SlideShare a Scribd company logo
Numerical methods 	

for stochastic systems 	

subject to generalized Levy noise
by Mengdi Zheng!
Thesis committee: George Em Karniadakis (Ph.D., advisor)!
Hui Wang (Ph.D., reader, APMA, Brown)!
Xiaoliang Wan (Ph.D., reader, Mathematics, LSU)
Contents
Besides motivation and introduction,
Motivation
Mathematical
Reasons
Applicational Reasons
Mathematical
Finance
!
Levy flights
in Chaotic
flows
Probability collocation method (PCM) in UQ
Xt (ω) ≈ Xt (ξ1,ξ2,...,ξn ) ω ∈Ω Ε[um
(x,t;ω)] ≈ Ε[um
(x,t;ξ1,ξ2,...,ξn )]
ξ1
ξ2
ξ3
... ξn
O Ω
PCM
ξ1
ξ2
Ω
O
MEPCM
B1 B2
B3 B4
n = 2
I = dΓ(x) f (x) ≈
a
b
∫ dΓ(x) f (xi )hi (x)
i=1
d
∑ = f (xi ) dΓ(x)hi (x)
a
b
∫i=1
d
∑
a
b
∫
Gauss integration:
u(x,t;ξ1i )
i=1
d
∑ wi
n = 1
{Pi (x)}orthogonal to Γ(x)
Pd (x)zeros of
Lagrange
interpolation
at zeros{xi ,i = 1,..,d}
sample path of a
Poisson process
Jt
t
Introduction of Levy processes
Gauss
quadrature
and weights
generate
orthogonal to{Pj
k (ξ j
)}
µ j
(ξ j
)
moment
statistics
5
ways
tensor
product
or
sparse
grid
Ε[um
(x,t;ω)]
0
17.5
35
52.5
70
1 2 3 4
measure of
ξi
ξi
what if is a set of experimental data?ξi
subjective assumption of!
distribution shapes
?
ut + 6uux + uxxx = σiξi ,
i=1
n
∑ x ∈!
u(x,0) =
a
2
sech2
(
a
2
(x − x0 ))
Data-driven UQ for stochastic KdV equations
M. Zheng, X. Wan, G.E. Karniadakis, Adaptive multi-element polynomial chaos with discrete measure: Algorithms and
application to SPDEs, Applied Numerical Mathematics, 90 (2015), pp. 91–110.
A(k + n,n) = (−1)k+n−|i| n −1
k + n− | i |
⎛
⎝⎜
⎞
⎠⎟ (Ui1
⊗...⊗Uin
)
k+1≤|i|≤k+n
∑
Sparse grids in Smolyak algorithm: level k, dimension n
sparse!
grid
tensor!
product!
grid
Construct orthogonal polynomials to discrete measures
1. (Nowak) S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion,
Reliability Engineering & System Safety, 106 (2012), pp. 179–190.	

2. (Stieltjes, Modified Chebyshev) W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comp., 3 (1982), no.3, pp.
289–317. 	

3. (Lanczos) D. Boley, G. H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems, 3 (1987), pp. 595–622. 	

4. (Fischer) H. J. Fischer, On generating orthogonal polynomials for discrete measures, Z. Anal. Anwendungen, 17 (1998), pp. 183–
205.
f (k;N, p) =
N!
k!(N − k)!
pk
(1− p)N−k
,k = 0,1,...,N.
10 20 40 80 100
10
−4
10
−3
10
−2
10
−1
10
0
polynomial order i
CPUtimetoevaluateorth(i)
Nowak
Stieltjes
Fischer
Modified Chebyshev
Lanczos
C*i2
n=100,p=1/2
polynomial order i
Bino(100, 1/2)
0 10 20 30 40 50 60 70 80 90 100
10
−20
10
−15
10
−10
10
−5
10
0
polynomial order i
orth(i)
Nowak
Stieltjes
Fischer
Modified Chebyshev
Lanczos
N=100, p=1/2
polynomial order i
Bino(100, 1/2)
orthogonality ?
cost ?
Bino(N, p)Binomial distribution
| f (ξ)µ(ξ)− Qm
Bi
f
i=1
Nes
∑
Γ
∫ |≤ Chm+1
|| EΓ ||m+1,∞,Γ | f |m+1,∞,Γ
{Bi
}i=1
Nes
: elementsNes : number of elements
: number of elementsΓ
µ: discrete measure
Qm
Bi
Gauss quadrature + tensor product
with exactness m=2d-1
h: maximum size of Bi
f : test function in W m+1,∞
(Γ)
	

 (when the measure is continuous) J. Foo, X. Wan, G. E. Karniadakis, A multi-element probabilistic collocation method for PDEs with
parametric uncertainty: error analysis and applications, Journal of Computational Physics 227 (2008), pp. 9572–9595.
10
0
10
1
10
−6
10
−5
10
−4
10
−3
10
−2
N
es
absoluteerror
c=0.1,w=1
GENZ1
d=2
m=3
bino(120,1/2)Bino(120, 1/2)
10
0
10
1
10
−13
10
−12
10
−11
10
−10
10
−9
N
es
absoluteerrors
c=0.1,w=1
GENZ4
d=2
m=3
bino(120,1/2)
Bino(120, 1/2)
0 20 40 60 80 100
−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1
GENZ1 function (oscillations)
w=1, c=0.01
w=1,c=0.1
w=1,c=1
0 20 40 60 80 100 120
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
GENZ4 function (Gaussian)
c=0.01,w=1
c=0.1,w=1
c=1,w=1
Multi-element Gauss integration over discrete measures
UQ of stochastic KdV equation with 1RVut + 6uux + uxxx = σiξi ,
i=1
n
∑ x ∈!
u(x,0) =
a
2
sech2
(
a
2
(x − x0 ))
2 3 4 5 6 7 8
10
−3
10
−2
d
error
l2u1aPC
l2u2
aPC
2 3 5 10 15 20 30
10
−7
10
−6
10
−5
10
−4
10
−3
10
−2
Nes
error
l2u1
l2u2
C*Nel−4
h-convergence!
of MEPCM
p-convergence of PCM
Poisson distribution
Binomial distribution
σi
2
local variance to the measure µ(dξ) / µ(dξ)
Bi
∫
adaptive !
integration!
mesh
2 3 4 5 6
10
−5
10
−4
10
−3
10
−2
Number of PCM points on each element
errors 2 el, even grid
2 el, uneven grid
4 el, even grid
4 el, uneven grid
5 el, even grid
5 el, uneven grid
(MEPCM)!
adaptive!
vs.!
non-
adaptive!
meshes
error of Ε[u2
]
Improved !
ut + 6uux + uxxx = σiξi ,
i=1
n
∑ x ∈!
u(x,0) =
a
2
sech2
(
a
2
(x − x0 ))
	

