Determining whether the two matrices can be multiplied
The multiplication of two matrices is possible if and only if the number of columns in
the left matrix is the same as the number of rows in the right matrix.
If two matrices can be multiplied, then the number of rows of the product (matrix R) will
be the same as the number of rows of the left matrix (matrix P). The number of columns
of the product (matrix R) will be the same as the number of columns on the right matrix
(matrix Q). See below.
Example 1 :Determine whether the matrix
  multiplication is possible for each of the matrix
  equations shown below.State the order of the matrix
  formed if the multiplication is possible
a) 5        3
     1      9         4 3

Solution
a)Order of matrix:2 × 2 and 1 × 2

                     Not the same
Thus,Matrix multiplication is not possible
b)
     4    7
     3    8   4    5
     9    6   6    7

Order of matrix :3 × 2 and 2 × 2

                       Same
Thus,matrix multiplication is possible
The order of matrix formed is 3 × 2
Finding the product of two
matrices
 If two matrices of order m x n and n x p is multiplied
  then the matrix formed is of the order m x p.
 The multiplication process involves multiplying the
  elements of the 1st row of the first matrix with the
  elements of each column on the second matrix.
 Repeat the process for all other rows in the first matrix.
Example 2
Find the product of each of the following
a)    3
       4     1 2

Solution
   3
   4     1    2 = 3x1            3x2
                  4x1            4x2

                  =   3     6
                      4     8
 Solving matrix equations involving the multiplication of two
  matrices
 To find the unknowns element in a matrix can be achieved by solving
  matrix equation involving the multiplication of two matrices as
  follows:
 I. Simplify the matrix equations so that the multiplication form two
  equal matrices.
  II. Compare their corresponding elements in the two equal matrices
  formed. The comparison allows to write down linear equation where
  the values of unknown elements can be determined.
Example 3
If   2                 4       6 ,find the value of x+y
      x        ( y 3)= 8       9

 Solution:
    2                    4 6
    x      y       3 =   8 9

  2y 6         =   4 6
  xy 3x            8 9
Compare the corresponding elements:
Hence,2y=4         3x=9
        y=2         x=3
Thus, xy =2(3)
          =6
Exercise
1)Give A= 4 2 ,B= -8 4 1 and C=   4 3
           1 0         6 3 -2     7 -5
           -3 5
a)Find AB and BA.Is AB=BA?
b)Find C².

2)Find the unknows
a) a 3 1 2 = -13 4
     2 b -3 4        5 0
b) 4 y       2 2 = 5 17
    x -1 -1 3      5  1
Solution:
1)AB= 4     2   -8 4 1
       1    0    6 3 -2
      -3    5

  4×(-8)+2×6 4×4+2×3 4×1+2×(-2)
= 1×(-8)+0×6 1×4+0×3 1×1+0×(-2)
 -3×(-8)+5×6 -3×4+5×3 -3×1+5×(-2)

= -32+12 16+6   4+(-4)
  -8+0    4+0    1+0
  24+30 -12+15 -3+(-10)

= -20 22   0
  -8   4   1
  54   3 -13
BA= -8 4 1      4 2
     6 3 -2     1 0
                -3 5
= (-8)×4+4×1+1×(-3) (-8)×2+4×0+1×5
  6×4+3×1+(-2)×(-3) 6×2+3×0+(-2)×5
= -32+4+(-3) -16+0+5
    24+3+6 12+0+(-10)

=   -31 -11
     33   2   Therefore,AB≠BA
b) C²=CC
   =4 3 4 3
     7 -5 7 -5
   = 4×4+3×7      4×3+3×(-5)
     7×4+(-5)×7 7×3+5(-5)×(-5)
   = 16+21    12+(-15)
     28+(-35) 21+25

  = 37 -3
    -7 46
2a)   a   3    1 2   = -13 4
      2   b   -3 4      5 0

      a(1)+3(-3) a(2)+3(4) = -13 4
      2(1)+b(-3) 2(2)+b(4)     5 0

      a-9 2a+12 = -13 4
     2-3b 4+4b      5 0
Hence:
      a-9=-13        2-3b=5
        a=-13+9        -3b=5-2
        a=-4            -3b=3
                           b=-1
2b) 4 y     2 2 = 5 17
    x -1   -1 3  5 1

   4(2)+y(-1) 4(2)+y(3) 5 17
   x(2)+-1(-1) x(2)-1(3) = 5 1

    8-y 8+3y = 5 17
    2x+1 2x-3   5 1
Hence:
     8-y=5     2x+1=5
       -y=-3     2x=4
        y=3        x=2
3) Given
   D= 4 3 ,E= 1 0
    2 -1    0 1

Find the product of DE
SOLUTION
= 1×4+0×2 1×3+0×(-1)
  0×4+1×2 0×3+1×(-1)

=   4 3
    2 -1
4)
A= 4 2 2 ,B=         8
   2 4 2             10
   6 2 0             12
Find the product of AB
SOLUTION
= 4×8+ 2×10+ 2×12
  2×8+ 4×10+ 2×12
  6×8+ 2×10+ 0×12

= 16+10+12    =     38
   8+20+12          40
  24+10+0           34
Mathematics 1

