THE MEAN DEVIATION
THE MEAN DEVIATION OR THE AVERAGE DEVIATION
The mean deviation is defined as the average of the absolute deviations of the
values from an average (e. g. mean or median); the deviations are taken
without considering algebraic signs.
The mean deviation of a set of n values 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … , 𝑿𝒏, denoted by M. D. is
given by
𝒏 𝒊=𝟏 𝒊
𝑴. 𝑫. = 𝟏 𝒏 𝑿 − 𝑿 (ungrouped data)
𝒏
𝑴. 𝑫. = 𝟏 𝒏 𝒇𝒊 𝑿𝒊 − 𝑿 (grouped data)
𝒊=𝟏
Where 𝑿 is the mean of the VALUES. The two vertical bars 𝑿𝒊 − 𝑿 are absolute
value symbols. They indicate that one should calculate the difference 𝑿𝒊 − 𝑿,
ignoring minus signs in case the difference is negative.
Find the mean deviation from the mean for the values 2, 3, 6, 8 and 11.
Solution:
Here the mean 𝑿 = 2+3+6+11 = 6
5 𝑴. 𝑫. =
𝑿 − 𝑿
𝒏
=
𝟐 − 𝟔 + 𝟑 − 𝟔 + 𝟔 − 𝟔 + 𝟖 − 𝟔 + 𝟏𝟏 − 𝟔
𝟓
=
− 𝟒 + − 𝟑 + 𝟎 + 𝟐 + 𝟓
𝟓
=
𝟒 + 𝟑 + 𝟎 + 𝟐 + 𝟓
𝟓
𝟏𝟒
=
𝟓
= 𝟐. 𝟖.
Example
EXAMPLE (GROUPED DATA)
 Find mean deviation from mean to the following data.
Marks 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79
f 8 87 190 86 20
EXAMPLE - GROUPED DATA (SOLUTIONS)
Marks f X fX 𝑿 − 𝑿 f 𝑿 − 𝑿
30 – 39 8 34.5 276 20.58 164.64
40 – 49 87 44.5 3871.5 10.58 920.46
50 – 59 190 54.5 10355 0.58 110.2
60 – 69 86 64.5 5547 9.42 810.12
70 – 79 20 74.5 1490 19.42 388.4
Total 391 --- 21539.5 --- 2393.82
𝑿 =
𝒇𝑿
𝒇
=
𝟐𝟏𝟓𝟑𝟗. 𝟓
𝟑𝟗𝟏
= 𝟓𝟓. 𝟎𝟖
𝑴. 𝑫. 𝒇𝒓𝒐𝒎 𝒎𝒆𝒂𝒏 =
𝟐𝟑𝟗𝟑. 𝟖𝟐
𝟑𝟗𝟏
= 𝟔. 𝟏𝟐
THANK YOU

The Mean Deviation.pptx

  • 1.
  • 2.
    THE MEAN DEVIATIONOR THE AVERAGE DEVIATION The mean deviation is defined as the average of the absolute deviations of the values from an average (e. g. mean or median); the deviations are taken without considering algebraic signs. The mean deviation of a set of n values 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … , 𝑿𝒏, denoted by M. D. is given by 𝒏 𝒊=𝟏 𝒊 𝑴. 𝑫. = 𝟏 𝒏 𝑿 − 𝑿 (ungrouped data) 𝒏 𝑴. 𝑫. = 𝟏 𝒏 𝒇𝒊 𝑿𝒊 − 𝑿 (grouped data) 𝒊=𝟏 Where 𝑿 is the mean of the VALUES. The two vertical bars 𝑿𝒊 − 𝑿 are absolute value symbols. They indicate that one should calculate the difference 𝑿𝒊 − 𝑿, ignoring minus signs in case the difference is negative.
  • 3.
    Find the meandeviation from the mean for the values 2, 3, 6, 8 and 11. Solution: Here the mean 𝑿 = 2+3+6+11 = 6 5 𝑴. 𝑫. = 𝑿 − 𝑿 𝒏 = 𝟐 − 𝟔 + 𝟑 − 𝟔 + 𝟔 − 𝟔 + 𝟖 − 𝟔 + 𝟏𝟏 − 𝟔 𝟓 = − 𝟒 + − 𝟑 + 𝟎 + 𝟐 + 𝟓 𝟓 = 𝟒 + 𝟑 + 𝟎 + 𝟐 + 𝟓 𝟓 𝟏𝟒 = 𝟓 = 𝟐. 𝟖. Example
  • 4.
    EXAMPLE (GROUPED DATA) Find mean deviation from mean to the following data. Marks 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 f 8 87 190 86 20
  • 5.
    EXAMPLE - GROUPEDDATA (SOLUTIONS) Marks f X fX 𝑿 − 𝑿 f 𝑿 − 𝑿 30 – 39 8 34.5 276 20.58 164.64 40 – 49 87 44.5 3871.5 10.58 920.46 50 – 59 190 54.5 10355 0.58 110.2 60 – 69 86 64.5 5547 9.42 810.12 70 – 79 20 74.5 1490 19.42 388.4 Total 391 --- 21539.5 --- 2393.82 𝑿 = 𝒇𝑿 𝒇 = 𝟐𝟏𝟓𝟑𝟗. 𝟓 𝟑𝟗𝟏 = 𝟓𝟓. 𝟎𝟖 𝑴. 𝑫. 𝒇𝒓𝒐𝒎 𝒎𝒆𝒂𝒏 = 𝟐𝟑𝟗𝟑. 𝟖𝟐 𝟑𝟗𝟏 = 𝟔. 𝟏𝟐
  • 6.