 (sparse grid) D. Xiu, J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Scientific
Computing 27(3) (2005), pp. 1118– 1139.
17 153 256 969 4,845
10
−10
10
−9
10
−8
10
−7
10
−6
10
−5
10
−4
r(k)
errors
l2u1(sparse grid)
l2u2(sparse grid)
l2u1(tensor product grid)
l2u2(tensor product grid)
sparse grid vs. tensor product grid
Binomial distribution
n=8
Improved !
2D sparse grid in Smolyak algorithm
UQ of stochastic KdV equation with multiple RVs
Summary of contributions (1)
✰ convergence study of multi-element integration over
discrete measure
!
✰ comparison of 5 ways to construct orthogonal
polynomials w.r.t. discrete measure
!
✰ improvement of moment statistics by adaptive
integration mesh (on discrete measure)
!
✰ improvement of moment statistics by sparse grid (on
discrete measure)
gPC for 1D stochastic Burgers equation
M. Zheng, B. Rozovsky, G.E. Karniadakis, Adaptive Wick-Malliavin Approximation to Nonlinear SPDEs with Discrete Random
Variables, SIAM J. Sci. Comput., revised. (multiple discrete RVs)	

D. Venturi, X. Wan, R. Mikulevicius, B.L. Rozovskii, G.E. Karniadakis, Wick-Malliavin approximation to nonlinear stochastic
PDEs: analysis and simulations, Proceedings of the Royal Society, vol.469, no.2158, (2013). (multiple Gaussian RVs)
ut + uux = υuxx +σc1(ξ;λ), x ∈[−π,π]
u(x,t;ξ) ≈ u!k (x,t)ck (ξ;λ)
k=0
P
∑Expand the solution:
∂u!k
∂t
+ u!m
∂u!n
∂t
< cmcnck >=
m,n=0
P
∑ υ
∂2
u!k
∂x2
+σδ1k ,
general Polynomial Chaos (gPC) propagator
k = 0,1,...,P.
ξ ∼ Pois(λ)
ck : Charlier polynomial
e−λ
λk
k!
cm (k;λ)cn (k;λ) =< cmcn >= n!λn
δmn
k∈!
∑
cm
by Galerkin projection : < uck >
nonlinear
How many numbers of
terms !
!
!
!
there are !
u!m
∂u!n
∂t
< cmcnck >
?
(motivation)
Let us simplify the gPC propagator !
(P +1)3
Wick-Malliavin (WM) approximation
G.C. Wick, The evaluation of the collision matrix, Phys. Rev. 80 (2), (1950), pp. 268-272.
◊
ξ ∼ Pois(λ)✰ consider with measure
!
✰ define Wick product as:
✰ define Malliavin derivative D as:
!
✰ the product of two polynomials can be approximated by:
!
!
!
✰ here
!
✰ define weighted Wick product :
!
✰ rewrite the product of two polynomials:
!
!
✰ approximate the product of uv as:
Γ(x) =
e−λ
λk
k!
δ(x − k)
k∈!
∑
cm (x;λ)◊cn (x;λ) = cm+n (x;λ),
Dp
ci (x;λ) =
i!
(i − p)!
ci−p (x;λ)
cm (x)cm (x) = a(k,m,n)ck (x) =
k=0
m+n
∑ Kmnpcm+n−2 p (x;λ)
p=0
m+n
2
∑
Kmnp = a(m + n − 2p,m,n)
◊p
cm◊pcn =
p!m!n!
(m + p)!(n + p)!
Km+p,n+p,pcm◊cn
cmcn =
Dp
cm◊pDp
cn
p!p=0
m+n
2
∑
uv =
Dp
u◊pDp
v
p!
≈
p=0
∞
∑
Dp
u◊pDp
v
p!p=0
Q
∑
WM approximation simplifies the gPC propagator !
ut + uux = υuxx +σc1(ξ;λ), x ∈[−π,π]
∂u!k
∂t
+ u!m
∂u!n
∂t
< cmcnck >=
m,n=0
P
∑ υ
∂2
u!k
∂x2
+σδ1k , k = 0,1,...,P.gPC propagator:
∂u!k
∂t
+ u!i
i=0
P
∑
∂u!k+2 p−i
∂x
Ki,k+2 p−i,Q =
p=0
Q
∑ υ
∂2
u!k
∂x2
+σδ1k , k = 0,1,...,P.WM propagator:
How much less? Let us count the dots !
k=0 k=1 k=2 k=3 k=4
P=4, Q=1/2
Spectral convergence when Q ≥ P −1
ut + uux = υuxx +σc1(ξ;λ) u(x,0) = 1− sin(x)
ξ ∼ Pois(λ) x ∈[−π,π] Periodic B.C.
concept of P-Q refinement
ut + uux = υuxx +σc1(ξ;λ) u(x,0) = 1− sin(x)
ξ ∼ Pois(λ) x ∈[−π,π] Periodic B.C.
WM for stochastic Burgers equation w/ multiple RVs
ut + uux = υuxx +σ
j=1
3
∑ c1(ξj;λ)cos(0.1jt)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10
−7
10
−6
10
−5
10
−4
10
−3
10
−2
T
l2u2(T)
Q
1
=Q
2
=Q
3
=0
Q1
=1,Q2
=Q3
=0
Q1
=Q2
=1,Q3
=0
Q
1
=Q
2
=Q
3
=1
u(x,0) = 1− sin(x) ξ1,2,3 ∼ Pois(λ)
x ∈[−π,π] Periodic B.C.
How about 3 discrete RVs ? How about the cost in d-dim ?
C(P,Q)d
the # of terms u!i
∂u! j
∂x
(P +1)3d
the # of terms u!m
∂u!n
∂t
Let us find the ratio
C(P,Q)d
(P +1)3d
P=3
Q=2
P=4
Q=3
d=2 61.0% 65.3%
d=3 47.7% 52.8%
d=4 0.000436% 0.0023%
C(P,Q)d
(P +1)3d
??
Cost: WM vs. gPC
Summary of contributions (2)
References
✰ Extend the numerical work on WM approximation for
SPDEs driven by Gaussian RVs to discrete RVs with
arbitrary distribution w/ finite moments
✰ Discover spectral convergence when for
stochastic Burgers equations
✰ Error control with P-Q refinements
✰ Computational complexity comparison of gPC and
WM in d dimensions
Q ≥ P −1
	

 	

 D. Bell, The Malliavin calculus, Dover, (2007) 	

	

 	

 S. Kaligotla and S.V. Lototsky, Wick product in the stochastic Burgers equation: a curse or a cure?
Asymptotic Analysis 75, (2011), pp. 145–168. 	

