SlideShare a Scribd company logo
1 of 46
Download to read offline
@
2016 12 15
1.
1.1
1.2
1.3
2.
2.1
2.2
2.3
?
: soliton
2
1965 N. Zabusky M. Kruskal
KdV (KdV: Korteweg-de Vries) 2
-on
solitary wave(-on)
: solitron
Wikipedia
19
1950 60
→
1967
1970
1980
→
1990
...
KdV
∂u
∂t
+ 6u
∂u
∂x
+
∂3
u
∂x3
= 0, (u = u(x, t))
mKdV
∂u
∂t
+ 6u2 ∂u
∂x
+
∂3
u
∂x3
= 0, (u = u(x, t))
KP
∂
∂x
4
∂u
∂t
− 6u
∂u
∂x
−
∂3
u
∂x3
− 3
∂2
u
∂y2
= 0, (u = u(x, y, t))
d2
dt2
log(1 + Vn) = Vn+1 − 2Vn + Vn−1 (Vn = Vn(t))
KdV KP .
KdV
KdV
∂u
∂t
+ 6u
∂u
∂x
+
∂3
u
∂x3
= 0, (u = u(x, t)).
u(x, t) = 2k2
sech2
k(x − 4k2
t + c), k, c
KdV 2-
KdV
2-
u(x, t) = 2
∂2
∂x2
log f(x, t)
f(x, t) = 1+eη1
+eη2
+
k1 − k2
k1 + k2
2
eη1+η2
, ηj(x, t) = kjx−k3
j
t+cj
2-
KP
Kadomtsev-Petviashvili (KP)
∂
∂x
4
∂u
∂t
− 6u
∂u
∂x
−
∂3
u
∂x3
− 3
∂2
u
∂y2
= 0, (u = u(x, y, t))
2-
u(x, y, t) = 2
∂2
∂x2
log τ(x, y, t)
τ(x, y, t) = 1 + eP1x+Q1y+Ω1t
+ eP2x+Q2y+Ω2t
+
(p1 − p2)(q1 − q2)
(p1 − q2)(q1 − p2)
e(P1+P2)x+(Q1+Q2)y+(Ω+Ω2)t
,
Pi = pi − qi, Qi = p2
i
− q2
i
, Ωi = p3
i
− q3
i
(i = 1, 2)
pi, qi KP
KP
∂
∂x
4
∂u
∂t
− 6u
∂u
∂x
−
∂3
u
∂x3
− 3
∂2
u
∂y2
= 0, (u = u(x, y, t))
u = 2(log τ)xx.
KP
KP
(τ4x − 4τxt + 3τyy)τ − 4(τ3x − τt )τx + 3(τxx − τy)(τxx + τy) = 0
✓ ✏
(N.C.Freeman and J.J.C.Nimmo, Phys.Lett.A 95(1983)1. )
(τ4x − 4τxt + 3τyy)τ − 4(τ3x − τt )τx + 3(τxx − τy)(τxx + τy) = 0
τ(x, y, t) = det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f
(0)
1
f
(1)
1
· · · f
(N−1)
1
f
(0)
2
f
(1)
2
· · · f
(N−1)
2
...
...
...
...
f
(0)
N
f
(1)
N
· · · f
(N−1)
N
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where f
(k)
i
:=
∂k
fi
∂xk
fi(x, y, t)
∂fi
∂y
=
∂2
fi
∂x2
,
∂fi
∂t
=
∂3
fi
∂x3
✒ ✑
(1/2)
N = 2
τ(x, y, t) =
f1 f1
′
f2 f2
′ = |0 1|.
τx(x, y, t) =
∂
∂x
f1 f1
′
f2 f2
′ =
f′
1
f′
1
f′
2
f′
2
+
f1 f1
′′
f2 f2
′′ = |0 2|
∂f
∂y
= ∂2
f
∂x2 , ∂f
∂t
= ∂3
f
∂x3
τy(x, y, t) =
∂
∂y
f1 f′
1
f2 f′
2
=
f′′
1
f′
1
f′′
2
f′
2
+
f1 f′′′
1
f2 f′′′
2
= |2 1| + |0 3|
τt (x, y, t) =
∂
∂t
f1 f′
1
f2 f′
2
=
f′′′
1
f′
1
f′′′
2
f′
2
+
f1 f′′′′
1
f2 f′′′′
2
= |3 1| + |0 4|
2/2
KP
(τ4x − 4τxt + 3τyy )τ − 4(τ3x − τt )τx + 3(τxx − τy )(τxx + τy )
=12(|0 1| × |2 3| − |0 2| × |1 3| + |0 3| × |1 2|)
=12
f1 f′
1
f2 f′
2
f′′
1
f′′′
1
f′′
2
f′′′
2
−
f1 f′′
1
f2 f′′
2
f′
1
f′′′
1
f′
2
f′′′
2
+
f1 f′′′
1
f2 f′′′
2
f′
1
f′′
1
f′
2
f′′
2
Pl¨ucker 0
τ(x, y, t) KP
✓ ✏
(One of ) the Pl¨ucker relations is expressed by
|a1 a2 · · · aN−2 b1 b2||a1 a2 · · · aN−2 b3 b4|
−|a1 a2 · · · aN−2 b1 b3||a1 a2 · · · aN−2 b2 b4|
+|a1 a2 · · · aN−2 b1 b4||a1 a2 · · · aN−2 b2 b3| = 0,
where ai , bi are arbitrary Nth column vectors.
✒ ✑
KP
ex1) N = 2
fi(x, y, t) = exp(pix + p2
i
y + p3
i
t) + exp(qix + q2
i
y + q3
i
t)
1
ex2) N = 3, M = 6
fi(x, y, t) =
M
j=1
cijeθj
, θj = pjx + p2
j
y + p3
j
t
2 (Y. Kodama, J. Phys. A:Math. Theor. 43 (2010)434004)
1-2
(R. Hirota, “Nonlinear Partial Difference Equations. I, II, III, IV, V”, JPSJ (1977)).
KdV (in bilinear form)
3f2
xx − fxft − 4fxf3x + fftx + ff4x = 0 (f = f(x, t))
KdV (in bilinear form)
fm+1
n+1
fm−1
n
= (1 − δ)fm
n+1
fm
n + δfm−1
n+1
fm+1
n
(fm
n = f(m, n))
m, n δ
KdV
KdV
fm+1
n+1
fm−1
n
= (1 − δ)fm
n+1
fm
n + δfm−1
n+1
fm+1
n
2-
fm
n = 1 + eη1
+ eη2
+ a12eη1+η2
,
ηi = pim − qin + ci
qi = log
δ + epi
1 + δepi
, a12 =
ep1
− ep2
−1 + ep1+p2
2
pi, ci
KdV 2-
um
n = fm
n+1
fm+1
n
/fm
n /fm+1
n+1
KP
KP
(τ4x − 4τxt + 3τyy)τ − 4(τ3x − τt )τx + 3(τxx − τy)(τxx + τy) = 0
KP
a1(a2 − a3)τ(l + 1, m, n)τ(l, m + 1, n + 1)
+a2(a3 − a1)τ(l, m + 1, n)τ(l + 1, m, n + 1)
+a3(a1 − a2)τ(l, m, n + 1)τ(l + 1, m + 1, n) = 0
a1, a2, a3
KP
KP KP (
)
τ(l, m, n) = det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕ1(0) ϕ1(1) · · · ϕ1(N − 1)
ϕ2(0) ϕ2(1) · · · ϕ2(N − 1)
...
...
...
...
ϕN(0) ϕN(1) · · · ϕN(N − 1)
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ϕi(s) = ϕi(l, m, n, s) s ϕi(s)
ϕi(l + 1, m, n, s) = ϕi(l, m, n, s) + a1ϕi(l, m, n, s + 1)
ϕi(l, m + 1, n, s) = ϕi(l, m, n, s) + a2ϕi(l, m, n, s + 1)
ϕi(l, m, n + 1, s) = ϕi(l, m, n, s) + a3ϕi(l, m, n, s + 1)
1-3
1990 .
(T. Tokihiro et al. Phys. Rev. Lett. 76 (1996))
40 20 0 20 40
n
1.2
1.4
1.6
1.8
2.0
u
ultradiscretization
−−−−−−−−−−−−−−−−→
10 5 5 10
n
0.5
0.5
1.0
1.5
2.0
U
2
xn+1 =
a + xn
xn−1
(x0, x1, a > 0)
(
(1)
xn = eXn/ϵ
, a = eA/ϵ
(2) limϵ→+0 ϵ log
Xn+1 = lim
ϵ→+0
ϵ log eA/ϵ
+ eXn/ϵ
− Xn−1
lim
ϵ→+0
ϵ log eA/ϵ
+ eB/ϵ
= max(A, B)
Xn+1 = max(A, Xn) − Xn−1.
xn+1 =
a + xn
xn−1
→ Xn+1 = max(A, Xn) − Xn−1.
+ → max
− → not well-defined
× → +
÷ → −
xn+1 =
a + xn
xn−1
→ Xn+1 = max(A, Xn) − Xn−1.
+ → max
− → not well-defined
× → +
÷ → −
lim
ϵ→+0
ϵ log eA/ϵ
+ eB/ϵ
= max(A, B)
lim
ϵ→+0
ϵ log eA/ϵ
−eB/ϵ
=
⎧
⎪⎪⎨
⎪⎪⎩
A (A > B)
(A ≤ B)
