Energy Efficient Wireless
Communications
Jingon Joung
ACT: Advanced Commun. Tech. Dept.
I2
R: Institute for Infocomm Research
A⋆
STAR: Agency for Science, Technology, And Research, Singapore
Tutorial 2: The 14th International Conference on Electronics, Information
and Communication (ICEIC’2015), Singapore
29 January 2015
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 1 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 2 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 3 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 4 / 112
Green Wireless Communications
• Green
– to reduce energy consumption
– to reduce CO2 emission
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
Green Wireless Communications
• Green Information & Communications Tech. (ICT) [1]
– the 5th largest industry in power consumption
– energy consumption: 3% (2007’)
– CO2 emission: 2% (2007’) will increase X35, 4% (2020’)
– e.g., cellular networks:
ƒ energy: 77.5 TWh (2/60/3.5/10 TWh for 3b/4MM/20,000/etc.
subscribers/radio stations/radio controllers/others)
ƒ CO2: 35 Mt (1/20/2/5 Mt for “ )
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
Green Wireless Communications
• Wireless access communication networks consume
significant amount of energy to overcome [2]
– fading, distortion, degradation (path loss)
– obstacles, interferences
TX
wirelesschannel
RX
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
Green Wireless Communications
• The energy is mostly consumed at the
transmitter
• e.g., 80-85% power at base station (BS) in
cellular networks [2]
Base Band
Module
D
A
C
Informationbinarybits
Filter Filter
LO
LFTPA
Attn. control
DC control
Mixer
VGA
Synthethesizer
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
Green Wireless Communications
• 50–80% of transmitter’s power is
consumed at power amplifier (PA) [3]
PA
input
signal
output
signal
DC
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
References
[1]:
[McK, 2007]
[Fettweis and Zimmermann, 2008]
[Mancuso and Sara Alouf, 2011]
[Chatzipapas et al., 2011]
[2]:
[Richter et al., 2009]
[Baliga et al., 2011]
[Vereecken et al., 2011]
[Chatzipapas et al., 2011]
[Joung and Sun, 2012]
[3]:
[Gruber et al., 2009]
[Bogucka and Conti, 2011]
[Joung et al., 2012a]
[Joung et al., 2014c]
[Joung et al., 2013]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 6 / 112
Green ICT Projects & Consortiums
C2Power: Project, EU, Jan. 2010–Dec. 2012
- cognitive radio and cooperative strategies
- power saving in multi-standard wireless devices
eWIN, Project, KTH, Sweden
ECOnet: low Energy COnsumption NETworks, EU, Oct. 2010–Sept. 2013
- dynamic adaptive technologies
G-MC2: Project, Green Multiuser-MIMO Cooperative Communications,
I2
R, Singapore, Jan. 2012–Dec. 2014
GREENET: Consortium, green wireless networks, EU
GREENT: Consortium, green terminals for next generation wireless
systems, EU
CO2GREEN Project: Spain
- cooperative and cognitive techniques
- green wireless communications
GreenTouch: Consortium, architecture, specifications and roadmap, since
2010
earth: Project, Energy Aware Radio and neTwork tecHnologies
Green Radio: mobile virtual center of excellence (VCE) and personal
communications, UK
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 7 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 8 / 112
What’s Efficiency?
Efficiency: has widely varying meanings in different disciplines
“refers to the use of resources so as to maximize the production of goods
and services” – economics
“is an important factor in determination of productivity” – business
“describes the extent to which time, effort or cost is well used for the
intended task or purpose” – wikipedia
“is the ratio of the energy developed by a machine, engine, etc., to the
energy supplied to it” – dictionary
Efficiency in general
η
valuable resource produced
valuable resource consumed
Efficiency in communications?
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 9 / 112
What’s Efficiency?
Efficiency: has widely varying meanings in different disciplines
“refers to the use of resources so as to maximize the production of goods
and services” – economics
“is an important factor in determination of productivity” – business
“describes the extent to which time, effort or cost is well used for the
intended task or purpose” – wikipedia
“is the ratio of the energy developed by a machine, engine, etc., to the
energy supplied to it” – dictionary
Efficiency in general
η
valuable resource produced
valuable resource consumed
Efficiency in communications?
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 9 / 112
What’s Efficiency?
Efficiency: has widely varying meanings in different disciplines
“refers to the use of resources so as to maximize the production of goods
and services” – economics
“is an important factor in determination of productivity” – business
“describes the extent to which time, effort or cost is well used for the
intended task or purpose” – wikipedia
“is the ratio of the energy developed by a machine, engine, etc., to the
energy supplied to it” – dictionary
Efficiency in general
η
valuable resource produced
valuable resource consumed
Efficiency in communications?
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 9 / 112
Efficiency in Communications
valuable resource produced in comm: information, coverage, subscribers, ...
valuable resource consumed in comm: frequency, space, time, power, ...
Spectral Efficiency (SE) and Energy Efficiency (EE)
SE, b/s/Hz: number of reliably decoded bits per channel use
[Cover and Thomas, 2006, Verd´u, 2002, Chen et al., 2011]
- Shannon (channel) capacity, data rate (throughput), goodput
EE, b/J: number of reliably decoded bits per energy
- various EEs in communications
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 10 / 112
Efficiency in Communications
valuable resource produced in comm: information, coverage, subscribers, ...
valuable resource consumed in comm: frequency, space, time, power, ...
Spectral Efficiency (SE) and Energy Efficiency (EE)
SE, b/s/Hz: number of reliably decoded bits per channel use
[Cover and Thomas, 2006, Verd´u, 2002, Chen et al., 2011]
- Shannon (channel) capacity, data rate (throughput), goodput
EE, b/J: number of reliably decoded bits per energy
- various EEs in communications
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 10 / 112
Efficiency in Communications
valuable resource produced in comm: information, coverage, subscribers, ...
valuable resource consumed in comm: frequency, space, time, power, ...
Spectral Efficiency (SE) and Energy Efficiency (EE)
SE, b/s/Hz: number of reliably decoded bits per channel use
[Cover and Thomas, 2006, Verd´u, 2002, Chen et al., 2011]
- Shannon (channel) capacity, data rate (throughput), goodput
EE, b/J: number of reliably decoded bits per energy
- various EEs in communications
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 10 / 112
Various EEs in Comms.
Table 1: Various EEs [Richter et al., 2009, Tombaz et al., 2011, Hasan et al., 2011,
Zhou et al., 2013, Joung et al., ].
Metric Type Units
power usage efficiency facility-level ratio (≥ 1)
data center efficiency facility-level %
telecommun. energy effi. ratio equipment-level Gbps/W
telecommun. equipment energy effi. rating equipment-level − log(Gbps/W)
energy consumption rating equipment-level W/Gbps
area power consumption network-level Km2
/W
user power consumption network-level users/W
network energy effi. with delay effect network-level dB/J
pecuniary efficiency network-level bits/$
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 11 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 12 / 112
Theoretical SE-EE Tradeoff
SE, b/s/Hz
EE,b/J
Figure 1: Theoretical SE-EE tradeoff. Figure 2: Ideal power consumption.
SE = log2(1 + Pout/σ2
): Gaussian signalling, perfectly linear PA
[Cover and Thomas, 2006]
EE = Ω SE
Pc
: ideal power consumption model in Fig. 2
[Verd´u, 2002, Chen et al., 2011]
[Pout: transmit power; σ2: noise power; Ω: total bandwidth]
Convex and wide (good) tradeoff
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 13 / 112
Theoretical SE-EE Tradeoff
SE, b/s/Hz
EE,b/J
Figure 1: Theoretical SE-EE tradeoff.
Pc PPA Pout==
Figure 2: Ideal power consumption.
SE = log2(1 + Pout/σ2
): Gaussian signalling, perfectly linear PA
[Cover and Thomas, 2006]
EE = Ω SE
Pc
: ideal power consumption model in Fig. 2
[Verd´u, 2002, Chen et al., 2011]
[Pout: transmit power; σ2: noise power; Ω: total bandwidth]
Convex and wide (good) tradeoff
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 13 / 112
Theoretical SE-EE Tradeoff
SE, b/s/Hz
EE,b/J
1
σ2 ln 2
Figure 1: Theoretical SE-EE tradeoff.
Pc PPA Pout==
Figure 2: Ideal power consumption.
SE = log2(1 + Pout/σ2
): Gaussian signalling, perfectly linear PA
[Cover and Thomas, 2006]
EE = Ω SE
Pc
: ideal power consumption model in Fig. 2
[Verd´u, 2002, Chen et al., 2011]
[Pout: transmit power; σ2: noise power; Ω: total bandwidth]
Convex and wide (good) tradeoff
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 13 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 14 / 112
Practical PA Package
(a) SM2122-44L (b) SM0822-39
Figure 3: (a) High power PA with Pmax
out = 25 W(44 dBm) and g = 55 dB. Frequency
band 2.1 GHz −2.2 GHz. (b) Low power PA with Pmax
out = 8 W and g = 45 dB.
PA: a type of electronic amplifier
- converts a low-power RF signal into a larger signal of significant power
- typically, for driving the antenna of a transmitter
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 15 / 112
Basic Circuit Model of PA
ACRF-drive,Pin DC input, PDC
PAoutput,Pout
Power Amplifier (PA)
Figure 4: Power amplifier model with field-effect transistor (FET)
[Cripps, 2006, Kazimierczuk, 2008].
Transistor is a core semiconductor device:
amplifies and switches electronic signals and electrical power
changes a voltage or current: terminals (G,D) to terminals (S,D)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 16 / 112
Basic Circuit Model of PA
ACRF-drive,Pin
DC input, PDC
PAoutput,Pout
gate
drainsource
transistor
RFC
DC blocking capacitor
inputnetwork
outputnetwork
resistor
Figure 4: Power amplifier model with field-effect transistor (FET)
[Cripps, 2006, Kazimierczuk, 2008].
Transistor is a core semiconductor device:
amplifies and switches electronic signals and electrical power
changes a voltage or current: terminals (G,D) to terminals (S,D)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 16 / 112
Ideal PA Linearity
0 0.5 1 1.5 2
0
0.2
0.4
0.6
0.8
1.0
1.2
normalized input signal amplitude, |vin|
normalizedoutputsignalamplitude,|vout|
(a)
−30 −20 −10 0 10
−1
0
1
input power, dBm
normalizedgain,dB
(b)
−30 −20 −10 0 10
−1
0
1
input power, dBm
phaseshift,degree
(c)
Figure 5: (a) and (b): Dynamic amplitude-to-amplitude modulation (AM/AM)
distortion characteristics. (c) amplitude-to-phase modulation (AM/PM) characteristic.
between RF input and output signals, i.e., Pin and Pout
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 17 / 112
Ideal PA Efficiency
5 10 15 20 25 30 35 40 45 50 55
5
10
15
20
25
30
35
40
45
50
55
PDC dBm
Pout(Pmax)dBm
Figure 6: Maximum output power at linear region versus PA power consumption.
between input and output signals, i.e., Pout/PDC.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 18 / 112
Linearity Models [Teikari, 2008]
Transistor-level
System-level
accurate yet difficult to obtain, generalize or analyze
a few parameters obtained from measurements,
tractable, and reasonably accurate
PA
Linearity
Models
[23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005],
[26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 19 / 112
Linearity Models [Teikari, 2008]
Transistor-level
System-level
Memory Memoryless
accurate yet difficult to obtain, generalize or analyze
a few parameters obtained from measurements,
tractable, and reasonably accurate
a frequency-domain fluctuation due to
the capacitance and Inductance in the
circuits and the thermal fluctuation of
the PAs, i.e., an electrical and thermal
memory effects, respectively [23,24]
Volterra series model [25]
Wiener, Hammerstein models [26]
Memory polynomial [27]
previous PA output signal
does not affect the current
PA output signal
PA
Linearity
Models
[23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005],
[26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 19 / 112
Linearity Models [Teikari, 2008]
Transistor-level
System-level
Memory Memoryless Passband
Baseband
accurate yet difficult to obtain, generalize or analyze
a few parameters obtained from measurements,
tractable, and reasonably accurate
a frequency-domain fluctuation due to
the capacitance and Inductance in the
circuits and the thermal fluctuation of
the PAs, i.e., an electrical and thermal
memory effects, respectively [23,24]
Volterra series model [25]
Wiener, Hammerstein models [26]
Memory polynomial [27]
previous PA output signal
does not affect the current
PA output signal
difficult to do simulation
and computation
Nonlinearity of complex
baseband frequency
approximation is
captured simply [28]
PA
Linearity
Models
[23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005],
[26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 19 / 112
Memoryless Baseband PA Models
Generic model: simplified baseband model for tractable analysis
Ideal model for analysis:
y = gx,
where x and y are PA input and output signals; and g > 0 is a linear gain.
Linear model for analysis [Minkoff, 1985]:
y = gx + n,
where n is the nonlinear distortion that is independent of x and modeled as
Gaussian noise based on Bussgang’s theorem [Bussgang, 1952].
Soft limiter model for analysis [Tellado et al., 2003]: y = γ (|x|) e2πjΦ(|x|)
- γ(·): amplitude-dependent gain function
- Φ(·): phase shift function
γ (|x|)
|x|, if |x| < vsat,
vsat, otherwise,
Φ(|x|) 0
where vsat is a saturation output amplitude.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 20 / 112
Memoryless Baseband PA Models
Generic model: simplified baseband model for tractable analysis
Ideal model for analysis:
y = gx,
where x and y are PA input and output signals; and g > 0 is a linear gain.
Linear model for analysis [Minkoff, 1985]:
y = gx + n,
where n is the nonlinear distortion that is independent of x and modeled as
Gaussian noise based on Bussgang’s theorem [Bussgang, 1952].
Soft limiter model for analysis [Tellado et al., 2003]: y = γ (|x|) e2πjΦ(|x|)
- γ(·): amplitude-dependent gain function
- Φ(·): phase shift function
γ (|x|)
|x|, if |x| < vsat,
vsat, otherwise,
Φ(|x|) 0
where vsat is a saturation output amplitude.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 20 / 112
Memoryless Baseband PA Models
Generic model: simplified baseband model for tractable analysis
Ideal model for analysis:
y = gx,
where x and y are PA input and output signals; and g > 0 is a linear gain.
Linear model for analysis [Minkoff, 1985]:
y = gx + n,
where n is the nonlinear distortion that is independent of x and modeled as
Gaussian noise based on Bussgang’s theorem [Bussgang, 1952].
Soft limiter model for analysis [Tellado et al., 2003]: y = γ (|x|) e2πjΦ(|x|)
- γ(·): amplitude-dependent gain function
- Φ(·): phase shift function
γ (|x|)
|x|, if |x| < vsat,
vsat, otherwise,
Φ(|x|) 0
where vsat is a saturation output amplitude.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 20 / 112
Memoryless Baseband PA Models
Generic model: simplified baseband model for tractable analysis
Ideal model for analysis:
y = gx,
where x and y are PA input and output signals; and g > 0 is a linear gain.
Linear model for analysis [Minkoff, 1985]:
y = gx + n,
where n is the nonlinear distortion that is independent of x and modeled as
Gaussian noise based on Bussgang’s theorem [Bussgang, 1952].
Soft limiter model for analysis [Tellado et al., 2003]: y = γ (|x|) e2πjΦ(|x|)
- γ(·): amplitude-dependent gain function
- Φ(·): phase shift function
γ (|x|)
|x|, if |x| < vsat,
vsat, otherwise,
Φ(|x|) 0
where vsat is a saturation output amplitude.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 20 / 112
Memoryless Baseband PA Models
PA-specific model: accurate baseband model specified to PA type
Saleh model for traveling wave tube amplifier [Saleh, 1981]:
γ (|x|)
a1|x|
1 + a2|x|2
; Φ(|x|)
b1|x|2
1 + b2|x|2
where ai and bi are the distortion coefficients
Ghorbani model for FET PA and for low amplitude nonlinearity
[Ghorbani and Sheikhan, 1991]:
γ (|x|)
a1|xa2
|
1 + a3|xa2 |
+ a4|x|; Φ(|x|)
b1|xb2
|
1 + b3|xb2 |
+ b4|x|
Rapp model for envelope characteristic of solid state PA (especially,
class-AB) [Rapp, 1991, Falconer et al., 2000]:
γ (|x|) |x| 1 +
|x|
vsat
2p − 1
2p
; Φ(|x|) 0
where p is a smoothness factor.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 21 / 112
Memoryless Baseband PA Models
PA-specific model: accurate baseband model specified to PA type
Saleh model for traveling wave tube amplifier [Saleh, 1981]:
γ (|x|)
a1|x|
1 + a2|x|2
; Φ(|x|)
b1|x|2
1 + b2|x|2
where ai and bi are the distortion coefficients
Ghorbani model for FET PA and for low amplitude nonlinearity
[Ghorbani and Sheikhan, 1991]:
γ (|x|)
a1|xa2
|
1 + a3|xa2 |
+ a4|x|; Φ(|x|)
b1|xb2
|
1 + b3|xb2 |
+ b4|x|
Rapp model for envelope characteristic of solid state PA (especially,
class-AB) [Rapp, 1991, Falconer et al., 2000]:
γ (|x|) |x| 1 +
|x|
vsat
2p − 1
2p
; Φ(|x|) 0
where p is a smoothness factor.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 21 / 112
Memoryless Baseband PA Models
PA-specific model: accurate baseband model specified to PA type
Saleh model for traveling wave tube amplifier [Saleh, 1981]:
γ (|x|)
a1|x|
1 + a2|x|2
; Φ(|x|)
b1|x|2
1 + b2|x|2
where ai and bi are the distortion coefficients
Ghorbani model for FET PA and for low amplitude nonlinearity
[Ghorbani and Sheikhan, 1991]:
γ (|x|)
a1|xa2
|
1 + a3|xa2 |
+ a4|x|; Φ(|x|)
b1|xb2
|
1 + b3|xb2 |
+ b4|x|
Rapp model for envelope characteristic of solid state PA (especially,
class-AB) [Rapp, 1991, Falconer et al., 2000]:
γ (|x|) |x| 1 +
|x|
vsat
2p − 1
2p
; Φ(|x|) 0
where p is a smoothness factor.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 21 / 112
Memoryless Baseband PA Models
PA-specific model: accurate baseband model specified to PA type
Saleh model for traveling wave tube amplifier [Saleh, 1981]:
γ (|x|)
a1|x|
1 + a2|x|2
; Φ(|x|)
b1|x|2
1 + b2|x|2
where ai and bi are the distortion coefficients
Ghorbani model for FET PA and for low amplitude nonlinearity
[Ghorbani and Sheikhan, 1991]:
γ (|x|)
a1|xa2
|
1 + a3|xa2 |
+ a4|x|; Φ(|x|)
b1|xb2
|
1 + b3|xb2 |
+ b4|x|
Rapp model for envelope characteristic of solid state PA (especially,
class-AB) [Rapp, 1991, Falconer et al., 2000]:
γ (|x|) |x| 1 +
|x|
vsat
2p − 1
2p
; Φ(|x|) 0
where p is a smoothness factor.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 21 / 112
PA Linearity = Nonlinear
0 0.2 0.4 0.6 0.8
0
0.2
0.4
0.6
0.8
1.0
1.2
Ideal model
Linearized model (35dB)
Soft limiter model
Rapp model (p=10)
Rapp model (p=2)
Saleh model
Ghorbani model
p=10
p=2
normalized input signal amplitude, |vin|
normalizedoutputsignalamplitude,|vout|
Figure 7: AM/AM distortion characteristics for various baseband PA models.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 22 / 112
Efficiency Models
Efficiencies of PA [Kazimierczuk, 2008, Raab et al., 2002]
1 Drain efficiency: ηD
Pout
PDC
2 Power-added efficiency (PAE): ηPAE
Pout−Pin
PDC
= ηD 1 − 1
g
3 Overall efficiency: ηO
Pout
PDC+Pin
Typically η ηD ≃ ηPAE ≃ ηO, ∵ Pin ≪ PDC, Pin ≪ Pout
Two important factors
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 23 / 112
Efficiency Models
Efficiencies of PA [Kazimierczuk, 2008, Raab et al., 2002]
1 Drain efficiency: ηD
Pout
PDC
2 Power-added efficiency (PAE): ηPAE
Pout−Pin
PDC
= ηD 1 − 1
g
3 Overall efficiency: ηO
Pout
PDC+Pin
Typically η ηD ≃ ηPAE ≃ ηO, ∵ Pin ≪ PDC, Pin ≪ Pout
Two important factors
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 23 / 112
Efficiency Models
Efficiencies of PA [Kazimierczuk, 2008, Raab et al., 2002]
1 Drain efficiency: ηD
Pout
PDC
2 Power-added efficiency (PAE): ηPAE
Pout−Pin
PDC
= ηD 1 − 1
g
3 Overall efficiency: ηO
Pout
PDC+Pin
Typically η ηD ≃ ηPAE ≃ ηO, ∵ Pin ≪ PDC, Pin ≪ Pout
Two important factors
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 23 / 112
PA Efficiency < 100%
5 10 15 20 25 30 35 40 45 50 55
5
10
15
20
25
30
35
40
45
50
55
20% drain efficiency line
30% drain efficiency line
100% drain efficiency line
PAs: 0−1 GHz
PAs: 1−2 GHz
PAs: 2−3 GHz
PAs: 3−4 GHz
PAs: 4−5 GHz
PDC dBm
Pout(Pmax)dBm
Figure 8: Maximum output power (at the linear region) versus PDC.
η < 100% [Raab et al., 2003a]
Typically between 20% and 30% [Joung et al., 2012a]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 24 / 112
PA Efficiency Drop
0 5 10 15 20 25 28 30 34 40 45 50
0
10
20
30
40
50
60
70
Power-addedefficiency(PAE),ǫ%
Pout dBm
SKY65162-70LF
optimal matching
Doherty
class-AB
MAX2840
RF2132
RF2146
SST13LP01
AN10923
Doherty 21180
Figure 9: PAE versus Pout.
η usually drops rapidly as the output power decreases [Shirvani et al., 2002]
a peak η is achieved at the peak envelope power (PEP)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 25 / 112
PA Classes
Table 2: Examples of PA Classes
[Raab et al., 2002, Raab et al., 2003a, Raab et al., 2003b].
Class Linearity Efficiency Utilization Factor Main Applications
A high ≤ 50% 0.125
millimeter wave (30-100GHz)
4W/30%/Ka-band
250mW/25%/Q-band
200mW/10%/W-band
B high ≤ 78.5% 0.125 broadband at HF and VHF
C ≤ 85% - high-power vacuum-tube Tx
D low ≤ 100% 0.159 100W to 1kW HF
E low ≤ 100% 0.098
high-efficiency at K-band
16W with 80% efficiency at UHF
100mW with 60% efficiency at 10GHz
F low very high ≥ 50% from 0.125 to 0.159 UHF and microwave
(operation) class: amplification method
power-output capability (transistor utilization factor):
output power
(# of transistor)×(peak drain voltage)×(peak drain current)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 26 / 112
Applications of PAs
HF VHF UHF L S C X Ku K Ka V W G THF
3M 30M 300M 1G 2G 12G 18G4G 8G 26.5G 40G 110G 300G 3T3G 75G
(1-300M)
Comm. Submarines (3-30K)
AM broadcasts (153K-26M)
Navigation
FM (87.5-108M)
TV (54M-890M, VHF, UHF)
Weather radio (162M)
Aircraft comm.
Land/maritime mobile comm.
RFID (ISM band)
Shortwave Broadcasts
Citizens' band radio
Over-the-horizon radar/comm.
Amateur radio
(3G-30G)
WLAN 802.11a/ac/ad/n (5G)
DBS (10.7G-12.75G)
Satellite comm./TV (C,Ku,Ka)
Microwave devices/communications
Modern radars
Radio astronomy
Amateur radio
(30G-300G)
LMDS (26G-29G, 31G-31.3G)
WLAN 802.11ad (60G)
HIgh-frequency microwave radio relay
MIcrowave remote sensing
DIrected-energy weapon
MIllimeter wave scanner
Radio astronomy
Amateur radio
(1T~)
Terahertz imaging
Ultrafast molecular dynamics
Condensed-matter physics
Terahertz time-domain spectroscopy
Terahertz computing/communications
Sub-mm remote sensing
Amateur radio
(300M-3G)
FRS/GMRS (462M-467M)
ZigBee (ISM: 868M,915M,2.4G)
Z-Wave (900M)
DECT/Cordless telephone (900M)
GPS (1.2,1.5G)
GSM (900M,1.8G)
UMTS (2.1G)
LTE (698M-3.8G)
WLAN (802.11b/g/n/ad 2.4G)
Bluetooth (2.4-2.483.5MHz)
BAN/WBAN/BSN (2.36G-2.4G)
UWB (1.6G-10.5G)
Modern Cordless telephone (1.9G,2.4G,5.8G)
Si LDMOS
GaN-HEMT
Si RF CMOS
SiGe-HBT, SiGe-BiCMOS
GaAs-HBT, GaAs-pHEMT
InP-HBT InP-HEMT, GaAs-mEHMT
SiC-MESFET
0
Figure 10: Power amplifier applications over IEEE bands [Joung et al., 2014b].
FET: field effect transistor
MOSFET: metal oxide semiconductor FET
MESFET: metal epitaxial semiconductor FET
DMOS: diffued metal oxide semiconductor
LDMOS: laterally DMOS
CMOS: complementary metal oxide semicond.
BiCMOS: bipolar CMOS
HBT: heterojunction bipolar transistor
HEMT: high electron mobility transistor
mHEMT: metamorphic HEMT
pHEMT: pseudomorphic HEMT
SiGe: silicon Germanium
GaAs: Gallium Arsenide
GaN: Gallium Nitride
InP: Indium Phosphide
ISM: industrial, scientific and medical
WPAN: wireless personal area network
WLAN: wireless local area network
LTE: long term evolution
GSM: Global system for mobile communications
UMTS: universal mobile telecommun. system
UWB: ultra-wide band
GPS: global positioning system
FRS: family radio service
GMRS: general mobile radio service
BSN: body sensor network
BAN: body area network
WBAN: wireless body area network
DBS: direct-broadcast satellite
LMDS: local multipoint distribution service
DECT: digital enhanced cordless telecommun.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 27 / 112
PA in Wireless Communications
The LDMOS PA are employed for many communication equipments.
The international technology roadmap for semiconductors (ITRS) reports
that 48 volt LDMOS transistor is widely used in cellular infrastructure
market in 2011 [ITRS, 2011].
∵ The LDMOS can support high output power required for a base station
(BS) in cellular networks.
Table 3: Transmit Power of BSs [Auer et al., 2011, earth, 2015]
Type Pmax
out back-off average max output power ISD [m]
Macro 54 dBm (250 W) 8 dB 43 dBm (20 W) 1 Km −5 Km
Micro 46 dBm (40 W) 8 dB 38 dBm (6.3 W) 100 m −500 m
Pico 33 dBm (2 W) 12 dB 21 dBm (125 mW) 10 m −80 m
Femto 29 dBm (800 mW) 12 dB 17 dBm (50 mW) indoor
To compensate poor efficiency of LDMOS devices in the low power regime,
envelope tracking architecture or Doherty technique is used for 3G and 4G
networks that employs high PAPR waveform signals.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 28 / 112
Previous Studies on the Practical
SE-EE Tradeoff
Practical SE analysis with PA nonlinearity for multicarrier systems
[Tellado et al., 2003, Zillmann and Fettweis, 2005,
Gutman and Wulich, 2012]
Practical SE-EE tradeoff conjecture [Chen et al., 2011]
Practical SE-EE tradeoff analysis with practical power consumption model
[H´eliot et al., 2012, Onireti et al., 2012]
Analytical and numerical quantification of SE-EE tradeoff with BOTH
nonlinearity and imperfect efficiency of PA
[Joung et al., 2012a, Joung et al., 2014c]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 29 / 112
Previous Studies on the Practical
SE-EE Tradeoff
Practical SE analysis with PA nonlinearity for multicarrier systems
[Tellado et al., 2003, Zillmann and Fettweis, 2005,
Gutman and Wulich, 2012]
Practical SE-EE tradeoff conjecture [Chen et al., 2011]
Practical SE-EE tradeoff analysis with practical power consumption model
[H´eliot et al., 2012, Onireti et al., 2012]
Analytical and numerical quantification of SE-EE tradeoff with BOTH
nonlinearity and imperfect efficiency of PA
[Joung et al., 2012a, Joung et al., 2014c]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 29 / 112
Previous Studies on the Practical
SE-EE Tradeoff
Practical SE analysis with PA nonlinearity for multicarrier systems
[Tellado et al., 2003, Zillmann and Fettweis, 2005,
Gutman and Wulich, 2012]
Practical SE-EE tradeoff conjecture [Chen et al., 2011]
Practical SE-EE tradeoff analysis with practical power consumption model
[H´eliot et al., 2012, Onireti et al., 2012]
Analytical and numerical quantification of SE-EE tradeoff with BOTH
nonlinearity and imperfect efficiency of PA
[Joung et al., 2012a, Joung et al., 2014c]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 29 / 112
Practical SE-EE Tradeoff
SE, b/s/Hz
EE,b/J
?
Figure 11: Practical SE-EE tradeoff.
Pc PPA Pout≫≫
Figure 12: Practical Power Consumption.
Practical system’s power consumption model in Fig. 12
efficiency < 100% and PA nonlinearity
SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c]
Concave, narrow (bad), and biased tradeoff
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 30 / 112
Practical SE-EE Tradeoff
SE, b/s/Hz
EE,b/J
?
Figure 11: Practical SE-EE tradeoff.
Pc PPA Pout≫≫
Figure 12: Practical Power Consumption.
Practical system’s power consumption model in Fig. 12
efficiency < 100% and PA nonlinearity
SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c]
Concave, narrow (bad), and biased tradeoff
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 30 / 112
Practical SE-EE Tradeoff
SE, b/s/Hz
EE,b/J
Theoretical tradeoff in Fig. 1
Figure 11: Practical SE-EE tradeoff.
Pc PPA Pout≫≫
Figure 12: Practical Power Consumption.
Practical system’s power consumption model in Fig. 12
efficiency < 100% and PA nonlinearity
SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c]
Concave, narrow (bad), and biased tradeoff
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 30 / 112
Practical SE-EE Tradeoff
1
σ2 ln 2
SE, b/s/Hz
EE,b/J
PA inefficiency and SE degradation
resulting in drop of EE
PA nonlinearity resulting in drop of SE
Theoretical SE-EE tradeoff
Practical SE-EE tradeoff
Figure 13: Illustration of SE-EE tradeoff.
SE maximization or EE maximization? EE for a single antenna (PA)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 31 / 112
Practical SE-EE Tradeoff
1
σ2 ln 2
SE, b/s/Hz
EE,b/J
PA inefficiency and SE degradation
resulting in drop of EE
PA nonlinearity resulting in drop of SE
Theoretical SE-EE tradeoff
Practical SE-EE tradeoff
Figure 13: Illustration of SE-EE tradeoff.
