SlideShare a Scribd company logo
ZAGAZIG UNIVERSITY
FACULTY OF ENGINEERING
STRUCTURAL ENGINEERING DEPARTMENT
Optimization of Space Trusses Using Genetic
Algorithm
By
Osman Hamdy Osman Mohammed
B.Sc. in Civil Engineering, Faculty of Engineering, Zagazig University
Supervised by
Prof. Dr. Osman Shallan
Prof. of Structural Engineering - Head of Structural Engineering Department - Zagazig University
Prof. Dr. Atef Eraky
Prof. of Structural Engineering - Zagazig University
2015
Asst. Prof. Dr. Tharwat Sakr
Asst. Prof. of Structural Engineering - Zagazig University
2
Optimization is a design process aims to save the
most valuable factors used where in structure
case it is the weight and that leads to safe :
STRUCTURAL OPTIMIZATION IMPORTANCE
3
Truss optimization
categories
Shape
optimization
Topology
optimization
TRUSS OPTIMIZATION CATEGORIES
The objective of this research is to develop a new approach to overcome drawbacks
of classical method by using untraditional variables
Study
objectives
Reduce No
of variables
and
chromosome
Length
Overcome
drawbacks
of using X-
section as a
variable
Over come
complexity of
making
Topology Opt.
simultaneousl
y With other
Opts.
THE OBJECTIVE OF THIS RESEARCH
GENETIC ALGORITHM
Genetic algorithm (GA) is an optimization tool that mimics the processes
of evolution theory through selection , crossover and mutation processes.
.
For instance, the following string consists of five genes, g1-g5, representing five design variables:
𝑁𝑜. 𝑜𝑓 𝐵𝑖𝑡𝑒𝑠 = 𝑙𝑜𝑔2
ximax
− ximin
∈ i
Where:
Xi
min is the lower bound of variable i;
Xi
max is the upper bound of variable i;
∈i is the desired precision in variable i;
In GA decimal values represented in binary coded string
The number of string (chromosome ) bites is dependent on
The number
of variables
need opt.
Min. and Max
limits for the
variable.
The required
precision.
No of object
subjected To
opt.
GENETIC ALGORITHM IDEA
7
Design Variables in Traditional
Technique
Members
cross sections
A1,A2,A3 …etc.
Shape
optimization
Free nodes
coordinates
x1,y1,z1,x2,y2,z2
…etc.
Topology
optimization
Members
distribution
1 for presence
0 for absence
TRADITIONAL VARIABLE
Design Variables in proposed approach
Nodal coordinates x, y and z
coordinates of variable nodes of the
truss
Nodal Deflection Dx, Dy and Dz
of non-support nodes of the truss
Chromosome sample for 10-bar plane truss
PROPOSED APPROACH VARIABLES
COMPARISONS BETWEEN NO. OF BITES FOR TRADITIONALAND
PROPOSED APPROACH
10-bar plane benchmark truss.
Optimization Variable Traditional Method Proposed Method
Shape 30 30
Size 80 ‫ــــــــــــــــــــــــــ‬
Topology 10 ‫ــــــــــــــــــــــــــ‬
Deflection ‫ــــــــــــــــــــــــــ‬ 48
Total 120 Bites 78 Bites
No. of possible solutions 1.32923E+36 3.02231E+23
As it is shown the number of possible solution has been reduced from
1.32923E+36 to 2.8823E+17 which represents approximately 100 % reduction.
10
Proposed Versus
Traditional Approaches
X-sec. Random
Selection
X-sec. Long
Chromosome
Topology
complex.
Shorter
Chromosome
Reduction In No. of Variables
Defl. Limit is Lower than X-sec. limits
Defl. Related to nodes not members
Defl. Limits could be reduced 50%
Better
Solution
TRADITIONAL VARIABLE
Proposed Steps
Calculate each member length in the truss according to
proposed coordinates Li = ∆x2 + ∆y2 + ∆z 2
Calculate each member elongation according to proposed
deflections and coordinates
ΔL = ∆x Cosθx + ∆y Cosθy + ∆z Cosθz
Combining topology matrix by comparing the strain of each
member to the allowable strain of used material (all)
excluding members violate this condition
0.0 <
𝛥𝐿
L0
≤ εall
Making analysis for the proposed truss (topology and node
coordinate) considering A/L=constant to check the stability
and to get the local forces Fi in the truss members
Calculate the proposed cross section for each member Ai
= Max(
Fi
σall
,
FiLi
E∆Li
)
Finally making full analysis for the proposed truss (topology,
node coordinates and member cross sections ) to check stress
and deflection constrains
constraints
Stability
The proposed
truss must be
statically
stable
Constructability
No nodes
come over
other one
Member
stresses
All members
stresses not
exceed
allowable
stress
Nodal
displacements
All nodes
deflections
not exceed
allowable
deflection
Proposed approach is used to optimize the most
three famous benchmark problems through the
literature
25-bar space
truss
72-bar space
truss
STUDY CASES
A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS .
F=445.374 KN (100 kips) & a=9.144 m (360 inches) , E = 68.95 Gpa (104 ksi) & ρ = 2