KdV
KdV
fm+1
n+1
fm−1
n
= (1 − δ)fm
n+1
fm
n + δfm−1
n+1
fm+1
n
fm
n = eFm
n
/ϵ
, δ = e−2/ε
KdV (bilinear form)
ultradiscretization
−−−−−−−−−→ Fm+1
n+1
+ Fm−1
n
= max(Fm
n+1
+ Fm
n , Fm−1
n+1
+ Fm+1
n
− 2)
KdV
2-
fm
n = 1 + eη1
+ eη2
+ a12eη1+η2
ηi(m, n) = pim − qin + ci
qi = log
δ + epi
1 + δepi
, a12 =
ep1
− ep2
−1 + ep1+p2
2
pi = ePi /ϵ
, qi = eQi /ϵ
, ci = eCi /ϵ
, δ = e−2/ϵ
2-
Fm
n = max(0, S1, S2, S1 + S2 − A12),
Si(m, n) = Pim − Qin + Ci
Qi =
1
2
(|Pi + 1| − |Pi − 1|), A12 = |P1 + P2| − |P1 − P2|
KdV
KdV 2-
Fm
n = max(0, 3m − n, m − n + 1, 4m − 2n − 1),
Um
n =Fm
n+1
+ Fm+1
n
− Fm
n − Fm+1
n+1
max
→
−−−−−−−→
−−−−−−−→
−−−−−−−→
Pl¨ucker
2
det
a b
c d
= ad−bc.
3
UP
2.1.
✓ ✏
(UP)
N A = [aij]1≤i,j≤N A
(UP) . (D. Takahashi, R. Hirota, “Ultradiscrete Soliton Solution of
Permanent Type”, J. Phys. Soc. Japan, 76 (2007) 104007–104012)
up[A] ≡ max
π∈SN
1≤i≤N
aiπi
maxπ∈SN
N π = (π1, π2, . . . , πN)
.
✒ ✑
cf)
det[A] ≡
π∈SN 1≤i≤N
sgn(π)aiπi
perm[A] ≡
π∈SN 1≤i≤N
aiπi
UP
UP
UP
2 × 2 matrix
up
a11 a12
a21 a22
= max (a11 + a22, a12 + a21)
3 × 3 matrix
up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= max a11 + a22 + a33, a11 + a23 + a32, a12 + a21 + a33,
a12 + a23 + a31, a13 + a21 + a32, a13 + a22 + a31
UP
UP
c × det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13
a21 a22 a33
a31 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
ca11 a12 a13
ca21 a22 a33
ca31 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(c : const.)
det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 + b1 a12 a13
a21 + b2 a22 a33
a31 + b3 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13
a21 a22 a33
a31 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1 a12 a13
b2 a22 a33
b3 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
***************************************************************************
UP
c + up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13
a21 a22 a33
a31 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
c + a11 a12 a13
c + a21 a22 a33
c + a31 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
max(a11, b1) a12 a13
max(a21, b2) a22 a33
max(a31, b3) a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= max
⎛
⎜⎜⎜⎜⎜⎝up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13
a21 a22 a33
a31 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1 a12 a13
b2 a22 a33
b3 a32 a33
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞
⎟⎟⎟⎟⎟⎠
UP
UP det
det
a11 + a12 a12 + a13
a21 + a22 a22 + a23
= det
a11 a12
a21 a22
+ det
a11 a13
a21 a23
+ det
a12 a13
a22 a23
***************************************************************************
up
max(a11, a12) max(a12, a13)
max(a21, a22) max(a22, a23)
= max
⎛
⎜⎜⎜⎜⎜⎝up
a11 a12
a21 a22
, up
a11 a13
a21 a23
, up
a12 a12
a22 a22
, up
a12 a13
a22 a23
⎞
⎟⎟⎟⎟⎟⎠
UP
UP
UP
KdV
(D. Takahashi, R. Hirota, “Ultradiscrete Soliton Solution of Permanent Type”, J. Phys. Soc. Japan,
76 (2007) 104007–104012)
(H. Nagai, “ A new expression of a soliton solution to the ultradiscrete Toda equation”, J. Phys. A:
Math. Theor. 41 (2008) 235204(12pp))
KP
(H. Nagai and D. Takahashi, “Ultradiscrete Pl¨ucker Relation Specialized for Soliton Solutions”, J.
Phys. A: Math. Theor. 44 (2011) 095202(18pp))
hungry-Lotka Volterra
(S. Nakamura, “Ultradiscrete soliton equations derived from ultradiscrete permanent formulae”, J.
Phys. A: Math. Theor. 44 (2011) 295201(14pp))
UP
KP UP
KP
T(l, m + 1, n) + T(l + 1, m, n + 1)
= max(T(l + 1, m, n) + T(l, m + 1, n + 1) − A1 + A2,
T(l, m, n + 1) + T(l + 1, m + 1, n)) (A1 ≥ A2)
UP (H.Nagai, arXiv:nlin:1611.09081)
T(l, m, n) = up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕ1(0) ϕ1(1) · · · ϕ1(N − 1)
ϕ2(0) ϕ2(1) · · · ϕ2(N − 1)
...
...
...
...
ϕN(0) ϕN(1) · · · ϕN(N − 1)
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ϕi(s) = ϕi(l, m, n, s) s l, m, n
3
UP
UP ϕi(s)
1 A1 ≥ A2 ≥ A3
ϕi(l + 1, m, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A1)
ϕi(l, m + 1, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A2)
ϕi(l, m, n + 1; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A3)
2 j, i1, i2
ϕi1
(s + j) + ϕi2
(s + j)
≤ max ϕi1
(s + j − 1) + ϕi2
(s + j + 1), ϕi2
(s + j − 1) + ϕi1
(s + j + 1)
3 (ϕ1(s), ϕ2(s), . . . , ϕN(s))T
= Φ(s) ,
0 ≤ k1 < k2 < k3 ≤ N + 1
up[Φ(0) · · · Φ(k2) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k3) · · · Φ(N + 1)]
= max up[Φ(0) · · · Φ(k3) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k2) · · · Φ(N + 1)]
up[Φ(0) · · · Φ(k1) · · · Φ(N)] + up[Φ(0) · · · Φ(k2) · · · Φ(k3) · · · Φ(N + 1)]
UP
KP
τ(x, y, t) = det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f1 f′
1
· · · f