SE maximization or EE maximization? EE for a single antenna (PA)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 31 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 32 / 112
Energy Efficient Technologies
• 50–80% of transmitter’s power is consumed
at power amplifier (PA)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 33 / 112
Energy Efficient Technologies
Device-Level Approach
Transmitter architecture
PA package structures
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 33 / 112
Energy Efficient Technologies
Device-Level Approach
Transmitter architecture
PA package structures
System-Level Approach
Transceiver signal processing
IBO/PAPR/DPD/…
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 33 / 112
Energy Efficient Technologies
Device-Level Approach
Transmitter architecture
PA package structures
System-Level Approach
Transceiver signal processing
IBO/PAPR/DPD/…
Network-Level Approach
Network processing
SC/HetNet/CZ/CoMP/CoNap/DTX/…
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 33 / 112
EE Tech. [Joung et al., 2014b]
Approaches Methods Improvement Challenges
1. PA Design
linear architecture Linearity (L)
high cost,
parallel architecture Efficiency (E)
large form factor
switching architecture (PAS) E
envelope tracking (ET) architecture E
PA circuit architecture
envelope elimination & restoration (EER/Kahn) L, E
outphasing technique (LINK) L, E
Doherty technique E
2. Signal Design
PAPR reduction
clipping
L, E
out-of-band emission
coding
additional resource,partial transmit sequence (PTS)
latency,
PA input/output
selective mapping (SLM)
complexity
signal processing
tone reservation (TR)
tone insertion (TI)
Linearlization
feed forward sensitive to PA,
feedback additional circuit,
digital predistortion (DPD) complexity
3. Network Design
Network densification
E
infrastructure,
in/out band small cells
overhead signalling,
distributed antenna system (DAS)
scalability,
Efficient network
cooperative communications (relay)
handover,
topology & protocol
Network protocol
interference
design by
cell zooming
deploying low power PA
coordinated multipoint (CoMP)
or using PA on/off
cell discontinuous TX/RX (DTX/DRX)
coordinated sleep and napping (CoNap)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 34 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 35 / 112
1. PA Design
Architecture: a building block of various circuits (e.g., multiple PAs,
oscillators, mixers, filters, matching networks, combiners, and circulators)
Transmitter Architecture: direct approach, PA package structures
1 Linear architecture [Raab et al., 2003c]
2 Corporate architecture [Cripps, 2006]
3 Parallel architecture [Shirvani et al., 2002, Alc, 2008]
4 Stage bypassing and gate switching [Raab et al., 2003c, Staudinger, 2000]
5 Envelope elimination and restoration (EER) technique (or Kahn)
[Raab et al., 2003c, Kahn, 1952]
6 Envelope tracking architecture [Raab et al., 2003c] F
7 Outphasing using linear amplification using nonlinear components (LINK)
[Raab et al., 2003c, Cox, 1974]
8 Doherty technique [Cha et al., 2004, Doherty, 1936, Correia et al., 2010,
Auer et al., 2011, Arnold et al., 2010] F
9 Combined complex architecture, etc.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 36 / 112
1. PA Design
Architecture: a building block of various circuits (e.g., multiple PAs,
oscillators, mixers, filters, matching networks, combiners, and circulators)
Transmitter Architecture: direct approach, PA package structures
1 Linear architecture [Raab et al., 2003c]
2 Corporate architecture [Cripps, 2006]
3 Parallel architecture [Shirvani et al., 2002, Alc, 2008]
4 Stage bypassing and gate switching [Raab et al., 2003c, Staudinger, 2000]
5 Envelope elimination and restoration (EER) technique (or Kahn)
[Raab et al., 2003c, Kahn, 1952]
6 Envelope tracking architecture [Raab et al., 2003c] F
7 Outphasing using linear amplification using nonlinear components (LINK)
[Raab et al., 2003c, Cox, 1974]
8 Doherty technique [Cha et al., 2004, Doherty, 1936, Correia et al., 2010,
Auer et al., 2011, Arnold et al., 2010] F
9 Combined complex architecture, etc.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 36 / 112
Transmit Architectures
DC
A,P gA,P
DC
A,P gA,P
DC
+
A,P gA,P
DC
A,P gA,P
A,P gA,P
E-Det. A
A,P A,P gA,P
E-Det. A
P
DC
+
A,P gA,P
P1
P2
DC
+
A,P gA,P
DC : DC power supply : PA A: amplitude information P: phase information g: gain: RF-drive input : RF output : delay+ : combiner
(a) (b1)
(d) (e)
(b2) (c)
(f) (g)
SCS
limitter
DC
DC/DC
Figure 14: Various transmit architectures: a) Linear architecture. b) Parallel
architecture. c) Switching architecture. d) Envelope tracking (ET) architecture. e)
EER technique (or Kahn). f) Outphasing technique. g) Doherty technique (DT).
ET: DC power is controlled by the envelope of the RF input signal
DT: Class-B (carrier or main PA) + Class-C (peaking or auxiliary PA)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 37 / 112
Key Points
Table 4: Efficiency, costs and environmental impact of a 20,000-base-station network
with different power amplifier technologies [Mancuso and Sara Alouf, 2011].
Traditional technology Doherty technology Envelope tracking
PA efficiency 15 % 25 % 45 %
Power consumption 51.7 MW 27.2 MW 16.1 MW
CO2 emission 194,600 tons 102,400 tons 60,800 tons
Power cost 54.3 MM$ 28.6 MM$ 17.0 MM$
Challenges:
Nonlinearity and inefficiency are fundamental and inevitable.
mathematical model: modeling and empirical evaluation, i.e.,
simulated-annealing-based custom computer-aided design
high manufacturing cost
large form factor
wide dynamic range with high efficiency
advanced materials and metamaterials
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 38 / 112
Key Points
Table 4: Efficiency, costs and environmental impact of a 20,000-base-station network
with different power amplifier technologies [Mancuso and Sara Alouf, 2011].
Traditional technology Doherty technology Envelope tracking
PA efficiency 15 % 25 % 45 %
Power consumption 51.7 MW 27.2 MW 16.1 MW
CO2 emission 194,600 tons 102,400 tons 60,800 tons
Power cost 54.3 MM$ 28.6 MM$ 17.0 MM$
Challenges:
Nonlinearity and inefficiency are fundamental and inevitable.
mathematical model: modeling and empirical evaluation, i.e.,
simulated-annealing-based custom computer-aided design
high manufacturing cost
large form factor
wide dynamic range with high efficiency
advanced materials and metamaterials
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 38 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 39 / 112
2. Signal Design
Transceiver Signal Processing: knowledge of the signal properties
1 Input backoff (IBO) [Kowlgi and Berland, 2011]
- Reducing the transmit power to sufficiently below its peak output power
- Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8
to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high
IBO
- High IBO reduces the PA efficiency
2 PAPR reduction methods [Jiang and Wu, 2008]
Clipping/ coding/ partial transmission sequence and selective mapping/
nonlinear companding transform/ tone reservation and tone injection
3 Linearization [Pothecary, 1999, Kenington, 2000]
To mitigate the nonlinearity of PAs in the low power regime, various
linearization methods such as
feedforward/ feedback/ predistortion
4 Active antenna systems (reducing feeder loss)
5 SE improving system design: large (massive) MIMO, 3D MIMO, etc.
6 Combined complex architecture
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 40 / 112
2. Signal Design
Transceiver Signal Processing: knowledge of the signal properties
1 Input backoff (IBO) [Kowlgi and Berland, 2011]
- Reducing the transmit power to sufficiently below its peak output power
- Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8
to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high
IBO
- High IBO reduces the PA efficiency
2 PAPR reduction methods [Jiang and Wu, 2008]
Clipping/ coding/ partial transmission sequence and selective mapping/
nonlinear companding transform/ tone reservation and tone injection
3 Linearization [Pothecary, 1999, Kenington, 2000]
To mitigate the nonlinearity of PAs in the low power regime, various
linearization methods such as
feedforward/ feedback/ predistortion
4 Active antenna systems (reducing feeder loss)
5 SE improving system design: large (massive) MIMO, 3D MIMO, etc.
6 Combined complex architecture
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 40 / 112
2. Signal Design
Transceiver Signal Processing: knowledge of the signal properties
1 Input backoff (IBO) [Kowlgi and Berland, 2011]
- Reducing the transmit power to sufficiently below its peak output power
- Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8
to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high
IBO
- High IBO reduces the PA efficiency
2 PAPR reduction methods [Jiang and Wu, 2008]
Clipping/ coding/ partial transmission sequence and selective mapping/
nonlinear companding transform/ tone reservation and tone injection
3 Linearization [Pothecary, 1999, Kenington, 2000]
To mitigate the nonlinearity of PAs in the low power regime, various
linearization methods such as
feedforward/ feedback/ predistortion
4 Active antenna systems (reducing feeder loss)
5 SE improving system design: large (massive) MIMO, 3D MIMO, etc.
6 Combined complex architecture
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 40 / 112
2. Signal Design
Transceiver Signal Processing: knowledge of the signal properties
1 Input backoff (IBO) [Kowlgi and Berland, 2011]
- Reducing the transmit power to sufficiently below its peak output power
- Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8
to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high
IBO
- High IBO reduces the PA efficiency
2 PAPR reduction methods [Jiang and Wu, 2008]
Clipping/ coding/ partial transmission sequence and selective mapping/
nonlinear companding transform/ tone reservation and tone injection
3 Linearization [Pothecary, 1999, Kenington, 2000]
To mitigate the nonlinearity of PAs in the low power regime, various
linearization methods such as
feedforward/ feedback/ predistortion
4 Active antenna systems (reducing feeder loss)
5 SE improving system design: large (massive) MIMO, 3D MIMO, etc.
6 Combined complex architecture
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 40 / 112
Key Points
Impact: avoidance/compensation of the adverse impact of PA nonlinearity
Cost:
- PA efficiency reduction (high power consumption) for input back off
- out-of-band radiation increase for signal clipping
- SE reduction for side information
- additional computational complexity (see e.g., parameter optimization and
multiple candidate sequence generation [Rahmatallah and Mohan, 2013])
- additional analog circuits
Challenges:
hardware capability limitation
high sensitivity to PA status
additional resource requirement
additional circuits
tradeoff between: linearity and efficiency; SE and EE
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 41 / 112
Key Points
Impact: avoidance/compensation of the adverse impact of PA nonlinearity
Cost:
- PA efficiency reduction (high power consumption) for input back off
- out-of-band radiation increase for signal clipping
- SE reduction for side information
- additional computational complexity (see e.g., parameter optimization and
multiple candidate sequence generation [Rahmatallah and Mohan, 2013])
- additional analog circuits
Challenges:
hardware capability limitation
high sensitivity to PA status
additional resource requirement
additional circuits
tradeoff between: linearity and efficiency; SE and EE
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 41 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 42 / 112
3. Network Design
Network Processing: using small power PA/reducing PA activation time
1 Network densification
- in/out band small cell, inter-cell interference coordination (ICIC),
heterogeneous network (HetNet) [Chen et al., 2011, Richter et al., 2009]
- DAS [Choi and Andrews, 2007, Joung and Sun, 2013, Joung et al., 2014a]
- relay [Joung and Sun, 2012, Yang et al., 2009]
Figure 15: Example of network densification.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 43 / 112
3. Network Design
Network Processing: using small power PA/reducing PA activation time
1 Network densification
- in/out band small cell, inter-cell interference coordination (ICIC),
heterogeneous network (HetNet) [Chen et al., 2011, Richter et al., 2009]
- DAS [Choi and Andrews, 2007, Joung and Sun, 2013, Joung et al., 2014a]
- relay [Joung and Sun, 2012, Yang et al., 2009]
carrier frequency 1 carrier frequency 2
joint processing
cross-tier
interference intra-tier
interference
in-band small cell coverage
out-band small cell coverage
cooperative communication region Macro BS coverage
usermacro BS
small BS
relay AP/RRH
Figure 15: Example of network densification.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 43 / 112
Network Design
1 Network densification
2 Network protocol design
- Cell zooming [Niu et al., 2010]
- CoMP [Han et al., 2011]
- DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012,
Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 44 / 112
Network Design
1 Network densification
2 Network protocol design
- Cell zooming [Niu et al., 2010]
deactivated BS deactivated BSactive BS
- CoMP [Han et al., 2011]
- DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012,
Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 44 / 112
Network Design
1 Network densification
2 Network protocol design
- Cell zooming [Niu et al., 2010]
deactivated BS deactivated BSactive BS
- CoMP [Han et al., 2011]
deactivated BS active BSactive BS
- DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012,
Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 44 / 112
Network Design
1 Network densification
2 Network protocol design
- Cell zooming [Niu et al., 2010]
deactivated BS deactivated BSactive BS
- CoMP [Han et al., 2011]
deactivated BS active BSactive BS
- DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012,
Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002]
fre q u e n c y
P A c a n b e tu rn e d o ff
P A is o p e ra tin g in h ig h e ffic ie n c y
T ra n s m it
p o w e r
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 44 / 112
Key Points
Requirements for cell densification: cross-tier interference management
- cell range expansion [Damnjanovic et al., 2011] and eICIC
[Kosta et al., 2013] in 3GPP
- optimization of beamforming and radio resource management
[Joung et al., 2012b, Joung et al., 2012c]
Requirements for network protocol design: cooperation or coordination
among different nodes
- decide how often the cooperation/coordination performs PA on and off to
balance the system performance and the power saving
- optimization of the radio resource allocation
Challenges:
high infrastructure cost
overhead signalling and frequent handover
network (backbone) overhead
scalability to already-deployed networks
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 45 / 112
Key Points
Requirements for cell densification: cross-tier interference management
- cell range expansion [Damnjanovic et al., 2011] and eICIC
[Kosta et al., 2013] in 3GPP
- optimization of beamforming and radio resource management
[Joung et al., 2012b, Joung et al., 2012c]
Requirements for network protocol design: cooperation or coordination
among different nodes
- decide how often the cooperation/coordination performs PA on and off to
balance the system performance and the power saving
- optimization of the radio resource allocation
Challenges:
high infrastructure cost
overhead signalling and frequent handover
network (backbone) overhead
scalability to already-deployed networks
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 45 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 46 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 47 / 112
System Model
x y
IDFTF
addCP→P/S→DAC
ADC→S/P→removeCP
DFTFH
x
PA
LPA(·)
{h0, · · · , hL−1}
w
z
y
Figure 16: An OFDM system with a nonlinear memoryless PA [Joung et al., 2014c].
x = [x0, · · · , xN−1]
T
∼ CN(0, Pin): OFDM symbol consisting of N
complex-valued data symbols
x = [x0, · · · , xN−1]T
= F x: time domain signal vector
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 48 / 112
Signal Model
F : N-by-N unitary IDFT matrix
wt = LPA(xt): PA output signal, w = [w0, · · · , wN+NCP−1]T
xt = atejθt
: at |xt|, θt is the phase of xt (0 ≤ θt < 2π)
wt = btejθt
: bt |wt|
{h0, h1, · · · , hL−1}: L-tap multipath channel
Yt = ht ⊗ wt + zt: received signal
- perfect timing synchronization
- the CP is removed
- indices are shifted to start from 0
- zt ∼ CN(0, σ2
z ): AWGN
- yt rtejφ
: rt and φt represent the amplitude and phase of Yt
- y = [Y0, · · · , YN−1]T
: vector representation
y = [y0, · · · , yN−1]T
= F H
y: frequency domain signal vector after DFT of
y
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 49 / 112
Assumptions
A1: {xn} are i.i.d. with distribution x ∼ CN(0, Pin)
A2: Soft limiter model for PA input/ouput power:
LPA(at) =
√
gat, if at < amax
bmax, if at ≥ amax
- amax Pmax
in and bmax Pmax
out
- Linearity in low power regime can be obtained with linearization techniques
(e.g., feedforward, feedback, and predistortion)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 50 / 112
Assumptions
A1: {xn} are i.i.d. with distribution x ∼ CN(0, Pin)
A2: Soft limiter model for PA input/ouput power:
LPA(at) =
√
gat, if at < amax
bmax, if at ≥ amax
- amax Pmax
in and bmax Pmax
out
- Linearity in low power regime can be obtained with linearization techniques
(e.g., feedforward, feedback, and predistortion)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 50 / 112
Mutual Information (MI) in Flat
Fading Channels (L = 1)
Achievable rate averaged over N transmissions is given by
I(X; Y )/N
(a)
= I(X; Y )/N (a) Unitary transform (IDFT)
(b)
=
N−1
t=0 I(Xt; Yt)/N (b) independency in time domain
(c)
= I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t
(d)
= H(Y ) − log2 πeσ2
z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2
z
The entropy of Y is given by [Cover and Thomas, 2006]
H(Y ) = −
y
fY (y) log2 fY (y)dy
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
Mutual Information (MI) in Flat
Fading Channels (L = 1)
Achievable rate averaged over N transmissions is given by
I(X; Y )/N
(a)
= I(X; Y )/N (a) Unitary transform (IDFT)
(b)
=
N−1
t=0 I(Xt; Yt)/N (b) independency in time domain
(c)
= I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t
(d)
= H(Y ) − log2 πeσ2
z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2
z
The entropy of Y is given by [Cover and Thomas, 2006]
H(Y ) = −
y
fY (y) log2 fY (y)dy
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
Mutual Information (MI) in Flat
Fading Channels (L = 1)
Achievable rate averaged over N transmissions is given by
I(X; Y )/N
(a)
= I(X; Y )/N (a) Unitary transform (IDFT)
(b)
=
N−1
t=0 I(Xt; Yt)/N (b) independency in time domain
(c)
= I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t
(d)
= H(Y ) − log2 πeσ2
z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2
z
The entropy of Y is given by [Cover and Thomas, 2006]
H(Y ) = −
y
fY (y) log2 fY (y)dy
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
Mutual Information (MI) in Flat
Fading Channels (L = 1)
Achievable rate averaged over N transmissions is given by
I(X; Y )/N
(a)
= I(X; Y )/N (a) Unitary transform (IDFT)
(b)
=
N−1
t=0 I(Xt; Yt)/N (b) independency in time domain
(c)
= I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t
(d)
= H(Y ) − log2 πeσ2
z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2
z
The entropy of Y is given by [Cover and Thomas, 2006]
H(Y ) = −
y
fY (y) log2 fY (y)dy
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
Mutual Information (MI) in Flat
Fading Channels (L = 1)
Achievable rate averaged over N transmissions is given by
I(X; Y )/N
(a)
= I(X; Y )/N (a) Unitary transform (IDFT)
(b)
=
N−1
t=0 I(Xt; Yt)/N (b) independency in time domain
(c)
= I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t
(d)
= H(Y ) − log2 πeσ2
z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2
z
The entropy of Y is given by [Cover and Thomas, 2006]
H(Y ) = −
y
fY (y) log2 fY (y)dy
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
Entropy H(y) in Flat Fading Ch.
Define S as a binary random variable denoting the clipping at the PA:
S =
0, if A ≤ amax
1, otherwise
The pdf of y can be rewritten as
fY (y) = fY (y, S = 0) + fY (y, S = 1)
A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see
[Joung et al., 2014c] for the proof):
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
- N0(y): pdf of CN 0, gPin + σ2
z , N1(y): pdf of CN bmax, σ2
z
- Q1(·, ·): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters
ρmax
2(gPin+σ2
z)
gPin
√
bmax and µ(y)
8gPin(gPin+σ2
z)
σ4
z
|y|2
- yRe: real part of y
- I0(·): modified Bessel function of first kind
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 52 / 112
Entropy H(y) in Flat Fading Ch.
Define S as a binary random variable denoting the clipping at the PA:
S =
0, if A ≤ amax
1, otherwise
The pdf of y can be rewritten as
fY (y) = fY (y, S = 0) + fY (y, S = 1)
A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see
[Joung et al., 2014c] for the proof):
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
- N0(y): pdf of CN 0, gPin + σ2
z , N1(y): pdf of CN bmax, σ2
z
- Q1(·, ·): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters
ρmax
2(gPin+σ2
z)
gPin
√
bmax and µ(y)
8gPin(gPin+σ2
z)
σ4
z
|y|2
- yRe: real part of y
- I0(·): modified Bessel function of first kind
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 52 / 112
Entropy H(y) in Flat Fading Ch.
Define S as a binary random variable denoting the clipping at the PA:
S =
0, if A ≤ amax
1, otherwise
The pdf of y can be rewritten as
fY (y) = fY (y, S = 0) + fY (y, S = 1)
A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see
[Joung et al., 2014c] for the proof):
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
- N0(y): pdf of CN 0, gPin + σ2
z , N1(y): pdf of CN bmax, σ2
z
- Q1(·, ·): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters
ρmax
2(gPin+σ2
z)
gPin
√
bmax and µ(y)
8gPin(gPin+σ2
z)
σ4
z
|y|2
- yRe: real part of y
- I0(·): modified Bessel function of first kind
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 52 / 112
Analytical Results on SE
SE(ξ) = H(Y ) − log2 πeσ2
z
= −
y s=0,1
fY (y, S = s) log2
s=0,1
fY (y, S = s) dy − log2 πeσ2
z
If the PA is perfectly linear, i.e., bmax → ∞ and thus amax → ∞
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
= N0(y)
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
= 0
SEideal
(ξ) = log2 (1 + γξ)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 53 / 112
Analytical Results on SE
SE(ξ) = H(Y ) − log2 πeσ2
z
= −
y s=0,1
fY (y, S = s) log2
s=0,1
fY (y, S = s) dy − log2 πeσ2
z
If the PA is perfectly linear, i.e., bmax → ∞ and thus amax → ∞
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
= N0(y)
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
= 0
SEideal
(ξ) = log2 (1 + γξ)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 53 / 112
Analytical Results on SE
SE(ξ) = H(Y ) − log2 πeσ2
z
= −
y s=0,1
fY (y, S = s) log2
s=0,1
fY (y, S = s) dy − log2 πeσ2
z
If the PA is perfectly linear, i.e., bmax → ∞ and thus amax → ∞
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
= N0(y)
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
= 0
SEideal
(ξ) = log2 (1 + γξ)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 53 / 112
Analytical Results on SE
If PA input power is low, i.e., ξ ≪ 1
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
≈ N0(y)
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
≈ N1(y)
SEIBO
(ξ) ≈ log2 (1 + γξ) + e− 1
ξ log2 πσ2
z e1− 1
ξ − log2 σ2
z
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 54 / 112
Analytical Results on SE
If PA input power is low, i.e., ξ ≪ 1
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
≈ N0(y)
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
≈ N1(y)
SEIBO
(ξ) ≈ log2 (1 + γξ) + e− 1
ξ log2 πσ2
z e1− 1
ξ − log2 σ2
z
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 54 / 112
Analytical Results on SE
If PA input power is low, i.e., ξ ≪ 1
fY (y, S = 0) = N0(y) 1 − Q1 µ(y),
√
ρmax
≈ N0(y)
fY (y, S = 1) = N1(y) exp −
a2
max
Pin
−
2bmaxyRe
σ2
z
I0
2bmax|y|
σ2
z
≈ N1(y)
SEIBO
(ξ) ≈ log2 (1 + γξ) + e− 1
ξ log2 πσ2
z e1− 1
ξ − log2 σ2
z
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 54 / 112
Analytical Results on SE
Theorem 1. The approximated SE, SEIBO
(ξ), is a concave function over
max 0, − 1
ln πσ2
z
< ξ ≤ 1
2 .
Theorem 2. The SE-aware optimal power loading factor ξ⋆
SE which maximizes
SEIBO
(ξ) is obtained by the solution of the following equality:
γ
1 + γξ
= e−ξ−1
ξ−2
−ξ−1
+ 1 − ln πeσ2
z
Proposition 3. A closed form approximation of ξ⋆
SE is given by
ξ⋆
SE ≈ ξ⋆
SE
−1
W 1
ln(πeσ2
z )
where W(·) denotes the Lambert W function
[Chapeau-Blondeau and Monir, 2002]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 55 / 112
Analytical Results on SE
Theorem 1. The approximated SE, SEIBO
(ξ), is a concave function over
max 0, − 1
ln πσ2
z
< ξ ≤ 1
2 .
Theorem 2. The SE-aware optimal power loading factor ξ⋆
SE which maximizes
SEIBO
(ξ) is obtained by the solution of the following equality:
γ
1 + γξ
= e−ξ−1
ξ−2
−ξ−1
+ 1 − ln πeσ2
z
Proposition 3. A closed form approximation of ξ⋆
SE is given by
ξ⋆
SE ≈ ξ⋆
SE
−1
W 1
ln(πeσ2
z )
where W(·) denotes the Lambert W function
[Chapeau-Blondeau and Monir, 2002]
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 55 / 112
Numerical Results on SE
Bandwidth: Ω = 10 MHz
Channel attenuation:
G − 128 + 10 log10 (d−α
)
[LTE, 2011]
- G = 5 dB: TRx feeder
loss + antenna gains
- d = 200 m: distance
between Tx and Rx
- α = 3.76: path loss
exponent
AWGN:
σ2
z = −174 dBm / Hz
PA: SM2122-44L
Pmax
out = 25 W
g = 55 dB
0 0.2 0.4 0.6 0.8 1
0
2
4
6
8
10
12
14
16
18
Power loading factor, ξ
SE(ξ),b/s/Hz
SEideal
(ξ)
SE(ξ)
SEIBO
(ξ)
SE(ξ⋆
SE)
: ideal SE with an ideal PA
: practical SE with a practical PA
: approximated SE
: optimal SE
Figure 17: SE evaluation results.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 56 / 112
Power Consumption And Losses
Power
Amplifier (PA)
Module
DC
Power
Supply
(PS)
Module
Base Band
(BB) Module
Radio
Frequency
(RF) Module
(except PA)
Active Cooler and Battery Back up (CB) Module (if present)
PBB PRF PPA
PCB
Pin Pout
loss
loss
loss
loss
Figure 18: Block diagram for system power consumption
[Auer et al., 2011, Arnold et al., 2010, Deruyck et al., 2010, Deruyck et al., 2011,
Kumar and Gurugubelli, 2011].
Pfix (1 + CPS)(1 + CCB)(PBB + PRF)
CPS: power supply coefficient between 0.1 and 0.15
CCB: active cooler and battery coefficient less than 0.4
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 57 / 112
PA-Dependent Nonlinear Power
Consumption Model
PA-dependent nonlinear power consumption model (0 < ξ ≤ 1):
Pc(ξ) = Pfix + c c1 + c2 ξ Pmax
out
- c: power loading-dependent scaling coefficient
- ℓ-way Doherty PA [Raab, 1987] (for class-A and B, ℓ = 1)
(c1, c2) =
4
ℓπ
×



(2, 0) , 0 < ξ ≤ 1,
(0, 1) , 0 < ξ ≤ 1
ℓ2 ,
(−1, ℓ + 1) , 1
ℓ2 < ξ ≤ 1.
Ideal power consumption model with ideal PA (100% efficiency):
Pideal
c (ξ) = Pfix + c 1 − g−1
ξPmax
out
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 58 / 112
PA-Dependent Nonlinear Power
Consumption Model
PA-dependent nonlinear power consumption model (0 < ξ ≤ 1):
Pc(ξ) = Pfix + c c1 + c2 ξ Pmax
out
- c: power loading-dependent scaling coefficient
- ℓ-way Doherty PA [Raab, 1987] (for class-A and B, ℓ = 1)
(c1, c2) =
4
ℓπ
×



(2, 0) , 0 < ξ ≤ 1,
(0, 1) , 0 < ξ ≤ 1
ℓ2 ,
(−1, ℓ + 1) , 1
ℓ2 < ξ ≤ 1.
Ideal power consumption model with ideal PA (100% efficiency):
Pideal
c (ξ) = Pfix + c 1 − g−1
ξPmax
out
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 58 / 112
Power Consumption
0 0.2 0.4 0.6 0.8 1
60
90
120
150
180
210
240
Power loading factor, ξ
Powerconsumption,Pc(ξ),W
idle mode
linear model
nonlinear model with class B PA
nonlinear model with 2-way Doherty PA
model with ideal PA
Figure 19: Power consumption of microcell base station with Pfix = 130 W and
c = 4.7π
4
.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 59 / 112
Analytical Results on EE
Practical EE
EE(ξ) =
ΩSE(ξ)
Pc(ξ)
Ideal EE with a perfectly linear and efficient PA
EEideal
(ξ)
ΩSEideal
(ξ)
Pideal
c (ξ)
PA-dependent EE with a perfectly linear PA
EElinear
(ξ)
ΩSEideal
(ξ)
Pc(ξ)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 60 / 112
Analytical Results on EE
Practical EE
EE(ξ) =
ΩSE(ξ)
Pc(ξ)
Ideal EE with a perfectly linear and efficient PA
EEideal
(ξ)
ΩSEideal
(ξ)
Pideal
c (ξ)
PA-dependent EE with a perfectly linear PA
EElinear
(ξ)
ΩSEideal
(ξ)
Pc(ξ)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 60 / 112
Analytical Results on EE
Practical EE
EE(ξ) =
ΩSE(ξ)
Pc(ξ)
Ideal EE with a perfectly linear and efficient PA
EEideal
(ξ)
ΩSEideal
(ξ)
Pideal
c (ξ)
PA-dependent EE with a perfectly linear PA
EElinear
(ξ)
ΩSEideal
(ξ)
Pc(ξ)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 60 / 112
Analytical Results on EE
Theorem 4. EElinear
(ξ) is a piecewise quasi-concave function over
ξ ≥ ζ v +
√
1 + v2
2
/γ2
, where v = Pmax
out c0c2/(P0 + Pmax
out c0c1).
Specifically, EElinear
(ξ) is quasi-concave over ζ ≤ ξ ≤ 1/ℓ2
and also over
1/ℓ2
< ξ ≤ 1.
Theorem 5. Assuming ξ⋆
EE ≥ ζ, ξ⋆
EE equals either [ξ⋆
1 ]
1/ℓ2
ζ or [ξ⋆
2 ]1
1/ℓ2,, where ξ⋆
1
and ξ⋆
2 are the solutions of ∂EElinear
(ξ)
∂ξ = 0 with given (c1, c2).
Proposition 6. A closed form approximation of ξ⋆
EE, denoted by ξ⋆
EE, equals
either [ξ⋆
1 ]
1/ℓ2
ζ or [ξ⋆
2 ]1
1/ℓ2,, where ξ⋆
i (i ∈ {1, 2}) approximates ξ⋆
i and is given by
ξ⋆
EE = ξ⋆
i ≈ ξ⋆
i =
1
γ
exp 2 + 2W
√
γ
ev
, i = 1 or 2.
where W(·) > 0 as
√
γ
ev > 0, so that W(·) is unique.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 61 / 112
Analytical Results on EE
Theorem 4. EElinear
(ξ) is a piecewise quasi-concave function over
ξ ≥ ζ v +
√
1 + v2
2
/γ2
, where v = Pmax
out c0c2/(P0 + Pmax
out c0c1).
Specifically, EElinear
(ξ) is quasi-concave over ζ ≤ ξ ≤ 1/ℓ2
and also over
1/ℓ2
< ξ ≤ 1.
Theorem 5. Assuming ξ⋆
EE ≥ ζ, ξ⋆
EE equals either [ξ⋆
1 ]
1/ℓ2
ζ or [ξ⋆
2 ]1
1/ℓ2,, where ξ⋆
1
and ξ⋆
2 are the solutions of ∂EElinear
(ξ)
∂ξ = 0 with given (c1, c2).