,768 kg/m3 (0.1 lb/in3) allowable stress=172.37 MPa (25 KSI) & allowable deflection =
50.8 mm (in2).
Structure of the10-bar truss
Optimized structure of the 10-bar
The optimized truss consist of 6-bars and 5-nodes where 4 bars are
removed. Coordinates of free Node P3 is (11.73 ; 6.4).
A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS .
Max. actual deflection absolute value is 50.79 in Z- direction at node P2
which represent 99.98% of allowable deflection
Max. actual stress absolute value is 23.424 KSI at member M1 which
represents 93.70% of allowable stress
Element No.
Area
in2
m2
M1 6.045 0.004
M2 24.18 0.016
M3 19.18 0.012
M4 12.5 0.008
M5 21.08 0.014
M6 28.87 0.019
Cross Sections Area
Results of 10-bar plane truss compared with literature results.
Search Method
Optimization category
Weight (lbs.) Note
Size Shape Topology
Rajeev (1992) LINRM √
6249.00
Rajeev (1992) SUMT √
5932.00
Rajeev (1992) GRP-UI √
5727.00
Rajeev (1992) M-5 √
5725.00
Rajeev (1992) M-3 √
5719.00
Rajeev (1992) Genetic algorithm √
5613.84
Coello Coello (1994) Genetic algorithm √
5586.59
Rajeev (1992) CONMIN √
5563.00
Rajeev (1992) OPTDYN √
5472.00
Galante (1996) Genetic algorithm √ √ 5119.3
Kripakaran, Gupta and Baugh Jr. (2007) Hybrid search method. √ 5073.03
Li, Huang and Liu (2006) Particle swarm √ 5060.9
Su Ruiyi, Gui Liangjin, Fan Zijie (2009) Genetic algorithm √ √ 4962.07
Schmid (1997) Genetic algorithm √ √ 4962.10
Rajan (1995) Genetic algorithm √ √ 4962.1
Hajela and Lee (1995) Genetic algorithm √ √ 4942.7
Rajeev (1997) Genetic algorithm √ √ √ 4925.80 Two stages
Wenyan (2005) Genetic algorithm √ √ 4921.25
Deb and Gulati (2001) Genetic algorithm √ √ 4899.15
H. Rahami, A. Kaveh (2008) Force method √ √ 4855.2
Deb and Gulati (2001)
Genetic algorithm √ √ 4731.65
Const. constrain
not considered
Genetic algorithm √ √ 4899.15
Const. constrain
considered
This study Genetic algorithm √ √ √ 4762.1
A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS .
B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS.
E =68.95 GPa (104 ksi) & ρ = 2,768 kg/m3 (0.1 lb/in3) allowable stress= 275.8 MPa (40
KSI) & allowable deflection = 8.9 mm (0.35 in).
Structure of 25-bar truss
Node Fx (lbs.) Fy (lbs.) Fz (lbs.)
1 1000 -10000 -10000
2 0 -10000 -10000
3 500 0 0
6 600 0 0
Loading case
Member Area (in2) Length (in) Weight (lb.)
1,2 0.1 75.00 0.75
2,6 0.3 130.50 3.92
1,5 0.3 130.50 3.92
2,3 0.3 130.50 3.92
1,4 0.3 130.50 3.92
1,6 3.6 106.80 38.45
1,3 3.6 106.80 38.45
2,5 3.6 106.80 38.45
2,4 3.6 106.80 38.45
6,5 1.7 75.00 12.75
3,4 1.7 75.00 12.75
5,4 0.1 75.00 0.75
6,3 0.1 75.00 0.75
4,9 0.8 181.14 14.49
5,8 0.8 181.14 14.49
6,7 0.8 181.14 14.49
3,10 0.8 181.14 14.49
6,9 0.4 181.14 7.25
5,10 0.4 181.14 7.25
4,7 0.4 181.14 7.25
3,8 0.4 181.14 7.25
5,9 3.6 133.46 48.05
6,10 3.6 133.46 48.05
4,8 3.6 133.46 48.05
3,7 3.6 133.46 48.05
Weight (lb.) 476.337
Max. actual deflection absolute value is 8.8002
mm at node 1 in Y direction which represents
98.87% of allowable deflection.
Max. actual stress absolute value is 124.17
MPA (18.01 KSI) in member 6,3 which
represents 45.02% of allowable stress.
B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS.
Resulted Cross section for 25-bar space truss
Results of sizing optimized 25-bar space truss compared with literature results.
Search Year Weight (lbs.)
Zhu 1986 562.93
Rajeev and Krishnamoor-thy 1992 546.01
Coello et al. 1994 493.94
Cao 1996 485.05
Erbatur et al. 2000 493.8
Lee et al. 2005 484.85
Camp 2007 484.85
Kaveh and Shojaee 2007 484.85
To˘gan and Dalo˘glu 2008 483.35
Talaslioglu 2009 485.9
Li et al. 2009 484.85
Tayfun Dede 2011 484.85
This study 476.337
B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS.
Shape, Sizing and Topology optimized 25-bar space truss
structure Model in Matlab .
Size, shape and topology optimized 25-bar space
truss literature results
Members and its groups
Wu [48] Wenyan [22] H. Rahami [23]
This study
1995 2005 2008
Cross section area (in2)
1,2 Group 1 0.1 Removed Removed Removed
2,6
Group 2
0.2 0.10 0.10 0.10
1,5 0.2 0.10 0.10 0.10
2,3 0.2 0.10 0.10 0.10
1,4 0.2 0.10 0.10 Removed
1,6
Group 3
1.1 0.90 0.90 0.90
1,3 1.1 0.90 0.90 0.90
2,5 1.1 0.90 0.90 0.90
2,4 1.1 0.90 0.90 0.90
6,5
Group 4
0.2 Removed Removed Removed
3,4 0.2 Removed Removed Removed
5,4
Group 5
0.3 Removed Removed Removed
6,3 0.3 Removed Removed Removed
4,9
Group 6
0.10 0.10 0.10 0.10
5,8 0.10 0.10 0.10 0.10
6,7 0.10 0.10 0.10 0.10
3,10 0.10 0.10 0.10 0.10
6,9
Group 7
0.2 0.10 0.10 0.10
5,10 0.2 0.10 0.10 0.10
