CHALLENGE	
  	
  11	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DIFFERENCES	
  OF	
  SQUARES	
     1	
  
               	
  

Finding the Difference of Squares
Write each expression in expanded form. Use FOIL or the distributive property.


Row 1                                            (x + 5)(x − 5)                                                                                                                         (b + 2)(b − 2)                                                                                                                                         (y + 6)(y − 6)

                          ____________________                                                                                                              _____________________                                                                                                                             _______________________

                          ____________________                                                                                                              _____________________                                                                                                                             _______________________

1. What pattern do you see in the answers from Row 1? ____________________________________

_________________________________________________________________________________

2. What happens to the two middle terms in these types of expressions? _______________________

_________________________________________________________________________________

3. Can you use that pattern to predict the expanded form of (x + 3)(x − 3) ? _____________________

_________________________________________________________________________________


The difference of squares means you’re taking two binomials with the exact same terms, but you’re
adding one pair of terms and subtracting the other pair of terms. The expression (x + 6)(x-6) is an
example of the difference of squares. Remember, difference simply means the answer to a subtraction
problem. The reason these expressions are referred to as the difference of squares is because the expanded
form ends up being the first term squared minus the second term squared.


      Rule                                                                                           The Difference of Squares


                 (a + b)(a − b) = a 2 − b 2                                                                                                             (x + 3)(x − 3) = x 2 − 3x + 3x − 9 = x 2 − 9
                                                                                                                                                        (3x + 4)(3x − 4) = 9x 2 −12x +12x −16 = 9x 2 −16
              Multiplying	
  the	
  sum	
  and	
  difference	
  of	
  the	
  exact	
  same	
  two	
  terms	
  will	
  always	
  give	
  a	
  product	
  called	
  
              the	
  difference	
  of	
  squares—the	
  first	
  term	
  squared	
  minus	
  the	
  second	
  term	
  squared.	
  




Example
Write each expression in expanded form. Use FOIL or the distributive property.

                 (x + 5)(x − 5)                                                                          Original equation
                       2
                  x − 5x + 5x − 25                                                                       Distribute (x+5)
                  x 2 − 25                                                                              Combine like terms
CHALLENGE	
  	
  11	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DIFFERENCES	
  OF	
  SQUARES	
                         2	
  
     	
  
In challenge 5, we talked about square lots
                                                                                                                                                                                                                                                                                                                                                                                                                  -­‐	
  2	
  
that were changed into rectangles by
adding 2 meters to one side and                                                                                                                                                                              Square	
  lot	
                                                                                               Rectangular	
  
subtracting two meters from the other                                                                                                                                                                                                                                                                                          lot	
  
side. The factored form of this expression                                                                                                                                                                                                                                  x	
                                                                                                                                   x	
  	
  
was written as (x+2)(x-2)
                                                                                                                                                                                                                             x	
                                                                                                                    x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +	
  2	
  

4. Is the expression (x+2)(x-2) a difference of squares? How do you know? _____________________

_________________________________________________________________________________

5. What were the differences in area for any number we put in for x? (Hint: If you don’t remember, rewrite
(x+2)(x-2) in expanded form. __________________________________________________________

__________________________________________________________________________________


Practice
Write each expression in expanded form. Use FOIL or the distributive property.

                                                                                                                                                                                          	
  
         (a + 8)(a − 8)                                                                                                                                                                                                         (b − 5)(b + 5)




         (c + 3)(c − 3)                                                                                                                                                                                                         (2d + 6)(2d − 6)




         (5x + 7)(5x − 7)                                                                                                                                                                                                       (10y − 4)(10y + 4)

Challenge 11 multiplying differences of squares

  • 1.
    CHALLENGE    11                                                                                                                                                                          DIFFERENCES  OF  SQUARES   1     Finding the Difference of Squares Write each expression in expanded form. Use FOIL or the distributive property. Row 1 (x + 5)(x − 5) (b + 2)(b − 2) (y + 6)(y − 6) ____________________ _____________________ _______________________ ____________________ _____________________ _______________________ 1. What pattern do you see in the answers from Row 1? ____________________________________ _________________________________________________________________________________ 2. What happens to the two middle terms in these types of expressions? _______________________ _________________________________________________________________________________ 3. Can you use that pattern to predict the expanded form of (x + 3)(x − 3) ? _____________________ _________________________________________________________________________________ The difference of squares means you’re taking two binomials with the exact same terms, but you’re adding one pair of terms and subtracting the other pair of terms. The expression (x + 6)(x-6) is an example of the difference of squares. Remember, difference simply means the answer to a subtraction problem. The reason these expressions are referred to as the difference of squares is because the expanded form ends up being the first term squared minus the second term squared. Rule The Difference of Squares (a + b)(a − b) = a 2 − b 2 (x + 3)(x − 3) = x 2 − 3x + 3x − 9 = x 2 − 9 (3x + 4)(3x − 4) = 9x 2 −12x +12x −16 = 9x 2 −16 Multiplying  the  sum  and  difference  of  the  exact  same  two  terms  will  always  give  a  product  called   the  difference  of  squares—the  first  term  squared  minus  the  second  term  squared.   Example Write each expression in expanded form. Use FOIL or the distributive property. (x + 5)(x − 5) Original equation 2 x − 5x + 5x − 25 Distribute (x+5) x 2 − 25 Combine like terms
  • 2.
    CHALLENGE    11                                                                                                                                                                          DIFFERENCES  OF  SQUARES   2     In challenge 5, we talked about square lots -­‐  2   that were changed into rectangles by adding 2 meters to one side and Square  lot   Rectangular   subtracting two meters from the other lot   side. The factored form of this expression x   x     was written as (x+2)(x-2) x   x                        +  2   4. Is the expression (x+2)(x-2) a difference of squares? How do you know? _____________________ _________________________________________________________________________________ 5. What were the differences in area for any number we put in for x? (Hint: If you don’t remember, rewrite (x+2)(x-2) in expanded form. __________________________________________________________ __________________________________________________________________________________ Practice Write each expression in expanded form. Use FOIL or the distributive property.   (a + 8)(a − 8) (b − 5)(b + 5) (c + 3)(c − 3) (2d + 6)(2d − 6) (5x + 7)(5x − 7) (10y − 4)(10y + 4)