Unit 3A Assessment_Review_Study Guide Creation.notebook     December 17, 2012




                1. Explain how to factor a polynomial 
                such as 5x3+20x2+10x

                First find the GCF of the numbers and 
                variables. Then write the GCF outside 
                the parenthesis. Inside the parenthesis, 
                figure out what is needed to be 
                multiplied by the GCF to get the new 
                polynomial.




                                                                                1
Unit 3A Assessment_Review_Study Guide Creation.notebook          December 17, 2012




                2. Explain how to factor a polynomial 
                such as x2+18x+80. How do you know 
                when to factor this way instead of 
                finding the GCF?
                 The factored form will look like this: 
                 (x + ___)(x + ____). Find two numbers that 
                 multiply to 80 and add to 18 and fill them 
                 in.
                 You can factor this way as long as the first 
                 term is something squared with no extra 
                 numbers (example: x2 but not 5x2


                                                                                     2
Unit 3A Assessment_Review_Study Guide Creation.notebook     December 17, 2012




                3. How do you simplify a binomial that 
                is being squared? 
                Example: (5x+3)2
                What is the incorrect way to simplify 
                these kinds of expressions?

               Write the binomial twice (to square it) 
               and FOIL or distribute to simplify.
               Incorrect way is to square the 5x and the 
               3 and get 25x2 + 9

                                                                                3
Unit 3A Assessment_Review_Study Guide Creation.notebook     December 17, 2012




               4. Explain the steps to multiply a 
               monomial by a polynomial like the one 
               below:



               5x2(2x3+6x+3)
               Take the term on the outside and 
               distribute it to every term on the inside.




                                                                                4
Unit 3A Assessment_Review_Study Guide Creation.notebook      December 17, 2012




                5. Explain the process for multiplying 
                two binomials like the ones below:



                (2x ­ 4)(5x + 6)

                Use the FOIL method or distributive 
                method to first multiply 2x by everything 
                in the second binomial, and then multiply 
                ­4 by everything in the second binomial. 
                Make sure to simplify any like terms!!!

                                                                                 5
Unit 3A Assessment_Review_Study Guide Creation.notebook    December 17, 2012




                 6. Make a drawing showing that a 
                 square with sides of x length has been 
                 increased on one side by 2 and 
                 increased on the other side by 3.




                                                                               6
Unit 3A Assessment_Review_Study Guide Creation.notebook                  December 17, 2012



                            7. Picture a square with sides of x feet. 
                            The length is increased by 5, and the 
                            width is decreased by 5. Write the 
                            steps you would take to find a 
                            comparison between the original 
                            square's area and the new rectangle's 
                            area.
                            Hint: Challenge 5




                            See Challenge 5 for full explanation on 
                            how to create a table to compare the 
                            two areas. 



                                                                                             7
Unit 3A Assessment_Review_Study Guide Creation.notebook    December 17, 2012




                8. Given the equation a = l(40 ­ l), 
                which represents the area of a 
                rectangle, explain how you can figure 
                out the perimeter of the rectangle.

                   The 40 in the problem represents 
                   the length and width added together. 
                   Since there are two lengths and two 
                   widths in a rectangle, double 40 to 
                   get the whole perimeter: 80.


                                                                               8
Unit 3A Assessment_Review_Study Guide Creation.notebook       December 17, 2012




                      9. Explain how you can find the 
                      maximum area of a rectangle by using:
                      1. a graph
                      2. a table
                      Draw examples to support your 
                      explanation.

                     On a graph, the maximum area is the 
                     highest point of the parabola. On a 
                     table, the maximum is the number that 
                     is the highest in the graph.


                                                                                  9
Unit 3A Assessment_Review_Study Guide Creation.notebook                     December 17, 2012




                10. Explain how to name polynomials 
                and give names for the following 
                polynomials:
                3x2 + 4x + 6
                10x + 3
                2x4 ­ 3x2 + 5x + 9
               See Challenge 1 for complete instructions. You name a 
               polynomial based on how many terms it has (monomial, 
               binomial, trinomial, polynomial) and based on the highest 
               exponent it has (0=constant, 1= linear, 2= quadratic, 3= 
               cubic, 4 and higher is just a 4th degree, 5th degree, etc.


                                                                                            10
Unit 3A Assessment_Review_Study Guide Creation.notebook   December 17, 2012




                                                                          11

Test 3 a study guide notes

  • 1.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 1. Explain how to factor a polynomial  such as 5x3+20x2+10x First find the GCF of the numbers and  variables. Then write the GCF outside  the parenthesis. Inside the parenthesis,  figure out what is needed to be  multiplied by the GCF to get the new  polynomial. 1
  • 2.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 2. Explain how to factor a polynomial  such as x2+18x+80. How do you know  when to factor this way instead of  finding the GCF? The factored form will look like this:  (x + ___)(x + ____). Find two numbers that  multiply to 80 and add to 18 and fill them  in. You can factor this way as long as the first  term is something squared with no extra  numbers (example: x2 but not 5x2 2
  • 3.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 3. How do you simplify a binomial that  is being squared?  Example: (5x+3)2 What is the incorrect way to simplify  these kinds of expressions? Write the binomial twice (to square it)  and FOIL or distribute to simplify. Incorrect way is to square the 5x and the  3 and get 25x2 + 9 3
  • 4.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 4. Explain the steps to multiply a  monomial by a polynomial like the one  below: 5x2(2x3+6x+3) Take the term on the outside and  distribute it to every term on the inside. 4
  • 5.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 5. Explain the process for multiplying  two binomials like the ones below: (2x ­ 4)(5x + 6) Use the FOIL method or distributive  method to first multiply 2x by everything  in the second binomial, and then multiply  ­4 by everything in the second binomial.  Make sure to simplify any like terms!!! 5
  • 6.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 6. Make a drawing showing that a  square with sides of x length has been  increased on one side by 2 and  increased on the other side by 3. 6
  • 7.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 7. Picture a square with sides of x feet.  The length is increased by 5, and the  width is decreased by 5. Write the  steps you would take to find a  comparison between the original  square's area and the new rectangle's  area. Hint: Challenge 5 See Challenge 5 for full explanation on  how to create a table to compare the  two areas.  7
  • 8.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 8. Given the equation a = l(40 ­ l),  which represents the area of a  rectangle, explain how you can figure  out the perimeter of the rectangle. The 40 in the problem represents  the length and width added together.  Since there are two lengths and two  widths in a rectangle, double 40 to  get the whole perimeter: 80. 8
  • 9.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 9. Explain how you can find the  maximum area of a rectangle by using: 1. a graph 2. a table Draw examples to support your  explanation. On a graph, the maximum area is the  highest point of the parabola. On a  table, the maximum is the number that  is the highest in the graph. 9
  • 10.
    Unit 3A Assessment_Review_Study Guide Creation.notebook December 17, 2012 10. Explain how to name polynomials  and give names for the following  polynomials: 3x2 + 4x + 6 10x + 3 2x4 ­ 3x2 + 5x + 9 See Challenge 1 for complete instructions. You name a  polynomial based on how many terms it has (monomial,  binomial, trinomial, polynomial) and based on the highest  exponent it has (0=constant, 1= linear, 2= quadratic, 3=  cubic, 4 and higher is just a 4th degree, 5th degree, etc. 10
  • 11.