4,7 0.2 0.10 0.10 0.10
3,8 0.2 0.10 0.10 0.10
5,9
Group 8
0.90 1.00 1.00 1.00
6,10 0.90 1.00 1.00 1.00
4,8 0.90 1.00 1.00 1.00
3,7 0.90 1.00 1.00 1.00
X4 41.07 39.91 38.7913 40.60
Y4 53.47 61.99 66.111 58.40
Z4 124.6 118.23 112.9787 123.80
X8 50.8 53.13 48.7924 56.20
Y8 131.48 138.49 138.891 139.20
Weight (lb.) 136.2 114.74 114.3701 114.171
C- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 25-BAR SPACE TRUSS.
Max. actual deflection absolute value is 8.8889 mm at node
1 in Y direction which represents 99.87% of allowable
deflection.
Max. actual stress absolute value is 119.62 MPA (17.35 KSI)
in member 2,5 which represents 43.73% of allowable stress .
Node 3,4,5& 6 are free in X,Y & Z Dir.
Node 7,8,9&10 are free in X& Y Dir.
C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
E = 68.95 Gpa (104 ksi) & ρ = 2 ,768 kg/m3 (0.1 lb/in3) & allowable stress=172.37
MPa (25 KSI) & allowable deflection = 6.35 mm (0.25 in). in x and y directions for
nodes = 17,18,19 and 20.
Structure of the 72-bar truss
C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
Member No. X-section group X-section Area (in2) Length (in) Weight (Lb) Member No. X-section group X-section Area (in2) Length (in) Weight (Lb)
1 A1 1.9941 60 11.96 37 A9 0.70363 60 4.22
2 A1 1.9941 60 11.96 38 A9 0.70363 60 4.22
3 A1 1.9941 60 11.96 39 A9 0.70363 60 4.22
4 A1 1.9941 60 11.96 40 A9 0.70363 60 4.22
5 A2 0.57611 134.16 7.73 41 A10 0.45689 134.16 6.13
6 A2 0.57611 134.16 7.73 42 A10 0.45689 134.16 6.13
7 A2 0.57611 134.16 7.73 43 A10 0.45689 134.16 6.13
8 A2 0.57611 134.16 7.73 44 A10 0.45689 134.16 6.13
9 A2 0.57611 134.16 7.73 45 A10 0.45689 134.16 6.13
10 A2 0.57611 134.16 7.73 46 A10 0.45689 134.16 6.13
11 A2 0.57611 134.16 7.73 47 A10 0.45689 134.16 6.13
12 A2 0.57611 134.16 7.73 48 A10 0.45689 134.16 6.13
13 A3 0.06734 120 0.81 49 A11 0.034095 120 0.41
14 A3 0.06734 120 0.81 50 A11 0.034095 120 0.41
15 A3 0.06734 120 0.81 51 A11 0.034095 120 0.41
16 A3 0.06734 120 0.81 52 A11 0.034095 120 0.41
17 A4 0.022226 169.71 0.38 53 A12 0.064083 169.71 1.09
18 A4 0.022226 169.71 0.38 54 A12 0.064083 169.71 1.09
19 A5 1.5916 60 9.55 55 A13 0.1733 60 1.04
20 A5 1.5916 60 9.55 56 A13 0.1733 60 1.04
21 A5 1.5916 60 9.55 57 A13 0.1733 60 1.04
22 A5 1.5916 60 9.55 58 A13 0.1733 60 1.04
23 A6 0.5536 134.16 7.43 59 A14 0.48978 134.16 6.57
24 A6 0.5536 134.16 7.43 60 A14 0.48978 134.16 6.57
25 A6 0.5536 134.16 7.43 61 A14 0.48978 134.16 6.57
26 A6 0.5536 134.16 7.43 62 A14 0.48978 134.16 6.57
27 A6 0.5536 134.16 7.43 63 A14 0.48978 134.16 6.57
28 A6 0.5536 134.16 7.43 64 A14 0.48978 134.16 6.57
29 A6 0.5536 134.16 7.43 65 A14 0.48978 134.16 6.57
30 A6 0.5536 134.16 7.43 66 A14 0.48978 134.16 6.57
31 A7 0.029919 120 0.36 67 A15 0.38727 120 4.65
32 A7 0.029919 120 0.36 68 A15 0.38727 120 4.65
33 A7 0.029919 120 0.36 69 A15 0.38727 120 4.65
34 A7 0.029919 120 0.36 70 A15 0.38727 120 4.65
35 A8 0.03593 169.71 0.61 71 A16 0.49385 169.71 8.38
36 A8 0.03593 169.71 0.61 72 A16 0.49385 169.71 8.38
Total Weight (Lb) 375.77
Resulted Cross section for 72-bar space truss
Load Case 1 Max. actual deflection absolute value is 6.3 mm for node 17
in X and Y direction which represents 99.21 % of allowable
deflection.
Max. Stress absolute value is 111.6 MPA (16.186 KSI) for
member 55 which represent 64.74% of allowable stress.
C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
Load case 2 Max. Stress absolute value is 4.206/0.1733 = 24.27 KSI for
members 55, 56, 57 and 58 which represent 97.08% of
allowable stress.
Max. Stress absolute value is 0.99949 mm for nodes 17, 18, 19
and 20 in X and Y directions which represents 15.74 % of
allowable deflection.
C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
25
Size optimization results for 72-bar space truss.
Search Year W (lb)
Venkayya 1971 381.2
Gellatly and Berke 1971 395.97
Schmit and Farshi 1974 388.63
Khan et al. 1979 387.67
Adeli and Kamal 1986 379.31
Cao 1996 380.32
Erbatur et al. 2000 383.12
Barbaso and Lemonge 2003 384.1341
Camp 2007 379.85
Perez and Behdinan 2007 381.91
Talaslioglu 2009 380.783
Tayfun Dede 2011 382.35
This study 375.77
C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
26
Conclusion
Genetic algorithm
is considered as
suitable tool for
truss optimization.
The proposed
approach
succeeded to
reduce the
chromosome
length lead to
reduction in
calculation time
and effort.
Proposed
approach
succeeded to
overcome
traditional
drawbacks of x-
section variables
and topology
optimization
The results
obtained by using
the proposed
approach are