	

 	

 S.V. Lototsky, B.L. Rozovskii, and D. Selesi, On generalized Malliavin calculus, Stochastic Processes
and their Applications 122(3), (2012), pp. 808–843.
M. Zheng, G.E. Karniadakis, ‘Numerical Methods for SPDEs with Tempered Stable Processes’,SIAM J. Sci. Comput., accepted.	

N. Hilber, O. Reichmann, Ch. Schwab, Ch. Winter, Computational Methods for Quantitative Finance: Finite Element Methods for
Derivative Pric- ing, Springer Finance, 2013. 	

S.I. Denisov, W. Horsthemke, P. Hänggi, Generalized Fokker-Planck equation: Derivation and exact solutions, Eur. Phys. J. B, 68
(2009), pp. 567–575.
Generalized Fokker-Planck Equation for Overdamped Langevin Equation
Overdamped Langevin equation (1D, SODE, in the Ito’s sense)
Density satisfies tempered fractional PDEs (by Ito’s formula)
1D tempered stable (TS) pure jump process has this Levy measure
Generalized FP Equation for Overdamped Langevin Equation driven by TS white noise
Left Riemann-Liouville tempered fractional derivatives (as an example)
Fully implicit scheme in time, Grunwald-Letnikov for fractional derivatives
MC for Overdamped Langevin Equation driven by TS white noise
TFPDE
PCM for Overdamped Langevin Equation driven by TS white noise
Compound Poisson (CP)
approximation
MC!
(probabilistic)
PCM!
(probabilistic)
TFPDE!
(deterministic)
Histogram from MC vs. Density from TFPDEs
Zoomed in plots of P(x,T) by TFPDEs and MC/CP at T = 0.5 (left) and T = 1 (right): α = 0.5, c = 1, λ = 1, x0
= 1 and σ = 0.01 (left and right). In MC/CP: s = 105, δ = 0.01, △t = 1e −3 (left and right). In the TFPDEs:
△t = 1e −5, and Nx = 2000 points on [−12, 12] in space (left and right).
jump intensity jump size distribution
Moment Statistics from PCM/CP vs. TFPDE
TFPDE vs. PCM/CP: error of the 2nd moment of the solution versus time with λ=10 (left) and λ=1 (right).
α=0.5,c=2,σ=0.1,x0 =1 (left and right). For the TFPDE: finite difference scheme with △t = 2.5 × 10−5 , Nx
equidistant points on [−12, 12], initial condition given by δD (left and right).
TFPDE costs much less computational time
but more accurate than PCM/CP
M. Zheng, G.E. Karniadakis, Numerical methods for SPDEs with additive multi-dimensional Levy jump processes, in
preparation.
How to describe the dependence structure among components!
of a multi-dimensional Levy jump process ?
	

 	

 J. Kallsen, P. Tankov, Characterization of dependence of multidimensional Levy processes using Levy copulas, Journal of
Multivariate Analysis, 97 (2006), pp. 1551–1572.
LePage’s representation of Levy measure:
Series representation:
τ = 1
τ = 100
Levy copula!
+!
Marginal Levy!
measure!
=!
Levy measure
1
2
Analysis of variance (ANOVA) + FP = marginal distribution
FP equation
ANOVA decomposition
ANOVA terms are related to marginal distributions
1D-ANOVA-FP for marginal distributions
2D-ANOVA-FP for marginal distributions
LePage’s
representation
TFPDEs
0 0.2 0.4 0.6 0.8 1
−2
0
2
4
6
8
10
12
x
E[u(x,T=1)]
E[uPCM
]
E[u
1D−ANOVA−FP
]
E[u
2D−ANOVA−FP
]
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
3.4
3.6
3.8
4
4.2
4.4
4.6
4.8
5
5.2
x 10
−4
T
L2
normofdifferenceinE[u]
||E[u
1D−ANOVA−FP
−E[u
PCM
]||
L
2
([0,1])
/||E[u
PCM
]||
L
2
([0,1])
||E[u
2D−ANOVA−FP
−E[u
PCM
]||
L
2
([0,1])
/||E[u
PCM
]||
L
2
([0,1])
Moments: 1D-ANOVA-FP is accurate for E[u] in 10D
1D-ANOVA-FP
2D-ANOVA-FP
PCM
1D-ANOVA-FP
2D-ANOVA-FP
noise-to-signal!
ratio NSR ≈18.24%
Moments: 1D-ANOVA-FP is not accurate for in 10D
0 0.2 0.4 0.6 0.8 1
0
20
40
60
80
100
120
x
E[u
2
(x,T=1)]
E[u
2
PCM
]
E[u2
1D−ANOVA−FP
]
E[u
2
2D−ANOVA−FP
]
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
T
L
2
normofdifferenceinE[u2
]
||E[u2
1D−ANOVA−FP
−E[u2
PCM
]||
L
2
([0,1])
/||E[u2
PCM
]||
L
2
([0,1])
||E[u
2
2D−ANOVA−FP
−E[u
2
PCM
]||
L
2
([0,1])
/||E[u
2
PCM
]||
L
2
([0,1])
1D-ANOVA-FP
2D-ANOVA-FP
PCM
1D-ANOVA-FP
2D-ANOVA-FP
Ε[u2
]
NSR ≈18.24%
Moments: PCM vs. FP (TFPDE)
Initial condition of FP
equation introduce error
0.2 0.4 0.6 0.8 1
10
−10
10
−8
10
−6
10
−4
10
−2
l2u2(t)
t
PCM/S Q=5, q=2
PCM/S Q=10, q=2
TFPDE
NSR 4.8%
Moments: PCM vs. MC
LePage’s representation (2D)
Ε[u2
]
Ε[u2
]
LePage’s representation (2D)
10
0
10
2
10
4
10
6
10
−4
10
−3
10
−2
10
−1
s
l2u2(t=1)
PCM/S q=1
PCM/S q=2
MC/S Q=40
PCM costs less than MC
Q — # of truncation in series representation
q — # of quadrature points on each
dimension
Density: MC vs. FP equation (2D Levy)
LePage’s !
representation!
2D — MC
3D — FP/TFPDE
Levy!
copula
General picture of solving SPDEs w/ multi-dim jump processes
Summary of contributions (3, 4)
✰ Established a framework for UQ of SPDEs w/ multi-
dimensional Levy jump processes by probabilistic
(MC, PCM) and deterministic (FP) methods
✰ Combined the ANOVA & FP to simulate moments of
solution at lower orders
✰ Improved the traditional MC method’s efficiency and
accuracy
✰ Link the area of fractional PDEs & UQ for SPDEs w/
Levy jump processes
Future work
✰ Simulate SPDEs driven by higher-dimensional Levy
jump processes with ANOVA-FP
✰ Consider other jump processes than TS processes
✰ Consider nonlinear SPDEs w/ multiplicative multi-
dimensional Levy jump processes
✰ Application to the Energy Balance Model in climate
modeling
✰ Application to Mathematical Finance
Acknowledgements
✰ Thanks Prof. George Em Karniadakis for advice and
support
✰ Thanks Prof. Xiaoliang Wan and Prof. Hui Wang to be
on my committee
✰ Thanks Prof. Xiaoliang Wan and Prof. Boris Rozovskii
for their innovative ideas and collaboration
✰ Thanks for the support from the NSF/DMS (grant
DMS-0915077) and the Airforce MURI (grant
FA9550-09-1-0613)
Thanks
for
attending !