(N−1)
1
.
.
.
.
.
.
...
.
.
.
fN f′
N
· · · f
(N−1)
N
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛
⎜⎜⎜⎜⎜⎜⎝
fj = fj (x, y, t)
∂fj
∂y
=
∂2fj
∂x2
,
∂fj
∂t
=
∂3fj
∂x3
.
⎞
⎟⎟⎟⎟⎟⎟⎠
KP
1
12
(ττ4x − 4τx τ3x + 3τ2
xx ) −
1
3
(ττxt − τx τt ) +
1
4
(ττyy − τ2
y ) = 0
Pl¨ucker n = 3
|a1 . . . aN−2 b1 b2| × |a1 . . . aN−2 b3 b4|
−|a1 . . . aN−2 b1 b3| × |a1 . . . aN−2 b2 b4|
+|a1 . . . aN−2 b1 b4| × |a1 . . . aN−2 b2 b3| = 0
UP
KP
τ(l, m, n) = det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ1(0) φ1(1) · · · φ1(N − 1)
.
.
.
.
.
.
...
.
.
.
φN (0) φN (1) · · · φN (N − 1)
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛
⎜⎜⎜⎜⎜⎜⎜⎝
φj (s) = φj (s; l, m, n)
.
⎞
⎟⎟⎟⎟⎟⎟⎟⎠
KP
a1(a2 − a3)τ(l + 1, m, n)τ(l, m + 1, n + 1)
+a2(a3 − a1)τ(l, m + 1, n)τ(l + 1, m, n + 1)
+a3(a1 − a2)τ(l, m, n + 1)τ(l + 1, m + 1, n) = 0
Pl¨ucker n = 3
|a1 . . . aN−2 b1 b2| × |a1 . . . aN−2 b3 b4|
−|a1 . . . aN−2 b1 b3| × |a1 . . . aN−2 b2 b4|
+|a1 . . . aN−2 b1 b4| × |a1 . . . aN−2 b2 b3| = 0
UP
KP
KP UP
T(l, m, n) = up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ1(0) φ1(1) · · · φ1(N − 1)
.
.
.
.
.
.
...
.
.
.
φN (0) φN (1) · · · φN (N − 1)
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
KP
T(l, m + 1, n) + T(l + 1, m, n + 1)
= max T(l + 1, m, n) + T(l, m + 1, n + 1) − A1 + A2,
T(l, m, n + 1) + T(l + 1, m + 1, n) (A1 > A2)
3
up[Φ(0) · · · Φ(k2) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k3) · · · Φ(N + 1)]
= max up[Φ(0) · · · Φ(k3) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k2) · · · Φ(N + 1)]
up[Φ(0) · · · Φ(k1) · · · Φ(N)] + up[Φ(0) · · · Φ(k2) · · · Φ(k3) · · · Φ(N + 1)]
UP
1, 2
ϕi(s) 1 ≤ i ≤ N
ϕi(l + 1, m, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A1)
ϕi(l, m + 1, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A2)
ϕi(l, m, n + 1; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A3)
T(l + 1, m, n) 2N
ex) N = 2
T(l + 1, m, n) = up
ϕ1(l + 1; 0) ϕ1(l + 1; 1)
ϕ2(l + 1; 0) ϕ2(l + 1; 1)
= max up
ϕ1(0) ϕ1(1)
ϕ2(0) ϕ2(1)
, up
ϕ1(1) ϕ1(1)
ϕ2(1) ϕ2(1)
− A1,
up
ϕ1(0) ϕ1(2)
ϕ2(0) ϕ2(2)
− A1, up
ϕ1(1) ϕ1(2)
ϕ2(1) ϕ2(2)
− 2A1
UP
2
ϕi(s) 1 ≤ i1, i2 ≤ N 2
ϕi1
(s + j) + ϕi2
(s + j)
≤ max ϕi1
(s + j − 1) + ϕi2
(s + j + 1), ϕi2
(s + j − 1) + ϕi1
(s + j + 1)
up
ϕ1(s + 1) ϕ1(s + 1)
ϕ2(s + 1) ϕ2(s + 1)
≤ up
ϕ1(s) ϕ1(s + 2)
ϕ2(s) ϕ2(s + 2)
UP
ex) N = 2
T(l + 1, m, n, s)
= max up
ϕ1(0) ϕ1(1)
ϕ2(0) ϕ2(1)
, up
ϕ1(0) ϕ1(2)
ϕ2(0) ϕ2(2)
− A1, up
ϕ1(1) ϕ1(2)
ϕ2(1) ϕ2(2)
− 2A1
UP
UP ϕi(s)
1 A1 ≥ A2 ≥ A3
ϕi(l + 1, m, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A1)
ϕi(l, m + 1, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A2)
ϕi(l, m, n + 1; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A3)
2 j, i1, i2
ϕi1
(s + j) + ϕi2
(s + j)
≤ max ϕi1
(s + j − 1) + ϕi2
(s + j + 1), ϕi2
(s + j − 1) + ϕi1
(s + j + 1)
3 (ϕ1(s), ϕ2(s), . . . , ϕN(s))T
= Φ(s) ,
0 ≤ k1 < k2 < k3 ≤ N + 1
up[Φ(0) · · · Φ(k2) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k3) · · · Φ(N + 1)]
= max up[Φ(0) · · · Φ(k3) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k2) · · · Φ(N + 1)]
up[Φ(0) · · · Φ(k1) · · · Φ(N)] + up[Φ(0) · · · Φ(k2) · · · Φ(k3) · · · Φ(N + 1)]
UP
1
✓ ✏
Theorem
The UP solution to the uKP equation is given by
T(l, m, n) = up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕ1(0) ϕ1(1) · · · ϕ1(N − 1)
ϕ2(0) ϕ2(1) · · · ϕ2(N − 1)
...
...
...
...
ϕN(0) ϕN(1) · · · ϕN(N − 1)
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ϕi (l, m, n, s)
= max Pi s + max(0, Pi − A1)l + max(0, Pi − A2)m + max(0, Pi − A3)n + Ci ,
− Pi s + max(0, −Pi − A1)l + max(0, −Pi − A2)m + max(0, −Pi − A3)n + C′
i
where Pi, Ci and C′
i
are arbitrary parameters.(H.Nagai and D.Takahashi,
J.Phys.A Math. Theor. 44(2011))
✒ ✑
UP
2
✓ ✏
Theorem
The UP solution to the uKP equation is given by
T(l, m, n) = up
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕ1(0) ϕ1(1) · · · ϕ1(N − 1)
ϕ2(0) ϕ2(1) · · · ϕ2(N − 1)
...
...
...
...
ϕN(0) ϕN(1) · · · ϕN(N − 1)
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ϕi (l, m, n, s) = max Ci1 + P1s + max(0, P1 − A1)l + max(0, P1 − A2)m + max(0, P1 − A3)n,
Ci2 + P2s + max(0, P2 − A1)l + max(0, P2 − A2)m + max(0, P2 − A3)n,
Ci3 + P3s + max(0, P3 − A1)l + max(0, P3 − A2)m + max(0, P3 − A3)n
where Cij and Pj are arbitrary parameters. (H.Nagai, arXiv:nlin:1611.09081)
✒ ✑
UP
KP KP
UP
max-plus
UP
31-32
2012,
(http://gcoe-
mi.jp/english/temp/publish/132702cf8b5f107c34bcc3c5077464ff.pdf)
B. Grammaticos, Y. Kosmann-Schwarzbach, and T. Tamizhmani
(Eds.), “Discrete Integrable Systems”, Lecture Notes in Physics,
Springer
Peter Butkovi˘c, “Max-linear Systems: Theory and Algorithms”,
Springer