more optimized
when compared
with previous
research.
Max. actual deflection absolute value is 50.79 in Z- direction at node P2 which
represent 99.98% of allowable deflection
Element No. Dimensions (mm)
Area Stress
% Stress of allowable
in2 m2 KSI Mpa
M1 200x200x5 6.045 0.004 23.424 161.5 93.70%
M2 400x400x10 24.18 0.016 -8.398 -57.9 33.60%
M3 260x260x12.5 19.18 0.012 -5.782 -39.9 23.10%
M4 180x180x12 12.5 0.008 -8.236 -56.8 32.90%
M5 350x350x10 21.08 0.014 6.8122 46.97 27.20%
M6 400x400x12 28.87 0.019 7.1245 49.12 28.50%
Max. actual stress absolute value is 23.424 KSI at member M1 which represents
93.70% of allowable stress
A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS .
A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS .
Member Area (in2) Length (in) Weight (lb.) Axial Force (lb.) Stress Abs. value (KSI)
1,2 0.1 75.00 0.75 -7.00 0.07
2,6 0.3 130.50 3.92 3,815.00 12.72
1,5 0.3 130.50 3.92 3,120.00 10.40
2,3 0.3 130.50 3.92 709.00 2.36
1,4 0.3 130.50 3.92 1,014.00 3.38
1,6 3.6 106.80 38.45 55,766.00 15.49
1,3 3.6 106.80 38.45 10,236.00 2.84
2,5 3.6 106.80 38.45 45,923.00 12.76
2,4 3.6 106.80 38.45 15,032.00 4.18
6,5 1.7 75.00 12.75 -6,731.00 3.96
3,4 1.7 75.00 12.75 3,113.00 1.83
5,4 0.1 75.00 0.75 -1,222.00 12.22
6,3 0.1 75.00 0.75 -1,801.00 18.01
4,9 0.8 181.14 14.49 743.00 0.93
5,8 0.8 181.14 14.49 -3,304.00 4.13
6,7 0.8 181.14 14.49 -4,616.00 5.77
3,10 0.8 181.14 14.49 1,350.00 1.69
6,9 0.4 181.14 7.25 -2,308.00 5.77
5,10 0.4 181.14 7.25 -1,652.00 4.13
4,7 0.4 181.14 7.25 372.00 0.93
3,8 0.4 181.14 7.25 675.00 1.69
5,9 3.6 133.46 48.05 -20,181.00 5.61
6,10 3.6 133.46 48.05 -28,191.00 7.83
4,8 3.6 133.46 48.05 4,539.00 1.26
3,7 3.6 133.46 48.05 8,243.00 2.29
Weight (lb.) 476.337 Max Stress 18.01
Max. actual deflection absolute value is 8.8002
mm at node 1 in Y direction which represents
98.87% of allowable deflection.
Max. actual stress absolute value is 124.17 MPA
(18.01 KSI) in member 6,3 which represents
45.02% of allowable stress.
B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS.
B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS.
C- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 25-BAR SPACE TRUSS.
The size, shape and topology optimization simultaneously will be considered with same data
input and constrains. For shape optimization case the coordinates limits for free node number 4
in X-direction From 20 to 60 inch and in Y-direction from 40 to 80 inch and in Z-direction from 90
to 130 inch where another free nodes 3,5 and 6 are symmetric to node number 4. And for
support node number 8 in X-direction From 40 to 80 inch and in Y-direction from 100 to 140
where another support nodes 7,9 and 10 are symmetric to node number 8.
Max. actual deflection absolute value is 8.8889 mm at node 1 in Y
direction which represents 99.87% of allowable deflection.
Max. actual stress absolute value is 119.62 MPA (17.35 KSI) in member
2,5 which represents 43.73% of allowable stress .
Member Area (in2) Length (in) Weight (lb.) Axial Force (lb.) Stress Abs. value (KSI)
1,2 Removed
2,6 0.10 123.76 1.24 844.30 8.44
1,5 0.10 123.76 1.24 1,549.30 15.49
2,3 0.10 123.76 1.24 748.60 7.49
1,4 Removed
1,6 0.90 96.06 8.65 12,136.50 13.49
1,3 0.90 96.06 8.65 7,639.20 8.49
2,5 0.90 96.06 8.65 15,618.60 17.35
2,4 0.90 96.06 8.65 6,334.20 7.04
6,5 Removed
3,4 Removed
5,4 Removed
6,3 Removed
4,9 0.10 233.70 2.34 351.30 3.51
5,8 0.10 233.70 2.34 72.70 0.73
6,7 0.10 233.70 2.34 193.50 1.94
3,10 0.10 233.70 2.34 398.90 3.99
6,9 0.10 176.71 1.77 255.90 2.56
5,10 0.10 176.71 1.77 96.10 0.96
4,7 0.10 176.71 1.77 464.70 4.65
3,8 0.10 176.71 1.77 527.60 5.28
5,9 1.00 148.65 14.87 1,142.00 1.14
6,10 1.00 148.65 14.87 3,042.00 3.04
4,8 1.00 148.65 14.87 5,524.00 5.52
3,7 1.00 148.65 14.87 6,272.00 6.27
Weight (lb.) 114.171 Max Stress 17.35
C- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 25-BAR SPACE TRUSS.
Load Case 1 Max. actual deflection absolute value is 6.3 mm for node 17 in
X and Y direction which represents 99.21 % of allowable
deflection.
Max. Stress absolute value is 111.6 MPA (16.186 KSI) for
member 55 which represent 64.74% of allowable stress.
C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
Load case 2 Max. Stress absolute value is 4.206/0.1733 = 24.27 KSI for
members 55, 56, 57 and 58 which represent 97.08% of
allowable stress.
Max. Stress absolute value is 0.99949 mm for nodes 17, 18, 19
and 20 in X and Y directions which represents 15.74 % of
allowable deflection.
C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .

More Related Content

What's hot

Stiffness Matrix
Stiffness MatrixStiffness Matrix
Stiffness Matrix
Aditya Mistry
 
isoparametric formulation
isoparametric formulationisoparametric formulation
isoparametric formulation
murali mohan
 
Finite element analysis
Finite element analysisFinite element analysis
Finite element analysis
Sonal Upadhyay
 
A Picture Album of the Finite Element Method
A Picture Album of the Finite Element MethodA Picture Album of the Finite Element Method
A Picture Album of the Finite Element Method
Rahul Leslie
 
Peb structures
Peb structuresPeb structures
Peb structures
hlksd
 
Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018
Dr. Mohd Zameeruddin
 
CE 72.32 (January 2016 Semester): Lecture 1b: Analysis and Design of Tall Bui...
CE 72.32 (January 2016 Semester): Lecture 1b: Analysis and Design of Tall Bui...CE 72.32 (January 2016 Semester): Lecture 1b: Analysis and Design of Tall Bui...
CE 72.32 (January 2016 Semester): Lecture 1b: Analysis and Design of Tall Bui...
Fawad Najam
 
Reinforced concrete column
Reinforced concrete columnReinforced concrete column
Reinforced concrete column
civilengineeringfreedownload
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521
Shekh Muhsen Uddin Ahmed
 
Special structure
Special structureSpecial structure
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
stefaniaarangio
 
Masonry Arch Bridges_May_2021.pptx
Masonry Arch Bridges_May_2021.pptxMasonry Arch Bridges_May_2021.pptx
Masonry Arch Bridges_May_2021.pptx
Naresh Prasad Keshari
 
Top down construction
Top down constructionTop down construction
Top down construction
ANUPAM TIWARI
 
Composite materials
Composite materialsComposite materials
Composite materials
JokiYagit
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
Mahdi Damghani
 
Mivan
MivanMivan
ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS
ASHOK KUMAR RAJENDRAN
 
Yijun liu -_nummeth_20040121_fem
Yijun liu -_nummeth_20040121_femYijun liu -_nummeth_20040121_fem
Yijun liu -_nummeth_20040121_fem
Abdollah Ghavami
 
design and analysis of cantilever beam ppt
design and analysis of cantilever beam pptdesign and analysis of cantilever beam ppt
design and analysis of cantilever beam ppt
College
 
Contents-Adv Structural Analysis-AKJ
Contents-Adv Structural Analysis-AKJContents-Adv Structural Analysis-AKJ
Contents-Adv Structural Analysis-AKJ
Ashok K. Jain
 

What's hot (20)

Stiffness Matrix
Stiffness MatrixStiffness Matrix
Stiffness Matrix
 
isoparametric formulation
isoparametric formulationisoparametric formulation
isoparametric formulation
 
Finite element analysis
Finite element analysisFinite element analysis
Finite element analysis
 
A Picture Album of the Finite Element Method
A Picture Album of the Finite Element MethodA Picture Album of the Finite Element Method
A Picture Album of the Finite Element Method
 
Peb structures
Peb structuresPeb structures
Peb structures
 
Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018
 
CE 72.32 (January 2016 Semester): Lecture 1b: Analysis and Design of Tall Bui...
CE 72.32 (January 2016 Semester): Lecture 1b: Analysis and Design of Tall Bui...CE 72.32 (January 2016 Semester): Lecture 1b: Analysis and Design of Tall Bui...
CE 72.32 (January 2016 Semester): Lecture 1b: Analysis and Design of Tall Bui...
 