More Related Content

What's hot

Word Embeddings, why the hype ?
Word Embeddings, why the hype ? Word Embeddings, why the hype ?
Word Embeddings, why the hype ?
Hady Elsahar
 
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet Allocation
Marco Righini
 
what is new in controlled ovarian stimulation?
what is new in controlled ovarian stimulation?what is new in controlled ovarian stimulation?
what is new in controlled ovarian stimulation?
Aboubakr Elnashar
 
The Role of Recombinant hCG in IVF
The Role of Recombinant hCG in IVFThe Role of Recombinant hCG in IVF
The Role of Recombinant hCG in IVF
Sandro Esteves
 
Management of nonobstructive azoospermia
Management of nonobstructive azoospermiaManagement of nonobstructive azoospermia
Management of nonobstructive azoospermia
Sandro Esteves
 
Recent Trends In Art (1)
Recent Trends In Art (1)Recent Trends In Art (1)
Recent Trends In Art (1)
guest7f0a3a
 
Challenges of Progesterone usage
Challenges of Progesterone usage Challenges of Progesterone usage
Challenges of Progesterone usage
G A RAMA Raju
 
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet Allocation
Sangwoo Mo
 
3RD PARTY REPORDUCTION
3RD PARTY REPORDUCTION3RD PARTY REPORDUCTION
3RD PARTY REPORDUCTION
NARENDRA C MALHOTRA
 
Najmul Hoda PhD Thesis Defence Presentation
Najmul Hoda PhD Thesis Defence PresentationNajmul Hoda PhD Thesis Defence Presentation
Najmul Hoda PhD Thesis Defence Presentation
Najmul Hoda
 
The future ivf lab
The future ivf labThe future ivf lab
The future ivf lab
Kosmogonia IVF
 
Improving Success by Tailoring Ovarian Stimulation
Improving Success by Tailoring Ovarian StimulationImproving Success by Tailoring Ovarian Stimulation
Improving Success by Tailoring Ovarian Stimulation
Sandro Esteves
 
Enabling reuse of arguments and opinions in open collaboration systems PhD vi...
Enabling reuse of arguments and opinions in open collaboration systems PhD vi...Enabling reuse of arguments and opinions in open collaboration systems PhD vi...
Enabling reuse of arguments and opinions in open collaboration systems PhD vi...
jodischneider
 
Doctorate Dissertation Proposal
Doctorate Dissertation ProposalDoctorate Dissertation Proposal
Doctorate Dissertation Proposal
Maurice Dawson
 

What's hot (14)

Word Embeddings, why the hype ?
Word Embeddings, why the hype ? Word Embeddings, why the hype ?
Word Embeddings, why the hype ?
 
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet Allocation
 
what is new in controlled ovarian stimulation?
what is new in controlled ovarian stimulation?what is new in controlled ovarian stimulation?
what is new in controlled ovarian stimulation?
 
The Role of Recombinant hCG in IVF
The Role of Recombinant hCG in IVFThe Role of Recombinant hCG in IVF
The Role of Recombinant hCG in IVF
 
Management of nonobstructive azoospermia
Management of nonobstructive azoospermiaManagement of nonobstructive azoospermia
Management of nonobstructive azoospermia
 
Recent Trends In Art (1)
Recent Trends In Art (1)Recent Trends In Art (1)
Recent Trends In Art (1)
 
Challenges of Progesterone usage
Challenges of Progesterone usage Challenges of Progesterone usage
Challenges of Progesterone usage
 
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet Allocation
 
3RD PARTY REPORDUCTION
3RD PARTY REPORDUCTION3RD PARTY REPORDUCTION
3RD PARTY REPORDUCTION
 
Najmul Hoda PhD Thesis Defence Presentation
Najmul Hoda PhD Thesis Defence PresentationNajmul Hoda PhD Thesis Defence Presentation
Najmul Hoda PhD Thesis Defence Presentation
 
The future ivf lab
The future ivf labThe future ivf lab
The future ivf lab
 
Improving Success by Tailoring Ovarian Stimulation
Improving Success by Tailoring Ovarian StimulationImproving Success by Tailoring Ovarian Stimulation
Improving Success by Tailoring Ovarian Stimulation
 
Enabling reuse of arguments and opinions in open collaboration systems PhD vi...
Enabling reuse of arguments and opinions in open collaboration systems PhD vi...Enabling reuse of arguments and opinions in open collaboration systems PhD vi...
Enabling reuse of arguments and opinions in open collaboration systems PhD vi...
 