Proposition 6. A closed form approximation of ξ⋆
EE, denoted by ξ⋆
EE, equals
either [ξ⋆
1 ]
1/ℓ2
ζ or [ξ⋆
2 ]1
1/ℓ2,, where ξ⋆
i (i ∈ {1, 2}) approximates ξ⋆
i and is given by
ξ⋆
EE = ξ⋆
i ≈ ξ⋆
i =
1
γ
exp 2 + 2W
√
γ
ev
, i = 1 or 2.
where W(·) > 0 as
√
γ
ev > 0, so that W(·) is unique.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 61 / 112
Numerical Results on EE
0 0.2 0.4 0.6 0.8 1
0
0.5
1.0
1.5
2.0
2.5
Power loading factor, ξ
EE(ξ),Mb/J
EElinear
(ξ⋆
EE);× EE(ξ⋆
EE); ξ⋆
EE in Prop. 6
EElinear
(ξ)
EEideal
(ξ)
EE(ξ): 2-way Doherty PA
EE(ξ): class-B PA
EE(ξ): class-A PA
Figure 20: EE evaluation with Pfix = 130 W and c = 4.7.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 62 / 112
Practical SE-EE Tradeoff
0 2 4 6 8 10 12 14 16 18
0
0.5
1.0
1.5
2.0
2.5
SE(ξ), b/s/Hz
EE(ξ),Mb/J
SE-EE tradeoff with PAlow
SE-EE tradeoff with PAhigh
◦
×
: (SE(ξ⋆
SE), EE(ξ⋆
SE))
: (SE(ξ⋆
EE), EE(ξ⋆
EE))
Fig. 24
Figure 21: SE-EE tradeoff with 2-way Doherty PAs. PAlow
with Pmax
out = 25 W and
g = 55 dB, and PAhigh
with Pmax
out = 100 W and g = 50 dB.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 63 / 112
PA Switching (PAS) Method
SE
EE Low power PA, PA-1
SE
EE High power PA, PA-2
Figure 22: Illustration of PAS Concept.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 64 / 112
PA Switching (PAS) Method
SE
EE Low power PA, PA-1
SE
EE High power PA, PA-2
SE
EE PA switching
Figure 22: Illustration of PAS Concept.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 64 / 112
PAS for FDD/TDD Frame
switching time
ǫ
frame k − 1, PA-1 frame k, PA-1 frame k + 1, PA-2
time
· · ·· · ·
(a) FDD Systems
switching time
ǫ
DL frame, PA-1 UL frame DL frame, PA-2
UL frame length + TTG + RTG > ǫ
time
· · ·· · · TTG RTG
(b) TDD Systems
Figure 23: Illustration of PA switching between PA-1 and PA-2.
K: frame number; T: frame length; ǫ: switching time
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 65 / 112
SE and EE of PAS
SEs(ξ, κ) =
kT SE′
1(ξ) + (K − k)T SE′
2(ξ)
KT + ǫ
EEs(ξ, κ) =
KT ΩSEs(ξ, κ)
kT P1
c (ξ) + (K − k)T P2
c (ξ)
κ = k
K is PA time sharing factor.
Switch power consumption is ignored as it is relatively negligible compared
to Pi
c (ξ).
FDD: ǫ > 0 unless there is switching.
TDD: ǫ < 1 ms and UL frame length (10 ms) [LTE, 2011]; PAs can be
switched between consecutive DL frames while receiving UL frame, without
consuming any switching time overhead, i.e., ǫ = 0.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 66 / 112
SE-EE Tradeoff of PAS
ǫ = 10 µs, LS = 1 dB,
T = 10 ms, and
K = 20
A → B(D) :
EE ↑ 210%(41%)
SE ↓ 12%
A → C(E) :
EE ↑ 323%(69%)
SE ↓ 15%
14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
SE(ξ), b/s/Hz
EE(ξ),Mb/J
GS = 0 dB, ǫ = 0 µs, ideal
GS = 1 dB, ǫ = 0 µs, TDD
GS = 1 dB, ǫ = 10 µs, FDD
GS = 1 dB, ǫ = 1 ms, FDD
A
DE
B
C
SE-EE tradeoff with PAhigh
Figure 24: SE-EE tradeoff.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 67 / 112
TAS-MRC Syst. with Partial CSIT
x
z1
z2
y1
MRC
ˆx
y2
√
Ah2
√
Ah1S1
M +1
feedback for S1 and PC
PC
power contorl
1
2
: high-power main power amplifiers
Figure 25: A transmit antenna selection with maximum ratio combining system.
Switch S1 selects a transmit antenna
Switch S2 selects a PA [Joung et al., 2013]
Pmax
out : maximum output power of TX subject to regulatory constraints
µmPmax
out : Maximum output power of PA m
0 < µ1 < µ2 < · · · < µM+1 = 1
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 68 / 112
TAS-MRC Syst. with Partial CSIT
x
z1
z2
y1
MRC
ˆx
y2
√
Ah2
√
Ah1S1S2
off − mode
M +1
M
1
... feedback for S1 and S2
0
M + 1
M
1
1
2
: high-power main power amplifiers
: low-power auxiliary power amplifiers
Figure 25: A transmit antenna selection with maximum ratio combining system.
Switch S1 selects a transmit antenna
Switch S2 selects a PA [Joung et al., 2013]
Pmax
out : maximum output power of TX subject to regulatory constraints
µmPmax
out : Maximum output power of PA m
0 < µ1 < µ2 < · · · < µM+1 = 1
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 68 / 112
PA Switching Probability
A switching probability for given target rate R b/s/Hz
fm = Pr(Rm−1 < R ≤ Rm)
= (Υm−1 − Υm) (Υm−1 + Υm − 2)
by using order statistics [David, 1970, Proakis and Salehi, 2007]
- Υm 2R
− 1 σ2
m + 1 e−(2R
−1)σ2
m
- σ2
m
σ2
z
AµmP max
out
, where σ2
z is variance of AWGN
- Υ0 = 0 and ΥM+2 = 1
EE of the proposed TAS-MRC systems for the given R
EETAS
MRC =
ΩR(1 − fM+2)
M+2
m=1 PTx,mfm
- PTx,m
100cµmP max
out
ǫ(µm)
+ Pfix, if m = 1, . . . , M + 1,
Pfix, if m = M + 2 (off-mode)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 69 / 112
PA Switching Probability
A switching probability for given target rate R b/s/Hz
fm = Pr(Rm−1 < R ≤ Rm)
= (Υm−1 − Υm) (Υm−1 + Υm − 2)
by using order statistics [David, 1970, Proakis and Salehi, 2007]
- Υm 2R
− 1 σ2
m + 1 e−(2R
−1)σ2
m
- σ2
m
σ2
z
AµmP max
out
, where σ2
z is variance of AWGN
- Υ0 = 0 and ΥM+2 = 1
EE of the proposed TAS-MRC systems for the given R
EETAS
MRC =
ΩR(1 − fM+2)
M+2
m=1 PTx,mfm
- PTx,m
100cµmP max
out
ǫ(µm)
+ Pfix, if m = 1, . . . , M + 1,
Pfix, if m = M + 2 (off-mode)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 69 / 112
PA Output Power (Pout W) and
Efficiency (ǫ%)
Table 5: Proposed PAS TAS-MRC with M = 2.
PAS m PA Pout W ǫ% FB s1 s2 fm
Auxiliary PA
1 PA1 0.63 W 55% 110/1 1/2 1 f1
2 PA2 2.5 W 43% 010/1 1/2 2 f2
Main PA 3 PA3 10 W 60% 100/1 1/2 3 f3
off-mode 4 off-mode 0 0 000 – 0 f4
Table 6: Conventional TAS-MRC System with Power Control.
Level l PA Pout W ǫ% feedback s1 fpow
l
P1 1 PA3 0.63 W 9% 110/1 1/2 fpow
1
P2 2 PA3 2.5 W 32% 010/1 1/2 fpow
2
P3 3 PA3 10 W 60% 100/1 1/2 fpow
3
P4 4 off-mode 0 0 000 – fpow
4
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 70 / 112
Mode Switching Probability
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
R b/s/Hz
Probability,fm
f1:PA1
Figure 26: Switching probabilities.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
Mode Switching Probability
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
R b/s/Hz
Probability,fm
f2:PA2
Figure 26: Switching probabilities.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
Mode Switching Probability
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
R b/s/Hz
Probability,fm
f3:PA3
Figure 26: Switching probabilities.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
Mode Switching Probability
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
R b/s/Hz
Probability,fm
f4:PA4, off-mode
Figure 26: Switching probabilities.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
Mode Switching Probability
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
R b/s/Hz
Probability,fm
f1:PA1
f2:PA2
f3:PA3
f4:PA4, off-mode
Figure 26: Switching probabilities.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
EE Comparison
Simulation
Environments
PA1(0.63 W, 55%),
PA2(2.5 W, 43%),
PA3(10 W, 60%)
8 dB IBO
Switch insertion loss:
GS = 0 dB for S1,
GS = 1 dB for S2
Channel attenuation:
A dB = G − 128 +
10 log10(d−α)
[LTE, 2011]
G = 5 dB,
d = 0.6 km, α = 3.76
σ2 = −174 dBm / Hz,
Ω = 10 MHz,
Pfix = 40 W and
c = 4.7
[Joung et al., 2014c]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
1.2
R b/s/Hz
Energyefficiency(EE)Mb/J
no power control
Figure 27: EE comparison.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 72 / 112
EE Comparison
Simulation
Environments
PA1(0.63 W, 55%),
PA2(2.5 W, 43%),
PA3(10 W, 60%)
8 dB IBO
Switch insertion loss:
GS = 0 dB for S1,
GS = 1 dB for S2
Channel attenuation:
A dB = G − 128 +
10 log10(d−α)
[LTE, 2011]
G = 5 dB,
d = 0.6 km, α = 3.76
σ2 = −174 dBm / Hz,
Ω = 10 MHz,
Pfix = 40 W and
c = 4.7
[Joung et al., 2014c]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
1.2
R b/s/Hz
Energyefficiency(EE)Mb/J
1-bit FB for off-mode
off-mode
gain
Figure 27: EE comparison.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 72 / 112
EE Comparison
Simulation
Environments
PA1(0.63 W, 55%),
PA2(2.5 W, 43%),
PA3(10 W, 60%)
8 dB IBO
Switch insertion loss:
GS = 0 dB for S1,
GS = 1 dB for S2
Channel attenuation:
A dB = G − 128 +
10 log10(d−α)
[LTE, 2011]
G = 5 dB,
d = 0.6 km, α = 3.76
σ2 = −174 dBm / Hz,
Ω = 10 MHz,
Pfix = 40 W and
c = 4.7
[Joung et al., 2014c]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
1.2
R b/s/Hz
Energyefficiency(EE)Mb/J
2-bit FB for Pow Ctrl
off-mode
power
control
gain
gain
Figure 27: EE comparison.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 72 / 112
EE Comparison
Simulation
Environments
PA1(0.63 W, 55%),
PA2(2.5 W, 43%),
PA3(10 W, 60%)
8 dB IBO
Switch insertion loss:
GS = 0 dB for S1,
GS = 1 dB for S2
Channel attenuation:
A dB = G − 128 +
10 log10(d−α)
[LTE, 2011]
G = 5 dB,
d = 0.6 km, α = 3.76
σ2 = −174 dBm / Hz,
Ω = 10 MHz,
Pfix = 40 W and
c = 4.7
[Joung et al., 2014c]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.2
0.4
0.6
0.8
1.0
1.2
R b/s/Hz
Energyefficiency(EE)Mb/J
2-bit FB for Pow Ctrl
2-bit FB for PAS
Figure 27: EE comparison.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 72 / 112
MIMO Syst. with Partial CSIT
x2
x1
z2
z1
y2
y1
MRC/MIMO
ˆx2
ˆx1
√
Ah2
√
Ah1
M +1
M +1 Ant.2
Ant.1
: high-power main power amplifiers
PC
PC
power contorl
feedback for PC
Figure 28: PAS MIMO system model with two main PA and M auxiliary PAs.
Switch S0 selects a communication mode
Switch S1 selects a PA [Joung et al., 2014d]
µmPmax
out : Maximum output power of PA m ∈ {1, · · · , M + 1}
0 < µ1 < · · · < µM < µM+1 = 1
2Pmax
out : maximum output power of TX subject to regulatory constraints
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 73 / 112
MIMO Syst. with Partial CSIT
x2
x1
z2
z1
y2
y1
MRC/MIMO
ˆx2
ˆx1
√
Ah2
√
Ah1S0
S1
M +1
M +1
M
1
Ant.2
Ant.1
0
0
M + 1
M
1
1
: high-power main power amplifiers
: low-power auxiliary power amplifiers
feedback for S1 and S2
...
off-mode
Figure 28: PAS MIMO system model with two main PA and M auxiliary PAs.
Switch S0 selects a communication mode
Switch S1 selects a PA [Joung et al., 2014d]
µmPmax
out : Maximum output power of PA m ∈ {1, · · · , M + 1}
0 < µ1 < · · · < µM < µM+1 = 1
2Pmax
out : maximum output power of TX subject to regulatory constraints
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 73 / 112
Commun. Mode Selection Prob.
A switching probability for given target rate R b/s/Hz
- PAS-MRC mode:
fm = fU (2R
− 1)σ2
m ≤ u < (2R
− 1)σ2
m−1 , m = {1, · · · , M}
= Υm − Υm−1
where Υm 1 + 2R
− 1 σ2
m e−(2R
−1)σ2
m .
- Off-mode: fM+3 fC(x < R|σ2
M+1) = FC(R|σ2
M+1)
FC(x|σ2
M+1)=
∞
−∞
∞
0
e−x
1+
x
2σ2
M+1
j2πu
ln 2
dx
∞
0
x2
e−x
1+
x
2σ2
M+1
j2πu
ln 2
dx
−
∞
0
xe−x
1+
x
2σ2
M+1
j2πu
ln 2
dx
2
1 − ej2πux
j2πu
du.
- MIMO mode: fM+2 = 1 −
M+1
m=1
fm − fM+3
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 74 / 112
EE Analysis
EE can be derived as EEPAS
MIMO = ΩR(1−fM+3)
M+3
m=1
PTx,mfm
.
- Numerator represents system throughput over bandwidth Ω Hz and given
target rate R
- Denominator is total power consumption with model defined as
[Joung et al., 2013, H´eliot et al., 2012]:
PTx,m =



Pant,m + Psp1Ω + Pfix, if m = 1, · · · , M + 1,
2Pant,m + Psp1Ω + Pfix, if m = M + 2,
Pfix, if m = M + 3
+ Pant,m: power consumption that is proportional to the number of transmit
antennas NT [Xu et al., 2011], as Pant,m =
cµmP max
out
ǫ(µm)
+ Pcc + Psp2Ω
+ c: a system dependent power loss coefficient which can be empirically
measured and obtained
+ ǫ(µm): a PA efficiency that depends on the input power (or equivalently PA
output power)
+ Pcc and Psp2 are the RF circuit and signal processing related power
consumptions per bandwidth, respectively, which are proportional to NT
+ µ4 = µ3
+ Psp1: a sig. proc.g related power consumption which is independent of NT
+ Pfix: a fixed power consumption, for power supply and cooling system, which
is independent of P max
out , NT , and Ω
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 75 / 112
PA Output Power (Pout W) and
Efficiency (ǫ%)
Table 7: Proposed PAS MIMO with M = 2.
Comm. Mode m PA Pout W ǫ% FB s0 s1 fm
PAS-MRC
1 PA1 0.63 W 55% 00 0 1 f1
2 PA2 2.5 W 43% 01 0 2 f2
3 PA3 10 W 60% 10 0 3 f3
MIMO 4 two PA3’s 2 × 10 W 60% 11 1 3 f4
off-mode 5 PA4 0 0 null 0 0 f5
Table 8: Conventional MIMO System with Power Control.
Level l PA Ptotal
out W ǫ% feedback fpow
l
P1 1 PAa
3, PAb
3 2 × 0.315 W 5% 00 fpow
1
P2 2 PAa
3, PAb
3 2 × 1.25 W 15.5% 01 fpow
2
P3 3 PAa
3, PAb
3 2 × 5 W 32% 10 fpow
3
P4 4 PAa
3, PAb
3 2 × 10 W 60% 11 fpow
4
P5 5 off 0 0 null fpow
5
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 76 / 112
Mode Switching Probability
0 2 4 6 8 10 12 14 16 18 20 22 24
0
0.2
0.4
0.6
0.8
1.0
Target rate, R b/s/Hz
Probability,fm
m = 1, PA1: 0.63 W
m = 2
m = 3
m = 4
PA2
2.5 W
PA3
10 W
PA3+PA3
2 × 10 W
m = 5, PA4: off-mode
(a)
0 2 4 6 8 10 12 14 16 18 20 22 24
0
0.2
0.4
0.6
0.8
1.0
Target rate, R b/s/HzProbability,fpow
l
l = 5, P5: off-model = 1, P1: 2 × 0.315 W
l = 2, P2
2 × 1.25 W
l = 3, P3
2 × 5 W
l = 4, P4
2 × 10 W
(b)
Figure 29: Probabilities. (a) fm of PAS. (b) fpow
l of power control.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 77 / 112
EE Comparison
Simulation Environments
Switch insertion loss:
GS = 0 dB for S0,
GS = 0 dB for S1
σ2
= −174 dBm/ Hz,
Ω = 5 MHz, with 512
FFT size (300
subcarriers)
Pfix = 36.4 W,
c = 2.63,
Pcc = 66.4 W,
Pfix = 36.4 W,
Psp1 = 1.28 µW / Hz,
Psp2 = 3.32 µW / Hz
0 2 4 6 8 10 12 14 16 18 20 22 24
0
0.05
0.10
0.15
0.20
0.25
Target rate, R b/s/Hz
Energyefficiency(EE)Mb/J Conventional MIMO w/o Pow Ctrl.
Figure 30: EE comparison of the proposed
MIMO-MRC with PAS and the
conventional MIMO w/ or w/o Pow Ctrl.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 78 / 112
EE Comparison
Simulation Environments
Switch insertion loss:
GS = 0 dB for S0,
GS = 0 dB for S1
σ2
= −174 dBm/ Hz,
Ω = 5 MHz, with 512
FFT size (300
subcarriers)
Pfix = 36.4 W,
c = 2.63,
Pcc = 66.4 W,
Pfix = 36.4 W,
Psp1 = 1.28 µW / Hz,
Psp2 = 3.32 µW / Hz
0 2 4 6 8 10 12 14 16 18 20 22 24
0
0.05
0.10
0.15
0.20
0.25
Target rate, R b/s/Hz
Energyefficiency(EE)Mb/J Conventional MIMO w/ Pow Ctrl.
Figure 30: EE comparison of the proposed
MIMO-MRC with PAS and the
conventional MIMO w/ or w/o Pow Ctrl.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 78 / 112
EE Comparison
Simulation Environments
Switch insertion loss:
GS = 0 dB for S0,
GS = 0 dB for S1
σ2
= −174 dBm/ Hz,
Ω = 5 MHz, with 512
FFT size (300
subcarriers)
Pfix = 36.4 W,
c = 2.63,
Pcc = 66.4 W,
Pfix = 36.4 W,
Psp1 = 1.28 µW / Hz,
Psp2 = 3.32 µW / Hz
0 2 4 6 8 10 12 14 16 18 20 22 24
0
0.05
0.10
0.15
0.20
0.25
Target rate, R b/s/Hz
Energyefficiency(EE)Mb/J
Conventional MIMO w/ Pow Ctrl.
Proposed MIMO w/ PAS
Figure 30: EE comparison of the proposed
MIMO-MRC with PAS and the
conventional MIMO w/ or w/o Pow Ctrl.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 78 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 79 / 112
System Model [Joung et al., 2014a]
BBU
deactivated DA
user equipment
SISO MISO MU-MIMO
activated DA
optical fibre
large-scale
distributed antennas
(DAs)
cellular
communication
networks
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 80 / 112
EE Model of L-DAS
EE (S, W, P )
System throughput per unit time
Total power consumption
System throughput: R(S, W, P ) = u∈U Ω log2 (1 + SINRu(S, W, P ))
SINRu(S, W, P ) =
|hr
u(sc
u◦wc
u)|2
puu
U
u′=1,u′=u
hr
u sc
u′ ◦wc
u′
2
pu′u′ +σ2
Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W )
f(·): TPD (transmit power dependent) term
g(·): TPI (transmit power independent) term
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 81 / 112
EE Model of L-DAS
EE (S, W, P )
System throughput per unit time
Total power consumption
System throughput: R(S, W, P ) = u∈U Ω log2 (1 + SINRu(S, W, P ))
SINRu(S, W, P ) =
|hr
u(sc
u◦wc
u)|2
puu
U
u′=1,u′=u
hr
u sc
u′ ◦wc
u′
2
pu′u′ +σ2
Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W )
f(·): TPD (transmit power dependent) term
g(·): TPI (transmit power independent) term
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 81 / 112
EE Model of L-DAS
EE (S, W, P )
System throughput per unit time
Total power consumption
System throughput: R(S, W, P ) = u∈U Ω log2 (1 + SINRu(S, W, P ))
SINRu(S, W, P ) =
|hr
u(sc
u◦wc
u)|2
puu
U
u′=1,u′=u
hr
u sc
u′ ◦wc
u′
2
pu′u′ +σ2
Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W )
f(·): TPD (transmit power dependent) term
g(·): TPI (transmit power independent) term
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 81 / 112
Power Consumption Model: TPD
ASIC, FPGA, DSP
Examples:
-digital up converter
-digital predistorter
-scrambling
-CRC check
-conv. encoder
-interleaver
-modulation
-IFFT
-CP insertion
-parallel-to-serial
eRF module oRF module oRF module eRF module
Examples:
-O/E
converter
Examples:
-E/O converter
-laser
-driver
-modulator
Examples:
-D/A converter
-filters
-synthesizer
Examples:
-VGA
-driver
-PA
Examples:
-AC/DC
-DC/DC
-active
cooler
...
... ...
...
...
...
baseband module
mth RF module at BBU
baseband unit (BBU)
mth distributed antenna (DA) port
1st Ant.
mth Ant.
Mth Ant.
1
m
M
fiber
Psp1, Psp2, Psig (TPI)
Pcc1,m (TPI) Pcc2,m (TPI)Pcc2,m (TPI)
Pfix
(TPI)
Ptx,m (TPD)
TPD term
f(S, W, P ) =
m∈M
c
ηm
(S ◦ W )P (S ◦ W )H
mm
eRF (electric RF)
oRF (optical RF)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 82 / 112
Power Consumption Model: TPI
TPI term
g(S, W ) = grf(S) + gbb(W ) + gnet(M) + Pfix
grf(S) = m∈M
Pcc1,m + Pcc2,m u∈U
Ru maxu smu
gbb(W ) = ΩPsp1 [dim(W )]β+1
+ ΩPsp2
gnet(M) = MΩPsig
Pcc1: eRF
Pcc2: per unit-bit-and-second of oRF
Ru: target rate of user u
β ≥ 0: implies overhead power consumption of MU processing compared to
SU-MIMO
Pfix: fixed power consumption (e.g., pow supply, AC/DC, DC/DC, and
cooling system)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 83 / 112
EE of L-DAS
EE (S, W, P ) =
u∈U
Ω log2 1 +
|hr
u (sc
u ◦ wc
u)|
2
puu
U
u′=1,u′=u |hr
u (sc
u′ ◦ wc
u′ )|2
pu′u′ + σ2
m∈M
c
ηm
(S ◦ W )P (S ◦ W )H
mm
+
m∈M
Pcc1,m + Pcc2,m
u∈U
Ru max
u
smu
+ ΩPsp1 [dim(W )]
β+1
+ ΩPsp2
+ MΩPsig
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 84 / 112
Original Problem Formulation
Po: original problem
max
{S,W,P }
EE (S, W, P )
s.t. (S ◦ W )P (S ◦ W )H
mm
≤ Pm, ∀m ∈ M,
Ru(S, W, P ) ≥ Ru, ∀u ∈ U,
pu1u2 = 0, ∀u1 = u2 ∈ U,
smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U
objective function: EE
per-ant pow constraints with max-output pow Pm
per-user rate constraints with a target rate Ru
diagonal structure of P
DA selection
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
Original Problem Formulation
Po: original problem
max
{S,W,P }
EE (S, W, P )
s.t. (S ◦ W )P (S ◦ W )H
mm
≤ Pm, ∀m ∈ M,
Ru(S, W, P ) ≥ Ru, ∀u ∈ U,
pu1u2 = 0, ∀u1 = u2 ∈ U,
smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U
objective function: EE
per-ant pow constraints with max-output pow Pm
per-user rate constraints with a target rate Ru
diagonal structure of P
DA selection
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
Original Problem Formulation
Po: original problem
max
{S,W,P }
EE (S, W, P )
s.t. (S ◦ W )P (S ◦ W )H
mm
≤ Pm, ∀m ∈ M,
Ru(S, W, P ) ≥ Ru, ∀u ∈ U,
pu1u2 = 0, ∀u1 = u2 ∈ U,
smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U
objective function: EE
per-ant pow constraints with max-output pow Pm
per-user rate constraints with a target rate Ru
diagonal structure of P
DA selection
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
Original Problem Formulation
Po: original problem
max
{S,W,P }
EE (S, W, P )
s.t. (S ◦ W )P (S ◦ W )H
mm
≤ Pm, ∀m ∈ M,
Ru(S, W, P ) ≥ Ru, ∀u ∈ U,
pu1u2 = 0, ∀u1 = u2 ∈ U,
smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U
objective function: EE
per-ant pow constraints with max-output pow Pm
per-user rate constraints with a target rate Ru
diagonal structure of P
DA selection
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
Original Problem Formulation
Po: original problem
max
{S,W,P }
EE (S, W, P )
s.t. (S ◦ W )P (S ◦ W )H
mm
≤ Pm, ∀m ∈ M,
Ru(S, W, P ) ≥ Ru, ∀u ∈ U,
pu1u2 = 0, ∀u1 = u2 ∈ U,
smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U
objective function: EE
per-ant pow constraints with max-output pow Pm
per-user rate constraints with a target rate Ru
diagonal structure of P
DA selection
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Problem Decomposition
Issues to solve the original problem Po:
Non-convex objective function
Integer variables {smu} in the constraints
Signaling overhead
Computational complexity
Suboptimal decomposition approach
Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
Step 3-1: Precoding, Wℓ
Step 3-2: Power allocation, Pℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
Step 1: DA Selection
20 UEs
activated DA: Mu = 1
non-activated DA: M = 400
IAD
BBU
Channel-gain-based greedy AS: received signal strength indicator (RSSI)
Min-dis-based greedy AS: localization information
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 87 / 112
Step 2: Selected-DA Clustering
SINR-threshold γ based clustering
If UE u′
’s distance from cluster ℓ is shorter than γ, UE u′
is included to the
cluster ℓ as follows:
Uℓ = Uℓ ∪ {u′
}, if D(Uℓ, u′
) ≤ γ
Distance metric between two clusters
D(Uℓ, Uℓ′ ) min
u∈Uℓ,u′∈Uℓ′
d(u, u′
).
d(u, u′
) min
m∈Mu
|hum|2Pm
σ2 + m′∈Mu′
|hum′ |2Pm′
,
m′∈Mu′
|hu′m′ |2Pm′
σ2 + m∈Mu
|hu′m|2Pm
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 88 / 112
DA Clustering Example
cluster with a single UE
cluster with four UEs
(a) γ = 25 dB, L = 11 (b) γ = 32 dB, L = 6
γ ↑ =⇒ cluster size ↑, number of clusters ↓, inter-cluster interference ↓
γ ↓ =⇒ cluster size ↓, number of clusters ↑, inter-cluster interference ↑
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 89 / 112
DA Clustering Example
cluster with a single UE
cluster with four UEs
(a) γ = 25 dB, L = 11 (b) γ = 32 dB, L = 6
SINR between users in different clusters > γ
=⇒ cluster-based optimization
SINR between users within a cluster ≤ γ
=⇒ MU-MIMO precoding
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 89 / 112
DA Clustering Example
cluster with a single UE
cluster with four UEs
(a) γ = 25 dB, L = 11 (b) γ = 32 dB, L = 6
SINR between users in different clusters > γ
=⇒ cluster-based optimization
SINR between users within a cluster ≤ γ
=⇒ MU-MIMO precoding
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 89 / 112
Step 3: Cluster-based Optimization
Problem
Pℓ: cluster-ℓ problem for given S∗
ℓ , ℓ ∈ L
max
{Wℓ,Pℓ}
EE (S∗
ℓ , Wℓ, Pℓ)
s.t. (S∗
ℓ ◦Wℓ)Pℓ(S∗
ℓ ◦Wℓ)H
mm
≤ Pm,∀m∈Mℓ,
Ru(S∗
ℓ , Wℓ, Pℓ) ≥ Ru, ∀u ∈ Uℓ,
pu1u2 = 0, ∀u1 = u2 ∈ Uℓ
Maximization of EE upper bound
Computational complexity reduction
CSI and signaling overhead reduction:
e.g., 8000 ⇒ 48 and 160 in (a) and (b)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 90 / 112
Step 3: Cluster-based Optimization
Problem
Pℓ: cluster-ℓ problem for given S∗
ℓ , ℓ ∈ L
max
{Wℓ,Pℓ}
EE (S∗
ℓ , Wℓ, Pℓ)
s.t. (S∗
ℓ ◦Wℓ)Pℓ(S∗
ℓ ◦Wℓ)H
mm
≤ Pm,∀m∈Mℓ,
Ru(S∗
ℓ , Wℓ, Pℓ) ≥ Ru, ∀u ∈ Uℓ,
pu1u2 = 0, ∀u1 = u2 ∈ Uℓ
Maximization of EE upper bound
Computational complexity reduction
CSI and signaling overhead reduction:
e.g., 8000 ⇒ 48 and 160 in (a) and (b)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 90 / 112
Problem Decomposition
Pℓ,1: Precoding matrix W ∗
ℓ for fixed S∗
ℓ and P ′
ℓ
max
{Wℓ,Pℓ}
EE (Wℓ, P ′
ℓ)
s.t. (S∗
ℓ ◦W ∗
ℓ )Pℓ(S∗
ℓ ◦W ∗
ℓ )H
mm
≤ Pm, ∀m ∈ Mℓ
Ru(S∗
ℓ , W ∗
ℓ , Pℓ) ≥ Ru, ∀u ∈ Uℓ
pu1u2 = 0, ∀u1 = u2 ∈ Uℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 91 / 112
Problem Decomposition
Pℓ,2: Power control matrix P ∗
ℓ for fixed S∗
ℓ and W ∗
ℓ
max
{Wℓ,Pℓ}
EE (W ∗
ℓ , Pℓ)
s.t. (S∗
ℓ ◦W ∗
ℓ )Pℓ(S∗
ℓ ◦W ∗
ℓ )H
mm
≤ Pm, ∀m ∈ Mℓ
Ru(S∗
ℓ , W ∗
ℓ , Pℓ) ≥ Ru, ∀u ∈ Uℓ
pu1u2 = 0, ∀u1 = u2 ∈ Uℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 91 / 112
ZF-MU-MIMO Precoding Design
Pℓ,1: Precoding matrix W ∗
ℓ for fixed S∗
ℓ and P ′
ℓ
W ∗
ℓ = max
Wℓ
EE(S∗
ℓ , Wℓ, P ′
ℓ )
(a)
≡ min
Wℓ
C(S∗
ℓ , Wℓ, P ′
ℓ )
(b)
≡ min
Wℓ
c
m∈Mℓ
1
ηm
(S∗
ℓ ◦ Wℓ)P ′
ℓ (S∗
ℓ ◦ Wℓ)H
mm
(c)
≡ min
Wℓ
m∈Mℓ
(S∗
ℓ ◦ Wℓ)P ′
ℓ (S∗
ℓ ◦ Wℓ)H
mm
(a) rate does not depend on Wℓ due to a ZF property
(b) Wℓ affects only on TPD term for given S∗
ℓ
and P ′
ℓ
(c) equal capability of PA is preferred for high EE [Joung and Sun, 2013],
c/ηm is assumed to be a constant
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 92 / 112
Cont.: Reformulation & Solution
Pℓ,1: Precoding matrix W ∗
ℓ for fixed S∗
ℓ and P ′
ℓ
W ∗
ℓ = min
Wℓ
m∈Mℓ
(S∗
ℓ ◦ Wℓ)P ′
ℓ (S∗
ℓ ◦ Wℓ)H
mm
= min
Wℓ
Sd
ℓ Wℓ P ′
ℓ
2
F
Sd
ℓ
= diag(sc,∗
ℓ
) ∈ RM×M
sc,∗
ℓ
= u∈Uℓ
sc,∗
u
ZF-MU-MIMO precoding matrix as
Wℓ = (HℓSd
ℓ )†
+ null(HℓSd
ℓ )Aℓ
Hℓ ∈ CUℓ×M : a channel matrix of cluster ℓ that consists of row vectors hr
u, u ∈ Uℓ
Aℓ ∈ CUℓ×Uℓ is a Uℓ-dimensional arbitrary matrix
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 93 / 112
Cont.: Reformulation & Solution
Pℓ,1: Precoding matrix W ∗
ℓ for fixed S∗
ℓ and P ′
ℓ
W ∗
ℓ = min
Wℓ
m∈Mℓ
(S∗
ℓ ◦ Wℓ)P ′
ℓ (S∗
ℓ ◦ Wℓ)H
mm
= min
Wℓ
Sd
ℓ Wℓ P ′
ℓ
2
F
Sd
ℓ
= diag(sc,∗
ℓ
) ∈ RM×M
sc,∗
ℓ
= u∈Uℓ
sc,∗
u
ZF-MU-MIMO precoding matrix as
W ∗
ℓ = (HℓSd
ℓ )†
+ null(HℓSd
ℓ )Aℓ
Hℓ ∈ CUℓ×M : a channel matrix of cluster ℓ that consists of row vectors hr
u, u ∈ Uℓ
Aℓ ∈ CUℓ×Uℓ is a Uℓ-dimensional arbitrary matrix
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 93 / 112
Power Control
Pℓ,2: Power control matrix P ∗
ℓ for fixed S∗
ℓ and W ∗
ℓ
P ∗
ℓ = max
Pℓ
EE(S∗
ℓ , W ∗
ℓ , Pℓ)
s.t. (Sd
ℓ W ∗
ℓ )Pℓ(Sd
ℓ W ∗
ℓ )H
mm
≤ Pm, ∀m ∈ Mℓ
Ru(Pℓ) ≥ Ru, ∀u ∈ Uℓ
pu1u2 = 0, ∀u1 = u2 ∈ Uℓ.