Reinforced concrete column
Reinforced concrete columnReinforced concrete column
Reinforced concrete column
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521
 
Special structure
Special structureSpecial structure
Special structure
 
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
 
Masonry Arch Bridges_May_2021.pptx
Masonry Arch Bridges_May_2021.pptxMasonry Arch Bridges_May_2021.pptx
Masonry Arch Bridges_May_2021.pptx
 
Top down construction
Top down constructionTop down construction
Top down construction
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
 
Mivan
MivanMivan
Mivan
 
ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS
 
Yijun liu -_nummeth_20040121_fem
Yijun liu -_nummeth_20040121_femYijun liu -_nummeth_20040121_fem
Yijun liu -_nummeth_20040121_fem
 
design and analysis of cantilever beam ppt
design and analysis of cantilever beam pptdesign and analysis of cantilever beam ppt
design and analysis of cantilever beam ppt
 
Contents-Adv Structural Analysis-AKJ
Contents-Adv Structural Analysis-AKJContents-Adv Structural Analysis-AKJ
Contents-Adv Structural Analysis-AKJ
 

Similar to Structural optimization.pptx

2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
Hector Archila
 
AAE550_Final_LuQi
AAE550_Final_LuQiAAE550_Final_LuQi
AAE550_Final_LuQi
LU QI
 
Final Presentation_25 May
Final Presentation_25 MayFinal Presentation_25 May
Final Presentation_25 May
Kallol Barua
 
Adaptive Aperture Commissioning Presentation at 57th PTCOG
Adaptive Aperture Commissioning Presentation at 57th PTCOG Adaptive Aperture Commissioning Presentation at 57th PTCOG
Adaptive Aperture Commissioning Presentation at 57th PTCOG
Minglei Kang
 
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAEDose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
haijaypee_dan
 
fast publications journal.pdf
fast publications journal.pdffast publications journal.pdf
fast publications journal.pdf
nareshkotra
 
PHD research publications 26.pdf
PHD research publications 26.pdfPHD research publications 26.pdf
PHD research publications 26.pdf
nareshkotra
 
67f5bd23 e166-4bf3-8177-9df7689eab27-160907172352
67f5bd23 e166-4bf3-8177-9df7689eab27-16090717235267f5bd23 e166-4bf3-8177-9df7689eab27-160907172352
67f5bd23 e166-4bf3-8177-9df7689eab27-160907172352
DIPAK PRASAD
 
kannan &monica 26-03-2019 final.pptx
kannan &monica 26-03-2019 final.pptxkannan &monica 26-03-2019 final.pptx
kannan &monica 26-03-2019 final.pptx
ssuserb2e56f1
 
Grds international conference on pure and applied science (5)
Grds international conference on pure and applied science (5)Grds international conference on pure and applied science (5)
Grds international conference on pure and applied science (5)
Global R & D Services
 
Portofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysisPortofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysis
KristoforusAnggara
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sir
SHAMJITH KM
 
2016 aci milwaukee_wi_2016_v3
2016 aci milwaukee_wi_2016_v32016 aci milwaukee_wi_2016_v3
2016 aci milwaukee_wi_2016_v3
AsuSSEBENA
 
Design Optimization and Development in Air Pollution Control Device
Design Optimization and Development in Air Pollution Control DeviceDesign Optimization and Development in Air Pollution Control Device
Design Optimization and Development in Air Pollution Control Device
IJERA Editor
 
Q04605101105
Q04605101105Q04605101105
Q04605101105
IJERA Editor
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Nikolai Priezjev
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
cseij
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
cseij
 
Undergrad Thesis Presentation
Undergrad Thesis PresentationUndergrad Thesis Presentation
Undergrad Thesis Presentation
Romana Rinky
 
3D Characterisation of Pore Distribution in Resin Film Infused Composites
3D Characterisation of Pore Distribution in Resin Film Infused Composites3D Characterisation of Pore Distribution in Resin Film Infused Composites
3D Characterisation of Pore Distribution in Resin Film Infused Composites
Fabien Léonard
 

Similar to Structural optimization.pptx (20)

2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
 
AAE550_Final_LuQi
AAE550_Final_LuQiAAE550_Final_LuQi
AAE550_Final_LuQi
 
Final Presentation_25 May
Final Presentation_25 MayFinal Presentation_25 May
Final Presentation_25 May
 
Adaptive Aperture Commissioning Presentation at 57th PTCOG
Adaptive Aperture Commissioning Presentation at 57th PTCOG Adaptive Aperture Commissioning Presentation at 57th PTCOG
Adaptive Aperture Commissioning Presentation at 57th PTCOG
 
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAEDose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
 
fast publications journal.pdf
fast publications journal.pdffast publications journal.pdf
fast publications journal.pdf
 
PHD research publications 26.pdf
PHD research publications 26.pdfPHD research publications 26.pdf
PHD research publications 26.pdf
 
67f5bd23 e166-4bf3-8177-9df7689eab27-160907172352
67f5bd23 e166-4bf3-8177-9df7689eab27-16090717235267f5bd23 e166-4bf3-8177-9df7689eab27-160907172352
67f5bd23 e166-4bf3-8177-9df7689eab27-160907172352
 
kannan &monica 26-03-2019 final.pptx
kannan &monica 26-03-2019 final.pptxkannan &monica 26-03-2019 final.pptx
kannan &monica 26-03-2019 final.pptx
 
Grds international conference on pure and applied science (5)
Grds international conference on pure and applied science (5)Grds international conference on pure and applied science (5)
Grds international conference on pure and applied science (5)
 
Portofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysisPortofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysis
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sir
 
2016 aci milwaukee_wi_2016_v3
2016 aci milwaukee_wi_2016_v32016 aci milwaukee_wi_2016_v3
2016 aci milwaukee_wi_2016_v3
 
Design Optimization and Development in Air Pollution Control Device
Design Optimization and Development in Air Pollution Control DeviceDesign Optimization and Development in Air Pollution Control Device
Design Optimization and Development in Air Pollution Control Device
 