Doctorate Dissertation Proposal
Doctorate Dissertation ProposalDoctorate Dissertation Proposal
Doctorate Dissertation Proposal
 

Similar to Thesis defense

Thesis defense improved
Thesis defense improvedThesis defense improved
Thesis defense improved
Zheng Mengdi
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
Frank Nielsen
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017
Fred J. Hickernell
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
Christian Robert
 
kactl.pdf
kactl.pdfkactl.pdf
kactl.pdf
Rayhan331
 
SPDE presentation 2012
SPDE presentation 2012SPDE presentation 2012
SPDE presentation 2012
Zheng Mengdi
 
cheb_conf_aksenov.pdf
cheb_conf_aksenov.pdfcheb_conf_aksenov.pdf
cheb_conf_aksenov.pdf
Alexey Vasyukov
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
Elvis DOHMATOB
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
Amro Elfeki
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
The Statistical and Applied Mathematical Sciences Institute
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
angely alcendra
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
The Statistical and Applied Mathematical Sciences Institute
 
Management of uncertainties in numerical aerodynamics
Management of uncertainties in numerical aerodynamicsManagement of uncertainties in numerical aerodynamics
Management of uncertainties in numerical aerodynamics
Alexander Litvinenko
 
BAYSM'14, Wien, Austria
BAYSM'14, Wien, AustriaBAYSM'14, Wien, Austria
BAYSM'14, Wien, Austria
Christian Robert
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
Alessandro Palmeri
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
Lake Como School of Advanced Studies
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Alexander Litvinenko
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
Alexander Litvinenko
 
Polynomial Matrix Decompositions
Polynomial Matrix DecompositionsPolynomial Matrix Decompositions
Polynomial Matrix Decompositions
Förderverein Technische Fakultät
 

Similar to Thesis defense (20)

Thesis defense improved
Thesis defense improvedThesis defense improved
Thesis defense improved
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
 
kactl.pdf
kactl.pdfkactl.pdf
kactl.pdf
 
SPDE presentation 2012
SPDE presentation 2012SPDE presentation 2012
SPDE presentation 2012
 
cheb_conf_aksenov.pdf
cheb_conf_aksenov.pdfcheb_conf_aksenov.pdf
cheb_conf_aksenov.pdf
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
Management of uncertainties in numerical aerodynamics
Management of uncertainties in numerical aerodynamicsManagement of uncertainties in numerical aerodynamics
Management of uncertainties in numerical aerodynamics
 
BAYSM'14, Wien, Austria
BAYSM'14, Wien, AustriaBAYSM'14, Wien, Austria
BAYSM'14, Wien, Austria
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Polynomial Matrix Decompositions
Polynomial Matrix DecompositionsPolynomial Matrix Decompositions
Polynomial Matrix Decompositions
 

More from Zheng Mengdi

phd Thesis Mengdi Zheng (Summer) Brown Applied Maths
phd Thesis Mengdi Zheng (Summer) Brown Applied Mathsphd Thesis Mengdi Zheng (Summer) Brown Applied Maths
phd Thesis Mengdi Zheng (Summer) Brown Applied Maths
Zheng Mengdi
 
Cv 12112015
Cv 12112015Cv 12112015
Cv 12112015
Zheng Mengdi
 
Cv 10 2015_aspen_ucl
Cv 10 2015_aspen_uclCv 10 2015_aspen_ucl
Cv 10 2015_aspen_ucl
Zheng Mengdi
 
Thesis
ThesisThesis
Thesis
Zheng Mengdi
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved version
Zheng Mengdi
 
03/17/2015 SLC talk
03/17/2015 SLC talk 03/17/2015 SLC talk
03/17/2015 SLC talk
Zheng Mengdi
 
Teaching statement 1 page to bath
Teaching statement 1 page to bathTeaching statement 1 page to bath
Teaching statement 1 page to bath
Zheng Mengdi
 
fractional dynamics on networks
fractional dynamics on networks fractional dynamics on networks
fractional dynamics on networks
Zheng Mengdi
 
phd thesis outline
phd thesis outlinephd thesis outline
phd thesis outline
Zheng Mengdi
 
uncertainty quantification of SPDEs with multi-dimensional Levy processes
uncertainty quantification of SPDEs with multi-dimensional Levy processesuncertainty quantification of SPDEs with multi-dimensional Levy processes
uncertainty quantification of SPDEs with multi-dimensional Levy processes
Zheng Mengdi
 
Mengdi zheng 09232014_apma
Mengdi zheng 09232014_apmaMengdi zheng 09232014_apma
Mengdi zheng 09232014_apma
Zheng Mengdi
 
wick malliavin approximation for sde with discrete rvs
wick malliavin approximation for sde with discrete rvswick malliavin approximation for sde with discrete rvs
wick malliavin approximation for sde with discrete rvs
Zheng Mengdi
 
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
2014 spring crunch seminar (SDE/levy/fractional/spectral method)2014 spring crunch seminar (SDE/levy/fractional/spectral method)
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
Zheng Mengdi
 

More from Zheng Mengdi (13)

phd Thesis Mengdi Zheng (Summer) Brown Applied Maths
phd Thesis Mengdi Zheng (Summer) Brown Applied Mathsphd Thesis Mengdi Zheng (Summer) Brown Applied Maths
phd Thesis Mengdi Zheng (Summer) Brown Applied Maths
 
Cv 12112015
Cv 12112015Cv 12112015
Cv 12112015
 
Cv 10 2015_aspen_ucl
Cv 10 2015_aspen_uclCv 10 2015_aspen_ucl
Cv 10 2015_aspen_ucl
 
Thesis
ThesisThesis
Thesis
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved version
 
03/17/2015 SLC talk
03/17/2015 SLC talk 03/17/2015 SLC talk
03/17/2015 SLC talk
 
Teaching statement 1 page to bath
Teaching statement 1 page to bathTeaching statement 1 page to bath
Teaching statement 1 page to bath
 
fractional dynamics on networks
fractional dynamics on networks fractional dynamics on networks
fractional dynamics on networks
 
phd thesis outline
phd thesis outlinephd thesis outline
phd thesis outline
 
uncertainty quantification of SPDEs with multi-dimensional Levy processes
uncertainty quantification of SPDEs with multi-dimensional Levy processesuncertainty quantification of SPDEs with multi-dimensional Levy processes
uncertainty quantification of SPDEs with multi-dimensional Levy processes
 
Mengdi zheng 09232014_apma
Mengdi zheng 09232014_apmaMengdi zheng 09232014_apma
Mengdi zheng 09232014_apma
 
wick malliavin approximation for sde with discrete rvs
wick malliavin approximation for sde with discrete rvswick malliavin approximation for sde with discrete rvs
wick malliavin approximation for sde with discrete rvs
 
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
2014 spring crunch seminar (SDE/levy/fractional/spectral method)2014 spring crunch seminar (SDE/levy/fractional/spectral method)
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
 

Recently uploaded

bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
Hitesh Sikarwar
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptxThe use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
MAGOTI ERNEST
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
Texas Alliance of Groundwater Districts
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
Sharon Liu
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
European Sustainable Phosphorus Platform
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
David Osipyan
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Texas Alliance of Groundwater Districts
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills MN
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
TinyAnderson
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
by6843629
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
Medical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptxMedical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptx
terusbelajar5
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
RASHMI M G
 

Recently uploaded (20)

bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptxThe use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
Medical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptxMedical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptx
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
 