u∈Uℓ
Ru(Pℓ) ≥ ξC(S∗
ℓ , W ∗
ℓ , Pℓ)
Using an additional variable ξ
Convex feasibility problem
Bisection search to find the optimal ξ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 94 / 112
Power Control
Pℓ,2: Power control matrix P ∗
ℓ for fixed S∗
ℓ and W ∗
ℓ
P ∗
ℓ = max
Pℓ
ξ
s.t. (Sd
ℓ W ∗
ℓ )Pℓ(Sd
ℓ W ∗
ℓ )H
mm
≤ Pm, ∀m ∈ Mℓ
Ru(Pℓ) ≥ Ru, ∀u ∈ Uℓ
pu1u2 = 0, ∀u1 = u2 ∈ Uℓ.
u∈Uℓ
Ru(Pℓ) ≥ ξC(S∗
ℓ , W ∗
ℓ , Pℓ)
Using an additional variable ξ
Convex feasibility problem
Bisection search to find the optimal ξ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 94 / 112
Cont.: Heuristic Method
Minimum required power to satisfy Ru with ZF-MU-MIMO precoding
pu,ℓ = σ2
2
Ru
Ω − 1
pu,ℓ is a ratio based on minimum required power for target rate
[Joung and Sun, 2013] s.t.
pu,ℓ =
pu,ℓ
k∈Uℓ
pk,ℓ
, ∀u ∈ Uℓ
pu,ℓ = αℓpu,ℓ
αℓ: common power scaling factor for power limit of PAs and target rate of
UEs in cluster ℓ
Maximize EE lower bound
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 95 / 112
Cont.: Heuristic Method
§
¦
¤
¥
P′
ℓ,2 : α∗
ℓ = arg max
αℓ
ζ(αℓ), s.t. αLB,ℓ ≤ αℓ ≤ αUB,ℓ
ζ(αℓ) =
ΩUℓ log2(1+c1,ℓαℓ)
c2,ℓαℓ+c3,ℓ
: concave function
c1,ℓ minu{pu,ℓ}σ−2
c2,ℓ c m∈Mℓ
η−1
m [Sd
ℓ W ∗
ℓ P ℓ(Sd
ℓ W ∗H
ℓ )H
]mm
c3,ℓ = m∈Mℓ
(Pcc1,m + Pcc2,m u∈Uℓ
Ru) maxu∈Uℓ
smu +
ΩPsp1[dim(Wℓ)]β+1
+ MℓΩPsig + ΩPsp2/L + Pfix/L
αLB,ℓ = σ2
2
Ru
Ω − 1 pu,ℓ from QoS constraint
αUB,ℓ = minm∈Mℓ
Pm Sd
ℓ W ∗
ℓ P ℓ(Sd
ℓ W ∗
ℓ )H
mm
from power constraint
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 96 / 112
Cont.: Solution
Closed form solution:
αo =
1
c1
exp 1 + W −
1
exp(1)
+
c1c3
c2exp(1)
− 1
α∗
= [αo]
αUB
αLB
P ∗
heuristic = α∗
P
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 97 / 112
Algorithms
Algorithm 1 : Clustering threshold γ adaptation
1. Initial setup: γ, δ > 0, stop= 0, q = 0, Mu, and QC ≥ 0
2. compute EEp with γ: Mu Adaptation Algorithm 2
3. compute EEc with γ = γ + δ: Mu Adaptation Algorithm 2
4. if EEc > EEp then
5. EEp = EEc and ξ = 1
6. else
7. compute EEc with γ = γ − 2δ: Mu Adaptation Algorithm 2
8. if EEc > EEp then EEp = EEc and ξ = −1
9. else stop= 1 end if
10. end if
11. while stop= 0 & q < QC do
12. compute EEc with γ = γ + ξδ: Mu Adaptation Algorithm 2
13. if EEc > EEp then EEp = EEc
14. else stop= 1 end if
15. q = q + 1
16. end while
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 98 / 112
Algorithms
Algorithm 2 : Mu adaptation algorithm for AS
1. Initial setup: Mu = 1, ∀u ∈ U, q = 0, γ, and QAS ≥ 0
2. while feasibility= 0 & q < QAS do
3. DA Selection Algorithm 3
4. DA Clustering Algorithm 4 with a threshold γ
5. feasibility= 1
6. for cluster ℓ = 1, . . . , L do
7. precoding: Wℓ = (HℓSd
ℓ
)†
8. power control: Bisection Search Algorithm 5 or P ∗
heuristic
= α∗
9. if power control is infeasible & u∈U
Mu < M
10. then add one additional DA to UE u ∈ Uℓ who has the weakest channel gain, i.e.,
Mu = Mu + 1 where u ∈ Uℓ s.t., u = arg min
u∈Uℓ
|hum|
11. feasibility= 0 end if
12. end for
13. q = q + 1
14. end while
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 99 / 112
Algorithms
Algorithm 3 : CGB/MDB-Greedy DA selection algorithm
1. Initial setup: U = {1, . . ., U}, M = {1, . . ., M}, smn = 0, ∀m ∈ M, ∀u ∈
U, Mu = ∅, ∀u ∈ U, and given Mu’s
2. while U = ∅ do
3. find {m∗
, u∗
} = arg metric
m∈M,u∈U
‘metric’ = max |hum| for CGB, min dum for MDB
4. set sm∗u∗ = 1, M = M  m∗
and Mu∗ = M ∪ m∗
5. if |Mu∗ | = Mu∗ then
6. U = U  u∗
7. end if
8. end while
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 100 / 112
Algorithms
Algorithm 4 : DA clustering algorithm
1. Initial setup: distance do = 0, clusters Uℓ = {ℓ} where ℓ ∈ L = {1, . . ., U},
and given γ
2. while do < γ do
3. find the distance of most closest pair of clusters Uℓ and Uℓ′ , i.e., do =
minℓ,ℓ′∈L,ℓ=ℓ′ D(Uℓ, Uℓ′ )
4. if do < γ then
5. merge clusters as Uℓ = Uℓ ∪ Uℓ′
6. update L
7. end if
8. end while
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 101 / 112
Algorithms back
Algorithm 5 : Bisection search algorithm: Per-cluster optimal power control for
MU
1. setup: ξLB = 0, ξUB ≃ ∞, and a tolerance value, δ > 0
2. while ξUB − ξLB > δ do
3. ξ ← (ξUB − ξLB)/2
4. Solve convex feasibility problem and find (update) P ∗
ℓ
5. if infeasible then ξUB ← ξ
6. else ξLB ← ξ end if
7. end while
8. P ∗
optimal,ℓ = P ∗
ℓ
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 102 / 112
Simulation Parameters
Cell model two square grid cells (1km2
)
Number of DAs/CAs 25 ≤ M ≤ 900
Intra-antenna distance (IAD) from 33 m to 200m
Number of UEs 2 ≤ U ≤ 20
UE distribution Uniform (104
−realization)
Path loss model (fc = 2GHz) Aum = g − 128 + 10 log10(d−µ
u,m)
feeder loss and antenna gain g = 5dB
Path loss exponent µ = 3.76
Small scale fading hum ∼ CN(0, 1)
Bandwidth Ω = 10MHz
Target rate Ru = 10Mb
Maximum Tx power Pm = 17dBm
AWGN standard deviation σ2
= −174dBm/Hz
Power loss coefficient c = 2.63
eRF circuit pow.cons. Pcc1,m = 5.7W
oRF circuit pow.cons. Pcc2,m = 0.5/0pW/bit/s
Fixed pow.cons. Pfix = 34 W
Signal processing pow.cons. Psp1 = 0.94 × 1/1.1µW/Hz
Psp2 = 0.54 × 1/1.1µW/Hz
Signaling pow.cons./antenna 5 ≤ Psig ≤ 500nW/Hz
preprocessing pow.cons. ratio 0 ≤ β ≤ 2
PA efficiency ηm = 0.08/0.6
Clustering threshold −∞ ≤ γ ≤ ∞dB
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 103 / 112
Simulation Visualization
(outage: cell boundary)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 104 / 112
Simulation Visualization
(no outage)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 105 / 112
M =400, U =20, Psig =50nW/Hz
−10 0 10 20 30 40 50
0
1
2
3
4
5
6
Clustering threshold γdB
AverageenergyefficiencyMb/J
optimal power control
heuristic power control
L-CAS with β = 0.2
β = 0.2
β = 0.5
β = 1
−∞ ∞
fullSU,Uclusters
fullMU,singlecluster
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 106 / 112
M =400, β =0.5, Psig =50nW/Hz
2 4 6 8 10 12 14 16 18 20
0
1
2
3
4
Number of UEs, U
AverageenergyefficiencyMb/J
optimal pow ctrl with adaptation
heuristic pow ctrl with adaptation
γ = ∞dB (full MU, single cluster)
γ = −∞dB (full SU, U clusters)
γ = 22dB
L-CAS with β = 0.5
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 107 / 112
U = 20, β = 0.5, γ = 22 dB
0 100 200 300 400 500 600 700 800 900
0
1
2
3
4
5
6
Number of transmit DAs, M
AverageenergyefficiencyMb/J optimal power control
heuristic power control
Psig = 5nW/Hz
Psig = 50nW/Hz
Psig = 500nW/Hz
L-CAS with Psig = 5nW/Hz
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 108 / 112
Index
1 Introduction and Background (35 min, 24 pages)
Green Wireless Communications
Efficiency in Communications
Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff
Practical SE-EE Tradeoff
2 Technologies for Energy Efficiency (20 min, 11 pages)
Device-Level Approach
System-Level Approach
Network-Level Approach
3 Review (30 min, 60 pages)
PA Switching/Selection (PAS) Method
Large-scale Distributed-Antenna Systems (L-DAS)
4 Conclusion and QnA (5 min, 3 page)
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 109 / 112
Summary
ICT consumes/emits 3%/2% of world-wide energy/CO2
Efficiency: valuable resources produced / valuable resources consumed
Energy efficiency (EE) in wireless communications: bits/Joule
Power amplifier (PA): LDMOS + Doherty/envelope tracking
Two fundamental characteristics of PA and the models:
linearity and efficiency
SE-EE tradeoff: EE maximization rather than SE maximization
EE-aware technologies based on three design perspectives
i) PA, ii) signal, iii) network
PAS and large-scale DAS
Further Work
- Multiuser communication systems
- Memory effects of PA for wideband systems
- Manufacturing cost and form factor of a PA bank
- Multi-band systems application, network-level approach
- ...
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 110 / 112
Summary
ICT consumes/emits 3%/2% of world-wide energy/CO2
Efficiency: valuable resources produced / valuable resources consumed
Energy efficiency (EE) in wireless communications: bits/Joule
Power amplifier (PA): LDMOS + Doherty/envelope tracking
Two fundamental characteristics of PA and the models:
linearity and efficiency
SE-EE tradeoff: EE maximization rather than SE maximization
EE-aware technologies based on three design perspectives
i) PA, ii) signal, iii) network
PAS and large-scale DAS
Further Work
- Multiuser communication systems
- Memory effects of PA for wideband systems
- Manufacturing cost and form factor of a PA bank
- Multi-band systems application, network-level approach
- ...
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 110 / 112
CTN Issue: 28 January 2015
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 111 / 112
Top 10 Trends in 2015, IEEE
ComSoc
1 5G (energy saving 1/1000)
2 FIBER EVERYWHERE
3 VIRTUALIZATION, SDN & NFV
4 EVERYWHERE CONNECTIVITY FOR IoT & IoE
5 COGNITIVE NETWORKS, BIG DATA
6 CYBERSECURITY
7 GREEN COMMUNICATIONS
- environmentally friendly batteries
- renewable energy sources
- intelligent management of the power systems
- total energy usage
- compute-to-consumption ratios
- performance KPIs for best in class green operations
8 SMARTER SMARTPHONES, CONNECTED SENSORS
9 NETWORK NEUTRALITY, INTERNET GOVERNANCE
10 MOLECULAR COMMUNICATIONS
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 112 / 112
Thank You
http://www1.i2r.a-star.edu.sg/∼jgjoung
jgjoung@i2r.a-star.edu.sg
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 113 / 112
Envelope Tracking Architecture B
the envelope tracking RF PA’s supply voltage is controlled by the envelope
of the RF-drive.
efficiency between the linear RF PA and the PAs using the Kahn technique.
Figure 31: Envelope tracking architecture [Raab et al., 2003c].
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 114 / 112
Doherty Technique B
Class-B (carrier PA or main PA) and class-C (peaking PA or auxiliary PA)
PAs are combined to improve efficiency
The class-B PA is activated if the signal amplitude is half or less than the
PEP
Both PAs are activated if the signal amplitude is larger than half of the
PEP [Doherty, 1936]
Due to the high efficiency and linearity over wide frequency band and
power level, Doherty technique is widely used for the modern cellular
communications [Correia et al., 2010, Cha et al., 2004, Auer et al., 2011,
Arnold et al., 2010].
RF-drive input output
main PA
auxiliary PA
Figure 32: Doherty transmitter.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 115 / 112
Reference I
[McK, 2007] (2007).
The impact of ICT on global emissions.
Technical report, McKinsey & Company.
[Alc, 2008] (2008).
Active antenna arrays: Small-footprint, scalable RF solutions for base stations.
Technical report, Alcatel-Lucent Innovation Days.
[LTE, 2011] (2011).
LTE; E-UTRA; RF requirements for LTE pico node B.
[3GPP, TR 25.927 V11.0.0, 2012] 3GPP, TR 25.927 V11.0.0 (2012).
Solutions for energy saving within UTRA Node B (Release 11).
[Adachi et al., 2012] Adachi, K., Joung, J., Sun, S., and Tan, P. H. (2012).
Energy-saving coordinated napping (CoNap) for wireless networks.
In Proc. IEEE Global Commun. Conf. (GLOBECOM), Anaheim, CA, USA.
[Adachi et al., 2013] Adachi, K., Joung, J., Sun, S., and Tan, P. H. (2013).
Adaptive coordinated napping (CoNap) for energy saving in wireless networks.
IEEE Trans. Wireless Commun., 12(11):5656–5667.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 116 / 112
Reference II
[Arnold et al., 2010] Arnold, O., Richter, F., Fettweis, G., and Blume, O. (2010).
Power consumption modeling of different base station types in heterogeneous cellular
networks.
In Proc. IEEE Future Network and Mobile Summit 2010, Florence, Italy.
[Auer et al., 2011] Auer, G., Giannini, V., Desset, C., G´odor, I., Skillermark, P., Olsson, M.,
Imran, M. A., Sabella, D., Gonzalez, M. J., Blume, O., and Fehske, A. (2011).
How much energy is needed to run a wireless network?
IEEE Trans. Wireless Commun., 18:40–49.
[Baliga et al., 2011] Baliga, J., Ayre, R., Hinton, K., and Tucker, R. S. (2011).
Energy consumption in wired and wireless access networks.
IEEE Commun. Mag., 49:70–77.
[Bogucka and Conti, 2011] Bogucka, H. and Conti, A. (2011).
Degree of freedom for energy savings in practical adaptive wireless systems.
IEEE Commun. Mag., 49:38–45.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 117 / 112
Reference III
[Boumaiza and Ghannouchi, 2003] Boumaiza, S. and Ghannouchi, F. (2003).
Thermal memory effects modeling and compensation in RF power amplifiers and
predistortion linearizers.
IEEE Trans. Microw. Theory Tech., 51:2427–2433.
[Bussgang, 1952] Bussgang, J. J. (1952).
Cross correlation function of amplitude-distorted Gaussian input signals.
Res. Lab Electron., M.I.T., Cambridge, MA, Tech. Rep. 216, 3.
[Cha et al., 2004] Cha, J., Kim, J., Kim, B., Lee, J. S., and Kim, S. H. (2004).
Highly efficient power amplifier for CDMA base stations using Doherty configuration.
In Proc. IEEE MTT-S Int. Microwave Symp., pages 553–556, Fort Worth, TX, USA.
[Chapeau-Blondeau and Monir, 2002] Chapeau-Blondeau, F. and Monir, A. (2002).
Numerical evaluation of the Lambert W function and application to generation of
generalized gaussian noise with exponent 1/2.
IEEE Trans. Signal Process., 50:2160–2165.
[Chatzipapas et al., 2011] Chatzipapas, A., Alouf, S., and Mancuso, V. (2011).
On the minimization of power consumption in base stations using on/off power amplifiers.
In Proc. IEEE Online Conference on Green Communications (GreenCom), pages 18–23.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 118 / 112
Reference IV
[Chen et al., 2011] Chen, Y., Zhang, S., Xu, S., and Li, G. Y. (2011).
Fundamental trade-offs on green wireless networks.
IEEE Commun. Mag., 49:30–37.
[Choi and Andrews, 2007] Choi, W. and Andrews, J. G. (2007).
Downlink performance and capacity of distributed antenna systems in a multicell
environment.
IEEE Trans. Wireless Commun., 6:69–73.
[Correia et al., 2010] Correia, L. M., Zeller, D., Blume, O., Ferling, D., Jading, Y., G´odor, I.,
Auer, G., and der Perre, L. V. (2010).
Challenges and enabling technologies for energy aware mobile radio networks.
IEEE Commun. Mag., 48:66–72.
[Cover and Thomas, 2006] Cover, T. M. and Thomas, J. A. (2006).
Elements of information theory.
John Wiley & Sons, New Jersey, second edition.
[Cox, 1974] Cox, D. (1974).
Linear amplification with nonlinear components.
IEEE Trans. Commun., 22:1942–1945.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 119 / 112
Reference V
[Cripps, 2006] Cripps, S. C. (2006).
RF power amplifiers for wireless communications.
ARTECH HOUSE, Boston/London, second edition.
[Damnjanovic et al., 2011] Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T.,
Vajapeyam, M., Yoo, T., Song, O., and Malladi, D. (2011).
A survey on 3GPP heterogeneous networks.
18(3):10–21.
[David, 1970] David, H. A. (1970).
Order staistics.
Wiley, New York,.
[Deruyck et al., 2011] Deruyck, M., Tanghe, E., Joseph, W., and Martens, L. (2011).
Modelling the energy efficiency of microcell base stations.
In Proc. Int. Conf. Smart Grids, Green Commun. and IT Energy-aware Technol., Venice,
Italy.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 120 / 112
Reference VI
[Deruyck et al., 2010] Deruyck, M., Vereecken, W., Tanghe, E., Joseph, W., Pickavet, M.,
Martens, L., and Demeester, P. (2010).
Comparison of power consumption of mobile WiMAX, HSPA and LTE access networks.
In Proc. IEEE Telecommunications Internet and Media Techno Economics (CTTE), Gent,
Belgium.
[Doherty, 1936] Doherty, W. H. (1936).
A new high efficiency power amplifier for modulated waves.
IEEE Proceedings of the Institute of Radio Engineers (IRE), 24:1163–1182.
[earth, 2015] earth (2015).
Energy aware radio and network technology (EARTH) project.
[Falconer et al., 2000] Falconer, D., Kolze, T., Leiba, Y., and Liebetreu, J. (2000).
System impairment model.
[Fettweis and Zimmermann, 2008] Fettweis, G. and Zimmermann, E. (2008).
ICT energy consumption? Trends and challenges.
In Proc. Wireless Personal Multimedia Commun., Lapland, Finland.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 121 / 112
Reference VII
[Frenger et al., 2011] Frenger, P., Moberg, P., Malmodin, J., Jading, Y., and G´odor, I.
(2011).
Reducing energy consumption in LTE with cell DTX.
In Proc. IEEE Veh. Technol. Conf. (VTC-Spring), Budapest, Hungary.
[Gadringer et al., 2005] Gadringer, M., Arthaber, H., Mayer, M., and Magerl, G. (2005).
Modeling, analysis and classification of a PA based on identified Volterra kernels.
In Proc. Gallium Arsenide and Other Semiconductor Application Symposium (GAAS),
pages 405–408, Paris, France.
[Ghorbani and Sheikhan, 1991] Ghorbani, A. and Sheikhan, M. (1991).
The effect of solid state power amplifiers (SSPAs) nonlinearities on MPSK and M-QAM
signal transmission.
In Proc. Inter. Conf. Digital Processing of Signals in Commun., pages 193–197,
Loughborough, UK.
[Gruber et al., 2009] Gruber, M., Blume, O., Ferling, D., Zeller, D., and Imran, M. A. (2009).
EARTH–Energy aware radio and network technologies.
In Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC),
Tokyo, Japan.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 122 / 112
Reference VIII
[Gutman and Wulich, 2012] Gutman, I. and Wulich, D. (2012).
On achievable rate of multicarrier with practical high power amplifier.
In European Wireless 2012 (EW2012), Poznan, Poland.
[Han et al., 2011] Han, S., Yang, C., Wang, G., and Lei, M. (2011).
On the energy efficiency of base station sleeping with multicell cooperative transmission.
In Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC), pages
1536–1540, Toronto, ON, Canada.
[Hasan et al., 2011] Hasan, Z., Boostanimehr, H., and Bhargava, V. K. (2011).
Green cellular networks: A survey, some research issues and challenges.
IEEE Communications Surveys & Tutorials, 13:524–540.
[H´eliot et al., 2012] H´eliot, F., Imran, M. A., and Tafazolli, R. (2012).
On the energy efficiency-spectral efficiency trade-off over the MIMO Rayleigh fading
channel.
IEEE Trans. Commun., pages 1345–1356.
[ITRS, 2011] ITRS (2011).
International technology roadmap for semiconductors.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 123 / 112
Reference IX
[Jeruchim et al., 2000] Jeruchim, M. C., Balaban, P., and Shanmugan, K. S. (2000).
Simulation of communication systems: Modeling, methodology, and techniques.
Springer, New York.
[Jiang and Wu, 2008] Jiang, T. and Wu, Y. (2008).
An overview: Peak-to-average power ratio reduction techniques for OFDM signals.
IEEE Trans. Broadcast., 54:257–268.
[Joung et al., 2014a] Joung, J., Chia, Y. K., and Sun, S. (2014a).
Energy-efficient, large-scale distributed-antenna system (L-DAS) for multiple users.
IEEE J. Sel. Topics Signal Process., 8:954–965.
[Joung et al., 2014b] Joung, J., Ho, C. K., Adachi, K., and Sun, S. (2014b).
A survey on power-amplifier-centric techniques for spectrum and energy efficient wireless
communications.
IEEE Commun., Surveys & Tutorials, pages 1–20.
(early access articles).
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 124 / 112
Reference X
[Joung et al., 2012a] Joung, J., Ho, C. K., and Sun, S. (2012a).
Tradeoff of spectral and energy efficiencies: Impact of power amplifier on OFDM systems.
In Proc. IEEE Global Commun. Conf. (GLOBECOM), pages 3274–3279, Anaheim, CA,
USA.
[Joung et al., 2013] Joung, J., Ho, C. K., and Sun, S. (2013).
Power amplifier switching (PAS) for energy efficient systems.
IEEE Wireless Commun. Lett., 2:14–17.
[Joung et al., 2014c] Joung, J., Ho, C. K., and Sun, S. (2014c).
Spectral efficiency and energy efficiency of OFDM systems: Impact of power amplifiers and
countermeasures.
IEEE J. Sel. Areas Commun., 32:208–220.
[Joung et al., 2014d] Joung, J., Ho, C. K., and Sun, S. (2014d).
Tradeoff of spectral and energy efficiencies: Impact of power amplifier on OFDM systems.
In Proc. IEEE Global Commun. Conf. (GLOBECOM), Austin, TX, USA.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 125 / 112
Reference XI
[Joung et al., 2012b] Joung, J., Ho, C. K., Tan, P. H., and Sun, S. (2012b).
Energy minimization in OFDMA downlink systems: A sequential linear assignment
algorithm for resource allocation.
IEEE Wireless Commun. Lett., 1(4):300–303.
[Joung et al., ] Joung, J., Nguyen, H. D., and Sun, S.
Pecuniary efficiency of distributed antenna systems.
1st round revision, Jan. 2015.
[Joung and Sun, 2012] Joung, J. and Sun, S. (2012).
Power efficient resource allocation for downlink OFDMA relay cellular networks.
IEEE Trans. Signal Process., 60:2447–2459.
[Joung and Sun, 2013] Joung, J. and Sun, S. (2013).
Energy efficient power control for distributed transmitters with ZF-based multiuser MIMO
precoding.
IEEE Commun. Lett., 17:1766–1769.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 126 / 112
Reference XII
[Joung et al., 2012c] Joung, J., Yuan, D., Ho, C. K., and Sun, S. (2012c).
Energy efficient network-flow-based algorithm with flow size adaptation for multiuser
multicarrier systems.
IET Networks, 1(2):66–73.
[Kahn, 1952] Kahn, L. (1952).
Single-sideband transmission by envelope elimination and restoration.
IEEE Proceedings of the Institute of Radio Engineers (IRE), 40:803–806.
[Kazimierczuk, 2008] Kazimierczuk, M. K. (2008).
RF power amplifiers.
John Wiley & Sons, UK, first edition.
[Kenington, 2000] Kenington, P. B. (2000).
High linearity RF amplifier design.
Artech House, Norwood, MA.
[Kim and Konstantinou, 2001] Kim, J. and Konstantinou, K. (2001).
Digital predistortion of wideband signals based on power amplifier model with memory.
Electron. Lett., 27:1417–1418.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 127 / 112
Reference XIII
[Kosta et al., 2013] Kosta, C., Quddus, B. H. A., and Tafazolli, R. (2013).
On interference avoidance through inter-cell interference coordination (ICIC) based on
OFDMA mobile systems.
IEEE Commun. Surveys Tuts., 15(3):973–995.
[Kowlgi and Berland, 2011] Kowlgi, S. and Berland, C. (2011).
Linearity considerations for multi-standard cellular base station transmitters.
In Proc. IEEE Microwave Conf. (EuMC), pages 226–229, Manchester, UK.
[Kumar and Gurugubelli, 2011] Kumar, R. V. R. and Gurugubelli, J. (2011).
How green the LTE technology can be?
In Proc. IEEE Wireless Communication, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems Technology (Wireless VITAE), Chennai, India.
[Mancuso and Sara Alouf, 2011] Mancuso, V. and Sara Alouf, I. S. A. M. (2011).
Reducing costs and pollution in cellular networks.
IEEE Wireless Commun. Mag., 17:63–71.
[Minkoff, 1985] Minkoff, J. (1985).
The role of AM-to-PM conversion in memoryless nonlinear systems.
IEEE Trans. Commun., 33(2):139–144.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 128 / 112
Reference XIV
[Morgan et al., 2006] Morgan, D. R., Ma, Z., Kim, J., Zierdt, M. G., and Pastalan, J. (2006).
A generalized memory polynomial model for digital predistortion of RF power amplifiers.
IEEE Trans. Signal Process., 54:3852–3860.
[Niu et al., 2010] Niu, Z., Wu, Y., Gong, J., and Yang, Z. (2010).
Cell zooming for cost-efficient green cellular networks.
IEEE Commun. Mag., 48:74–79.
[Onireti et al., 2012] Onireti, O., H´eliot, F., and Imran, M. A. (2012).
On the energy efficiency-spectral efficiency trade-off in the uplink of CoMP system.
IEEE Trans. Wireless Commun., pages 556–561.
[Papoulis and Pillai, 2002] Papoulis, A. and Pillai, S. (2002).
Probability, random variables and stochastic processes.
McGraw-Hill, fourth edition.
[Pothecary, 1999] Pothecary, N. (1999).
Feedforward Linear Power Amplifiers.
Artech House, Norwood, MA.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 129 / 112
Reference XV
[Proakis and Salehi, 2007] Proakis, J. G. and Salehi, M. (2007).
Digital communications.
McGraw-Hill, New York„ five edition.
[Raab, 1987] Raab, F. H. (1987).
Efficiency of Doherty RF power-amplifier systems.
IEEE Trans. Broadcast., BC-33:77–83.
[Raab et al., 2002] Raab, F. H., Asbeck, P., Cripps, S. C., Kenington, P. B., Popovi´c, Z. B.,
Pothecary, N., Sevic, J. F., and Sokal, N. O. (2002).
Power amplifiers and transmitters for RF and microwave.
IEEE Trans. Microw. Theory Tech., 50:814–826.
[Raab et al., 2003a] Raab, F. H., Asbeck, P., Cripps, S. C., Kenington, P. B., Popovi´c, Z. B.,
Pothecary, N., Sevic, J. F., and Sokal, N. O. (2003a).
RF and microwave power amplifier and transmitter technologies–Part 1.
High Frequency Electronics, pages 22–36.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 130 / 112
Reference XVI
[Raab et al., 2003b] Raab, F. H., Asbeck, P., Cripps, S. C., Kenington, P. B., Popovi´c, Z. B.,
Pothecary, N., Sevic, J. F., and Sokal, N. O. (2003b).
RF and microwave power amplifier and transmitter technologies–Part 2.
High Frequency Electronics, pages 22–36.
[Raab et al., 2003c] Raab, F. H., Asbeck, P., Cripps, S. C., Kenington, P. B., Popovi´c, Z. B.,
Pothecary, N., Sevic, J. F., and Sokal, N. O. (2003c).
RF and microwave power amplifier and transmitter technologies–Part 3.
High Frequency Electronics, pages 34–48.
[Rahmatallah and Mohan, 2013] Rahmatallah, Y. and Mohan, S. (2013).
Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy.
IEEE Commun. Surveys Tuts., 15(4):1567–1592.
[Rapp, 1991] Rapp, C. (1991).
Effects of HPA-nonlinearity on a 4-DPS/OFDM signal for a digital sound broadcasting
system.
In Proc. Second European Conf. on Satellite Commun., pages 179–184, Lihge, Belgium.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 131 / 112
Reference XVII
[Richter et al., 2009] Richter, F., Fehske, A. J., and Fettweis, G. P. (2009).
Energy efficiency aspects of base station deployment strategies for cellular networks.
In Proc. IEEE Veh. Technol. Conf. (VTC-Fall), Anchorage, AK, USA.
[Saleh, 1981] Saleh, A. A. M. (1981).
Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers.
IEEE Trans. Commun., 29:1715–1720.
[Shirvani et al., 2002] Shirvani, A., Su, D. K., and Wooley, B. A. (2002).
A CMOS RF power amplifier with parallel amplification for efficient power control.
IEEE J. Solid-State Circuits, 27:684–693.
[Staudinger, 2000] Staudinger, J. (2000).
Applying switched gain stage concepts to improve efficiency and linearity for mobile CDMA
power amplification.
Microwave Journal, 43:152–162.
[Teikari, 2008] Teikari, I. (2008).
Digital Predistortion Linearization Methods for RF Power Amplifiers.
PhD thesis, Helsinki University of Technology, Finland.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 132 / 112
Reference XVIII
[Tellado et al., 2003] Tellado, J., Hoo, L. M. C., and Cioffi, J. M. (2003).
Maximum-likelihood detection of nonlinearly distorted multicarrier symbols by iterative
decoding.
IEEE Trans. Commun., 51:218–228.
[Tombaz et al., 2011] Tombaz, S., V¨astberg, A., and Zander, J. (2011).
Energy- and cost-efficient ultra-high-capacity wireless access.
IEEE Trans. Wireless Commun., 18:18–24.
[Verd´u, 2002] Verd´u, S. (2002).
Spectral efficiency in the wideband regime.
IEEE Trans. Inf. Theory, 48(6):1319–1343.
[Vereecken et al., 2011] Vereecken, W., Heddeghem, W. V., Deruyck, M., Puype, B., Lannoo,
B., Joseph, W., Colle, D., Martens, L., and Demeester, P. (2011).
Power consumption in telecommunication networks: overview and reduction strategies.
IEEE Commun. Mag., 49:62–69.
[Vuolevi et al., 2000] Vuolevi, J., Rahkonen, T., and Manninen, J. (2000).
Measurement technique for characterizing memory effects in RF power amplifiers.
In Proc. IEEE Radio and Wireless Conf. (RAWCON), pages 195–198, Denver, CO, USA.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 133 / 112
Reference XIX
[Xu et al., 2011] Xu, J., Qiu, L., and Yu, C. (2011).
Improving energy efficiency through multimode transmission in the downlink MIMO
systems.
EURASIP J. Wireless Commun. Netw., 2011:1–12.
[Yang et al., 2009] Yang, Y., Hu, H., Xu, J., and Mao, G. (2009).
Relay technologies for WiMax and LTE-advanced mobile systems.
IEEE Commun. Mag., 47(10):100–105.
[Zhou et al., 2013] Zhou, L., Hu, R. Q., Qian, Y., and Chen, H.-H. (2013).
Energy-spectrum efficiency tradeoff for video streaming over mobile Ad Hoc networks.
IEEE J. Sel. Areas Commun., 31(5):981–991.
[Zillmann and Fettweis, 2005] Zillmann, P. and Fettweis, G. (2005).
On the capacity of multicarrier transmission over nonlinear channels.
In Proc. IEEE Veh. Technol. Conf. (VTC-Spring), Stockholm, Sweden.
Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 134 / 112

Energy Efficient Wireless Communications

  • 1.
    Energy Efficient Wireless Communications JingonJoung ACT: Advanced Commun. Tech. Dept. I2 R: Institute for Infocomm Research A⋆ STAR: Agency for Science, Technology, And Research, Singapore Tutorial 2: The 14th International Conference on Electronics, Information and Communication (ICEIC’2015), Singapore 29 January 2015 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 1 / 112
  • 2.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 2 / 112
  • 3.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 3 / 112
  • 4.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 4 / 112
  • 5.
    Green Wireless Communications •Green – to reduce energy consumption – to reduce CO2 emission Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
  • 6.
    Green Wireless Communications •Green Information & Communications Tech. (ICT) [1] – the 5th largest industry in power consumption – energy consumption: 3% (2007’) – CO2 emission: 2% (2007’) will increase X35, 4% (2020’) – e.g., cellular networks: ƒ energy: 77.5 TWh (2/60/3.5/10 TWh for 3b/4MM/20,000/etc. subscribers/radio stations/radio controllers/others) ƒ CO2: 35 Mt (1/20/2/5 Mt for “ ) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
  • 7.
    Green Wireless Communications •Wireless access communication networks consume significant amount of energy to overcome [2] – fading, distortion, degradation (path loss) – obstacles, interferences TX wirelesschannel RX Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
  • 8.
    Green Wireless Communications •The energy is mostly consumed at the transmitter • e.g., 80-85% power at base station (BS) in cellular networks [2] Base Band Module D A C Informationbinarybits Filter Filter LO LFTPA Attn. control DC control Mixer VGA Synthethesizer Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
  • 9.
    Green Wireless Communications •50–80% of transmitter’s power is consumed at power amplifier (PA) [3] PA input signal output signal DC Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 5 / 112
  • 10.
    References [1]: [McK, 2007] [Fettweis andZimmermann, 2008] [Mancuso and Sara Alouf, 2011] [Chatzipapas et al., 2011] [2]: [Richter et al., 2009] [Baliga et al., 2011] [Vereecken et al., 2011] [Chatzipapas et al., 2011] [Joung and Sun, 2012] [3]: [Gruber et al., 2009] [Bogucka and Conti, 2011] [Joung et al., 2012a] [Joung et al., 2014c] [Joung et al., 2013] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 6 / 112
  • 11.
    Green ICT Projects& Consortiums C2Power: Project, EU, Jan. 2010–Dec. 2012 - cognitive radio and cooperative strategies - power saving in multi-standard wireless devices eWIN, Project, KTH, Sweden ECOnet: low Energy COnsumption NETworks, EU, Oct. 2010–Sept. 2013 - dynamic adaptive technologies G-MC2: Project, Green Multiuser-MIMO Cooperative Communications, I2 R, Singapore, Jan. 2012–Dec. 2014 GREENET: Consortium, green wireless networks, EU GREENT: Consortium, green terminals for next generation wireless systems, EU CO2GREEN Project: Spain - cooperative and cognitive techniques - green wireless communications GreenTouch: Consortium, architecture, specifications and roadmap, since 2010 earth: Project, Energy Aware Radio and neTwork tecHnologies Green Radio: mobile virtual center of excellence (VCE) and personal communications, UK Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 7 / 112
  • 12.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 8 / 112
  • 13.
    What’s Efficiency? Efficiency: haswidely varying meanings in different disciplines “refers to the use of resources so as to maximize the production of goods and services” – economics “is an important factor in determination of productivity” – business “describes the extent to which time, effort or cost is well used for the intended task or purpose” – wikipedia “is the ratio of the energy developed by a machine, engine, etc., to the energy supplied to it” – dictionary Efficiency in general η valuable resource produced valuable resource consumed Efficiency in communications? Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 9 / 112
  • 14.
    What’s Efficiency? Efficiency: haswidely varying meanings in different disciplines “refers to the use of resources so as to maximize the production of goods and services” – economics “is an important factor in determination of productivity” – business “describes the extent to which time, effort or cost is well used for the intended task or purpose” – wikipedia “is the ratio of the energy developed by a machine, engine, etc., to the energy supplied to it” – dictionary Efficiency in general η valuable resource produced valuable resource consumed Efficiency in communications? Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 9 / 112
  • 15.
    What’s Efficiency? Efficiency: haswidely varying meanings in different disciplines “refers to the use of resources so as to maximize the production of goods and services” – economics “is an important factor in determination of productivity” – business “describes the extent to which time, effort or cost is well used for the intended task or purpose” – wikipedia “is the ratio of the energy developed by a machine, engine, etc., to the energy supplied to it” – dictionary Efficiency in general η valuable resource produced valuable resource consumed Efficiency in communications? Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 9 / 112
  • 16.
    Efficiency in Communications valuableresource produced in comm: information, coverage, subscribers, ... valuable resource consumed in comm: frequency, space, time, power, ... Spectral Efficiency (SE) and Energy Efficiency (EE) SE, b/s/Hz: number of reliably decoded bits per channel use [Cover and Thomas, 2006, Verd´u, 2002, Chen et al., 2011] - Shannon (channel) capacity, data rate (throughput), goodput EE, b/J: number of reliably decoded bits per energy - various EEs in communications Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 10 / 112
  • 17.
    Efficiency in Communications valuableresource produced in comm: information, coverage, subscribers, ... valuable resource consumed in comm: frequency, space, time, power, ... Spectral Efficiency (SE) and Energy Efficiency (EE) SE, b/s/Hz: number of reliably decoded bits per channel use [Cover and Thomas, 2006, Verd´u, 2002, Chen et al., 2011] - Shannon (channel) capacity, data rate (throughput), goodput EE, b/J: number of reliably decoded bits per energy - various EEs in communications Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 10 / 112
  • 18.
    Efficiency in Communications valuableresource produced in comm: information, coverage, subscribers, ... valuable resource consumed in comm: frequency, space, time, power, ... Spectral Efficiency (SE) and Energy Efficiency (EE) SE, b/s/Hz: number of reliably decoded bits per channel use [Cover and Thomas, 2006, Verd´u, 2002, Chen et al., 2011] - Shannon (channel) capacity, data rate (throughput), goodput EE, b/J: number of reliably decoded bits per energy - various EEs in communications Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 10 / 112
  • 19.
    Various EEs inComms. Table 1: Various EEs [Richter et al., 2009, Tombaz et al., 2011, Hasan et al., 2011, Zhou et al., 2013, Joung et al., ]. Metric Type Units power usage efficiency facility-level ratio (≥ 1) data center efficiency facility-level % telecommun. energy effi. ratio equipment-level Gbps/W telecommun. equipment energy effi. rating equipment-level − log(Gbps/W) energy consumption rating equipment-level W/Gbps area power consumption network-level Km2 /W user power consumption network-level users/W network energy effi. with delay effect network-level dB/J pecuniary efficiency network-level bits/$ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 11 / 112
  • 20.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 12 / 112
  • 21.
    Theoretical SE-EE Tradeoff SE,b/s/Hz EE,b/J Figure 1: Theoretical SE-EE tradeoff. Figure 2: Ideal power consumption. SE = log2(1 + Pout/σ2 ): Gaussian signalling, perfectly linear PA [Cover and Thomas, 2006] EE = Ω SE Pc : ideal power consumption model in Fig. 2 [Verd´u, 2002, Chen et al., 2011] [Pout: transmit power; σ2: noise power; Ω: total bandwidth] Convex and wide (good) tradeoff Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 13 / 112
  • 22.
    Theoretical SE-EE Tradeoff SE,b/s/Hz EE,b/J Figure 1: Theoretical SE-EE tradeoff. Pc PPA Pout== Figure 2: Ideal power consumption. SE = log2(1 + Pout/σ2 ): Gaussian signalling, perfectly linear PA [Cover and Thomas, 2006] EE = Ω SE Pc : ideal power consumption model in Fig. 2 [Verd´u, 2002, Chen et al., 2011] [Pout: transmit power; σ2: noise power; Ω: total bandwidth] Convex and wide (good) tradeoff Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 13 / 112
  • 23.
    Theoretical SE-EE Tradeoff SE,b/s/Hz EE,b/J 1 σ2 ln 2 Figure 1: Theoretical SE-EE tradeoff. Pc PPA Pout== Figure 2: Ideal power consumption. SE = log2(1 + Pout/σ2 ): Gaussian signalling, perfectly linear PA [Cover and Thomas, 2006] EE = Ω SE Pc : ideal power consumption model in Fig. 2 [Verd´u, 2002, Chen et al., 2011] [Pout: transmit power; σ2: noise power; Ω: total bandwidth] Convex and wide (good) tradeoff Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 13 / 112
  • 24.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 14 / 112
  • 25.
    Practical PA Package (a)SM2122-44L (b) SM0822-39 Figure 3: (a) High power PA with Pmax out = 25 W(44 dBm) and g = 55 dB. Frequency band 2.1 GHz −2.2 GHz. (b) Low power PA with Pmax out = 8 W and g = 45 dB. PA: a type of electronic amplifier - converts a low-power RF signal into a larger signal of significant power - typically, for driving the antenna of a transmitter Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 15 / 112
  • 26.
    Basic Circuit Modelof PA ACRF-drive,Pin DC input, PDC PAoutput,Pout Power Amplifier (PA) Figure 4: Power amplifier model with field-effect transistor (FET) [Cripps, 2006, Kazimierczuk, 2008]. Transistor is a core semiconductor device: amplifies and switches electronic signals and electrical power changes a voltage or current: terminals (G,D) to terminals (S,D) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 16 / 112
  • 27.
    Basic Circuit Modelof PA ACRF-drive,Pin DC input, PDC PAoutput,Pout gate drainsource transistor RFC DC blocking capacitor inputnetwork outputnetwork resistor Figure 4: Power amplifier model with field-effect transistor (FET) [Cripps, 2006, Kazimierczuk, 2008]. Transistor is a core semiconductor device: amplifies and switches electronic signals and electrical power changes a voltage or current: terminals (G,D) to terminals (S,D) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 16 / 112
  • 28.
    Ideal PA Linearity 00.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1.0 1.2 normalized input signal amplitude, |vin| normalizedoutputsignalamplitude,|vout| (a) −30 −20 −10 0 10 −1 0 1 input power, dBm normalizedgain,dB (b) −30 −20 −10 0 10 −1 0 1 input power, dBm phaseshift,degree (c) Figure 5: (a) and (b): Dynamic amplitude-to-amplitude modulation (AM/AM) distortion characteristics. (c) amplitude-to-phase modulation (AM/PM) characteristic. between RF input and output signals, i.e., Pin and Pout Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 17 / 112
  • 29.
    Ideal PA Efficiency 510 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55 PDC dBm Pout(Pmax)dBm Figure 6: Maximum output power at linear region versus PA power consumption. between input and output signals, i.e., Pout/PDC. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 18 / 112
  • 30.
    Linearity Models [Teikari,2008] Transistor-level System-level accurate yet difficult to obtain, generalize or analyze a few parameters obtained from measurements, tractable, and reasonably accurate PA Linearity Models [23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005], [26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 19 / 112
  • 31.
    Linearity Models [Teikari,2008] Transistor-level System-level Memory Memoryless accurate yet difficult to obtain, generalize or analyze a few parameters obtained from measurements, tractable, and reasonably accurate a frequency-domain fluctuation due to the capacitance and Inductance in the circuits and the thermal fluctuation of the PAs, i.e., an electrical and thermal memory effects, respectively [23,24] Volterra series model [25] Wiener, Hammerstein models [26] Memory polynomial [27] previous PA output signal does not affect the current PA output signal PA Linearity Models [23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005], [26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 19 / 112
  • 32.
    Linearity Models [Teikari,2008] Transistor-level System-level Memory Memoryless Passband Baseband accurate yet difficult to obtain, generalize or analyze a few parameters obtained from measurements, tractable, and reasonably accurate a frequency-domain fluctuation due to the capacitance and Inductance in the circuits and the thermal fluctuation of the PAs, i.e., an electrical and thermal memory effects, respectively [23,24] Volterra series model [25] Wiener, Hammerstein models [26] Memory polynomial [27] previous PA output signal does not affect the current PA output signal difficult to do simulation and computation Nonlinearity of complex baseband frequency approximation is captured simply [28] PA Linearity Models [23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005], [26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 19 / 112
  • 33.
    Memoryless Baseband PAModels Generic model: simplified baseband model for tractable analysis Ideal model for analysis: y = gx, where x and y are PA input and output signals; and g > 0 is a linear gain. Linear model for analysis [Minkoff, 1985]: y = gx + n, where n is the nonlinear distortion that is independent of x and modeled as Gaussian noise based on Bussgang’s theorem [Bussgang, 1952]. Soft limiter model for analysis [Tellado et al., 2003]: y = γ (|x|) e2πjΦ(|x|) - γ(·): amplitude-dependent gain function - Φ(·): phase shift function γ (|x|) |x|, if |x| < vsat, vsat, otherwise, Φ(|x|) 0 where vsat is a saturation output amplitude. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 20 / 112
  • 34.
    Memoryless Baseband PAModels Generic model: simplified baseband model for tractable analysis Ideal model for analysis: y = gx, where x and y are PA input and output signals; and g > 0 is a linear gain. Linear model for analysis [Minkoff, 1985]: y = gx + n, where n is the nonlinear distortion that is independent of x and modeled as Gaussian noise based on Bussgang’s theorem [Bussgang, 1952]. Soft limiter model for analysis [Tellado et al., 2003]: y = γ (|x|) e2πjΦ(|x|) - γ(·): amplitude-dependent gain function - Φ(·): phase shift function γ (|x|) |x|, if |x| < vsat, vsat, otherwise, Φ(|x|) 0 where vsat is a saturation output amplitude. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 20 / 112
  • 35.
    Memoryless Baseband PAModels Generic model: simplified baseband model for tractable analysis Ideal model for analysis: y = gx, where x and y are PA input and output signals; and g > 0 is a linear gain. Linear model for analysis [Minkoff, 1985]: y = gx + n, where n is the nonlinear distortion that is independent of x and modeled as Gaussian noise based on Bussgang’s theorem [Bussgang, 1952]. Soft limiter model for analysis [Tellado et al., 2003]: y = γ (|x|) e2πjΦ(|x|) - γ(·): amplitude-dependent gain function - Φ(·): phase shift function γ (|x|) |x|, if |x| < vsat, vsat, otherwise, Φ(|x|) 0 where vsat is a saturation output amplitude. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 20 / 112
  • 36.
    Memoryless Baseband PAModels Generic model: simplified baseband model for tractable analysis Ideal model for analysis: y = gx, where x and y are PA input and output signals; and g > 0 is a linear gain. Linear model for analysis [Minkoff, 1985]: y = gx + n, where n is the nonlinear distortion that is independent of x and modeled as Gaussian noise based on Bussgang’s theorem [Bussgang, 1952]. Soft limiter model for analysis [Tellado et al., 2003]: y = γ (|x|) e2πjΦ(|x|) - γ(·): amplitude-dependent gain function - Φ(·): phase shift function γ (|x|) |x|, if |x| < vsat, vsat, otherwise, Φ(|x|) 0 where vsat is a saturation output amplitude. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 20 / 112
  • 37.
    Memoryless Baseband PAModels PA-specific model: accurate baseband model specified to PA type Saleh model for traveling wave tube amplifier [Saleh, 1981]: γ (|x|) a1|x| 1 + a2|x|2 ; Φ(|x|) b1|x|2 1 + b2|x|2 where ai and bi are the distortion coefficients Ghorbani model for FET PA and for low amplitude nonlinearity [Ghorbani and Sheikhan, 1991]: γ (|x|) a1|xa2 | 1 + a3|xa2 | + a4|x|; Φ(|x|) b1|xb2 | 1 + b3|xb2 | + b4|x| Rapp model for envelope characteristic of solid state PA (especially, class-AB) [Rapp, 1991, Falconer et al., 2000]: γ (|x|) |x| 1 + |x| vsat 2p − 1 2p ; Φ(|x|) 0 where p is a smoothness factor. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 21 / 112
  • 38.
    Memoryless Baseband PAModels PA-specific model: accurate baseband model specified to PA type Saleh model for traveling wave tube amplifier [Saleh, 1981]: γ (|x|) a1|x| 1 + a2|x|2 ; Φ(|x|) b1|x|2 1 + b2|x|2 where ai and bi are the distortion coefficients Ghorbani model for FET PA and for low amplitude nonlinearity [Ghorbani and Sheikhan, 1991]: γ (|x|) a1|xa2 | 1 + a3|xa2 | + a4|x|; Φ(|x|) b1|xb2 | 1 + b3|xb2 | + b4|x| Rapp model for envelope characteristic of solid state PA (especially, class-AB) [Rapp, 1991, Falconer et al., 2000]: γ (|x|) |x| 1 + |x| vsat 2p − 1 2p ; Φ(|x|) 0 where p is a smoothness factor. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 21 / 112
  • 39.
    Memoryless Baseband PAModels PA-specific model: accurate baseband model specified to PA type Saleh model for traveling wave tube amplifier [Saleh, 1981]: γ (|x|) a1|x| 1 + a2|x|2 ; Φ(|x|) b1|x|2 1 + b2|x|2 where ai and bi are the distortion coefficients Ghorbani model for FET PA and for low amplitude nonlinearity [Ghorbani and Sheikhan, 1991]: γ (|x|) a1|xa2 | 1 + a3|xa2 | + a4|x|; Φ(|x|) b1|xb2 | 1 + b3|xb2 | + b4|x| Rapp model for envelope characteristic of solid state PA (especially, class-AB) [Rapp, 1991, Falconer et al., 2000]: γ (|x|) |x| 1 + |x| vsat 2p − 1 2p ; Φ(|x|) 0 where p is a smoothness factor. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 21 / 112
  • 40.
    Memoryless Baseband PAModels PA-specific model: accurate baseband model specified to PA type Saleh model for traveling wave tube amplifier [Saleh, 1981]: γ (|x|) a1|x| 1 + a2|x|2 ; Φ(|x|) b1|x|2 1 + b2|x|2 where ai and bi are the distortion coefficients Ghorbani model for FET PA and for low amplitude nonlinearity [Ghorbani and Sheikhan, 1991]: γ (|x|) a1|xa2 | 1 + a3|xa2 | + a4|x|; Φ(|x|) b1|xb2 | 1 + b3|xb2 | + b4|x| Rapp model for envelope characteristic of solid state PA (especially, class-AB) [Rapp, 1991, Falconer et al., 2000]: γ (|x|) |x| 1 + |x| vsat 2p − 1 2p ; Φ(|x|) 0 where p is a smoothness factor. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 21 / 112
  • 41.
    PA Linearity =Nonlinear 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1.0 1.2 Ideal model Linearized model (35dB) Soft limiter model Rapp model (p=10) Rapp model (p=2) Saleh model Ghorbani model p=10 p=2 normalized input signal amplitude, |vin| normalizedoutputsignalamplitude,|vout| Figure 7: AM/AM distortion characteristics for various baseband PA models. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 22 / 112
  • 42.
    Efficiency Models Efficiencies ofPA [Kazimierczuk, 2008, Raab et al., 2002] 1 Drain efficiency: ηD Pout PDC 2 Power-added efficiency (PAE): ηPAE Pout−Pin PDC = ηD 1 − 1 g 3 Overall efficiency: ηO Pout PDC+Pin Typically η ηD ≃ ηPAE ≃ ηO, ∵ Pin ≪ PDC, Pin ≪ Pout Two important factors Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 23 / 112
  • 43.
    Efficiency Models Efficiencies ofPA [Kazimierczuk, 2008, Raab et al., 2002] 1 Drain efficiency: ηD Pout PDC 2 Power-added efficiency (PAE): ηPAE Pout−Pin PDC = ηD 1 − 1 g 3 Overall efficiency: ηO Pout PDC+Pin Typically η ηD ≃ ηPAE ≃ ηO, ∵ Pin ≪ PDC, Pin ≪ Pout Two important factors Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 23 / 112
  • 44.
    Efficiency Models Efficiencies ofPA [Kazimierczuk, 2008, Raab et al., 2002] 1 Drain efficiency: ηD Pout PDC 2 Power-added efficiency (PAE): ηPAE Pout−Pin PDC = ηD 1 − 1 g 3 Overall efficiency: ηO Pout PDC+Pin Typically η ηD ≃ ηPAE ≃ ηO, ∵ Pin ≪ PDC, Pin ≪ Pout Two important factors Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 23 / 112
  • 45.
    PA Efficiency <100% 5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55 20% drain efficiency line 30% drain efficiency line 100% drain efficiency line PAs: 0−1 GHz PAs: 1−2 GHz PAs: 2−3 GHz PAs: 3−4 GHz PAs: 4−5 GHz PDC dBm Pout(Pmax)dBm Figure 8: Maximum output power (at the linear region) versus PDC. η < 100% [Raab et al., 2003a] Typically between 20% and 30% [Joung et al., 2012a] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 24 / 112
  • 46.
    PA Efficiency Drop 05 10 15 20 25 28 30 34 40 45 50 0 10 20 30 40 50 60 70 Power-addedefficiency(PAE),ǫ% Pout dBm SKY65162-70LF optimal matching Doherty class-AB MAX2840 RF2132 RF2146 SST13LP01 AN10923 Doherty 21180 Figure 9: PAE versus Pout. η usually drops rapidly as the output power decreases [Shirvani et al., 2002] a peak η is achieved at the peak envelope power (PEP) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 25 / 112
  • 47.
    PA Classes Table 2:Examples of PA Classes [Raab et al., 2002, Raab et al., 2003a, Raab et al., 2003b]. Class Linearity Efficiency Utilization Factor Main Applications A high ≤ 50% 0.125 millimeter wave (30-100GHz) 4W/30%/Ka-band 250mW/25%/Q-band 200mW/10%/W-band B high ≤ 78.5% 0.125 broadband at HF and VHF C ≤ 85% - high-power vacuum-tube Tx D low ≤ 100% 0.159 100W to 1kW HF E low ≤ 100% 0.098 high-efficiency at K-band 16W with 80% efficiency at UHF 100mW with 60% efficiency at 10GHz F low very high ≥ 50% from 0.125 to 0.159 UHF and microwave (operation) class: amplification method power-output capability (transistor utilization factor): output power (# of transistor)×(peak drain voltage)×(peak drain current) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 26 / 112
  • 48.
    Applications of PAs HFVHF UHF L S C X Ku K Ka V W G THF 3M 30M 300M 1G 2G 12G 18G4G 8G 26.5G 40G 110G 300G 3T3G 75G (1-300M) Comm. Submarines (3-30K) AM broadcasts (153K-26M) Navigation FM (87.5-108M) TV (54M-890M, VHF, UHF) Weather radio (162M) Aircraft comm. Land/maritime mobile comm. RFID (ISM band) Shortwave Broadcasts Citizens' band radio Over-the-horizon radar/comm. Amateur radio (3G-30G) WLAN 802.11a/ac/ad/n (5G) DBS (10.7G-12.75G) Satellite comm./TV (C,Ku,Ka) Microwave devices/communications Modern radars Radio astronomy Amateur radio (30G-300G) LMDS (26G-29G, 31G-31.3G) WLAN 802.11ad (60G) HIgh-frequency microwave radio relay MIcrowave remote sensing DIrected-energy weapon MIllimeter wave scanner Radio astronomy Amateur radio (1T~) Terahertz imaging Ultrafast molecular dynamics Condensed-matter physics Terahertz time-domain spectroscopy Terahertz computing/communications Sub-mm remote sensing Amateur radio (300M-3G) FRS/GMRS (462M-467M) ZigBee (ISM: 868M,915M,2.4G) Z-Wave (900M) DECT/Cordless telephone (900M) GPS (1.2,1.5G) GSM (900M,1.8G) UMTS (2.1G) LTE (698M-3.8G) WLAN (802.11b/g/n/ad 2.4G) Bluetooth (2.4-2.483.5MHz) BAN/WBAN/BSN (2.36G-2.4G) UWB (1.6G-10.5G) Modern Cordless telephone (1.9G,2.4G,5.8G) Si LDMOS GaN-HEMT Si RF CMOS SiGe-HBT, SiGe-BiCMOS GaAs-HBT, GaAs-pHEMT InP-HBT InP-HEMT, GaAs-mEHMT SiC-MESFET 0 Figure 10: Power amplifier applications over IEEE bands [Joung et al., 2014b]. FET: field effect transistor MOSFET: metal oxide semiconductor FET MESFET: metal epitaxial semiconductor FET DMOS: diffued metal oxide semiconductor LDMOS: laterally DMOS CMOS: complementary metal oxide semicond. BiCMOS: bipolar CMOS HBT: heterojunction bipolar transistor HEMT: high electron mobility transistor mHEMT: metamorphic HEMT pHEMT: pseudomorphic HEMT SiGe: silicon Germanium GaAs: Gallium Arsenide GaN: Gallium Nitride InP: Indium Phosphide ISM: industrial, scientific and medical WPAN: wireless personal area network WLAN: wireless local area network LTE: long term evolution GSM: Global system for mobile communications UMTS: universal mobile telecommun. system UWB: ultra-wide band GPS: global positioning system FRS: family radio service GMRS: general mobile radio service BSN: body sensor network BAN: body area network WBAN: wireless body area network DBS: direct-broadcast satellite LMDS: local multipoint distribution service DECT: digital enhanced cordless telecommun. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 27 / 112
  • 49.
    PA in WirelessCommunications The LDMOS PA are employed for many communication equipments. The international technology roadmap for semiconductors (ITRS) reports that 48 volt LDMOS transistor is widely used in cellular infrastructure market in 2011 [ITRS, 2011]. ∵ The LDMOS can support high output power required for a base station (BS) in cellular networks. Table 3: Transmit Power of BSs [Auer et al., 2011, earth, 2015] Type Pmax out back-off average max output power ISD [m] Macro 54 dBm (250 W) 8 dB 43 dBm (20 W) 1 Km −5 Km Micro 46 dBm (40 W) 8 dB 38 dBm (6.3 W) 100 m −500 m Pico 33 dBm (2 W) 12 dB 21 dBm (125 mW) 10 m −80 m Femto 29 dBm (800 mW) 12 dB 17 dBm (50 mW) indoor To compensate poor efficiency of LDMOS devices in the low power regime, envelope tracking architecture or Doherty technique is used for 3G and 4G networks that employs high PAPR waveform signals. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 28 / 112
  • 50.
    Previous Studies onthe Practical SE-EE Tradeoff Practical SE analysis with PA nonlinearity for multicarrier systems [Tellado et al., 2003, Zillmann and Fettweis, 2005, Gutman and Wulich, 2012] Practical SE-EE tradeoff conjecture [Chen et al., 2011] Practical SE-EE tradeoff analysis with practical power consumption model [H´eliot et al., 2012, Onireti et al., 2012] Analytical and numerical quantification of SE-EE tradeoff with BOTH nonlinearity and imperfect efficiency of PA [Joung et al., 2012a, Joung et al., 2014c] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 29 / 112
  • 51.
    Previous Studies onthe Practical SE-EE Tradeoff Practical SE analysis with PA nonlinearity for multicarrier systems [Tellado et al., 2003, Zillmann and Fettweis, 2005, Gutman and Wulich, 2012] Practical SE-EE tradeoff conjecture [Chen et al., 2011] Practical SE-EE tradeoff analysis with practical power consumption model [H´eliot et al., 2012, Onireti et al., 2012] Analytical and numerical quantification of SE-EE tradeoff with BOTH nonlinearity and imperfect efficiency of PA [Joung et al., 2012a, Joung et al., 2014c] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 29 / 112
  • 52.
    Previous Studies onthe Practical SE-EE Tradeoff Practical SE analysis with PA nonlinearity for multicarrier systems [Tellado et al., 2003, Zillmann and Fettweis, 2005, Gutman and Wulich, 2012] Practical SE-EE tradeoff conjecture [Chen et al., 2011] Practical SE-EE tradeoff analysis with practical power consumption model [H´eliot et al., 2012, Onireti et al., 2012] Analytical and numerical quantification of SE-EE tradeoff with BOTH nonlinearity and imperfect efficiency of PA [Joung et al., 2012a, Joung et al., 2014c] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 29 / 112
  • 53.
    Practical SE-EE Tradeoff SE,b/s/Hz EE,b/J ? Figure 11: Practical SE-EE tradeoff. Pc PPA Pout≫≫ Figure 12: Practical Power Consumption. Practical system’s power consumption model in Fig. 12 efficiency < 100% and PA nonlinearity SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c] Concave, narrow (bad), and biased tradeoff Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 30 / 112
  • 54.
    Practical SE-EE Tradeoff SE,b/s/Hz EE,b/J ? Figure 11: Practical SE-EE tradeoff. Pc PPA Pout≫≫ Figure 12: Practical Power Consumption. Practical system’s power consumption model in Fig. 12 efficiency < 100% and PA nonlinearity SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c] Concave, narrow (bad), and biased tradeoff Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 30 / 112
  • 55.