More Related Content

What's hot

ゲーム理論BASIC 演習17 -無限回繰り返し 囚人のジレンマ-
ゲーム理論BASIC 演習17 -無限回繰り返し 囚人のジレンマ-ゲーム理論BASIC 演習17 -無限回繰り返し 囚人のジレンマ-
ゲーム理論BASIC 演習17 -無限回繰り返し 囚人のジレンマ-
ssusere0a682
 
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
https://www.facebook.com/garmentspace
 
01 límites de funciones - ejercicios
01   límites de funciones - ejercicios01   límites de funciones - ejercicios
01 límites de funciones - ejercicios
klorofila
 
Samples of Competitive Examination Questions: Part XXXII
Samples of Competitive Examination Questions: Part XXXIISamples of Competitive Examination Questions: Part XXXII
Samples of Competitive Examination Questions: Part XXXII
Ali I. Al-Mosawi
 
Simplifying Using Identities
Simplifying Using IdentitiesSimplifying Using Identities
Simplifying Using Identities
bwlomas
 
Sttm tm 07 modul 3 a turunan fungsi revisi
Sttm tm 07 modul 3 a turunan fungsi revisiSttm tm 07 modul 3 a turunan fungsi revisi
Sttm tm 07 modul 3 a turunan fungsi revisi
Prayudi MT
 
رياضيات11ع جزء2
رياضيات11ع جزء2رياضيات11ع جزء2
رياضيات11ع جزء2
fatima harazneh
 

What's hot (20)

ゲーム理論BASIC 演習18 -フォーク定理とトリガー戦略-
ゲーム理論BASIC 演習18 -フォーク定理とトリガー戦略-ゲーム理論BASIC 演習18 -フォーク定理とトリガー戦略-
ゲーム理論BASIC 演習18 -フォーク定理とトリガー戦略-
 
Kalkulus kelompok 1
Kalkulus kelompok 1Kalkulus kelompok 1
Kalkulus kelompok 1
 
-6-تمارين الرياضيات للجدع مشترك علوم
-6-تمارين الرياضيات للجدع مشترك علوم -6-تمارين الرياضيات للجدع مشترك علوم
-6-تمارين الرياضيات للجدع مشترك علوم
 
ゲーム理論BASIC 演習17 -無限回繰り返し 囚人のジレンマ-
ゲーム理論BASIC 演習17 -無限回繰り返し 囚人のジレンマ-ゲーム理論BASIC 演習17 -無限回繰り返し 囚人のジレンマ-
ゲーム理論BASIC 演習17 -無限回繰り返し 囚人のジレンマ-
 
موقع ملزمتي - مراجعة ليلة الامتحان هندسة للصف الأول الثانوي
موقع ملزمتي - مراجعة ليلة الامتحان هندسة للصف الأول الثانويموقع ملزمتي - مراجعة ليلة الامتحان هندسة للصف الأول الثانوي
موقع ملزمتي - مراجعة ليلة الامتحان هندسة للصف الأول الثانوي
 
ゲーム理論BASIC 演習27 -シュタッケルベルク競争-
ゲーム理論BASIC 演習27 -シュタッケルベルク競争-ゲーム理論BASIC 演習27 -シュタッケルベルク競争-
ゲーム理論BASIC 演習27 -シュタッケルベルク競争-
 
Matematika teknik modul 1 a pd variabel terpisah dan homogen
Matematika teknik modul 1 a pd variabel terpisah dan homogenMatematika teknik modul 1 a pd variabel terpisah dan homogen
Matematika teknik modul 1 a pd variabel terpisah dan homogen
 