Thesis defense

  • 1. Numerical methods for stochastic systems subject to generalized Levy noise by Mengdi Zheng! Thesis committee: George Em Karniadakis (Ph.D., advisor)! Hui Wang (Ph.D., reader, APMA, Brown)! Xiaoliang Wan (Ph.D., reader, Mathematics, LSU)
  • 4. Probability collocation method (PCM) in UQ Xt (ω) ≈ Xt (ξ1,ξ2,...,ξn ) ω ∈Ω Ε[um (x,t;ω)] ≈ Ε[um (x,t;ξ1,ξ2,...,ξn )] ξ1 ξ2 ξ3 ... ξn O Ω PCM ξ1 ξ2 Ω O MEPCM B1 B2 B3 B4 n = 2 I = dΓ(x) f (x) ≈ a b ∫ dΓ(x) f (xi )hi (x) i=1 d ∑ = f (xi ) dΓ(x)hi (x) a b ∫i=1 d ∑ a b ∫ Gauss integration: u(x,t;ξ1i ) i=1 d ∑ wi n = 1 {Pi (x)}orthogonal to Γ(x) Pd (x)zeros of Lagrange interpolation at zeros{xi ,i = 1,..,d}
  • 5. sample path of a Poisson process Jt t Introduction of Levy processes
  • 6. Gauss quadrature and weights generate orthogonal to{Pj k (ξ j )} µ j (ξ j ) moment statistics 5 ways tensor product or sparse grid Ε[um (x,t;ω)] 0 17.5 35 52.5 70 1 2 3 4 measure of ξi ξi what if is a set of experimental data?ξi subjective assumption of! distribution shapes ? ut + 6uux + uxxx = σiξi , i=1 n ∑ x ∈! u(x,0) = a 2 sech2 ( a 2 (x − x0 )) Data-driven UQ for stochastic KdV equations M. Zheng, X. Wan, G.E. Karniadakis, Adaptive multi-element polynomial chaos with discrete measure: Algorithms and application to SPDEs, Applied Numerical Mathematics, 90 (2015), pp. 91–110. A(k + n,n) = (−1)k+n−|i| n −1 k + n− | i | ⎛ ⎝⎜ ⎞ ⎠⎟ (Ui1 ⊗...⊗Uin ) k+1≤|i|≤k+n ∑ Sparse grids in Smolyak algorithm: level k, dimension n sparse! grid tensor! product! grid
  • 7. Construct orthogonal polynomials to discrete measures 1. (Nowak) S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliability Engineering & System Safety, 106 (2012), pp. 179–190. 2. (Stieltjes, Modified Chebyshev) W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comp., 3 (1982), no.3, pp. 289–317. 3. (Lanczos) D. Boley, G. H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems, 3 (1987), pp. 595–622. 4. (Fischer) H. J. Fischer, On generating orthogonal polynomials for discrete measures, Z. Anal. Anwendungen, 17 (1998), pp. 183– 205. f (k;N, p) = N! k!(N − k)! pk (1− p)N−k ,k = 0,1,...,N. 10 20 40 80 100 10 −4 10 −3 10 −2 10 −1 10 0 polynomial order i CPUtimetoevaluateorth(i) Nowak Stieltjes Fischer Modified Chebyshev Lanczos C*i2 n=100,p=1/2 polynomial order i Bino(100, 1/2) 0 10 20 30 40 50 60 70 80 90 100 10 −20 10 −15 10 −10 10 −5 10 0 polynomial order i orth(i) Nowak Stieltjes Fischer Modified Chebyshev Lanczos N=100, p=1/2 polynomial order i Bino(100, 1/2) orthogonality ? cost ? Bino(N, p)Binomial distribution
  • 8. | f (ξ)µ(ξ)− Qm Bi f i=1 Nes ∑ Γ ∫ |≤ Chm+1 || EΓ ||m+1,∞,Γ | f |m+1,∞,Γ {Bi }i=1 Nes : elementsNes : number of elements : number of elementsΓ µ: discrete measure Qm Bi Gauss quadrature + tensor product with exactness m=2d-1 h: maximum size of Bi f : test function in W m+1,∞ (Γ) (when the measure is continuous) J. Foo, X. Wan, G. E. Karniadakis, A multi-element probabilistic collocation method for PDEs with parametric uncertainty: error analysis and applications, Journal of Computational Physics 227 (2008), pp. 9572–9595. 10 0 10 1 10 −6 10 −5 10 −4 10 −3 10 −2 N es absoluteerror c=0.1,w=1 GENZ1 d=2 m=3 bino(120,1/2)Bino(120, 1/2) 10 0 10 1 10 −13 10 −12 10 −11 10 −10 10 −9 N es absoluteerrors c=0.1,w=1 GENZ4 d=2 m=3 bino(120,1/2) Bino(120, 1/2) 0 20 40 60 80 100 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 GENZ1 function (oscillations) w=1, c=0.01 w=1,c=0.1 w=1,c=1 0 20 40 60 80 100 120 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 GENZ4 function (Gaussian) c=0.01,w=1 c=0.1,w=1 c=1,w=1 Multi-element Gauss integration over discrete measures
  • 9. UQ of stochastic KdV equation with 1RVut + 6uux + uxxx = σiξi , i=1 n ∑ x ∈! u(x,0) = a 2 sech2 ( a 2 (x − x0 )) 2 3 4 5 6 7 8 10 −3 10 −2 d error l2u1aPC l2u2 aPC 2 3 5 10 15 20 30 10 −7 10 −6 10 −5 10 −4 10 −3 10 −2 Nes error l2u1 l2u2 C*Nel−4 h-convergence! of MEPCM p-convergence of PCM Poisson distribution Binomial distribution σi 2 local variance to the measure µ(dξ) / µ(dξ) Bi ∫ adaptive ! integration! mesh 2 3 4 5 6 10 −5 10 −4 10 −3 10 −2 Number of PCM points on each element errors 2 el, even grid 2 el, uneven grid 4 el, even grid 4 el, uneven grid 5 el, even grid 5 el, uneven grid (MEPCM)! adaptive! vs.! non- adaptive! meshes error of Ε[u2 ] Improved !
  • 10. ut + 6uux + uxxx = σiξi , i=1 n ∑ x ∈! u(x,0) = a 2 sech2 ( a 2 (x − x0 )) (sparse grid) D. Xiu, J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Scientific Computing 27(3) (2005), pp. 1118– 1139. 17 153 256 969 4,845 10 −10 10 −9 10 −8 10 −7 10 −6 10 −5 10 −4 r(k) errors l2u1(sparse grid) l2u2(sparse grid) l2u1(tensor product grid) l2u2(tensor product grid) sparse grid vs. tensor product grid Binomial distribution n=8 Improved ! 2D sparse grid in Smolyak algorithm UQ of stochastic KdV equation with multiple RVs