    Practical SE-EE Tradeoff SE,b/s/Hz EE,b/J Theoretical tradeoff in Fig. 1 Figure 11: Practical SE-EE tradeoff. Pc PPA Pout≫≫ Figure 12: Practical Power Consumption. Practical system’s power consumption model in Fig. 12 efficiency < 100% and PA nonlinearity SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c] Concave, narrow (bad), and biased tradeoff Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 30 / 112
  • 56.
    Practical SE-EE Tradeoff 1 σ2ln 2 SE, b/s/Hz EE,b/J PA inefficiency and SE degradation resulting in drop of EE PA nonlinearity resulting in drop of SE Theoretical SE-EE tradeoff Practical SE-EE tradeoff Figure 13: Illustration of SE-EE tradeoff. SE maximization or EE maximization? EE for a single antenna (PA) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 31 / 112
  • 57.
    Practical SE-EE Tradeoff 1 σ2ln 2 SE, b/s/Hz EE,b/J PA inefficiency and SE degradation resulting in drop of EE PA nonlinearity resulting in drop of SE Theoretical SE-EE tradeoff Practical SE-EE tradeoff Figure 13: Illustration of SE-EE tradeoff. SE maximization or EE maximization? EE for a single antenna (PA) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 31 / 112
  • 58.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 32 / 112
  • 59.
    Energy Efficient Technologies •50–80% of transmitter’s power is consumed at power amplifier (PA) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 33 / 112
  • 60.
    Energy Efficient Technologies Device-LevelApproach Transmitter architecture PA package structures Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 33 / 112
  • 61.
    Energy Efficient Technologies Device-LevelApproach Transmitter architecture PA package structures System-Level Approach Transceiver signal processing IBO/PAPR/DPD/… Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 33 / 112
  • 62.
    Energy Efficient Technologies Device-LevelApproach Transmitter architecture PA package structures System-Level Approach Transceiver signal processing IBO/PAPR/DPD/… Network-Level Approach Network processing SC/HetNet/CZ/CoMP/CoNap/DTX/… Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 33 / 112
  • 63.
    EE Tech. [Jounget al., 2014b] Approaches Methods Improvement Challenges 1. PA Design linear architecture Linearity (L) high cost, parallel architecture Efficiency (E) large form factor switching architecture (PAS) E envelope tracking (ET) architecture E PA circuit architecture envelope elimination & restoration (EER/Kahn) L, E outphasing technique (LINK) L, E Doherty technique E 2. Signal Design PAPR reduction clipping L, E out-of-band emission coding additional resource,partial transmit sequence (PTS) latency, PA input/output selective mapping (SLM) complexity signal processing tone reservation (TR) tone insertion (TI) Linearlization feed forward sensitive to PA, feedback additional circuit, digital predistortion (DPD) complexity 3. Network Design Network densification E infrastructure, in/out band small cells overhead signalling, distributed antenna system (DAS) scalability, Efficient network cooperative communications (relay) handover, topology & protocol Network protocol interference design by cell zooming deploying low power PA coordinated multipoint (CoMP) or using PA on/off cell discontinuous TX/RX (DTX/DRX) coordinated sleep and napping (CoNap) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 34 / 112
  • 64.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 35 / 112
  • 65.
    1. PA Design Architecture:a building block of various circuits (e.g., multiple PAs, oscillators, mixers, filters, matching networks, combiners, and circulators) Transmitter Architecture: direct approach, PA package structures 1 Linear architecture [Raab et al., 2003c] 2 Corporate architecture [Cripps, 2006] 3 Parallel architecture [Shirvani et al., 2002, Alc, 2008] 4 Stage bypassing and gate switching [Raab et al., 2003c, Staudinger, 2000] 5 Envelope elimination and restoration (EER) technique (or Kahn) [Raab et al., 2003c, Kahn, 1952] 6 Envelope tracking architecture [Raab et al., 2003c] F 7 Outphasing using linear amplification using nonlinear components (LINK) [Raab et al., 2003c, Cox, 1974] 8 Doherty technique [Cha et al., 2004, Doherty, 1936, Correia et al., 2010, Auer et al., 2011, Arnold et al., 2010] F 9 Combined complex architecture, etc. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 36 / 112
  • 66.
    1. PA Design Architecture:a building block of various circuits (e.g., multiple PAs, oscillators, mixers, filters, matching networks, combiners, and circulators) Transmitter Architecture: direct approach, PA package structures 1 Linear architecture [Raab et al., 2003c] 2 Corporate architecture [Cripps, 2006] 3 Parallel architecture [Shirvani et al., 2002, Alc, 2008] 4 Stage bypassing and gate switching [Raab et al., 2003c, Staudinger, 2000] 5 Envelope elimination and restoration (EER) technique (or Kahn) [Raab et al., 2003c, Kahn, 1952] 6 Envelope tracking architecture [Raab et al., 2003c] F 7 Outphasing using linear amplification using nonlinear components (LINK) [Raab et al., 2003c, Cox, 1974] 8 Doherty technique [Cha et al., 2004, Doherty, 1936, Correia et al., 2010, Auer et al., 2011, Arnold et al., 2010] F 9 Combined complex architecture, etc. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 36 / 112
  • 67.
    Transmit Architectures DC A,P gA,P DC A,PgA,P DC + A,P gA,P DC A,P gA,P A,P gA,P E-Det. A A,P A,P gA,P E-Det. A P DC + A,P gA,P P1 P2 DC + A,P gA,P DC : DC power supply : PA A: amplitude information P: phase information g: gain: RF-drive input : RF output : delay+ : combiner (a) (b1) (d) (e) (b2) (c) (f) (g) SCS limitter DC DC/DC Figure 14: Various transmit architectures: a) Linear architecture. b) Parallel architecture. c) Switching architecture. d) Envelope tracking (ET) architecture. e) EER technique (or Kahn). f) Outphasing technique. g) Doherty technique (DT). ET: DC power is controlled by the envelope of the RF input signal DT: Class-B (carrier or main PA) + Class-C (peaking or auxiliary PA) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 37 / 112
  • 68.
    Key Points Table 4:Efficiency, costs and environmental impact of a 20,000-base-station network with different power amplifier technologies [Mancuso and Sara Alouf, 2011]. Traditional technology Doherty technology Envelope tracking PA efficiency 15 % 25 % 45 % Power consumption 51.7 MW 27.2 MW 16.1 MW CO2 emission 194,600 tons 102,400 tons 60,800 tons Power cost 54.3 MM$ 28.6 MM$ 17.0 MM$ Challenges: Nonlinearity and inefficiency are fundamental and inevitable. mathematical model: modeling and empirical evaluation, i.e., simulated-annealing-based custom computer-aided design high manufacturing cost large form factor wide dynamic range with high efficiency advanced materials and metamaterials Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 38 / 112
  • 69.
    Key Points Table 4:Efficiency, costs and environmental impact of a 20,000-base-station network with different power amplifier technologies [Mancuso and Sara Alouf, 2011]. Traditional technology Doherty technology Envelope tracking PA efficiency 15 % 25 % 45 % Power consumption 51.7 MW 27.2 MW 16.1 MW CO2 emission 194,600 tons 102,400 tons 60,800 tons Power cost 54.3 MM$ 28.6 MM$ 17.0 MM$ Challenges: Nonlinearity and inefficiency are fundamental and inevitable. mathematical model: modeling and empirical evaluation, i.e., simulated-annealing-based custom computer-aided design high manufacturing cost large form factor wide dynamic range with high efficiency advanced materials and metamaterials Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 38 / 112
  • 70.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 39 / 112
  • 71.
    2. Signal Design TransceiverSignal Processing: knowledge of the signal properties 1 Input backoff (IBO) [Kowlgi and Berland, 2011] - Reducing the transmit power to sufficiently below its peak output power - Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8 to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high IBO - High IBO reduces the PA efficiency 2 PAPR reduction methods [Jiang and Wu, 2008] Clipping/ coding/ partial transmission sequence and selective mapping/ nonlinear companding transform/ tone reservation and tone injection 3 Linearization [Pothecary, 1999, Kenington, 2000] To mitigate the nonlinearity of PAs in the low power regime, various linearization methods such as feedforward/ feedback/ predistortion 4 Active antenna systems (reducing feeder loss) 5 SE improving system design: large (massive) MIMO, 3D MIMO, etc. 6 Combined complex architecture Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 40 / 112
  • 72.
    2. Signal Design TransceiverSignal Processing: knowledge of the signal properties 1 Input backoff (IBO) [Kowlgi and Berland, 2011] - Reducing the transmit power to sufficiently below its peak output power - Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8 to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high IBO - High IBO reduces the PA efficiency 2 PAPR reduction methods [Jiang and Wu, 2008] Clipping/ coding/ partial transmission sequence and selective mapping/ nonlinear companding transform/ tone reservation and tone injection 3 Linearization [Pothecary, 1999, Kenington, 2000] To mitigate the nonlinearity of PAs in the low power regime, various linearization methods such as feedforward/ feedback/ predistortion 4 Active antenna systems (reducing feeder loss) 5 SE improving system design: large (massive) MIMO, 3D MIMO, etc. 6 Combined complex architecture Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 40 / 112
  • 73.
    2. Signal Design TransceiverSignal Processing: knowledge of the signal properties 1 Input backoff (IBO) [Kowlgi and Berland, 2011] - Reducing the transmit power to sufficiently below its peak output power - Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8 to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high IBO - High IBO reduces the PA efficiency 2 PAPR reduction methods [Jiang and Wu, 2008] Clipping/ coding/ partial transmission sequence and selective mapping/ nonlinear companding transform/ tone reservation and tone injection 3 Linearization [Pothecary, 1999, Kenington, 2000] To mitigate the nonlinearity of PAs in the low power regime, various linearization methods such as feedforward/ feedback/ predistortion 4 Active antenna systems (reducing feeder loss) 5 SE improving system design: large (massive) MIMO, 3D MIMO, etc. 6 Combined complex architecture Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 40 / 112
  • 74.
    2. Signal Design TransceiverSignal Processing: knowledge of the signal properties 1 Input backoff (IBO) [Kowlgi and Berland, 2011] - Reducing the transmit power to sufficiently below its peak output power - Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8 to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high IBO - High IBO reduces the PA efficiency 2 PAPR reduction methods [Jiang and Wu, 2008] Clipping/ coding/ partial transmission sequence and selective mapping/ nonlinear companding transform/ tone reservation and tone injection 3 Linearization [Pothecary, 1999, Kenington, 2000] To mitigate the nonlinearity of PAs in the low power regime, various linearization methods such as feedforward/ feedback/ predistortion 4 Active antenna systems (reducing feeder loss) 5 SE improving system design: large (massive) MIMO, 3D MIMO, etc. 6 Combined complex architecture Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 40 / 112
  • 75.
    Key Points Impact: avoidance/compensationof the adverse impact of PA nonlinearity Cost: - PA efficiency reduction (high power consumption) for input back off - out-of-band radiation increase for signal clipping - SE reduction for side information - additional computational complexity (see e.g., parameter optimization and multiple candidate sequence generation [Rahmatallah and Mohan, 2013]) - additional analog circuits Challenges: hardware capability limitation high sensitivity to PA status additional resource requirement additional circuits tradeoff between: linearity and efficiency; SE and EE Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 41 / 112
  • 76.
    Key Points Impact: avoidance/compensationof the adverse impact of PA nonlinearity Cost: - PA efficiency reduction (high power consumption) for input back off - out-of-band radiation increase for signal clipping - SE reduction for side information - additional computational complexity (see e.g., parameter optimization and multiple candidate sequence generation [Rahmatallah and Mohan, 2013]) - additional analog circuits Challenges: hardware capability limitation high sensitivity to PA status additional resource requirement additional circuits tradeoff between: linearity and efficiency; SE and EE Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 41 / 112
  • 77.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 42 / 112
  • 78.
    3. Network Design NetworkProcessing: using small power PA/reducing PA activation time 1 Network densification - in/out band small cell, inter-cell interference coordination (ICIC), heterogeneous network (HetNet) [Chen et al., 2011, Richter et al., 2009] - DAS [Choi and Andrews, 2007, Joung and Sun, 2013, Joung et al., 2014a] - relay [Joung and Sun, 2012, Yang et al., 2009] Figure 15: Example of network densification. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 43 / 112
  • 79.
    3. Network Design NetworkProcessing: using small power PA/reducing PA activation time 1 Network densification - in/out band small cell, inter-cell interference coordination (ICIC), heterogeneous network (HetNet) [Chen et al., 2011, Richter et al., 2009] - DAS [Choi and Andrews, 2007, Joung and Sun, 2013, Joung et al., 2014a] - relay [Joung and Sun, 2012, Yang et al., 2009] carrier frequency 1 carrier frequency 2 joint processing cross-tier interference intra-tier interference in-band small cell coverage out-band small cell coverage cooperative communication region Macro BS coverage usermacro BS small BS relay AP/RRH Figure 15: Example of network densification. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 43 / 112
  • 80.
    Network Design 1 Networkdensification 2 Network protocol design - Cell zooming [Niu et al., 2010] - CoMP [Han et al., 2011] - DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012, Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 44 / 112
  • 81.
    Network Design 1 Networkdensification 2 Network protocol design - Cell zooming [Niu et al., 2010] deactivated BS deactivated BSactive BS - CoMP [Han et al., 2011] - DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012, Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 44 / 112
  • 82.
    Network Design 1 Networkdensification 2 Network protocol design - Cell zooming [Niu et al., 2010] deactivated BS deactivated BSactive BS - CoMP [Han et al., 2011] deactivated BS active BSactive BS - DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012, Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 44 / 112
  • 83.
    Network Design 1 Networkdensification 2 Network protocol design - Cell zooming [Niu et al., 2010] deactivated BS deactivated BSactive BS - CoMP [Han et al., 2011] deactivated BS active BSactive BS - DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012, Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002] fre q u e n c y P A c a n b e tu rn e d o ff P A is o p e ra tin g in h ig h e ffic ie n c y T ra n s m it p o w e r Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 44 / 112
  • 84.
    Key Points Requirements forcell densification: cross-tier interference management - cell range expansion [Damnjanovic et al., 2011] and eICIC [Kosta et al., 2013] in 3GPP - optimization of beamforming and radio resource management [Joung et al., 2012b, Joung et al., 2012c] Requirements for network protocol design: cooperation or coordination among different nodes - decide how often the cooperation/coordination performs PA on and off to balance the system performance and the power saving - optimization of the radio resource allocation Challenges: high infrastructure cost overhead signalling and frequent handover network (backbone) overhead scalability to already-deployed networks Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 45 / 112
  • 85.
    Key Points Requirements forcell densification: cross-tier interference management - cell range expansion [Damnjanovic et al., 2011] and eICIC [Kosta et al., 2013] in 3GPP - optimization of beamforming and radio resource management [Joung et al., 2012b, Joung et al., 2012c] Requirements for network protocol design: cooperation or coordination among different nodes - decide how often the cooperation/coordination performs PA on and off to balance the system performance and the power saving - optimization of the radio resource allocation Challenges: high infrastructure cost overhead signalling and frequent handover network (backbone) overhead scalability to already-deployed networks Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 45 / 112
  • 86.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 46 / 112
  • 87.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 47 / 112
  • 88.
    System Model x y IDFTF addCP→P/S→DAC ADC→S/P→removeCP DFTFH x PA LPA(·) {h0,· · · , hL−1} w z y Figure 16: An OFDM system with a nonlinear memoryless PA [Joung et al., 2014c]. x = [x0, · · · , xN−1] T ∼ CN(0, Pin): OFDM symbol consisting of N complex-valued data symbols x = [x0, · · · , xN−1]T = F x: time domain signal vector Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 48 / 112
  • 89.
    Signal Model F :N-by-N unitary IDFT matrix wt = LPA(xt): PA output signal, w = [w0, · · · , wN+NCP−1]T xt = atejθt : at |xt|, θt is the phase of xt (0 ≤ θt < 2π) wt = btejθt : bt |wt| {h0, h1, · · · , hL−1}: L-tap multipath channel Yt = ht ⊗ wt + zt: received signal - perfect timing synchronization - the CP is removed - indices are shifted to start from 0 - zt ∼ CN(0, σ2 z ): AWGN - yt rtejφ : rt and φt represent the amplitude and phase of Yt - y = [Y0, · · · , YN−1]T : vector representation y = [y0, · · · , yN−1]T = F H y: frequency domain signal vector after DFT of y Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 49 / 112
  • 90.
    Assumptions A1: {xn} arei.i.d. with distribution x ∼ CN(0, Pin) A2: Soft limiter model for PA input/ouput power: LPA(at) = √ gat, if at < amax bmax, if at ≥ amax - amax Pmax in and bmax Pmax out - Linearity in low power regime can be obtained with linearization techniques (e.g., feedforward, feedback, and predistortion) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 50 / 112
  • 91.
    Assumptions A1: {xn} arei.i.d. with distribution x ∼ CN(0, Pin) A2: Soft limiter model for PA input/ouput power: LPA(at) = √ gat, if at < amax bmax, if at ≥ amax - amax Pmax in and bmax Pmax out - Linearity in low power regime can be obtained with linearization techniques (e.g., feedforward, feedback, and predistortion) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 50 / 112
  • 92.
    Mutual Information (MI)in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N−1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t (d) = H(Y ) − log2 πeσ2 z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = − y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
  • 93.
    Mutual Information (MI)in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N−1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t (d) = H(Y ) − log2 πeσ2 z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = − y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
  • 94.
    Mutual Information (MI)in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N−1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t (d) = H(Y ) − log2 πeσ2 z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = − y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
  • 95.
    Mutual Information (MI)in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N−1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t (d) = H(Y ) − log2 πeσ2 z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = − y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
  • 96.
    Mutual Information (MI)in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N−1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) − H(Y |X) (c) identical MI over t (d) = H(Y ) − log2 πeσ2 z [b/s] (d) H(Y |X) = H(N) = log2 πeσ2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = − y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 51 / 112
  • 97.
    Entropy H(y) inFlat Fading Ch. Define S as a binary random variable denoting the clipping at the PA: S = 0, if A ≤ amax 1, otherwise The pdf of y can be rewritten as fY (y) = fY (y, S = 0) + fY (y, S = 1) A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see [Joung et al., 2014c] for the proof): fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z - N0(y): pdf of CN 0, gPin + σ2 z , N1(y): pdf of CN bmax, σ2 z - Q1(·, ·): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters ρmax 2(gPin+σ2 z) gPin √ bmax and µ(y) 8gPin(gPin+σ2 z) σ4 z |y|2 - yRe: real part of y - I0(·): modified Bessel function of first kind Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 52 / 112
  • 98.
    Entropy H(y) inFlat Fading Ch. Define S as a binary random variable denoting the clipping at the PA: S = 0, if A ≤ amax 1, otherwise The pdf of y can be rewritten as fY (y) = fY (y, S = 0) + fY (y, S = 1) A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see [Joung et al., 2014c] for the proof): fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z - N0(y): pdf of CN 0, gPin + σ2 z , N1(y): pdf of CN bmax, σ2 z - Q1(·, ·): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters ρmax 2(gPin+σ2 z) gPin √ bmax and µ(y) 8gPin(gPin+σ2 z) σ4 z |y|2 - yRe: real part of y - I0(·): modified Bessel function of first kind Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 52 / 112
  • 99.
    Entropy H(y) inFlat Fading Ch. Define S as a binary random variable denoting the clipping at the PA: S = 0, if A ≤ amax 1, otherwise The pdf of y can be rewritten as fY (y) = fY (y, S = 0) + fY (y, S = 1) A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see [Joung et al., 2014c] for the proof): fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z - N0(y): pdf of CN 0, gPin + σ2 z , N1(y): pdf of CN bmax, σ2 z - Q1(·, ·): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters ρmax 2(gPin+σ2 z) gPin √ bmax and µ(y) 8gPin(gPin+σ2 z) σ4 z |y|2 - yRe: real part of y - I0(·): modified Bessel function of first kind Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 52 / 112
  • 100.
    Analytical Results onSE SE(ξ) = H(Y ) − log2 πeσ2 z = − y s=0,1 fY (y, S = s) log2 s=0,1 fY (y, S = s) dy − log2 πeσ2 z If the PA is perfectly linear, i.e., bmax → ∞ and thus amax → ∞ fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax = N0(y) fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z = 0 SEideal (ξ) = log2 (1 + γξ) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 53 / 112
  • 101.
    Analytical Results onSE SE(ξ) = H(Y ) − log2 πeσ2 z = − y s=0,1 fY (y, S = s) log2 s=0,1 fY (y, S = s) dy − log2 πeσ2 z If the PA is perfectly linear, i.e., bmax → ∞ and thus amax → ∞ fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax = N0(y) fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z = 0 SEideal (ξ) = log2 (1 + γξ) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 53 / 112
  • 102.
    Analytical Results onSE SE(ξ) = H(Y ) − log2 πeσ2 z = − y s=0,1 fY (y, S = s) log2 s=0,1 fY (y, S = s) dy − log2 πeσ2 z If the PA is perfectly linear, i.e., bmax → ∞ and thus amax → ∞ fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax = N0(y) fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z = 0 SEideal (ξ) = log2 (1 + γξ) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 53 / 112
  • 103.
    Analytical Results onSE If PA input power is low, i.e., ξ ≪ 1 fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax ≈ N0(y) fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z ≈ N1(y) SEIBO (ξ) ≈ log2 (1 + γξ) + e− 1 ξ log2 πσ2 z e1− 1 ξ − log2 σ2 z Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 54 / 112
  • 104.
    Analytical Results onSE If PA input power is low, i.e., ξ ≪ 1 fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax ≈ N0(y) fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z ≈ N1(y) SEIBO (ξ) ≈ log2 (1 + γξ) + e− 1 ξ log2 πσ2 z e1− 1 ξ − log2 σ2 z Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 54 / 112
  • 105.
    Analytical Results onSE If PA input power is low, i.e., ξ ≪ 1 fY (y, S = 0) = N0(y) 1 − Q1 µ(y), √ ρmax ≈ N0(y) fY (y, S = 1) = N1(y) exp − a2 max Pin − 2bmaxyRe σ2 z I0 2bmax|y| σ2 z ≈ N1(y) SEIBO (ξ) ≈ log2 (1 + γξ) + e− 1 ξ log2 πσ2 z e1− 1 ξ − log2 σ2 z Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 54 / 112
  • 106.
    Analytical Results onSE Theorem 1. The approximated SE, SEIBO (ξ), is a concave function over max 0, − 1 ln πσ2 z < ξ ≤ 1 2 . Theorem 2. The SE-aware optimal power loading factor ξ⋆ SE which maximizes SEIBO (ξ) is obtained by the solution of the following equality: γ 1 + γξ = e−ξ−1 ξ−2 −ξ−1 + 1 − ln πeσ2 z Proposition 3. A closed form approximation of ξ⋆ SE is given by ξ⋆ SE ≈ ξ⋆ SE −1 W 1 ln(πeσ2 z ) where W(·) denotes the Lambert W function [Chapeau-Blondeau and Monir, 2002] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 55 / 112
  • 107.
    Analytical Results onSE Theorem 1. The approximated SE, SEIBO (ξ), is a concave function over max 0, − 1 ln πσ2 z < ξ ≤ 1 2 . Theorem 2. The SE-aware optimal power loading factor ξ⋆ SE which maximizes SEIBO (ξ) is obtained by the solution of the following equality: γ 1 + γξ = e−ξ−1 ξ−2 −ξ−1 + 1 − ln πeσ2 z Proposition 3. A closed form approximation of ξ⋆ SE is given by ξ⋆ SE ≈ ξ⋆ SE −1 W 1 ln(πeσ2 z ) where W(·) denotes the Lambert W function [Chapeau-Blondeau and Monir, 2002] Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 55 / 112
  • 108.
    Numerical Results onSE Bandwidth: Ω = 10 MHz Channel attenuation: G − 128 + 10 log10 (d−α ) [LTE, 2011] - G = 5 dB: TRx feeder loss + antenna gains - d = 200 m: distance between Tx and Rx - α = 3.76: path loss exponent AWGN: σ2 z = −174 dBm / Hz PA: SM2122-44L Pmax out = 25 W g = 55 dB 0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10 12 14 16 18 Power loading factor, ξ SE(ξ),b/s/Hz SEideal (ξ) SE(ξ) SEIBO (ξ) SE(ξ⋆ SE) : ideal SE with an ideal PA : practical SE with a practical PA : approximated SE : optimal SE Figure 17: SE evaluation results. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 56 / 112
  • 109.
    Power Consumption AndLosses Power Amplifier (PA) Module DC Power Supply (PS) Module Base Band (BB) Module Radio Frequency (RF) Module (except PA) Active Cooler and Battery Back up (CB) Module (if present) PBB PRF PPA PCB Pin Pout loss loss loss loss Figure 18: Block diagram for system power consumption [Auer et al., 2011, Arnold et al., 2010, Deruyck et al., 2010, Deruyck et al., 2011, Kumar and Gurugubelli, 2011]. Pfix (1 + CPS)(1 + CCB)(PBB + PRF) CPS: power supply coefficient between 0.1 and 0.15 CCB: active cooler and battery coefficient less than 0.4 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 57 / 112
  • 110.
    PA-Dependent Nonlinear Power ConsumptionModel PA-dependent nonlinear power consumption model (0 < ξ ≤ 1): Pc(ξ) = Pfix + c c1 + c2 ξ Pmax out - c: power loading-dependent scaling coefficient - ℓ-way Doherty PA [Raab, 1987] (for class-A and B, ℓ = 1) (c1, c2) = 4 ℓπ ×    (2, 0) , 0 < ξ ≤ 1, (0, 1) , 0 < ξ ≤ 1 ℓ2 , (−1, ℓ + 1) , 1 ℓ2 < ξ ≤ 1. Ideal power consumption model with ideal PA (100% efficiency): Pideal c (ξ) = Pfix + c 1 − g−1 ξPmax out Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 58 / 112
  • 111.
    PA-Dependent Nonlinear Power ConsumptionModel PA-dependent nonlinear power consumption model (0 < ξ ≤ 1): Pc(ξ) = Pfix + c c1 + c2 ξ Pmax out - c: power loading-dependent scaling coefficient - ℓ-way Doherty PA [Raab, 1987] (for class-A and B, ℓ = 1) (c1, c2) = 4 ℓπ ×    (2, 0) , 0 < ξ ≤ 1, (0, 1) , 0 < ξ ≤ 1 ℓ2 , (−1, ℓ + 1) , 1 ℓ2 < ξ ≤ 1. Ideal power consumption model with ideal PA (100% efficiency): Pideal c (ξ) = Pfix + c 1 − g−1 ξPmax out Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 58 / 112
  • 112.
    Power Consumption 0 0.20.4 0.6 0.8 1 60 90 120 150 180 210 240 Power loading factor, ξ Powerconsumption,Pc(ξ),W idle mode linear model nonlinear model with class B PA nonlinear model with 2-way Doherty PA model with ideal PA Figure 19: Power consumption of microcell base station with Pfix = 130 W and c = 4.7π 4 . Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 59 / 112
  • 113.
    Analytical Results onEE Practical EE EE(ξ) = ΩSE(ξ) Pc(ξ) Ideal EE with a perfectly linear and efficient PA EEideal (ξ) ΩSEideal (ξ) Pideal c (ξ) PA-dependent EE with a perfectly linear PA EElinear (ξ) ΩSEideal (ξ) Pc(ξ) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 60 / 112
  • 114.
    Analytical Results onEE Practical EE EE(ξ) = ΩSE(ξ) Pc(ξ) Ideal EE with a perfectly linear and efficient PA EEideal (ξ) ΩSEideal (ξ) Pideal c (ξ) PA-dependent EE with a perfectly linear PA EElinear (ξ) ΩSEideal (ξ) Pc(ξ) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 60 / 112
  • 115.
    Analytical Results onEE Practical EE EE(ξ) = ΩSE(ξ) Pc(ξ) Ideal EE with a perfectly linear and efficient PA EEideal (ξ) ΩSEideal (ξ) Pideal c (ξ) PA-dependent EE with a perfectly linear PA EElinear (ξ) ΩSEideal (ξ) Pc(ξ) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 60 / 112
  • 116.
    Analytical Results onEE Theorem 4. EElinear (ξ) is a piecewise quasi-concave function over ξ ≥ ζ v + √ 1 + v2 2 /γ2 , where v = Pmax out c0c2/(P0 + Pmax out c0c1). Specifically, EElinear (ξ) is quasi-concave over ζ ≤ ξ ≤ 1/ℓ2 and also over 1/ℓ2 < ξ ≤ 1. Theorem 5. Assuming ξ⋆ EE ≥ ζ, ξ⋆ EE equals either [ξ⋆ 1 ] 1/ℓ2 ζ or [ξ⋆ 2 ]1 1/ℓ2,, where ξ⋆ 1 and ξ⋆ 2 are the solutions of ∂EElinear (ξ) ∂ξ = 0 with given (c1, c2). Proposition 6. A closed form approximation of ξ⋆ EE, denoted by ξ⋆ EE, equals either [ξ⋆ 1 ] 1/ℓ2 ζ or [ξ⋆ 2 ]1 1/ℓ2,, where ξ⋆ i (i ∈ {1, 2}) approximates ξ⋆ i and is given by ξ⋆ EE = ξ⋆ i ≈ ξ⋆ i = 1 γ exp 2 + 2W √ γ ev , i = 1 or 2. where W(·) > 0 as √ γ ev > 0, so that W(·) is unique. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 61 / 112
  • 117.
    Analytical Results onEE Theorem 4. EElinear (ξ) is a piecewise quasi-concave function over ξ ≥ ζ v + √ 1 + v2 2 /γ2 , where v = Pmax out c0c2/(P0 + Pmax out c0c1). Specifically, EElinear (ξ) is quasi-concave over ζ ≤ ξ ≤ 1/ℓ2 and also over 1/ℓ2 < ξ ≤ 1. Theorem 5. Assuming ξ⋆ EE ≥ ζ, ξ⋆ EE equals either [ξ⋆ 1 ] 1/ℓ2 ζ or [ξ⋆ 2 ]1 1/ℓ2,, where ξ⋆ 1 and ξ⋆ 2 are the solutions of ∂EElinear (ξ) ∂ξ = 0 with given (c1, c2). Proposition 6. A closed form approximation of ξ⋆ EE, denoted by ξ⋆ EE, equals either [ξ⋆ 1 ] 1/ℓ2 ζ or [ξ⋆ 2 ]1 1/ℓ2,, where ξ⋆ i (i ∈ {1, 2}) approximates ξ⋆ i and is given by ξ⋆ EE = ξ⋆ i ≈ ξ⋆ i = 1 γ exp 2 + 2W √ γ ev , i = 1 or 2. where W(·) > 0 as √ γ ev > 0, so that W(·) is unique. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 61 / 112
  • 118.
    Numerical Results onEE 0 0.2 0.4 0.6 0.8 1 0 0.5 1.0 1.5 2.0 2.5 Power loading factor, ξ EE(ξ),Mb/J EElinear (ξ⋆ EE);× EE(ξ⋆ EE); ξ⋆ EE in Prop. 6 EElinear (ξ) EEideal (ξ) EE(ξ): 2-way Doherty PA EE(ξ): class-B PA EE(ξ): class-A PA Figure 20: EE evaluation with Pfix = 130 W and c = 4.7. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 62 / 112
  • 119.
    Practical SE-EE Tradeoff 02 4 6 8 10 12 14 16 18 0 0.5 1.0 1.5 2.0 2.5 SE(ξ), b/s/Hz EE(ξ),Mb/J SE-EE tradeoff with PAlow SE-EE tradeoff with PAhigh ◦ × : (SE(ξ⋆ SE), EE(ξ⋆ SE)) : (SE(ξ⋆ EE), EE(ξ⋆ EE)) Fig. 24 Figure 21: SE-EE tradeoff with 2-way Doherty PAs. PAlow with Pmax out = 25 W and g = 55 dB, and PAhigh with Pmax out = 100 W and g = 50 dB. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 63 / 112
  • 120.