Q04605101105
Q04605101105Q04605101105
Q04605101105
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
 
Undergrad Thesis Presentation
Undergrad Thesis PresentationUndergrad Thesis Presentation
Undergrad Thesis Presentation
 
3D Characterisation of Pore Distribution in Resin Film Infused Composites
3D Characterisation of Pore Distribution in Resin Film Infused Composites3D Characterisation of Pore Distribution in Resin Film Infused Composites
3D Characterisation of Pore Distribution in Resin Film Infused Composites
 

Recently uploaded

PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
Divyam548318
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
Madhumitha Jayaram
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
PauloRodrigues104553
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
PuktoonEngr
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
mamunhossenbd75
 

Recently uploaded (20)

PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
 

Structural optimization.pptx

  • 1. ZAGAZIG UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT Optimization of Space Trusses Using Genetic Algorithm By Osman Hamdy Osman Mohammed B.Sc. in Civil Engineering, Faculty of Engineering, Zagazig University Supervised by Prof. Dr. Osman Shallan Prof. of Structural Engineering - Head of Structural Engineering Department - Zagazig University Prof. Dr. Atef Eraky Prof. of Structural Engineering - Zagazig University 2015 Asst. Prof. Dr. Tharwat Sakr Asst. Prof. of Structural Engineering - Zagazig University
  • 2. 2 Optimization is a design process aims to save the most valuable factors used where in structure case it is the weight and that leads to safe : STRUCTURAL OPTIMIZATION IMPORTANCE
  • 4. The objective of this research is to develop a new approach to overcome drawbacks of classical method by using untraditional variables Study objectives Reduce No of variables and chromosome Length Overcome drawbacks of using X- section as a variable Over come complexity of making Topology Opt. simultaneousl y With other Opts. THE OBJECTIVE OF THIS RESEARCH
  • 5. GENETIC ALGORITHM Genetic algorithm (GA) is an optimization tool that mimics the processes of evolution theory through selection , crossover and mutation processes. . For instance, the following string consists of five genes, g1-g5, representing five design variables: 𝑁𝑜. 𝑜𝑓 𝐵𝑖𝑡𝑒𝑠 = 𝑙𝑜𝑔2 ximax − ximin ∈ i Where: Xi min is the lower bound of variable i; Xi max is the upper bound of variable i; ∈i is the desired precision in variable i; In GA decimal values represented in binary coded string The number of string (chromosome ) bites is dependent on The number of variables need opt. Min. and Max limits for the variable. The required precision. No of object subjected To opt.
  • 7. 7 Design Variables in Traditional Technique Members cross sections A1,A2,A3 …etc. Shape optimization Free nodes coordinates x1,y1,z1,x2,y2,z2 …etc. Topology optimization Members distribution 1 for presence 0 for absence TRADITIONAL VARIABLE
  • 8. Design Variables in proposed approach Nodal coordinates x, y and z coordinates of variable nodes of the truss Nodal Deflection Dx, Dy and Dz of non-support nodes of the truss Chromosome sample for 10-bar plane truss PROPOSED APPROACH VARIABLES
  • 9. COMPARISONS BETWEEN NO. OF BITES FOR TRADITIONALAND PROPOSED APPROACH 10-bar plane benchmark truss. Optimization Variable Traditional Method Proposed Method Shape 30 30 Size 80 ‫ــــــــــــــــــــــــــ‬ Topology 10 ‫ــــــــــــــــــــــــــ‬ Deflection ‫ــــــــــــــــــــــــــ‬ 48 Total 120 Bites 78 Bites No. of possible solutions 1.32923E+36 3.02231E+23 As it is shown the number of possible solution has been reduced from 1.32923E+36 to 2.8823E+17 which represents approximately 100 % reduction.
  • 10. 10 Proposed Versus Traditional Approaches X-sec. Random Selection X-sec. Long Chromosome Topology complex. Shorter Chromosome Reduction In No. of Variables Defl. Limit is Lower than X-sec. limits Defl. Related to nodes not members Defl. Limits could be reduced 50% Better Solution TRADITIONAL VARIABLE
  • 11. Proposed Steps Calculate each member length in the truss according to proposed coordinates Li = ∆x2 + ∆y2 + ∆z 2 Calculate each member elongation according to proposed deflections and coordinates ΔL = ∆x Cosθx + ∆y Cosθy + ∆z Cosθz Combining topology matrix by comparing the strain of each member to the allowable strain of used material (all) excluding members violate this condition 0.0 < 𝛥𝐿 L0 ≤ εall Making analysis for the proposed truss (topology and node coordinate) considering A/L=constant to check the stability and to get the local forces Fi in the truss members Calculate the proposed cross section for each member Ai = Max( Fi σall , FiLi E∆Li ) Finally making full analysis for the proposed truss (topology, node coordinates and member cross sections ) to check stress and deflection constrains