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
 
Funcionnes reales
Funcionnes realesFuncionnes reales
Funcionnes reales
 
-8-تمارين الرياضيات للجدع مشترك علوم
-8-تمارين الرياضيات للجدع مشترك علوم -8-تمارين الرياضيات للجدع مشترك علوم
-8-تمارين الرياضيات للجدع مشترك علوم
 
01 límites de funciones - ejercicios
01   límites de funciones - ejercicios01   límites de funciones - ejercicios
01 límites de funciones - ejercicios
 
Asignacion de Calculo4 Carlos gonzalez Saia E
Asignacion de Calculo4 Carlos gonzalez Saia EAsignacion de Calculo4 Carlos gonzalez Saia E
Asignacion de Calculo4 Carlos gonzalez Saia E
 
Trabajo de analisis i
Trabajo de analisis iTrabajo de analisis i
Trabajo de analisis i
 
作図と対称性
作図と対称性作図と対称性
作図と対称性
 
Samples of Competitive Examination Questions: Part XXXII
Samples of Competitive Examination Questions: Part XXXIISamples of Competitive Examination Questions: Part XXXII
Samples of Competitive Examination Questions: Part XXXII
 
Sistema de Numeracion
Sistema de NumeracionSistema de Numeracion
Sistema de Numeracion
 
Bissecção
Bissecção Bissecção
Bissecção
 
Simplifying Using Identities
Simplifying Using IdentitiesSimplifying Using Identities
Simplifying Using Identities
 
Sttm tm 07 modul 3 a turunan fungsi revisi
Sttm tm 07 modul 3 a turunan fungsi revisiSttm tm 07 modul 3 a turunan fungsi revisi
Sttm tm 07 modul 3 a turunan fungsi revisi
 
رياضيات11ع جزء2
رياضيات11ع جزء2رياضيات11ع جزء2
رياضيات11ع جزء2
 

More from Suurist (17)

Hiroki Shigemune
Hiroki  ShigemuneHiroki  Shigemune
Hiroki Shigemune
 
Hiroaki Shiokawa
Hiroaki ShiokawaHiroaki Shiokawa
Hiroaki Shiokawa
 
Kensuke Aihara
Kensuke AiharaKensuke Aihara
Kensuke Aihara
 
Tatsuhiro Kishi
Tatsuhiro KishiTatsuhiro Kishi
Tatsuhiro Kishi
 
Hideitsu Hino
Hideitsu HinoHideitsu Hino
Hideitsu Hino
 
Tatsuya Yatagawa
Tatsuya YatagawaTatsuya Yatagawa
Tatsuya Yatagawa
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
 