  • 11. Summary of contributions (1) ✰ convergence study of multi-element integration over discrete measure ! ✰ comparison of 5 ways to construct orthogonal polynomials w.r.t. discrete measure ! ✰ improvement of moment statistics by adaptive integration mesh (on discrete measure) ! ✰ improvement of moment statistics by sparse grid (on discrete measure)
  • 12. gPC for 1D stochastic Burgers equation M. Zheng, B. Rozovsky, G.E. Karniadakis, Adaptive Wick-Malliavin Approximation to Nonlinear SPDEs with Discrete Random Variables, SIAM J. Sci. Comput., revised. (multiple discrete RVs) D. Venturi, X. Wan, R. Mikulevicius, B.L. Rozovskii, G.E. Karniadakis, Wick-Malliavin approximation to nonlinear stochastic PDEs: analysis and simulations, Proceedings of the Royal Society, vol.469, no.2158, (2013). (multiple Gaussian RVs) ut + uux = υuxx +σc1(ξ;λ), x ∈[−π,π] u(x,t;ξ) ≈ u!k (x,t)ck (ξ;λ) k=0 P ∑Expand the solution: ∂u!k ∂t + u!m ∂u!n ∂t < cmcnck >= m,n=0 P ∑ υ ∂2 u!k ∂x2 +σδ1k , general Polynomial Chaos (gPC) propagator k = 0,1,...,P. ξ ∼ Pois(λ) ck : Charlier polynomial e−λ λk k! cm (k;λ)cn (k;λ) =< cmcn >= n!λn δmn k∈! ∑ cm by Galerkin projection : < uck > nonlinear How many numbers of terms ! ! ! ! there are ! u!m ∂u!n ∂t < cmcnck > ? (motivation) Let us simplify the gPC propagator ! (P +1)3
  • 13. Wick-Malliavin (WM) approximation G.C. Wick, The evaluation of the collision matrix, Phys. Rev. 80 (2), (1950), pp. 268-272. ◊ ξ ∼ Pois(λ)✰ consider with measure ! ✰ define Wick product as: ✰ define Malliavin derivative D as: ! ✰ the product of two polynomials can be approximated by: ! ! ! ✰ here ! ✰ define weighted Wick product : ! ✰ rewrite the product of two polynomials: ! ! ✰ approximate the product of uv as: Γ(x) = e−λ λk k! δ(x − k) k∈! ∑ cm (x;λ)◊cn (x;λ) = cm+n (x;λ), Dp ci (x;λ) = i! (i − p)! ci−p (x;λ) cm (x)cm (x) = a(k,m,n)ck (x) = k=0 m+n ∑ Kmnpcm+n−2 p (x;λ) p=0 m+n 2 ∑ Kmnp = a(m + n − 2p,m,n) ◊p cm◊pcn = p!m!n! (m + p)!(n + p)! Km+p,n+p,pcm◊cn cmcn = Dp cm◊pDp cn p!p=0 m+n 2 ∑ uv = Dp u◊pDp v p! ≈ p=0 ∞ ∑ Dp u◊pDp v p!p=0 Q ∑
  • 14. WM approximation simplifies the gPC propagator ! ut + uux = υuxx +σc1(ξ;λ), x ∈[−π,π] ∂u!k ∂t + u!m ∂u!n ∂t < cmcnck >= m,n=0 P ∑ υ ∂2 u!k ∂x2 +σδ1k , k = 0,1,...,P.gPC propagator: ∂u!k ∂t + u!i i=0 P ∑ ∂u!k+2 p−i ∂x Ki,k+2 p−i,Q = p=0 Q ∑ υ ∂2 u!k ∂x2 +σδ1k , k = 0,1,...,P.WM propagator: How much less? Let us count the dots ! k=0 k=1 k=2 k=3 k=4 P=4, Q=1/2
  • 15. Spectral convergence when Q ≥ P −1 ut + uux = υuxx +σc1(ξ;λ) u(x,0) = 1− sin(x) ξ ∼ Pois(λ) x ∈[−π,π] Periodic B.C.
  • 16. concept of P-Q refinement ut + uux = υuxx +σc1(ξ;λ) u(x,0) = 1− sin(x) ξ ∼ Pois(λ) x ∈[−π,π] Periodic B.C.
  • 17. WM for stochastic Burgers equation w/ multiple RVs ut + uux = υuxx +σ j=1 3 ∑ c1(ξj;λ)cos(0.1jt) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 10 −7 10 −6 10 −5 10 −4 10 −3 10 −2 T l2u2(T) Q 1 =Q 2 =Q 3 =0 Q1 =1,Q2 =Q3 =0 Q1 =Q2 =1,Q3 =0 Q 1 =Q 2 =Q 3 =1 u(x,0) = 1− sin(x) ξ1,2,3 ∼ Pois(λ) x ∈[−π,π] Periodic B.C. How about 3 discrete RVs ? How about the cost in d-dim ? C(P,Q)d the # of terms u!i ∂u! j ∂x (P +1)3d the # of terms u!m ∂u!n ∂t Let us find the ratio C(P,Q)d (P +1)3d P=3 Q=2 P=4 Q=3 d=2 61.0% 65.3% d=3 47.7% 52.8% d=4 0.000436% 0.0023% C(P,Q)d (P +1)3d ?? Cost: WM vs. gPC
  • 18. Summary of contributions (2) References ✰ Extend the numerical work on WM approximation for SPDEs driven by Gaussian RVs to discrete RVs with arbitrary distribution w/ finite moments ✰ Discover spectral convergence when for stochastic Burgers equations ✰ Error control with P-Q refinements ✰ Computational complexity comparison of gPC and WM in d dimensions Q ≥ P −1 D. Bell, The Malliavin calculus, Dover, (2007) S. Kaligotla and S.V. Lototsky, Wick product in the stochastic Burgers equation: a curse or a cure? Asymptotic Analysis 75, (2011), pp. 145–168. S.V. Lototsky, B.L. Rozovskii, and D. Selesi, On generalized Malliavin calculus, Stochastic Processes and their Applications 122(3), (2012), pp. 808–843.
  • 19. M. Zheng, G.E. Karniadakis, ‘Numerical Methods for SPDEs with Tempered Stable Processes’,SIAM J. Sci. Comput., accepted. N. Hilber, O. Reichmann, Ch. Schwab, Ch. Winter, Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pric- ing, Springer Finance, 2013. S.I. Denisov, W. Horsthemke, P. Hänggi, Generalized Fokker-Planck equation: Derivation and exact solutions, Eur. Phys. J. B, 68 (2009), pp. 567–575. Generalized Fokker-Planck Equation for Overdamped Langevin Equation Overdamped Langevin equation (1D, SODE, in the Ito’s sense) Density satisfies tempered fractional PDEs (by Ito’s formula) 1D tempered stable (TS) pure jump process has this Levy measure