    PA Switching (PAS)Method SE EE Low power PA, PA-1 SE EE High power PA, PA-2 Figure 22: Illustration of PAS Concept. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 64 / 112
  • 121.
    PA Switching (PAS)Method SE EE Low power PA, PA-1 SE EE High power PA, PA-2 SE EE PA switching Figure 22: Illustration of PAS Concept. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 64 / 112
  • 122.
    PAS for FDD/TDDFrame switching time ǫ frame k − 1, PA-1 frame k, PA-1 frame k + 1, PA-2 time · · ·· · · (a) FDD Systems switching time ǫ DL frame, PA-1 UL frame DL frame, PA-2 UL frame length + TTG + RTG > ǫ time · · ·· · · TTG RTG (b) TDD Systems Figure 23: Illustration of PA switching between PA-1 and PA-2. K: frame number; T: frame length; ǫ: switching time Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 65 / 112
  • 123.
    SE and EEof PAS SEs(ξ, κ) = kT SE′ 1(ξ) + (K − k)T SE′ 2(ξ) KT + ǫ EEs(ξ, κ) = KT ΩSEs(ξ, κ) kT P1 c (ξ) + (K − k)T P2 c (ξ) κ = k K is PA time sharing factor. Switch power consumption is ignored as it is relatively negligible compared to Pi c (ξ). FDD: ǫ > 0 unless there is switching. TDD: ǫ < 1 ms and UL frame length (10 ms) [LTE, 2011]; PAs can be switched between consecutive DL frames while receiving UL frame, without consuming any switching time overhead, i.e., ǫ = 0. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 66 / 112
  • 124.
    SE-EE Tradeoff ofPAS ǫ = 10 µs, LS = 1 dB, T = 10 ms, and K = 20 A → B(D) : EE ↑ 210%(41%) SE ↓ 12% A → C(E) : EE ↑ 323%(69%) SE ↓ 15% 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 SE(ξ), b/s/Hz EE(ξ),Mb/J GS = 0 dB, ǫ = 0 µs, ideal GS = 1 dB, ǫ = 0 µs, TDD GS = 1 dB, ǫ = 10 µs, FDD GS = 1 dB, ǫ = 1 ms, FDD A DE B C SE-EE tradeoff with PAhigh Figure 24: SE-EE tradeoff. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 67 / 112
  • 125.
    TAS-MRC Syst. withPartial CSIT x z1 z2 y1 MRC ˆx y2 √ Ah2 √ Ah1S1 M +1 feedback for S1 and PC PC power contorl 1 2 : high-power main power amplifiers Figure 25: A transmit antenna selection with maximum ratio combining system. Switch S1 selects a transmit antenna Switch S2 selects a PA [Joung et al., 2013] Pmax out : maximum output power of TX subject to regulatory constraints µmPmax out : Maximum output power of PA m 0 < µ1 < µ2 < · · · < µM+1 = 1 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 68 / 112
  • 126.
    TAS-MRC Syst. withPartial CSIT x z1 z2 y1 MRC ˆx y2 √ Ah2 √ Ah1S1S2 off − mode M +1 M 1 ... feedback for S1 and S2 0 M + 1 M 1 1 2 : high-power main power amplifiers : low-power auxiliary power amplifiers Figure 25: A transmit antenna selection with maximum ratio combining system. Switch S1 selects a transmit antenna Switch S2 selects a PA [Joung et al., 2013] Pmax out : maximum output power of TX subject to regulatory constraints µmPmax out : Maximum output power of PA m 0 < µ1 < µ2 < · · · < µM+1 = 1 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 68 / 112
  • 127.
    PA Switching Probability Aswitching probability for given target rate R b/s/Hz fm = Pr(Rm−1 < R ≤ Rm) = (Υm−1 − Υm) (Υm−1 + Υm − 2) by using order statistics [David, 1970, Proakis and Salehi, 2007] - Υm 2R − 1 σ2 m + 1 e−(2R −1)σ2 m - σ2 m σ2 z AµmP max out , where σ2 z is variance of AWGN - Υ0 = 0 and ΥM+2 = 1 EE of the proposed TAS-MRC systems for the given R EETAS MRC = ΩR(1 − fM+2) M+2 m=1 PTx,mfm - PTx,m 100cµmP max out ǫ(µm) + Pfix, if m = 1, . . . , M + 1, Pfix, if m = M + 2 (off-mode) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 69 / 112
  • 128.
    PA Switching Probability Aswitching probability for given target rate R b/s/Hz fm = Pr(Rm−1 < R ≤ Rm) = (Υm−1 − Υm) (Υm−1 + Υm − 2) by using order statistics [David, 1970, Proakis and Salehi, 2007] - Υm 2R − 1 σ2 m + 1 e−(2R −1)σ2 m - σ2 m σ2 z AµmP max out , where σ2 z is variance of AWGN - Υ0 = 0 and ΥM+2 = 1 EE of the proposed TAS-MRC systems for the given R EETAS MRC = ΩR(1 − fM+2) M+2 m=1 PTx,mfm - PTx,m 100cµmP max out ǫ(µm) + Pfix, if m = 1, . . . , M + 1, Pfix, if m = M + 2 (off-mode) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 69 / 112
  • 129.
    PA Output Power(Pout W) and Efficiency (ǫ%) Table 5: Proposed PAS TAS-MRC with M = 2. PAS m PA Pout W ǫ% FB s1 s2 fm Auxiliary PA 1 PA1 0.63 W 55% 110/1 1/2 1 f1 2 PA2 2.5 W 43% 010/1 1/2 2 f2 Main PA 3 PA3 10 W 60% 100/1 1/2 3 f3 off-mode 4 off-mode 0 0 000 – 0 f4 Table 6: Conventional TAS-MRC System with Power Control. Level l PA Pout W ǫ% feedback s1 fpow l P1 1 PA3 0.63 W 9% 110/1 1/2 fpow 1 P2 2 PA3 2.5 W 32% 010/1 1/2 fpow 2 P3 3 PA3 10 W 60% 100/1 1/2 fpow 3 P4 4 off-mode 0 0 000 – fpow 4 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 70 / 112
  • 130.
    Mode Switching Probability 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f1:PA1 Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
  • 131.
    Mode Switching Probability 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f2:PA2 Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
  • 132.
    Mode Switching Probability 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f3:PA3 Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
  • 133.
    Mode Switching Probability 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f4:PA4, off-mode Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
  • 134.
    Mode Switching Probability 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f1:PA1 f2:PA2 f3:PA3 f4:PA4, off-mode Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 71 / 112
  • 135.
    EE Comparison Simulation Environments PA1(0.63 W,55%), PA2(2.5 W, 43%), PA3(10 W, 60%) 8 dB IBO Switch insertion loss: GS = 0 dB for S1, GS = 1 dB for S2 Channel attenuation: A dB = G − 128 + 10 log10(d−α) [LTE, 2011] G = 5 dB, d = 0.6 km, α = 3.76 σ2 = −174 dBm / Hz, Ω = 10 MHz, Pfix = 40 W and c = 4.7 [Joung et al., 2014c] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 1.2 R b/s/Hz Energyefficiency(EE)Mb/J no power control Figure 27: EE comparison. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 72 / 112
  • 136.
    EE Comparison Simulation Environments PA1(0.63 W,55%), PA2(2.5 W, 43%), PA3(10 W, 60%) 8 dB IBO Switch insertion loss: GS = 0 dB for S1, GS = 1 dB for S2 Channel attenuation: A dB = G − 128 + 10 log10(d−α) [LTE, 2011] G = 5 dB, d = 0.6 km, α = 3.76 σ2 = −174 dBm / Hz, Ω = 10 MHz, Pfix = 40 W and c = 4.7 [Joung et al., 2014c] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 1.2 R b/s/Hz Energyefficiency(EE)Mb/J 1-bit FB for off-mode off-mode gain Figure 27: EE comparison. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 72 / 112
  • 137.
    EE Comparison Simulation Environments PA1(0.63 W,55%), PA2(2.5 W, 43%), PA3(10 W, 60%) 8 dB IBO Switch insertion loss: GS = 0 dB for S1, GS = 1 dB for S2 Channel attenuation: A dB = G − 128 + 10 log10(d−α) [LTE, 2011] G = 5 dB, d = 0.6 km, α = 3.76 σ2 = −174 dBm / Hz, Ω = 10 MHz, Pfix = 40 W and c = 4.7 [Joung et al., 2014c] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 1.2 R b/s/Hz Energyefficiency(EE)Mb/J 2-bit FB for Pow Ctrl off-mode power control gain gain Figure 27: EE comparison. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 72 / 112
  • 138.
    EE Comparison Simulation Environments PA1(0.63 W,55%), PA2(2.5 W, 43%), PA3(10 W, 60%) 8 dB IBO Switch insertion loss: GS = 0 dB for S1, GS = 1 dB for S2 Channel attenuation: A dB = G − 128 + 10 log10(d−α) [LTE, 2011] G = 5 dB, d = 0.6 km, α = 3.76 σ2 = −174 dBm / Hz, Ω = 10 MHz, Pfix = 40 W and c = 4.7 [Joung et al., 2014c] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 1.2 R b/s/Hz Energyefficiency(EE)Mb/J 2-bit FB for Pow Ctrl 2-bit FB for PAS Figure 27: EE comparison. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 72 / 112
  • 139.
    MIMO Syst. withPartial CSIT x2 x1 z2 z1 y2 y1 MRC/MIMO ˆx2 ˆx1 √ Ah2 √ Ah1 M +1 M +1 Ant.2 Ant.1 : high-power main power amplifiers PC PC power contorl feedback for PC Figure 28: PAS MIMO system model with two main PA and M auxiliary PAs. Switch S0 selects a communication mode Switch S1 selects a PA [Joung et al., 2014d] µmPmax out : Maximum output power of PA m ∈ {1, · · · , M + 1} 0 < µ1 < · · · < µM < µM+1 = 1 2Pmax out : maximum output power of TX subject to regulatory constraints Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 73 / 112
  • 140.
    MIMO Syst. withPartial CSIT x2 x1 z2 z1 y2 y1 MRC/MIMO ˆx2 ˆx1 √ Ah2 √ Ah1S0 S1 M +1 M +1 M 1 Ant.2 Ant.1 0 0 M + 1 M 1 1 : high-power main power amplifiers : low-power auxiliary power amplifiers feedback for S1 and S2 ... off-mode Figure 28: PAS MIMO system model with two main PA and M auxiliary PAs. Switch S0 selects a communication mode Switch S1 selects a PA [Joung et al., 2014d] µmPmax out : Maximum output power of PA m ∈ {1, · · · , M + 1} 0 < µ1 < · · · < µM < µM+1 = 1 2Pmax out : maximum output power of TX subject to regulatory constraints Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 73 / 112
  • 141.
    Commun. Mode SelectionProb. A switching probability for given target rate R b/s/Hz - PAS-MRC mode: fm = fU (2R − 1)σ2 m ≤ u < (2R − 1)σ2 m−1 , m = {1, · · · , M} = Υm − Υm−1 where Υm 1 + 2R − 1 σ2 m e−(2R −1)σ2 m . - Off-mode: fM+3 fC(x < R|σ2 M+1) = FC(R|σ2 M+1) FC(x|σ2 M+1)= ∞ −∞ ∞ 0 e−x 1+ x 2σ2 M+1 j2πu ln 2 dx ∞ 0 x2 e−x 1+ x 2σ2 M+1 j2πu ln 2 dx − ∞ 0 xe−x 1+ x 2σ2 M+1 j2πu ln 2 dx 2 1 − ej2πux j2πu du. - MIMO mode: fM+2 = 1 − M+1 m=1 fm − fM+3 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 74 / 112
  • 142.
    EE Analysis EE canbe derived as EEPAS MIMO = ΩR(1−fM+3) M+3 m=1 PTx,mfm . - Numerator represents system throughput over bandwidth Ω Hz and given target rate R - Denominator is total power consumption with model defined as [Joung et al., 2013, H´eliot et al., 2012]: PTx,m =    Pant,m + Psp1Ω + Pfix, if m = 1, · · · , M + 1, 2Pant,m + Psp1Ω + Pfix, if m = M + 2, Pfix, if m = M + 3 + Pant,m: power consumption that is proportional to the number of transmit antennas NT [Xu et al., 2011], as Pant,m = cµmP max out ǫ(µm) + Pcc + Psp2Ω + c: a system dependent power loss coefficient which can be empirically measured and obtained + ǫ(µm): a PA efficiency that depends on the input power (or equivalently PA output power) + Pcc and Psp2 are the RF circuit and signal processing related power consumptions per bandwidth, respectively, which are proportional to NT + µ4 = µ3 + Psp1: a sig. proc.g related power consumption which is independent of NT + Pfix: a fixed power consumption, for power supply and cooling system, which is independent of P max out , NT , and Ω Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 75 / 112
  • 143.
    PA Output Power(Pout W) and Efficiency (ǫ%) Table 7: Proposed PAS MIMO with M = 2. Comm. Mode m PA Pout W ǫ% FB s0 s1 fm PAS-MRC 1 PA1 0.63 W 55% 00 0 1 f1 2 PA2 2.5 W 43% 01 0 2 f2 3 PA3 10 W 60% 10 0 3 f3 MIMO 4 two PA3’s 2 × 10 W 60% 11 1 3 f4 off-mode 5 PA4 0 0 null 0 0 f5 Table 8: Conventional MIMO System with Power Control. Level l PA Ptotal out W ǫ% feedback fpow l P1 1 PAa 3, PAb 3 2 × 0.315 W 5% 00 fpow 1 P2 2 PAa 3, PAb 3 2 × 1.25 W 15.5% 01 fpow 2 P3 3 PAa 3, PAb 3 2 × 5 W 32% 10 fpow 3 P4 4 PAa 3, PAb 3 2 × 10 W 60% 11 fpow 4 P5 5 off 0 0 null fpow 5 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 76 / 112
  • 144.
    Mode Switching Probability 02 4 6 8 10 12 14 16 18 20 22 24 0 0.2 0.4 0.6 0.8 1.0 Target rate, R b/s/Hz Probability,fm m = 1, PA1: 0.63 W m = 2 m = 3 m = 4 PA2 2.5 W PA3 10 W PA3+PA3 2 × 10 W m = 5, PA4: off-mode (a) 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.2 0.4 0.6 0.8 1.0 Target rate, R b/s/HzProbability,fpow l l = 5, P5: off-model = 1, P1: 2 × 0.315 W l = 2, P2 2 × 1.25 W l = 3, P3 2 × 5 W l = 4, P4 2 × 10 W (b) Figure 29: Probabilities. (a) fm of PAS. (b) fpow l of power control. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 77 / 112
  • 145.
    EE Comparison Simulation Environments Switchinsertion loss: GS = 0 dB for S0, GS = 0 dB for S1 σ2 = −174 dBm/ Hz, Ω = 5 MHz, with 512 FFT size (300 subcarriers) Pfix = 36.4 W, c = 2.63, Pcc = 66.4 W, Pfix = 36.4 W, Psp1 = 1.28 µW / Hz, Psp2 = 3.32 µW / Hz 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.05 0.10 0.15 0.20 0.25 Target rate, R b/s/Hz Energyefficiency(EE)Mb/J Conventional MIMO w/o Pow Ctrl. Figure 30: EE comparison of the proposed MIMO-MRC with PAS and the conventional MIMO w/ or w/o Pow Ctrl. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 78 / 112
  • 146.
    EE Comparison Simulation Environments Switchinsertion loss: GS = 0 dB for S0, GS = 0 dB for S1 σ2 = −174 dBm/ Hz, Ω = 5 MHz, with 512 FFT size (300 subcarriers) Pfix = 36.4 W, c = 2.63, Pcc = 66.4 W, Pfix = 36.4 W, Psp1 = 1.28 µW / Hz, Psp2 = 3.32 µW / Hz 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.05 0.10 0.15 0.20 0.25 Target rate, R b/s/Hz Energyefficiency(EE)Mb/J Conventional MIMO w/ Pow Ctrl. Figure 30: EE comparison of the proposed MIMO-MRC with PAS and the conventional MIMO w/ or w/o Pow Ctrl. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 78 / 112
  • 147.
    EE Comparison Simulation Environments Switchinsertion loss: GS = 0 dB for S0, GS = 0 dB for S1 σ2 = −174 dBm/ Hz, Ω = 5 MHz, with 512 FFT size (300 subcarriers) Pfix = 36.4 W, c = 2.63, Pcc = 66.4 W, Pfix = 36.4 W, Psp1 = 1.28 µW / Hz, Psp2 = 3.32 µW / Hz 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.05 0.10 0.15 0.20 0.25 Target rate, R b/s/Hz Energyefficiency(EE)Mb/J Conventional MIMO w/ Pow Ctrl. Proposed MIMO w/ PAS Figure 30: EE comparison of the proposed MIMO-MRC with PAS and the conventional MIMO w/ or w/o Pow Ctrl. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 78 / 112
  • 148.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 79 / 112
  • 149.
    System Model [Jounget al., 2014a] BBU deactivated DA user equipment SISO MISO MU-MIMO activated DA optical fibre large-scale distributed antennas (DAs) cellular communication networks Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 80 / 112
  • 150.
    EE Model ofL-DAS EE (S, W, P ) System throughput per unit time Total power consumption System throughput: R(S, W, P ) = u∈U Ω log2 (1 + SINRu(S, W, P )) SINRu(S, W, P ) = |hr u(sc u◦wc u)|2 puu U u′=1,u′=u hr u sc u′ ◦wc u′ 2 pu′u′ +σ2 Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W ) f(·): TPD (transmit power dependent) term g(·): TPI (transmit power independent) term Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 81 / 112
  • 151.
    EE Model ofL-DAS EE (S, W, P ) System throughput per unit time Total power consumption System throughput: R(S, W, P ) = u∈U Ω log2 (1 + SINRu(S, W, P )) SINRu(S, W, P ) = |hr u(sc u◦wc u)|2 puu U u′=1,u′=u hr u sc u′ ◦wc u′ 2 pu′u′ +σ2 Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W ) f(·): TPD (transmit power dependent) term g(·): TPI (transmit power independent) term Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 81 / 112
  • 152.
    EE Model ofL-DAS EE (S, W, P ) System throughput per unit time Total power consumption System throughput: R(S, W, P ) = u∈U Ω log2 (1 + SINRu(S, W, P )) SINRu(S, W, P ) = |hr u(sc u◦wc u)|2 puu U u′=1,u′=u hr u sc u′ ◦wc u′ 2 pu′u′ +σ2 Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W ) f(·): TPD (transmit power dependent) term g(·): TPI (transmit power independent) term Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 81 / 112
  • 153.
    Power Consumption Model:TPD ASIC, FPGA, DSP Examples: -digital up converter -digital predistorter -scrambling -CRC check -conv. encoder -interleaver -modulation -IFFT -CP insertion -parallel-to-serial eRF module oRF module oRF module eRF module Examples: -O/E converter Examples: -E/O converter -laser -driver -modulator Examples: -D/A converter -filters -synthesizer Examples: -VGA -driver -PA Examples: -AC/DC -DC/DC -active cooler ... ... ... ... ... ... baseband module mth RF module at BBU baseband unit (BBU) mth distributed antenna (DA) port 1st Ant. mth Ant. Mth Ant. 1 m M fiber Psp1, Psp2, Psig (TPI) Pcc1,m (TPI) Pcc2,m (TPI)Pcc2,m (TPI) Pfix (TPI) Ptx,m (TPD) TPD term f(S, W, P ) = m∈M c ηm (S ◦ W )P (S ◦ W )H mm eRF (electric RF) oRF (optical RF) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 82 / 112
  • 154.
    Power Consumption Model:TPI TPI term g(S, W ) = grf(S) + gbb(W ) + gnet(M) + Pfix grf(S) = m∈M Pcc1,m + Pcc2,m u∈U Ru maxu smu gbb(W ) = ΩPsp1 [dim(W )]β+1 + ΩPsp2 gnet(M) = MΩPsig Pcc1: eRF Pcc2: per unit-bit-and-second of oRF Ru: target rate of user u β ≥ 0: implies overhead power consumption of MU processing compared to SU-MIMO Pfix: fixed power consumption (e.g., pow supply, AC/DC, DC/DC, and cooling system) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 83 / 112
  • 155.
    EE of L-DAS EE(S, W, P ) = u∈U Ω log2 1 + |hr u (sc u ◦ wc u)| 2 puu U u′=1,u′=u |hr u (sc u′ ◦ wc u′ )|2 pu′u′ + σ2 m∈M c ηm (S ◦ W )P (S ◦ W )H mm + m∈M Pcc1,m + Pcc2,m u∈U Ru max u smu + ΩPsp1 [dim(W )] β+1 + ΩPsp2 + MΩPsig Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 84 / 112
  • 156.
    Original Problem Formulation Po:original problem max {S,W,P } EE (S, W, P ) s.t. (S ◦ W )P (S ◦ W )H mm ≤ Pm, ∀m ∈ M, Ru(S, W, P ) ≥ Ru, ∀u ∈ U, pu1u2 = 0, ∀u1 = u2 ∈ U, smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U objective function: EE per-ant pow constraints with max-output pow Pm per-user rate constraints with a target rate Ru diagonal structure of P DA selection Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
  • 157.
    Original Problem Formulation Po:original problem max {S,W,P } EE (S, W, P ) s.t. (S ◦ W )P (S ◦ W )H mm ≤ Pm, ∀m ∈ M, Ru(S, W, P ) ≥ Ru, ∀u ∈ U, pu1u2 = 0, ∀u1 = u2 ∈ U, smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U objective function: EE per-ant pow constraints with max-output pow Pm per-user rate constraints with a target rate Ru diagonal structure of P DA selection Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
  • 158.
    Original Problem Formulation Po:original problem max {S,W,P } EE (S, W, P ) s.t. (S ◦ W )P (S ◦ W )H mm ≤ Pm, ∀m ∈ M, Ru(S, W, P ) ≥ Ru, ∀u ∈ U, pu1u2 = 0, ∀u1 = u2 ∈ U, smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U objective function: EE per-ant pow constraints with max-output pow Pm per-user rate constraints with a target rate Ru diagonal structure of P DA selection Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
  • 159.
    Original Problem Formulation Po:original problem max {S,W,P } EE (S, W, P ) s.t. (S ◦ W )P (S ◦ W )H mm ≤ Pm, ∀m ∈ M, Ru(S, W, P ) ≥ Ru, ∀u ∈ U, pu1u2 = 0, ∀u1 = u2 ∈ U, smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U objective function: EE per-ant pow constraints with max-output pow Pm per-user rate constraints with a target rate Ru diagonal structure of P DA selection Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
  • 160.
    Original Problem Formulation Po:original problem max {S,W,P } EE (S, W, P ) s.t. (S ◦ W )P (S ◦ W )H mm ≤ Pm, ∀m ∈ M, Ru(S, W, P ) ≥ Ru, ∀u ∈ U, pu1u2 = 0, ∀u1 = u2 ∈ U, smu ∈ {0, 1}, ∀m ∈ M, ∀u ∈ U objective function: EE per-ant pow constraints with max-output pow Pm per-user rate constraints with a target rate Ru diagonal structure of P DA selection Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 85 / 112
  • 161.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 162.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 163.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 164.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 165.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 166.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 167.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 168.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 169.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 170.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 171.
    Problem Decomposition Issues tosolve the original problem Po: Non-convex objective function Integer variables {smu} in the constraints Signaling overhead Computational complexity Suboptimal decomposition approach Step 1: DA selection: S Step 2: DA clustering Step 3: Cluster-based optimization (cluster index ℓ) Step 3-1: Precoding, Wℓ Step 3-2: Power allocation, Pℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 86 / 112
  • 172.
    Step 1: DASelection 20 UEs activated DA: Mu = 1 non-activated DA: M = 400 IAD BBU Channel-gain-based greedy AS: received signal strength indicator (RSSI) Min-dis-based greedy AS: localization information Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 87 / 112
  • 173.
    Step 2: Selected-DAClustering SINR-threshold γ based clustering If UE u′ ’s distance from cluster ℓ is shorter than γ, UE u′ is included to the cluster ℓ as follows: Uℓ = Uℓ ∪ {u′ }, if D(Uℓ, u′ ) ≤ γ Distance metric between two clusters D(Uℓ, Uℓ′ ) min u∈Uℓ,u′∈Uℓ′ d(u, u′ ). d(u, u′ ) min m∈Mu |hum|2Pm σ2 + m′∈Mu′ |hum′ |2Pm′ , m′∈Mu′ |hu′m′ |2Pm′ σ2 + m∈Mu |hu′m|2Pm Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 88 / 112
  • 174.
    DA Clustering Example clusterwith a single UE cluster with four UEs (a) γ = 25 dB, L = 11 (b) γ = 32 dB, L = 6 γ ↑ =⇒ cluster size ↑, number of clusters ↓, inter-cluster interference ↓ γ ↓ =⇒ cluster size ↓, number of clusters ↑, inter-cluster interference ↑ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 89 / 112
  • 175.
    DA Clustering Example clusterwith a single UE cluster with four UEs (a) γ = 25 dB, L = 11 (b) γ = 32 dB, L = 6 SINR between users in different clusters > γ =⇒ cluster-based optimization SINR between users within a cluster ≤ γ =⇒ MU-MIMO precoding Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 89 / 112
  • 176.
    DA Clustering Example clusterwith a single UE cluster with four UEs (a) γ = 25 dB, L = 11 (b) γ = 32 dB, L = 6 SINR between users in different clusters > γ =⇒ cluster-based optimization SINR between users within a cluster ≤ γ =⇒ MU-MIMO precoding Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 89 / 112
  • 177.
    Step 3: Cluster-basedOptimization Problem Pℓ: cluster-ℓ problem for given S∗ ℓ , ℓ ∈ L max {Wℓ,Pℓ} EE (S∗ ℓ , Wℓ, Pℓ) s.t. (S∗ ℓ ◦Wℓ)Pℓ(S∗ ℓ ◦Wℓ)H mm ≤ Pm,∀m∈Mℓ, Ru(S∗ ℓ , Wℓ, Pℓ) ≥ Ru, ∀u ∈ Uℓ, pu1u2 = 0, ∀u1 = u2 ∈ Uℓ Maximization of EE upper bound Computational complexity reduction CSI and signaling overhead reduction: e.g., 8000 ⇒ 48 and 160 in (a) and (b) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 90 / 112
  • 178.
    Step 3: Cluster-basedOptimization Problem Pℓ: cluster-ℓ problem for given S∗ ℓ , ℓ ∈ L max {Wℓ,Pℓ} EE (S∗ ℓ , Wℓ, Pℓ) s.t. (S∗ ℓ ◦Wℓ)Pℓ(S∗ ℓ ◦Wℓ)H mm ≤ Pm,∀m∈Mℓ, Ru(S∗ ℓ , Wℓ, Pℓ) ≥ Ru, ∀u ∈ Uℓ, pu1u2 = 0, ∀u1 = u2 ∈ Uℓ Maximization of EE upper bound Computational complexity reduction CSI and signaling overhead reduction: e.g., 8000 ⇒ 48 and 160 in (a) and (b) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 90 / 112
  • 179.
    Problem Decomposition Pℓ,1: Precodingmatrix W ∗ ℓ for fixed S∗ ℓ and P ′ ℓ max {Wℓ,Pℓ} EE (Wℓ, P ′ ℓ) s.t. (S∗ ℓ ◦W ∗ ℓ )Pℓ(S∗ ℓ ◦W ∗ ℓ )H mm ≤ Pm, ∀m ∈ Mℓ Ru(S∗ ℓ , W ∗ ℓ , Pℓ) ≥ Ru, ∀u ∈ Uℓ pu1u2 = 0, ∀u1 = u2 ∈ Uℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 91 / 112
  • 180.
    Problem Decomposition Pℓ,2: Powercontrol matrix P ∗ ℓ for fixed S∗ ℓ and W ∗ ℓ max {Wℓ,Pℓ} EE (W ∗ ℓ , Pℓ) s.t. (S∗ ℓ ◦W ∗ ℓ )Pℓ(S∗ ℓ ◦W ∗ ℓ )H mm ≤ Pm, ∀m ∈ Mℓ Ru(S∗ ℓ , W ∗ ℓ , Pℓ) ≥ Ru, ∀u ∈ Uℓ pu1u2 = 0, ∀u1 = u2 ∈ Uℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 91 / 112
  • 181.
    ZF-MU-MIMO Precoding Design Pℓ,1:Precoding matrix W ∗ ℓ for fixed S∗ ℓ and P ′ ℓ W ∗ ℓ = max Wℓ EE(S∗ ℓ , Wℓ, P ′ ℓ ) (a) ≡ min Wℓ C(S∗ ℓ , Wℓ, P ′ ℓ ) (b) ≡ min Wℓ c m∈Mℓ 1 ηm (S∗ ℓ ◦ Wℓ)P ′ ℓ (S∗ ℓ ◦ Wℓ)H mm (c) ≡ min Wℓ m∈Mℓ (S∗ ℓ ◦ Wℓ)P ′ ℓ (S∗ ℓ ◦ Wℓ)H mm (a) rate does not depend on Wℓ due to a ZF property (b) Wℓ affects only on TPD term for given S∗ ℓ and P ′ ℓ (c) equal capability of PA is preferred for high EE [Joung and Sun, 2013], c/ηm is assumed to be a constant Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 92 / 112
  • 182.
    Cont.: Reformulation &Solution Pℓ,1: Precoding matrix W ∗ ℓ for fixed S∗ ℓ and P ′ ℓ W ∗ ℓ = min Wℓ m∈Mℓ (S∗ ℓ ◦ Wℓ)P ′ ℓ (S∗ ℓ ◦ Wℓ)H mm = min Wℓ Sd ℓ Wℓ P ′ ℓ 2 F Sd ℓ = diag(sc,∗ ℓ ) ∈ RM×M sc,∗ ℓ = u∈Uℓ sc,∗ u ZF-MU-MIMO precoding matrix as Wℓ = (HℓSd ℓ )† + null(HℓSd ℓ )Aℓ Hℓ ∈ CUℓ×M : a channel matrix of cluster ℓ that consists of row vectors hr u, u ∈ Uℓ Aℓ ∈ CUℓ×Uℓ is a Uℓ-dimensional arbitrary matrix Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 93 / 112
  • 183.
    Cont.: Reformulation &Solution Pℓ,1: Precoding matrix W ∗ ℓ for fixed S∗ ℓ and P ′ ℓ W ∗ ℓ = min Wℓ m∈Mℓ (S∗ ℓ ◦ Wℓ)P ′ ℓ (S∗ ℓ ◦ Wℓ)H mm = min Wℓ Sd ℓ Wℓ P ′ ℓ 2 F Sd ℓ = diag(sc,∗ ℓ ) ∈ RM×M sc,∗ ℓ = u∈Uℓ sc,∗ u ZF-MU-MIMO precoding matrix as W ∗ ℓ = (HℓSd ℓ )† + null(HℓSd ℓ )Aℓ Hℓ ∈ CUℓ×M : a channel matrix of cluster ℓ that consists of row vectors hr u, u ∈ Uℓ Aℓ ∈ CUℓ×Uℓ is a Uℓ-dimensional arbitrary matrix Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 93 / 112
  • 184.