Tetsunao Matsuta
Tetsunao MatsutaTetsunao Matsuta
Tetsunao Matsuta
 
Naoya Tsuruta
Naoya TsurutaNaoya Tsuruta
Naoya Tsuruta
 
Suurist Test Slide
Suurist Test SlideSuurist Test Slide
Suurist Test Slide
 
Akitoshi Takayasu
Akitoshi TakayasuAkitoshi Takayasu
Akitoshi Takayasu
 
Kohta Suzuno
Kohta SuzunoKohta Suzuno
Kohta Suzuno
 
Shunsuke Horii
Shunsuke HoriiShunsuke Horii
Shunsuke Horii
 
Yasunori Futamura
Yasunori FutamuraYasunori Futamura
Yasunori Futamura
 
Akiyasu Tomoeda
Akiyasu TomoedaAkiyasu Tomoeda
Akiyasu Tomoeda
 
Takuya Tsuchiya
Takuya TsuchiyaTakuya Tsuchiya
Takuya Tsuchiya
 
Akira Imakura
Akira ImakuraAkira Imakura
Akira Imakura
 

Hidetomo Nagai

  • 3. ? : soliton 2 1965 N. Zabusky M. Kruskal KdV (KdV: Korteweg-de Vries) 2 -on solitary wave(-on) : solitron Wikipedia
  • 5. KdV ∂u ∂t + 6u ∂u ∂x + ∂3 u ∂x3 = 0, (u = u(x, t)) mKdV ∂u ∂t + 6u2 ∂u ∂x + ∂3 u ∂x3 = 0, (u = u(x, t)) KP ∂ ∂x 4 ∂u ∂t − 6u ∂u ∂x − ∂3 u ∂x3 − 3 ∂2 u ∂y2 = 0, (u = u(x, y, t)) d2 dt2 log(1 + Vn) = Vn+1 − 2Vn + Vn−1 (Vn = Vn(t)) KdV KP .
  • 6. KdV KdV ∂u ∂t + 6u ∂u ∂x + ∂3 u ∂x3 = 0, (u = u(x, t)). u(x, t) = 2k2 sech2 k(x − 4k2 t + c), k, c
  • 7. KdV 2- KdV 2- u(x, t) = 2 ∂2 ∂x2 log f(x, t) f(x, t) = 1+eη1 +eη2 + k1 − k2 k1 + k2 2 eη1+η2 , ηj(x, t) = kjx−k3 j t+cj 2-
  • 8. KP Kadomtsev-Petviashvili (KP) ∂ ∂x 4 ∂u ∂t − 6u ∂u ∂x − ∂3 u ∂x3 − 3 ∂2 u ∂y2 = 0, (u = u(x, y, t)) 2- u(x, y, t) = 2 ∂2 ∂x2 log τ(x, y, t) τ(x, y, t) = 1 + eP1x+Q1y+Ω1t + eP2x+Q2y+Ω2t + (p1 − p2)(q1 − q2) (p1 − q2)(q1 − p2) e(P1+P2)x+(Q1+Q2)y+(Ω+Ω2)t , Pi = pi − qi, Qi = p2 i − q2 i , Ωi = p3 i − q3 i (i = 1, 2) pi, qi KP
  • 9. KP ∂ ∂x 4 ∂u ∂t − 6u ∂u ∂x − ∂3 u ∂x3 − 3 ∂2 u ∂y2 = 0, (u = u(x, y, t)) u = 2(log τ)xx. KP KP (τ4x − 4τxt + 3τyy)τ − 4(τ3x − τt )τx + 3(τxx − τy)(τxx + τy) = 0
  • 10. ✓ ✏ (N.C.Freeman and J.J.C.Nimmo, Phys.Lett.A 95(1983)1. ) (τ4x − 4τxt + 3τyy)τ − 4(τ3x − τt )τx + 3(τxx − τy)(τxx + τy) = 0 τ(x, y, t) = det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ f (0) 1 f (1) 1 · · · f (N−1) 1 f (0) 2 f (1) 2 · · · f (N−1) 2 ... ... ... ... f (0) N f (1) N · · · f (N−1) N ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , where f (k) i := ∂k fi ∂xk fi(x, y, t) ∂fi ∂y = ∂2 fi ∂x2 , ∂fi ∂t = ∂3 fi ∂x3 ✒ ✑
  • 11. (1/2) N = 2 τ(x, y, t) = f1 f1 ′ f2 f2 ′ = |0 1|. τx(x, y, t) = ∂ ∂x f1 f1 ′ f2 f2 ′ = f′ 1 f′ 1 f′ 2 f′ 2 + f1 f1 ′′ f2 f2 ′′ = |0 2| ∂f ∂y = ∂2 f ∂x2 , ∂f ∂t = ∂3 f ∂x3 τy(x, y, t) = ∂ ∂y f1 f′ 1 f2 f′ 2 = f′′ 1 f′ 1 f′′ 2 f′ 2 + f1 f′′′ 1 f2 f′′′ 2 = |2 1| + |0 3| τt (x, y, t) = ∂ ∂t f1 f′ 1 f2 f′ 2 = f′′′ 1 f′ 1 f′′′ 2 f′ 2 + f1 f′′′′ 1 f2 f′′′′ 2 = |3 1| + |0 4|
  • 12. 2/2 KP (τ4x − 4τxt + 3τyy )τ − 4(τ3x − τt )τx + 3(τxx − τy )(τxx + τy ) =12(|0 1| × |2 3| − |0 2| × |1 3| + |0 3| × |1 2|) =12 f1 f′ 1 f2 f′ 2 f′′ 1 f′′′ 1 f′′ 2 f′′′ 2 − f1 f′′ 1 f2 f′′ 2 f′ 1 f′′′ 1 f′ 2 f′′′ 2 + f1 f′′′ 1 f2 f′′′ 2 f′ 1 f′′ 1 f′ 2 f′′ 2 Pl¨ucker 0 τ(x, y, t) KP ✓ ✏ (One of ) the Pl¨ucker relations is expressed by |a1 a2 · · · aN−2 b1 b2||a1 a2 · · · aN−2 b3 b4| −|a1 a2 · · · aN−2 b1 b3||a1 a2 · · · aN−2 b2 b4| +|a1 a2 · · · aN−2 b1 b4||a1 a2 · · · aN−2 b2 b3| = 0, where ai , bi are arbitrary Nth column vectors. ✒ ✑
  • 13. KP ex1) N = 2 fi(x, y, t) = exp(pix + p2 i y + p3 i t) + exp(qix + q2 i y + q3 i t) 1 ex2) N = 3, M = 6 fi(x, y, t) = M j=1 cijeθj , θj = pjx + p2 j y + p3 j t 2 (Y. Kodama, J. Phys. A:Math. Theor. 43 (2010)434004)
  • 14. 1-2 (R. Hirota, “Nonlinear Partial Difference Equations. I, II, III, IV, V”, JPSJ (1977)). KdV (in bilinear form) 3f2 xx − fxft − 4fxf3x + fftx + ff4x = 0 (f = f(x, t)) KdV (in bilinear form) fm+1 n+1 fm−1 n = (1 − δ)fm n+1 fm n + δfm−1 n+1 fm+1 n (fm n = f(m, n)) m, n δ
  • 15. KdV KdV fm+1 n+1 fm−1 n = (1 − δ)fm n+1 fm n + δfm−1 n+1 fm+1 n 2- fm n = 1 + eη1 + eη2 + a12eη1+η2 , ηi = pim − qin + ci qi = log δ + epi 1 + δepi , a12 = ep1 − ep2 −1 + ep1+p2 2 pi, ci KdV 2- um n = fm n+1 fm+1 n /fm n /fm+1 n+1
  • 16. KP KP (τ4x − 4τxt + 3τyy)τ − 4(τ3x − τt )τx + 3(τxx − τy)(τxx + τy) = 0 KP a1(a2 − a3)τ(l + 1, m, n)τ(l, m + 1, n + 1) +a2(a3 − a1)τ(l, m + 1, n)τ(l + 1, m, n + 1) +a3(a1 − a2)τ(l, m, n + 1)τ(l + 1, m + 1, n) = 0 a1, a2, a3
  • 17. KP KP KP ( ) τ(l, m, n) = det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ϕ1(0) ϕ1(1) · · · ϕ1(N − 1) ϕ2(0) ϕ2(1) · · · ϕ2(N − 1) ... ... ... ... ϕN(0) ϕN(1) · · · ϕN(N − 1) ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ϕi(s) = ϕi(l, m, n, s) s ϕi(s) ϕi(l + 1, m, n, s) = ϕi(l, m, n, s) + a1ϕi(l, m, n, s + 1) ϕi(l, m + 1, n, s) = ϕi(l, m, n, s) + a2ϕi(l, m, n, s + 1) ϕi(l, m, n + 1, s) = ϕi(l, m, n, s) + a3ϕi(l, m, n, s + 1)
  • 18. 1-3 1990 . (T. Tokihiro et al. Phys. Rev. Lett. 76 (1996)) 40 20 0 20 40 n 1.2 1.4 1.6 1.8 2.0 u ultradiscretization −−−−−−−−−−−−−−−−→ 10 5 5 10 n 0.5 0.5 1.0 1.5 2.0 U
  • 19. 2 xn+1 = a + xn xn−1 (x0, x1, a > 0) ( (1) xn = eXn/ϵ , a = eA/ϵ (2) limϵ→+0 ϵ log Xn+1 = lim ϵ→+0 ϵ log eA/ϵ + eXn/ϵ − Xn−1 lim ϵ→+0 ϵ log eA/ϵ + eB/ϵ = max(A, B) Xn+1 = max(A, Xn) − Xn−1.