Mathematics 1

  • 2.
    Determining whether thetwo matrices can be multiplied The multiplication of two matrices is possible if and only if the number of columns in the left matrix is the same as the number of rows in the right matrix. If two matrices can be multiplied, then the number of rows of the product (matrix R) will be the same as the number of rows of the left matrix (matrix P). The number of columns of the product (matrix R) will be the same as the number of columns on the right matrix (matrix Q). See below.
  • 3.
    Example 1 :Determinewhether the matrix multiplication is possible for each of the matrix equations shown below.State the order of the matrix formed if the multiplication is possible a) 5 3 1 9 4 3 Solution a)Order of matrix:2 × 2 and 1 × 2 Not the same Thus,Matrix multiplication is not possible
  • 4.
    b) 4 7 3 8 4 5 9 6 6 7 Order of matrix :3 × 2 and 2 × 2 Same Thus,matrix multiplication is possible The order of matrix formed is 3 × 2
  • 5.
    Finding the productof two matrices  If two matrices of order m x n and n x p is multiplied then the matrix formed is of the order m x p.  The multiplication process involves multiplying the elements of the 1st row of the first matrix with the elements of each column on the second matrix.  Repeat the process for all other rows in the first matrix.
  • 6.
    Example 2 Find theproduct of each of the following a) 3 4 1 2 Solution 3 4 1 2 = 3x1 3x2 4x1 4x2 = 3 6 4 8
  • 7.
     Solving matrixequations involving the multiplication of two matrices  To find the unknowns element in a matrix can be achieved by solving matrix equation involving the multiplication of two matrices as follows:  I. Simplify the matrix equations so that the multiplication form two equal matrices. II. Compare their corresponding elements in the two equal matrices formed. The comparison allows to write down linear equation where the values of unknown elements can be determined.
  • 8.
    Example 3 If 2 4 6 ,find the value of x+y x ( y 3)= 8 9 Solution: 2 4 6 x y 3 = 8 9 2y 6 = 4 6 xy 3x 8 9 Compare the corresponding elements: Hence,2y=4 3x=9 y=2 x=3 Thus, xy =2(3) =6
  • 9.
    Exercise 1)Give A= 42 ,B= -8 4 1 and C= 4 3 1 0 6 3 -2 7 -5 -3 5 a)Find AB and BA.Is AB=BA? b)Find C². 2)Find the unknows a) a 3 1 2 = -13 4 2 b -3 4 5 0 b) 4 y 2 2 = 5 17 x -1 -1 3 5 1
  • 10.
    Solution: 1)AB= 4 2 -8 4 1 1 0 6 3 -2 -3 5 4×(-8)+2×6 4×4+2×3 4×1+2×(-2) = 1×(-8)+0×6 1×4+0×3 1×1+0×(-2) -3×(-8)+5×6 -3×4+5×3 -3×1+5×(-2) = -32+12 16+6 4+(-4) -8+0 4+0 1+0 24+30 -12+15 -3+(-10) = -20 22 0 -8 4 1 54 3 -13
  • 11.
    BA= -8 41 4 2 6 3 -2 1 0 -3 5 = (-8)×4+4×1+1×(-3) (-8)×2+4×0+1×5 6×4+3×1+(-2)×(-3) 6×2+3×0+(-2)×5 = -32+4+(-3) -16+0+5 24+3+6 12+0+(-10) = -31 -11 33 2 Therefore,AB≠BA
  • 12.
    b) C²=CC =4 3 4 3 7 -5 7 -5 = 4×4+3×7 4×3+3×(-5) 7×4+(-5)×7 7×3+5(-5)×(-5) = 16+21 12+(-15) 28+(-35) 21+25 = 37 -3 -7 46
  • 13.
    2a) a 3 1 2 = -13 4 2 b -3 4 5 0 a(1)+3(-3) a(2)+3(4) = -13 4 2(1)+b(-3) 2(2)+b(4) 5 0 a-9 2a+12 = -13 4 2-3b 4+4b 5 0 Hence: a-9=-13 2-3b=5 a=-13+9 -3b=5-2 a=-4 -3b=3 b=-1
  • 14.
    2b) 4 y 2 2 = 5 17 x -1 -1 3 5 1 4(2)+y(-1) 4(2)+y(3) 5 17 x(2)+-1(-1) x(2)-1(3) = 5 1 8-y 8+3y = 5 17 2x+1 2x-3 5 1 Hence: 8-y=5 2x+1=5 -y=-3 2x=4 y=3 x=2
  • 15.
    3) Given D= 4 3 ,E= 1 0 2 -1 0 1 Find the product of DE
  • 16.
    SOLUTION = 1×4+0×2 1×3+0×(-1) 0×4+1×2 0×3+1×(-1) = 4 3 2 -1
  • 17.
    4) A= 4 22 ,B= 8 2 4 2 10 6 2 0 12 Find the product of AB
  • 18.
    SOLUTION = 4×8+ 2×10+2×12 2×8+ 4×10+ 2×12 6×8+ 2×10+ 0×12 = 16+10+12 = 38 8+20+12 40 24+10+0 34