day, about 4.4 x 1017 photons strike a square centimeter of the Earth's surface every second. • Only some of these photons - those with energy in excess of the band gap - can be converted into electricity by the solar cell. • When such photon enters the semiconductor, it may be absorbed and promote an electron from the valence band to the conduction band.
  • 8. 8 • Therefore, a vacant is created in the valence band and it is called hole. • Now, the electron in the conduction band and hole in valence band combine together and forms electron-hole pairs. hole Valence band Conduction band electron Photons
  • 9. 9 4. A solar panel (or) Solar array Single solar cell • The single solar cell constitute the n-type layer sandwiched with p-type layer. • The most commonly known solar cell is configured as a large-area p-n junction made from silicon wafer. • A single cell can produce only very tiny amounts of electricity • It can be used only to light up a small light bulb or power a calculator. • Single photovoltaic cells are used in many small electronic appliances such as watches and calculators
  • 11. 11 Solar panel (or) solar array (or) Solar module The solar panel (or) solar array is the interconnection of number of solar module to get efficient power. • A solar module consists of number of interconnected solar cells. • These interconnected cells embedded between two glass plate to protect from the bad whether. • Since absorption area of module is high, more energy can be produced.
  • 12. 12
  • 13. 13 Based on the types of crystal used, soar cells can be classified as, 1. Monocrystalline silicon cells 2. Polycrystalline silicon cells 3. Amorphous silicon cells 1. The Monocrystalline silicon cell is produced from pure silicon (single crystal). Since the Monocrystalline silicon is pure and defect free, the efficiency of cell will be higher. 2. In polycrystalline solar cell, liquid silicon is used as raw material and polycrystalline silicon was obtained followed by solidification process. The materials contain various crystalline sizes. Hence, the efficiency of this type of cell is less than Monocrystalline cell. 5. Types of Solar cell
  • 14. 14 3. Amorphous silicon was obtained by depositing silicon film on the substrate like glass plate. •The layer thickness amounts to less than 1µm – the thickness of a human hair for comparison is 50-100 µm. •The efficiency of amorphous cells is much lower than that of the other two cell types. • As a result, they are used mainly in low power equipment, such as watches and pocket calculators, or as facade elements.
  • 15. 15 Comparison of Types of solar cell Material Efficiency (%) Monocrystalline silicon 14-17 Polycrystalline silicon 13-15 Amorphous silicon 5-7
  • 16. 16 6. Principle, construction and working of Solar cell Principle: The solar cells are based on the principles of photovoltaic effect.The photovoltaic effect is the photogeneration of charge carriers in a light absorbing materials as a result of absorption of light radiation. Construction • Solar cell (crystalline Silicon) consists of a n-type semiconductor (emitter) layer and p-type semiconductor layer (base). The two layers are sandwiched and hence there is formation of p-n junction. • The surface is coated with anti-refection coating to avoid the loss of incident light energy due to reflection.
  • 17. 17
  • 18. 18
  • 19. 19 • A proper metal contacts are made on the n-type and p- type side of the semiconductor for electrical connection Working: • When a solar panel exposed to sunlight , the light energies are absorbed by a semiconduction materials. • Due to this absorded enrgy, the electrons are libereted and produce the external DC current. • The DC current is converted into 240-volt AC current using an inverter for different applications.
  • 20. 20 Mechanism: • First, the sunlight is absorbed by a solar cell in a solar panel. • The absorbed light causes electrons in the material to increase in energy. At the same time making them free to move around in the material. • However, the electrons remain at this higher energy for only a short time before returning to their original lower energy position. • Therefore, to collect the carriers before they lose the energy gained from the light, a PN junction is typically used.
  • 21. 21 • A PN junction consists of two different regions of a semiconductor material (usually silicon), with one side called the p type region and the other the n-type region. • During the incident of light energy, in p-type material, electrons can gain energy and move into the n-type region. • Then they can no longer go back to their original low energy position and remain at a higher energy. • The process of moving a light- generated carrier from p-type region to n-type region is called collection. • These collections of carriers (electrons) can be either extracted from the device to give a current, or it can remain in the device and gives rise to a voltage.
  • 22. 22 • The electrons that leave the solar cell as current give up their energy to whatever is connected to the solar cell, and then re-enter the solar cell. Once back in the solar cell, the process begins again:
  • 23. 23 The mechanism of electricity production- Different stages Conduction band High density Valence band Low density E The above diagram shows the formation of p-n junction in a solar cell. The valence band is a low-density band and conduction band is high-density band.
  • 24. 24 Stage-1 Therefore, the hole (vacancy position left by the electron in the valence band) is generates. Hence, there is a formation of electron-hole pair on the sides of p-n junction. When light falls on the semiconductor surface, the electron from valence band promoted to conduction band. Conduction band High density Valence band Low density E
  • 25. 25 Stage-2 In the stage 2, the electron and holes are diffuse across the p-n junction and there is a formation of electron-hole pair. Conduction band High density Valence band Low density E junction
  • 26. 26 Stage-3 In the stage 3, As electron continuous to diffuse, the negative charge build on emitter side and positive charge build on the base side. Conduction band High density Valence band Low density E junction
  • 27. 27 Stage-4 When the PN junction is connected with external circuit, the current flows. Conduction band High density Valence band Low density E junction Power
  • 28. 28 7. Advantage, disadvantage and application of Solar cell Advantage 1. It is clean and non-polluting 2. It is a renewable energy 3. Solar cells do not produce noise and they are totally silent. 4. They require very little maintenance 5. They are long lasting sources of energy which can be used almost anywhere 6. They have long life time 7. There are no fuel costs or fuel supply problems
  • 29. 29 Disadvantage 1. Solar power cannot be obtained in night time 2. Solar cells (or) solar panels are very expensive 3. Energy has to be stored in batteries 4. Air pollution and whether can affect the production of electricity 5. They need large are of land to produce more efficient power supply
  • 30. 30 Applications 1.Soar pumps are used for water supply. 1.Domestic power supply for appliances include refrigeration, washing machine, television and lighting 1.Ocean navigation aids: Number of lighthouses and most buoys are powered by solar cells 1.Telecommunication systems: radio transceivers on mountain tops, or telephone boxes in the country can often be solar powered 1.Electric power generation in space: To providing electrical power to satellites in an orbit around the Earth