  • 20. xn+1 = a + xn xn−1 → Xn+1 = max(A, Xn) − Xn−1. + → max − → not well-defined × → + ÷ → −
  • 21. xn+1 = a + xn xn−1 → Xn+1 = max(A, Xn) − Xn−1. + → max − → not well-defined × → + ÷ → −
  • 22. lim ϵ→+0 ϵ log eA/ϵ + eB/ϵ = max(A, B) lim ϵ→+0 ϵ log eA/ϵ −eB/ϵ = ⎧ ⎪⎪⎨ ⎪⎪⎩ A (A > B) (A ≤ B)
  • 23. KdV KdV fm+1 n+1 fm−1 n = (1 − δ)fm n+1 fm n + δfm−1 n+1 fm+1 n fm n = eFm n /ϵ , δ = e−2/ε KdV (bilinear form) ultradiscretization −−−−−−−−−→ Fm+1 n+1 + Fm−1 n = max(Fm n+1 + Fm n , Fm−1 n+1 + Fm+1 n − 2)
  • 24. KdV 2- fm n = 1 + eη1 + eη2 + a12eη1+η2 ηi(m, n) = pim − qin + ci qi = log δ + epi 1 + δepi , a12 = ep1 − ep2 −1 + ep1+p2 2 pi = ePi /ϵ , qi = eQi /ϵ , ci = eCi /ϵ , δ = e−2/ϵ 2- Fm n = max(0, S1, S2, S1 + S2 − A12), Si(m, n) = Pim − Qin + Ci Qi = 1 2 (|Pi + 1| − |Pi − 1|), A12 = |P1 + P2| − |P1 − P2| KdV
  • 25. KdV 2- Fm n = max(0, 3m − n, m − n + 1, 4m − 2n − 1), Um n =Fm n+1 + Fm+1 n − Fm n − Fm+1 n+1
  • 26. max
  • 28.
  • 29.
  • 30. UP 2.1. ✓ ✏ (UP) N A = [aij]1≤i,j≤N A (UP) . (D. Takahashi, R. Hirota, “Ultradiscrete Soliton Solution of Permanent Type”, J. Phys. Soc. Japan, 76 (2007) 104007–104012) up[A] ≡ max π∈SN 1≤i≤N aiπi maxπ∈SN N π = (π1, π2, . . . , πN) . ✒ ✑ cf) det[A] ≡ π∈SN 1≤i≤N sgn(π)aiπi perm[A] ≡ π∈SN 1≤i≤N aiπi
  • 31. UP UP UP 2 × 2 matrix up a11 a12 a21 a22 = max (a11 + a22, a12 + a21) 3 × 3 matrix up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ a11 a12 a13 a21 a22 a23 a31 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ = max a11 + a22 + a33, a11 + a23 + a32, a12 + a21 + a33, a12 + a23 + a31, a13 + a21 + a32, a13 + a22 + a31
  • 32. UP UP c × det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ a11 a12 a13 a21 a22 a33 a31 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ = det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ ca11 a12 a13 ca21 a22 a33 ca31 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ (c : const.) det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ a11 + b1 a12 a13 a21 + b2 a22 a33 a31 + b3 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ = det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ a11 a12 a13 a21 a22 a33 a31 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ + det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ b1 a12 a13 b2 a22 a33 b3 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ *************************************************************************** UP c + up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ a11 a12 a13 a21 a22 a33 a31 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ = up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ c + a11 a12 a13 c + a21 a22 a33 c + a31 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ max(a11, b1) a12 a13 max(a21, b2) a22 a33 max(a31, b3) a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ = max ⎛ ⎜⎜⎜⎜⎜⎝up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ a11 a12 a13 a21 a22 a33 a31 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ , up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ b1 a12 a13 b2 a22 a33 b3 a32 a33 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ ⎞ ⎟⎟⎟⎟⎟⎠
  • 33. UP UP det det a11 + a12 a12 + a13 a21 + a22 a22 + a23 = det a11 a12 a21 a22 + det a11 a13 a21 a23 + det a12 a13 a22 a23 *************************************************************************** up max(a11, a12) max(a12, a13) max(a21, a22) max(a22, a23) = max ⎛ ⎜⎜⎜⎜⎜⎝up a11 a12 a21 a22 , up a11 a13 a21 a23 , up a12 a12 a22 a22 , up a12 a13 a22 a23 ⎞ ⎟⎟⎟⎟⎟⎠ UP
  • 34. UP UP KdV (D. Takahashi, R. Hirota, “Ultradiscrete Soliton Solution of Permanent Type”, J. Phys. Soc. Japan, 76 (2007) 104007–104012) (H. Nagai, “ A new expression of a soliton solution to the ultradiscrete Toda equation”, J. Phys. A: Math. Theor. 41 (2008) 235204(12pp)) KP (H. Nagai and D. Takahashi, “Ultradiscrete Pl¨ucker Relation Specialized for Soliton Solutions”, J. Phys. A: Math. Theor. 44 (2011) 095202(18pp)) hungry-Lotka Volterra (S. Nakamura, “Ultradiscrete soliton equations derived from ultradiscrete permanent formulae”, J. Phys. A: Math. Theor. 44 (2011) 295201(14pp))
  • 35. UP KP UP KP T(l, m + 1, n) + T(l + 1, m, n + 1) = max(T(l + 1, m, n) + T(l, m + 1, n + 1) − A1 + A2, T(l, m, n + 1) + T(l + 1, m + 1, n)) (A1 ≥ A2) UP (H.Nagai, arXiv:nlin:1611.09081) T(l, m, n) = up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ϕ1(0) ϕ1(1) · · · ϕ1(N − 1) ϕ2(0) ϕ2(1) · · · ϕ2(N − 1) ... ... ... ... ϕN(0) ϕN(1) · · · ϕN(N − 1) ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ϕi(s) = ϕi(l, m, n, s) s l, m, n 3
  • 36. UP UP ϕi(s) 1 A1 ≥ A2 ≥ A3 ϕi(l + 1, m, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A1) ϕi(l, m + 1, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A2) ϕi(l, m, n + 1; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A3) 2 j, i1, i2 ϕi1 (s + j) + ϕi2 (s + j) ≤ max ϕi1 (s + j − 1) + ϕi2 (s + j + 1), ϕi2 (s + j − 1) + ϕi1 (s + j + 1) 3 (ϕ1(s), ϕ2(s), . . . , ϕN(s))T = Φ(s) , 0 ≤ k1 < k2 < k3 ≤ N + 1 up[Φ(0) · · · Φ(k2) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k3) · · · Φ(N + 1)] = max up[Φ(0) · · · Φ(k3) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k2) · · · Φ(N + 1)] up[Φ(0) · · · Φ(k1) · · · Φ(N)] + up[Φ(0) · · · Φ(k2) · · · Φ(k3) · · · Φ(N + 1)]