  • 20. Generalized FP Equation for Overdamped Langevin Equation driven by TS white noise Left Riemann-Liouville tempered fractional derivatives (as an example) Fully implicit scheme in time, Grunwald-Letnikov for fractional derivatives MC for Overdamped Langevin Equation driven by TS white noise TFPDE PCM for Overdamped Langevin Equation driven by TS white noise Compound Poisson (CP) approximation MC! (probabilistic) PCM! (probabilistic) TFPDE! (deterministic)
  • 21. Histogram from MC vs. Density from TFPDEs Zoomed in plots of P(x,T) by TFPDEs and MC/CP at T = 0.5 (left) and T = 1 (right): α = 0.5, c = 1, λ = 1, x0 = 1 and σ = 0.01 (left and right). In MC/CP: s = 105, δ = 0.01, △t = 1e −3 (left and right). In the TFPDEs: △t = 1e −5, and Nx = 2000 points on [−12, 12] in space (left and right). jump intensity jump size distribution
  • 22. Moment Statistics from PCM/CP vs. TFPDE TFPDE vs. PCM/CP: error of the 2nd moment of the solution versus time with λ=10 (left) and λ=1 (right). α=0.5,c=2,σ=0.1,x0 =1 (left and right). For the TFPDE: finite difference scheme with △t = 2.5 × 10−5 , Nx equidistant points on [−12, 12], initial condition given by δD (left and right). TFPDE costs much less computational time but more accurate than PCM/CP
  • 23. M. Zheng, G.E. Karniadakis, Numerical methods for SPDEs with additive multi-dimensional Levy jump processes, in preparation.
  • 24. How to describe the dependence structure among components! of a multi-dimensional Levy jump process ? J. Kallsen, P. Tankov, Characterization of dependence of multidimensional Levy processes using Levy copulas, Journal of Multivariate Analysis, 97 (2006), pp. 1551–1572. LePage’s representation of Levy measure: Series representation: τ = 1 τ = 100 Levy copula! +! Marginal Levy! measure! =! Levy measure 1 2
  • 25. Analysis of variance (ANOVA) + FP = marginal distribution FP equation ANOVA decomposition ANOVA terms are related to marginal distributions 1D-ANOVA-FP for marginal distributions 2D-ANOVA-FP for marginal distributions LePage’s representation TFPDEs
  • 26. 0 0.2 0.4 0.6 0.8 1 −2 0 2 4 6 8 10 12 x E[u(x,T=1)] E[uPCM ] E[u 1D−ANOVA−FP ] E[u 2D−ANOVA−FP ] 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 x 10 −4 T L2 normofdifferenceinE[u] ||E[u 1D−ANOVA−FP −E[u PCM ]|| L 2 ([0,1]) /||E[u PCM ]|| L 2 ([0,1]) ||E[u 2D−ANOVA−FP −E[u PCM ]|| L 2 ([0,1]) /||E[u PCM ]|| L 2 ([0,1]) Moments: 1D-ANOVA-FP is accurate for E[u] in 10D 1D-ANOVA-FP 2D-ANOVA-FP PCM 1D-ANOVA-FP 2D-ANOVA-FP noise-to-signal! ratio NSR ≈18.24%
  • 27. Moments: 1D-ANOVA-FP is not accurate for in 10D 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 x E[u 2 (x,T=1)] E[u 2 PCM ] E[u2 1D−ANOVA−FP ] E[u 2 2D−ANOVA−FP ] 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 T L 2 normofdifferenceinE[u2 ] ||E[u2 1D−ANOVA−FP −E[u2 PCM ]|| L 2 ([0,1]) /||E[u2 PCM ]|| L 2 ([0,1]) ||E[u 2 2D−ANOVA−FP −E[u 2 PCM ]|| L 2 ([0,1]) /||E[u 2 PCM ]|| L 2 ([0,1]) 1D-ANOVA-FP 2D-ANOVA-FP PCM 1D-ANOVA-FP 2D-ANOVA-FP Ε[u2 ] NSR ≈18.24%
  • 28. Moments: PCM vs. FP (TFPDE) Initial condition of FP equation introduce error 0.2 0.4 0.6 0.8 1 10 −10 10 −8 10 −6 10 −4 10 −2 l2u2(t) t PCM/S Q=5, q=2 PCM/S Q=10, q=2 TFPDE NSR 4.8% Moments: PCM vs. MC LePage’s representation (2D) Ε[u2 ] Ε[u2 ] LePage’s representation (2D) 10 0 10 2 10 4 10 6 10 −4 10 −3 10 −2 10 −1 s l2u2(t=1) PCM/S q=1 PCM/S q=2 MC/S Q=40 PCM costs less than MC Q — # of truncation in series representation q — # of quadrature points on each dimension
  • 29. Density: MC vs. FP equation (2D Levy) LePage’s ! representation! 2D — MC 3D — FP/TFPDE Levy! copula
  • 30. General picture of solving SPDEs w/ multi-dim jump processes
  • 31. Summary of contributions (3, 4) ✰ Established a framework for UQ of SPDEs w/ multi- dimensional Levy jump processes by probabilistic (MC, PCM) and deterministic (FP) methods ✰ Combined the ANOVA & FP to simulate moments of solution at lower orders ✰ Improved the traditional MC method’s efficiency and accuracy ✰ Link the area of fractional PDEs & UQ for SPDEs w/ Levy jump processes
  • 32. Future work ✰ Simulate SPDEs driven by higher-dimensional Levy jump processes with ANOVA-FP ✰ Consider other jump processes than TS processes ✰ Consider nonlinear SPDEs w/ multiplicative multi- dimensional Levy jump processes ✰ Application to the Energy Balance Model in climate modeling ✰ Application to Mathematical Finance
  • 33. Acknowledgements ✰ Thanks Prof. George Em Karniadakis for advice and support ✰ Thanks Prof. Xiaoliang Wan and Prof. Hui Wang to be on my committee ✰ Thanks Prof. Xiaoliang Wan and Prof. Boris Rozovskii for their innovative ideas and collaboration ✰ Thanks for the support from the NSF/DMS (grant DMS-0915077) and the Airforce MURI (grant FA9550-09-1-0613)