    Power Control Pℓ,2: Powercontrol matrix P ∗ ℓ for fixed S∗ ℓ and W ∗ ℓ P ∗ ℓ = max Pℓ EE(S∗ ℓ , W ∗ ℓ , Pℓ) s.t. (Sd ℓ W ∗ ℓ )Pℓ(Sd ℓ W ∗ ℓ )H mm ≤ Pm, ∀m ∈ Mℓ Ru(Pℓ) ≥ Ru, ∀u ∈ Uℓ pu1u2 = 0, ∀u1 = u2 ∈ Uℓ. u∈Uℓ Ru(Pℓ) ≥ ξC(S∗ ℓ , W ∗ ℓ , Pℓ) Using an additional variable ξ Convex feasibility problem Bisection search to find the optimal ξ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 94 / 112
  • 185.
    Power Control Pℓ,2: Powercontrol matrix P ∗ ℓ for fixed S∗ ℓ and W ∗ ℓ P ∗ ℓ = max Pℓ ξ s.t. (Sd ℓ W ∗ ℓ )Pℓ(Sd ℓ W ∗ ℓ )H mm ≤ Pm, ∀m ∈ Mℓ Ru(Pℓ) ≥ Ru, ∀u ∈ Uℓ pu1u2 = 0, ∀u1 = u2 ∈ Uℓ. u∈Uℓ Ru(Pℓ) ≥ ξC(S∗ ℓ , W ∗ ℓ , Pℓ) Using an additional variable ξ Convex feasibility problem Bisection search to find the optimal ξ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 94 / 112
  • 186.
    Cont.: Heuristic Method Minimumrequired power to satisfy Ru with ZF-MU-MIMO precoding pu,ℓ = σ2 2 Ru Ω − 1 pu,ℓ is a ratio based on minimum required power for target rate [Joung and Sun, 2013] s.t. pu,ℓ = pu,ℓ k∈Uℓ pk,ℓ , ∀u ∈ Uℓ pu,ℓ = αℓpu,ℓ αℓ: common power scaling factor for power limit of PAs and target rate of UEs in cluster ℓ Maximize EE lower bound Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 95 / 112
  • 187.
    Cont.: Heuristic Method § ¦ ¤ ¥ P′ ℓ,2: α∗ ℓ = arg max αℓ ζ(αℓ), s.t. αLB,ℓ ≤ αℓ ≤ αUB,ℓ ζ(αℓ) = ΩUℓ log2(1+c1,ℓαℓ) c2,ℓαℓ+c3,ℓ : concave function c1,ℓ minu{pu,ℓ}σ−2 c2,ℓ c m∈Mℓ η−1 m [Sd ℓ W ∗ ℓ P ℓ(Sd ℓ W ∗H ℓ )H ]mm c3,ℓ = m∈Mℓ (Pcc1,m + Pcc2,m u∈Uℓ Ru) maxu∈Uℓ smu + ΩPsp1[dim(Wℓ)]β+1 + MℓΩPsig + ΩPsp2/L + Pfix/L αLB,ℓ = σ2 2 Ru Ω − 1 pu,ℓ from QoS constraint αUB,ℓ = minm∈Mℓ Pm Sd ℓ W ∗ ℓ P ℓ(Sd ℓ W ∗ ℓ )H mm from power constraint Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 96 / 112
  • 188.
    Cont.: Solution Closed formsolution: αo = 1 c1 exp 1 + W − 1 exp(1) + c1c3 c2exp(1) − 1 α∗ = [αo] αUB αLB P ∗ heuristic = α∗ P Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 97 / 112
  • 189.
    Algorithms Algorithm 1 :Clustering threshold γ adaptation 1. Initial setup: γ, δ > 0, stop= 0, q = 0, Mu, and QC ≥ 0 2. compute EEp with γ: Mu Adaptation Algorithm 2 3. compute EEc with γ = γ + δ: Mu Adaptation Algorithm 2 4. if EEc > EEp then 5. EEp = EEc and ξ = 1 6. else 7. compute EEc with γ = γ − 2δ: Mu Adaptation Algorithm 2 8. if EEc > EEp then EEp = EEc and ξ = −1 9. else stop= 1 end if 10. end if 11. while stop= 0 & q < QC do 12. compute EEc with γ = γ + ξδ: Mu Adaptation Algorithm 2 13. if EEc > EEp then EEp = EEc 14. else stop= 1 end if 15. q = q + 1 16. end while Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 98 / 112
  • 190.
    Algorithms Algorithm 2 :Mu adaptation algorithm for AS 1. Initial setup: Mu = 1, ∀u ∈ U, q = 0, γ, and QAS ≥ 0 2. while feasibility= 0 & q < QAS do 3. DA Selection Algorithm 3 4. DA Clustering Algorithm 4 with a threshold γ 5. feasibility= 1 6. for cluster ℓ = 1, . . . , L do 7. precoding: Wℓ = (HℓSd ℓ )† 8. power control: Bisection Search Algorithm 5 or P ∗ heuristic = α∗ 9. if power control is infeasible & u∈U Mu < M 10. then add one additional DA to UE u ∈ Uℓ who has the weakest channel gain, i.e., Mu = Mu + 1 where u ∈ Uℓ s.t., u = arg min u∈Uℓ |hum| 11. feasibility= 0 end if 12. end for 13. q = q + 1 14. end while Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 99 / 112
  • 191.
    Algorithms Algorithm 3 :CGB/MDB-Greedy DA selection algorithm 1. Initial setup: U = {1, . . ., U}, M = {1, . . ., M}, smn = 0, ∀m ∈ M, ∀u ∈ U, Mu = ∅, ∀u ∈ U, and given Mu’s 2. while U = ∅ do 3. find {m∗ , u∗ } = arg metric m∈M,u∈U ‘metric’ = max |hum| for CGB, min dum for MDB 4. set sm∗u∗ = 1, M = M m∗ and Mu∗ = M ∪ m∗ 5. if |Mu∗ | = Mu∗ then 6. U = U u∗ 7. end if 8. end while Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 100 / 112
  • 192.
    Algorithms Algorithm 4 :DA clustering algorithm 1. Initial setup: distance do = 0, clusters Uℓ = {ℓ} where ℓ ∈ L = {1, . . ., U}, and given γ 2. while do < γ do 3. find the distance of most closest pair of clusters Uℓ and Uℓ′ , i.e., do = minℓ,ℓ′∈L,ℓ=ℓ′ D(Uℓ, Uℓ′ ) 4. if do < γ then 5. merge clusters as Uℓ = Uℓ ∪ Uℓ′ 6. update L 7. end if 8. end while Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 101 / 112
  • 193.
    Algorithms back Algorithm 5: Bisection search algorithm: Per-cluster optimal power control for MU 1. setup: ξLB = 0, ξUB ≃ ∞, and a tolerance value, δ > 0 2. while ξUB − ξLB > δ do 3. ξ ← (ξUB − ξLB)/2 4. Solve convex feasibility problem and find (update) P ∗ ℓ 5. if infeasible then ξUB ← ξ 6. else ξLB ← ξ end if 7. end while 8. P ∗ optimal,ℓ = P ∗ ℓ Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 102 / 112
  • 194.
    Simulation Parameters Cell modeltwo square grid cells (1km2 ) Number of DAs/CAs 25 ≤ M ≤ 900 Intra-antenna distance (IAD) from 33 m to 200m Number of UEs 2 ≤ U ≤ 20 UE distribution Uniform (104 −realization) Path loss model (fc = 2GHz) Aum = g − 128 + 10 log10(d−µ u,m) feeder loss and antenna gain g = 5dB Path loss exponent µ = 3.76 Small scale fading hum ∼ CN(0, 1) Bandwidth Ω = 10MHz Target rate Ru = 10Mb Maximum Tx power Pm = 17dBm AWGN standard deviation σ2 = −174dBm/Hz Power loss coefficient c = 2.63 eRF circuit pow.cons. Pcc1,m = 5.7W oRF circuit pow.cons. Pcc2,m = 0.5/0pW/bit/s Fixed pow.cons. Pfix = 34 W Signal processing pow.cons. Psp1 = 0.94 × 1/1.1µW/Hz Psp2 = 0.54 × 1/1.1µW/Hz Signaling pow.cons./antenna 5 ≤ Psig ≤ 500nW/Hz preprocessing pow.cons. ratio 0 ≤ β ≤ 2 PA efficiency ηm = 0.08/0.6 Clustering threshold −∞ ≤ γ ≤ ∞dB Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 103 / 112
  • 195.
    Simulation Visualization (outage: cellboundary) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 104 / 112
  • 196.
    Simulation Visualization (no outage) JingonJoung Tutorial 2: Energy Efficient Wireless Communications 105 / 112
  • 197.
    M =400, U=20, Psig =50nW/Hz −10 0 10 20 30 40 50 0 1 2 3 4 5 6 Clustering threshold γdB AverageenergyefficiencyMb/J optimal power control heuristic power control L-CAS with β = 0.2 β = 0.2 β = 0.5 β = 1 −∞ ∞ fullSU,Uclusters fullMU,singlecluster Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 106 / 112
  • 198.
    M =400, β=0.5, Psig =50nW/Hz 2 4 6 8 10 12 14 16 18 20 0 1 2 3 4 Number of UEs, U AverageenergyefficiencyMb/J optimal pow ctrl with adaptation heuristic pow ctrl with adaptation γ = ∞dB (full MU, single cluster) γ = −∞dB (full SU, U clusters) γ = 22dB L-CAS with β = 0.5 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 107 / 112
  • 199.
    U = 20,β = 0.5, γ = 22 dB 0 100 200 300 400 500 600 700 800 900 0 1 2 3 4 5 6 Number of transmit DAs, M AverageenergyefficiencyMb/J optimal power control heuristic power control Psig = 5nW/Hz Psig = 50nW/Hz Psig = 500nW/Hz L-CAS with Psig = 5nW/Hz Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 108 / 112
  • 200.
    Index 1 Introduction andBackground (35 min, 24 pages) Green Wireless Communications Efficiency in Communications Theoretical Spectral Efficiency (SE) Energy Efficiency (EE) Tradeoff Practical SE-EE Tradeoff 2 Technologies for Energy Efficiency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 109 / 112
  • 201.
    Summary ICT consumes/emits 3%/2%of world-wide energy/CO2 Efficiency: valuable resources produced / valuable resources consumed Energy efficiency (EE) in wireless communications: bits/Joule Power amplifier (PA): LDMOS + Doherty/envelope tracking Two fundamental characteristics of PA and the models: linearity and efficiency SE-EE tradeoff: EE maximization rather than SE maximization EE-aware technologies based on three design perspectives i) PA, ii) signal, iii) network PAS and large-scale DAS Further Work - Multiuser communication systems - Memory effects of PA for wideband systems - Manufacturing cost and form factor of a PA bank - Multi-band systems application, network-level approach - ... Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 110 / 112
  • 202.
    Summary ICT consumes/emits 3%/2%of world-wide energy/CO2 Efficiency: valuable resources produced / valuable resources consumed Energy efficiency (EE) in wireless communications: bits/Joule Power amplifier (PA): LDMOS + Doherty/envelope tracking Two fundamental characteristics of PA and the models: linearity and efficiency SE-EE tradeoff: EE maximization rather than SE maximization EE-aware technologies based on three design perspectives i) PA, ii) signal, iii) network PAS and large-scale DAS Further Work - Multiuser communication systems - Memory effects of PA for wideband systems - Manufacturing cost and form factor of a PA bank - Multi-band systems application, network-level approach - ... Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 110 / 112
  • 203.
    CTN Issue: 28January 2015 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 111 / 112
  • 204.
    Top 10 Trendsin 2015, IEEE ComSoc 1 5G (energy saving 1/1000) 2 FIBER EVERYWHERE 3 VIRTUALIZATION, SDN & NFV 4 EVERYWHERE CONNECTIVITY FOR IoT & IoE 5 COGNITIVE NETWORKS, BIG DATA 6 CYBERSECURITY 7 GREEN COMMUNICATIONS - environmentally friendly batteries - renewable energy sources - intelligent management of the power systems - total energy usage - compute-to-consumption ratios - performance KPIs for best in class green operations 8 SMARTER SMARTPHONES, CONNECTED SENSORS 9 NETWORK NEUTRALITY, INTERNET GOVERNANCE 10 MOLECULAR COMMUNICATIONS Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 112 / 112
  • 205.
    Thank You http://www1.i2r.a-star.edu.sg/∼jgjoung jgjoung@i2r.a-star.edu.sg Jingon JoungTutorial 2: Energy Efficient Wireless Communications 113 / 112
  • 206.
    Envelope Tracking ArchitectureB the envelope tracking RF PA’s supply voltage is controlled by the envelope of the RF-drive. efficiency between the linear RF PA and the PAs using the Kahn technique. Figure 31: Envelope tracking architecture [Raab et al., 2003c]. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 114 / 112
  • 207.
    Doherty Technique B Class-B(carrier PA or main PA) and class-C (peaking PA or auxiliary PA) PAs are combined to improve efficiency The class-B PA is activated if the signal amplitude is half or less than the PEP Both PAs are activated if the signal amplitude is larger than half of the PEP [Doherty, 1936] Due to the high efficiency and linearity over wide frequency band and power level, Doherty technique is widely used for the modern cellular communications [Correia et al., 2010, Cha et al., 2004, Auer et al., 2011, Arnold et al., 2010]. RF-drive input output main PA auxiliary PA Figure 32: Doherty transmitter. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 115 / 112
  • 208.
    Reference I [McK, 2007](2007). The impact of ICT on global emissions. Technical report, McKinsey & Company. [Alc, 2008] (2008). Active antenna arrays: Small-footprint, scalable RF solutions for base stations. Technical report, Alcatel-Lucent Innovation Days. [LTE, 2011] (2011). LTE; E-UTRA; RF requirements for LTE pico node B. [3GPP, TR 25.927 V11.0.0, 2012] 3GPP, TR 25.927 V11.0.0 (2012). Solutions for energy saving within UTRA Node B (Release 11). [Adachi et al., 2012] Adachi, K., Joung, J., Sun, S., and Tan, P. H. (2012). Energy-saving coordinated napping (CoNap) for wireless networks. In Proc. IEEE Global Commun. Conf. (GLOBECOM), Anaheim, CA, USA. [Adachi et al., 2013] Adachi, K., Joung, J., Sun, S., and Tan, P. H. (2013). Adaptive coordinated napping (CoNap) for energy saving in wireless networks. IEEE Trans. Wireless Commun., 12(11):5656–5667. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 116 / 112
  • 209.
    Reference II [Arnold etal., 2010] Arnold, O., Richter, F., Fettweis, G., and Blume, O. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Proc. IEEE Future Network and Mobile Summit 2010, Florence, Italy. [Auer et al., 2011] Auer, G., Giannini, V., Desset, C., G´odor, I., Skillermark, P., Olsson, M., Imran, M. A., Sabella, D., Gonzalez, M. J., Blume, O., and Fehske, A. (2011). How much energy is needed to run a wireless network? IEEE Trans. Wireless Commun., 18:40–49. [Baliga et al., 2011] Baliga, J., Ayre, R., Hinton, K., and Tucker, R. S. (2011). Energy consumption in wired and wireless access networks. IEEE Commun. Mag., 49:70–77. [Bogucka and Conti, 2011] Bogucka, H. and Conti, A. (2011). Degree of freedom for energy savings in practical adaptive wireless systems. IEEE Commun. Mag., 49:38–45. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 117 / 112
  • 210.
    Reference III [Boumaiza andGhannouchi, 2003] Boumaiza, S. and Ghannouchi, F. (2003). Thermal memory effects modeling and compensation in RF power amplifiers and predistortion linearizers. IEEE Trans. Microw. Theory Tech., 51:2427–2433. [Bussgang, 1952] Bussgang, J. J. (1952). Cross correlation function of amplitude-distorted Gaussian input signals. Res. Lab Electron., M.I.T., Cambridge, MA, Tech. Rep. 216, 3. [Cha et al., 2004] Cha, J., Kim, J., Kim, B., Lee, J. S., and Kim, S. H. (2004). Highly efficient power amplifier for CDMA base stations using Doherty configuration. In Proc. IEEE MTT-S Int. Microwave Symp., pages 553–556, Fort Worth, TX, USA. [Chapeau-Blondeau and Monir, 2002] Chapeau-Blondeau, F. and Monir, A. (2002). Numerical evaluation of the Lambert W function and application to generation of generalized gaussian noise with exponent 1/2. IEEE Trans. Signal Process., 50:2160–2165. [Chatzipapas et al., 2011] Chatzipapas, A., Alouf, S., and Mancuso, V. (2011). On the minimization of power consumption in base stations using on/off power amplifiers. In Proc. IEEE Online Conference on Green Communications (GreenCom), pages 18–23. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 118 / 112
  • 211.
    Reference IV [Chen etal., 2011] Chen, Y., Zhang, S., Xu, S., and Li, G. Y. (2011). Fundamental trade-offs on green wireless networks. IEEE Commun. Mag., 49:30–37. [Choi and Andrews, 2007] Choi, W. and Andrews, J. G. (2007). Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Trans. Wireless Commun., 6:69–73. [Correia et al., 2010] Correia, L. M., Zeller, D., Blume, O., Ferling, D., Jading, Y., G´odor, I., Auer, G., and der Perre, L. V. (2010). Challenges and enabling technologies for energy aware mobile radio networks. IEEE Commun. Mag., 48:66–72. [Cover and Thomas, 2006] Cover, T. M. and Thomas, J. A. (2006). Elements of information theory. John Wiley & Sons, New Jersey, second edition. [Cox, 1974] Cox, D. (1974). Linear amplification with nonlinear components. IEEE Trans. Commun., 22:1942–1945. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 119 / 112
  • 212.
    Reference V [Cripps, 2006]Cripps, S. C. (2006). RF power amplifiers for wireless communications. ARTECH HOUSE, Boston/London, second edition. [Damnjanovic et al., 2011] Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., Yoo, T., Song, O., and Malladi, D. (2011). A survey on 3GPP heterogeneous networks. 18(3):10–21. [David, 1970] David, H. A. (1970). Order staistics. Wiley, New York,. [Deruyck et al., 2011] Deruyck, M., Tanghe, E., Joseph, W., and Martens, L. (2011). Modelling the energy efficiency of microcell base stations. In Proc. Int. Conf. Smart Grids, Green Commun. and IT Energy-aware Technol., Venice, Italy. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 120 / 112
  • 213.
    Reference VI [Deruyck etal., 2010] Deruyck, M., Vereecken, W., Tanghe, E., Joseph, W., Pickavet, M., Martens, L., and Demeester, P. (2010). Comparison of power consumption of mobile WiMAX, HSPA and LTE access networks. In Proc. IEEE Telecommunications Internet and Media Techno Economics (CTTE), Gent, Belgium. [Doherty, 1936] Doherty, W. H. (1936). A new high efficiency power amplifier for modulated waves. IEEE Proceedings of the Institute of Radio Engineers (IRE), 24:1163–1182. [earth, 2015] earth (2015). Energy aware radio and network technology (EARTH) project. [Falconer et al., 2000] Falconer, D., Kolze, T., Leiba, Y., and Liebetreu, J. (2000). System impairment model. [Fettweis and Zimmermann, 2008] Fettweis, G. and Zimmermann, E. (2008). ICT energy consumption? Trends and challenges. In Proc. Wireless Personal Multimedia Commun., Lapland, Finland. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 121 / 112
  • 214.
    Reference VII [Frenger etal., 2011] Frenger, P., Moberg, P., Malmodin, J., Jading, Y., and G´odor, I. (2011). Reducing energy consumption in LTE with cell DTX. In Proc. IEEE Veh. Technol. Conf. (VTC-Spring), Budapest, Hungary. [Gadringer et al., 2005] Gadringer, M., Arthaber, H., Mayer, M., and Magerl, G. (2005). Modeling, analysis and classification of a PA based on identified Volterra kernels. In Proc. Gallium Arsenide and Other Semiconductor Application Symposium (GAAS), pages 405–408, Paris, France. [Ghorbani and Sheikhan, 1991] Ghorbani, A. and Sheikhan, M. (1991). The effect of solid state power amplifiers (SSPAs) nonlinearities on MPSK and M-QAM signal transmission. In Proc. Inter. Conf. Digital Processing of Signals in Commun., pages 193–197, Loughborough, UK. [Gruber et al., 2009] Gruber, M., Blume, O., Ferling, D., Zeller, D., and Imran, M. A. (2009). EARTH–Energy aware radio and network technologies. In Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC), Tokyo, Japan. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 122 / 112
  • 215.
    Reference VIII [Gutman andWulich, 2012] Gutman, I. and Wulich, D. (2012). On achievable rate of multicarrier with practical high power amplifier. In European Wireless 2012 (EW2012), Poznan, Poland. [Han et al., 2011] Han, S., Yang, C., Wang, G., and Lei, M. (2011). On the energy efficiency of base station sleeping with multicell cooperative transmission. In Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC), pages 1536–1540, Toronto, ON, Canada. [Hasan et al., 2011] Hasan, Z., Boostanimehr, H., and Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13:524–540. [H´eliot et al., 2012] H´eliot, F., Imran, M. A., and Tafazolli, R. (2012). On the energy efficiency-spectral efficiency trade-off over the MIMO Rayleigh fading channel. IEEE Trans. Commun., pages 1345–1356. [ITRS, 2011] ITRS (2011). International technology roadmap for semiconductors. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 123 / 112
  • 216.
    Reference IX [Jeruchim etal., 2000] Jeruchim, M. C., Balaban, P., and Shanmugan, K. S. (2000). Simulation of communication systems: Modeling, methodology, and techniques. Springer, New York. [Jiang and Wu, 2008] Jiang, T. and Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Trans. Broadcast., 54:257–268. [Joung et al., 2014a] Joung, J., Chia, Y. K., and Sun, S. (2014a). Energy-efficient, large-scale distributed-antenna system (L-DAS) for multiple users. IEEE J. Sel. Topics Signal Process., 8:954–965. [Joung et al., 2014b] Joung, J., Ho, C. K., Adachi, K., and Sun, S. (2014b). A survey on power-amplifier-centric techniques for spectrum and energy efficient wireless communications. IEEE Commun., Surveys & Tutorials, pages 1–20. (early access articles). Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 124 / 112
  • 217.
    Reference X [Joung etal., 2012a] Joung, J., Ho, C. K., and Sun, S. (2012a). Tradeoff of spectral and energy efficiencies: Impact of power amplifier on OFDM systems. In Proc. IEEE Global Commun. Conf. (GLOBECOM), pages 3274–3279, Anaheim, CA, USA. [Joung et al., 2013] Joung, J., Ho, C. K., and Sun, S. (2013). Power amplifier switching (PAS) for energy efficient systems. IEEE Wireless Commun. Lett., 2:14–17. [Joung et al., 2014c] Joung, J., Ho, C. K., and Sun, S. (2014c). Spectral efficiency and energy efficiency of OFDM systems: Impact of power amplifiers and countermeasures. IEEE J. Sel. Areas Commun., 32:208–220. [Joung et al., 2014d] Joung, J., Ho, C. K., and Sun, S. (2014d). Tradeoff of spectral and energy efficiencies: Impact of power amplifier on OFDM systems. In Proc. IEEE Global Commun. Conf. (GLOBECOM), Austin, TX, USA. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 125 / 112
  • 218.
    Reference XI [Joung etal., 2012b] Joung, J., Ho, C. K., Tan, P. H., and Sun, S. (2012b). Energy minimization in OFDMA downlink systems: A sequential linear assignment algorithm for resource allocation. IEEE Wireless Commun. Lett., 1(4):300–303. [Joung et al., ] Joung, J., Nguyen, H. D., and Sun, S. Pecuniary efficiency of distributed antenna systems. 1st round revision, Jan. 2015. [Joung and Sun, 2012] Joung, J. and Sun, S. (2012). Power efficient resource allocation for downlink OFDMA relay cellular networks. IEEE Trans. Signal Process., 60:2447–2459. [Joung and Sun, 2013] Joung, J. and Sun, S. (2013). Energy efficient power control for distributed transmitters with ZF-based multiuser MIMO precoding. IEEE Commun. Lett., 17:1766–1769. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 126 / 112
  • 219.
    Reference XII [Joung etal., 2012c] Joung, J., Yuan, D., Ho, C. K., and Sun, S. (2012c). Energy efficient network-flow-based algorithm with flow size adaptation for multiuser multicarrier systems. IET Networks, 1(2):66–73. [Kahn, 1952] Kahn, L. (1952). Single-sideband transmission by envelope elimination and restoration. IEEE Proceedings of the Institute of Radio Engineers (IRE), 40:803–806. [Kazimierczuk, 2008] Kazimierczuk, M. K. (2008). RF power amplifiers. John Wiley & Sons, UK, first edition. [Kenington, 2000] Kenington, P. B. (2000). High linearity RF amplifier design. Artech House, Norwood, MA. [Kim and Konstantinou, 2001] Kim, J. and Konstantinou, K. (2001). Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett., 27:1417–1418. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 127 / 112
  • 220.
    Reference XIII [Kosta etal., 2013] Kosta, C., Quddus, B. H. A., and Tafazolli, R. (2013). On interference avoidance through inter-cell interference coordination (ICIC) based on OFDMA mobile systems. IEEE Commun. Surveys Tuts., 15(3):973–995. [Kowlgi and Berland, 2011] Kowlgi, S. and Berland, C. (2011). Linearity considerations for multi-standard cellular base station transmitters. In Proc. IEEE Microwave Conf. (EuMC), pages 226–229, Manchester, UK. [Kumar and Gurugubelli, 2011] Kumar, R. V. R. and Gurugubelli, J. (2011). How green the LTE technology can be? In Proc. IEEE Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), Chennai, India. [Mancuso and Sara Alouf, 2011] Mancuso, V. and Sara Alouf, I. S. A. M. (2011). Reducing costs and pollution in cellular networks. IEEE Wireless Commun. Mag., 17:63–71. [Minkoff, 1985] Minkoff, J. (1985). The role of AM-to-PM conversion in memoryless nonlinear systems. IEEE Trans. Commun., 33(2):139–144. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 128 / 112
  • 221.
    Reference XIV [Morgan etal., 2006] Morgan, D. R., Ma, Z., Kim, J., Zierdt, M. G., and Pastalan, J. (2006). A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Process., 54:3852–3860. [Niu et al., 2010] Niu, Z., Wu, Y., Gong, J., and Yang, Z. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Commun. Mag., 48:74–79. [Onireti et al., 2012] Onireti, O., H´eliot, F., and Imran, M. A. (2012). On the energy efficiency-spectral efficiency trade-off in the uplink of CoMP system. IEEE Trans. Wireless Commun., pages 556–561. [Papoulis and Pillai, 2002] Papoulis, A. and Pillai, S. (2002). Probability, random variables and stochastic processes. McGraw-Hill, fourth edition. [Pothecary, 1999] Pothecary, N. (1999). Feedforward Linear Power Amplifiers. Artech House, Norwood, MA. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 129 / 112
  • 222.
    Reference XV [Proakis andSalehi, 2007] Proakis, J. G. and Salehi, M. (2007). Digital communications. McGraw-Hill, New York„ five edition. [Raab, 1987] Raab, F. H. (1987). Efficiency of Doherty RF power-amplifier systems. IEEE Trans. Broadcast., BC-33:77–83. [Raab et al., 2002] Raab, F. H., Asbeck, P., Cripps, S. C., Kenington, P. B., Popovi´c, Z. B., Pothecary, N., Sevic, J. F., and Sokal, N. O. (2002). Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech., 50:814–826. [Raab et al., 2003a] Raab, F. H., Asbeck, P., Cripps, S. C., Kenington, P. B., Popovi´c, Z. B., Pothecary, N., Sevic, J. F., and Sokal, N. O. (2003a). RF and microwave power amplifier and transmitter technologies–Part 1. High Frequency Electronics, pages 22–36. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 130 / 112
  • 223.
    Reference XVI [Raab etal., 2003b] Raab, F. H., Asbeck, P., Cripps, S. C., Kenington, P. B., Popovi´c, Z. B., Pothecary, N., Sevic, J. F., and Sokal, N. O. (2003b). RF and microwave power amplifier and transmitter technologies–Part 2. High Frequency Electronics, pages 22–36. [Raab et al., 2003c] Raab, F. H., Asbeck, P., Cripps, S. C., Kenington, P. B., Popovi´c, Z. B., Pothecary, N., Sevic, J. F., and Sokal, N. O. (2003c). RF and microwave power amplifier and transmitter technologies–Part 3. High Frequency Electronics, pages 34–48. [Rahmatallah and Mohan, 2013] Rahmatallah, Y. and Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE Commun. Surveys Tuts., 15(4):1567–1592. [Rapp, 1991] Rapp, C. (1991). Effects of HPA-nonlinearity on a 4-DPS/OFDM signal for a digital sound broadcasting system. In Proc. Second European Conf. on Satellite Commun., pages 179–184, Lihge, Belgium. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 131 / 112
  • 224.
    Reference XVII [Richter etal., 2009] Richter, F., Fehske, A. J., and Fettweis, G. P. (2009). Energy efficiency aspects of base station deployment strategies for cellular networks. In Proc. IEEE Veh. Technol. Conf. (VTC-Fall), Anchorage, AK, USA. [Saleh, 1981] Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Trans. Commun., 29:1715–1720. [Shirvani et al., 2002] Shirvani, A., Su, D. K., and Wooley, B. A. (2002). A CMOS RF power amplifier with parallel amplification for efficient power control. IEEE J. Solid-State Circuits, 27:684–693. [Staudinger, 2000] Staudinger, J. (2000). Applying switched gain stage concepts to improve efficiency and linearity for mobile CDMA power amplification. Microwave Journal, 43:152–162. [Teikari, 2008] Teikari, I. (2008). Digital Predistortion Linearization Methods for RF Power Amplifiers. PhD thesis, Helsinki University of Technology, Finland. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 132 / 112
  • 225.
    Reference XVIII [Tellado etal., 2003] Tellado, J., Hoo, L. M. C., and Cioffi, J. M. (2003). Maximum-likelihood detection of nonlinearly distorted multicarrier symbols by iterative decoding. IEEE Trans. Commun., 51:218–228. [Tombaz et al., 2011] Tombaz, S., V¨astberg, A., and Zander, J. (2011). Energy- and cost-efficient ultra-high-capacity wireless access. IEEE Trans. Wireless Commun., 18:18–24. [Verd´u, 2002] Verd´u, S. (2002). Spectral efficiency in the wideband regime. IEEE Trans. Inf. Theory, 48(6):1319–1343. [Vereecken et al., 2011] Vereecken, W., Heddeghem, W. V., Deruyck, M., Puype, B., Lannoo, B., Joseph, W., Colle, D., Martens, L., and Demeester, P. (2011). Power consumption in telecommunication networks: overview and reduction strategies. IEEE Commun. Mag., 49:62–69. [Vuolevi et al., 2000] Vuolevi, J., Rahkonen, T., and Manninen, J. (2000). Measurement technique for characterizing memory effects in RF power amplifiers. In Proc. IEEE Radio and Wireless Conf. (RAWCON), pages 195–198, Denver, CO, USA. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 133 / 112
  • 226.
    Reference XIX [Xu etal., 2011] Xu, J., Qiu, L., and Yu, C. (2011). Improving energy efficiency through multimode transmission in the downlink MIMO systems. EURASIP J. Wireless Commun. Netw., 2011:1–12. [Yang et al., 2009] Yang, Y., Hu, H., Xu, J., and Mao, G. (2009). Relay technologies for WiMax and LTE-advanced mobile systems. IEEE Commun. Mag., 47(10):100–105. [Zhou et al., 2013] Zhou, L., Hu, R. Q., Qian, Y., and Chen, H.-H. (2013). Energy-spectrum efficiency tradeoff for video streaming over mobile Ad Hoc networks. IEEE J. Sel. Areas Commun., 31(5):981–991. [Zillmann and Fettweis, 2005] Zillmann, P. and Fettweis, G. (2005). On the capacity of multicarrier transmission over nonlinear channels. In Proc. IEEE Veh. Technol. Conf. (VTC-Spring), Stockholm, Sweden. Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 134 / 112