  • 37. UP KP τ(x, y, t) = det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ f1 f′ 1 · · · f (N−1) 1 . . . . . . ... . . . fN f′ N · · · f (N−1) N ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ⎛ ⎜⎜⎜⎜⎜⎜⎝ fj = fj (x, y, t) ∂fj ∂y = ∂2fj ∂x2 , ∂fj ∂t = ∂3fj ∂x3 . ⎞ ⎟⎟⎟⎟⎟⎟⎠ KP 1 12 (ττ4x − 4τx τ3x + 3τ2 xx ) − 1 3 (ττxt − τx τt ) + 1 4 (ττyy − τ2 y ) = 0 Pl¨ucker n = 3 |a1 . . . aN−2 b1 b2| × |a1 . . . aN−2 b3 b4| −|a1 . . . aN−2 b1 b3| × |a1 . . . aN−2 b2 b4| +|a1 . . . aN−2 b1 b4| × |a1 . . . aN−2 b2 b3| = 0
  • 38. UP KP τ(l, m, n) = det ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ φ1(0) φ1(1) · · · φ1(N − 1) . . . . . . ... . . . φN (0) φN (1) · · · φN (N − 1) ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ φj (s) = φj (s; l, m, n) . ⎞ ⎟⎟⎟⎟⎟⎟⎟⎠ KP a1(a2 − a3)τ(l + 1, m, n)τ(l, m + 1, n + 1) +a2(a3 − a1)τ(l, m + 1, n)τ(l + 1, m, n + 1) +a3(a1 − a2)τ(l, m, n + 1)τ(l + 1, m + 1, n) = 0 Pl¨ucker n = 3 |a1 . . . aN−2 b1 b2| × |a1 . . . aN−2 b3 b4| −|a1 . . . aN−2 b1 b3| × |a1 . . . aN−2 b2 b4| +|a1 . . . aN−2 b1 b4| × |a1 . . . aN−2 b2 b3| = 0
  • 39. UP KP KP UP T(l, m, n) = up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ φ1(0) φ1(1) · · · φ1(N − 1) . . . . . . ... . . . φN (0) φN (1) · · · φN (N − 1) ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ KP T(l, m + 1, n) + T(l + 1, m, n + 1) = max T(l + 1, m, n) + T(l, m + 1, n + 1) − A1 + A2, T(l, m, n + 1) + T(l + 1, m + 1, n) (A1 > A2) 3 up[Φ(0) · · · Φ(k2) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k3) · · · Φ(N + 1)] = max up[Φ(0) · · · Φ(k3) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k2) · · · Φ(N + 1)] up[Φ(0) · · · Φ(k1) · · · Φ(N)] + up[Φ(0) · · · Φ(k2) · · · Φ(k3) · · · Φ(N + 1)]
  • 40. UP 1, 2 ϕi(s) 1 ≤ i ≤ N ϕi(l + 1, m, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A1) ϕi(l, m + 1, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A2) ϕi(l, m, n + 1; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A3) T(l + 1, m, n) 2N ex) N = 2 T(l + 1, m, n) = up ϕ1(l + 1; 0) ϕ1(l + 1; 1) ϕ2(l + 1; 0) ϕ2(l + 1; 1) = max up ϕ1(0) ϕ1(1) ϕ2(0) ϕ2(1) , up ϕ1(1) ϕ1(1) ϕ2(1) ϕ2(1) − A1, up ϕ1(0) ϕ1(2) ϕ2(0) ϕ2(2) − A1, up ϕ1(1) ϕ1(2) ϕ2(1) ϕ2(2) − 2A1
  • 41. UP 2 ϕi(s) 1 ≤ i1, i2 ≤ N 2 ϕi1 (s + j) + ϕi2 (s + j) ≤ max ϕi1 (s + j − 1) + ϕi2 (s + j + 1), ϕi2 (s + j − 1) + ϕi1 (s + j + 1) up ϕ1(s + 1) ϕ1(s + 1) ϕ2(s + 1) ϕ2(s + 1) ≤ up ϕ1(s) ϕ1(s + 2) ϕ2(s) ϕ2(s + 2) UP ex) N = 2 T(l + 1, m, n, s) = max up ϕ1(0) ϕ1(1) ϕ2(0) ϕ2(1) , up ϕ1(0) ϕ1(2) ϕ2(0) ϕ2(2) − A1, up ϕ1(1) ϕ1(2) ϕ2(1) ϕ2(2) − 2A1
  • 42. UP UP ϕi(s) 1 A1 ≥ A2 ≥ A3 ϕi(l + 1, m, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A1) ϕi(l, m + 1, n; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A2) ϕi(l, m, n + 1; s) = max(ϕi(l, m, n; s), ϕi(l, m, n; s + 1) − A3) 2 j, i1, i2 ϕi1 (s + j) + ϕi2 (s + j) ≤ max ϕi1 (s + j − 1) + ϕi2 (s + j + 1), ϕi2 (s + j − 1) + ϕi1 (s + j + 1) 3 (ϕ1(s), ϕ2(s), . . . , ϕN(s))T = Φ(s) , 0 ≤ k1 < k2 < k3 ≤ N + 1 up[Φ(0) · · · Φ(k2) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k3) · · · Φ(N + 1)] = max up[Φ(0) · · · Φ(k3) · · · Φ(N)] + up[Φ(0) · · · Φ(k1) · · · Φ(k2) · · · Φ(N + 1)] up[Φ(0) · · · Φ(k1) · · · Φ(N)] + up[Φ(0) · · · Φ(k2) · · · Φ(k3) · · · Φ(N + 1)]
  • 43. UP 1 ✓ ✏ Theorem The UP solution to the uKP equation is given by T(l, m, n) = up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ϕ1(0) ϕ1(1) · · · ϕ1(N − 1) ϕ2(0) ϕ2(1) · · · ϕ2(N − 1) ... ... ... ... ϕN(0) ϕN(1) · · · ϕN(N − 1) ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ϕi (l, m, n, s) = max Pi s + max(0, Pi − A1)l + max(0, Pi − A2)m + max(0, Pi − A3)n + Ci , − Pi s + max(0, −Pi − A1)l + max(0, −Pi − A2)m + max(0, −Pi − A3)n + C′ i where Pi, Ci and C′ i are arbitrary parameters.(H.Nagai and D.Takahashi, J.Phys.A Math. Theor. 44(2011)) ✒ ✑
  • 44. UP 2 ✓ ✏ Theorem The UP solution to the uKP equation is given by T(l, m, n) = up ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ϕ1(0) ϕ1(1) · · · ϕ1(N − 1) ϕ2(0) ϕ2(1) · · · ϕ2(N − 1) ... ... ... ... ϕN(0) ϕN(1) · · · ϕN(N − 1) ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ϕi (l, m, n, s) = max Ci1 + P1s + max(0, P1 − A1)l + max(0, P1 − A2)m + max(0, P1 − A3)n, Ci2 + P2s + max(0, P2 − A1)l + max(0, P2 − A2)m + max(0, P2 − A3)n, Ci3 + P3s + max(0, P3 − A1)l + max(0, P3 − A2)m + max(0, P3 − A3)n where Cij and Pj are arbitrary parameters. (H.Nagai, arXiv:nlin:1611.09081) ✒ ✑
  • 46. UP 31-32 2012, (http://gcoe- mi.jp/english/temp/publish/132702cf8b5f107c34bcc3c5077464ff.pdf) B. Grammaticos, Y. Kosmann-Schwarzbach, and T. Tamizhmani (Eds.), “Discrete Integrable Systems”, Lecture Notes in Physics, Springer Peter Butkovi˘c, “Max-linear Systems: Theory and Algorithms”, Springer