  • 12. constraints Stability The proposed truss must be statically stable Constructability No nodes come over other one Member stresses All members stresses not exceed allowable stress Nodal displacements All nodes deflections not exceed allowable deflection
  • 13. Proposed approach is used to optimize the most three famous benchmark problems through the literature 25-bar space truss 72-bar space truss STUDY CASES
  • 14. A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS . F=445.374 KN (100 kips) & a=9.144 m (360 inches) , E = 68.95 Gpa (104 ksi) & ρ = 2 ,768 kg/m3 (0.1 lb/in3) allowable stress=172.37 MPa (25 KSI) & allowable deflection = 50.8 mm (in2). Structure of the10-bar truss
  • 15. Optimized structure of the 10-bar The optimized truss consist of 6-bars and 5-nodes where 4 bars are removed. Coordinates of free Node P3 is (11.73 ; 6.4). A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS . Max. actual deflection absolute value is 50.79 in Z- direction at node P2 which represent 99.98% of allowable deflection Max. actual stress absolute value is 23.424 KSI at member M1 which represents 93.70% of allowable stress Element No. Area in2 m2 M1 6.045 0.004 M2 24.18 0.016 M3 19.18 0.012 M4 12.5 0.008 M5 21.08 0.014 M6 28.87 0.019 Cross Sections Area
  • 16. Results of 10-bar plane truss compared with literature results. Search Method Optimization category Weight (lbs.) Note Size Shape Topology Rajeev (1992) LINRM √ 6249.00 Rajeev (1992) SUMT √ 5932.00 Rajeev (1992) GRP-UI √ 5727.00 Rajeev (1992) M-5 √ 5725.00 Rajeev (1992) M-3 √ 5719.00 Rajeev (1992) Genetic algorithm √ 5613.84 Coello Coello (1994) Genetic algorithm √ 5586.59 Rajeev (1992) CONMIN √ 5563.00 Rajeev (1992) OPTDYN √ 5472.00 Galante (1996) Genetic algorithm √ √ 5119.3 Kripakaran, Gupta and Baugh Jr. (2007) Hybrid search method. √ 5073.03 Li, Huang and Liu (2006) Particle swarm √ 5060.9 Su Ruiyi, Gui Liangjin, Fan Zijie (2009) Genetic algorithm √ √ 4962.07 Schmid (1997) Genetic algorithm √ √ 4962.10 Rajan (1995) Genetic algorithm √ √ 4962.1 Hajela and Lee (1995) Genetic algorithm √ √ 4942.7 Rajeev (1997) Genetic algorithm √ √ √ 4925.80 Two stages Wenyan (2005) Genetic algorithm √ √ 4921.25 Deb and Gulati (2001) Genetic algorithm √ √ 4899.15 H. Rahami, A. Kaveh (2008) Force method √ √ 4855.2 Deb and Gulati (2001) Genetic algorithm √ √ 4731.65 Const. constrain not considered Genetic algorithm √ √ 4899.15 Const. constrain considered This study Genetic algorithm √ √ √ 4762.1 A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS .
  • 17. B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS. E =68.95 GPa (104 ksi) & ρ = 2,768 kg/m3 (0.1 lb/in3) allowable stress= 275.8 MPa (40 KSI) & allowable deflection = 8.9 mm (0.35 in). Structure of 25-bar truss Node Fx (lbs.) Fy (lbs.) Fz (lbs.) 1 1000 -10000 -10000 2 0 -10000 -10000 3 500 0 0 6 600 0 0 Loading case
  • 18. Member Area (in2) Length (in) Weight (lb.) 1,2 0.1 75.00 0.75 2,6 0.3 130.50 3.92 1,5 0.3 130.50 3.92 2,3 0.3 130.50 3.92 1,4 0.3 130.50 3.92 1,6 3.6 106.80 38.45 1,3 3.6 106.80 38.45 2,5 3.6 106.80 38.45 2,4 3.6 106.80 38.45 6,5 1.7 75.00 12.75 3,4 1.7 75.00 12.75 5,4 0.1 75.00 0.75 6,3 0.1 75.00 0.75 4,9 0.8 181.14 14.49 5,8 0.8 181.14 14.49 6,7 0.8 181.14 14.49 3,10 0.8 181.14 14.49 6,9 0.4 181.14 7.25 5,10 0.4 181.14 7.25 4,7 0.4 181.14 7.25 3,8 0.4 181.14 7.25 5,9 3.6 133.46 48.05 6,10 3.6 133.46 48.05 4,8 3.6 133.46 48.05 3,7 3.6 133.46 48.05 Weight (lb.) 476.337 Max. actual deflection absolute value is 8.8002 mm at node 1 in Y direction which represents 98.87% of allowable deflection. Max. actual stress absolute value is 124.17 MPA (18.01 KSI) in member 6,3 which represents 45.02% of allowable stress. B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS. Resulted Cross section for 25-bar space truss
  • 19. Results of sizing optimized 25-bar space truss compared with literature results. Search Year Weight (lbs.) Zhu 1986 562.93 Rajeev and Krishnamoor-thy 1992 546.01 Coello et al. 1994 493.94 Cao 1996 485.05 Erbatur et al. 2000 493.8 Lee et al. 2005 484.85 Camp 2007 484.85 Kaveh and Shojaee 2007 484.85 To˘gan and Dalo˘glu 2008 483.35 Talaslioglu 2009 485.9 Li et al. 2009 484.85 Tayfun Dede 2011 484.85 This study 476.337 B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS.
  • 20. Shape, Sizing and Topology optimized 25-bar space truss structure Model in Matlab . Size, shape and topology optimized 25-bar space truss literature results Members and its groups Wu [48] Wenyan [22] H. Rahami [23] This study 1995 2005 2008 Cross section area (in2) 1,2 Group 1 0.1 Removed Removed Removed 2,6 Group 2 0.2 0.10 0.10 0.10 1,5 0.2 0.10 0.10 0.10 2,3 0.2 0.10 0.10 0.10 1,4 0.2 0.10 0.10 Removed 1,6 Group 3 1.1 0.90 0.90 0.90 1,3 1.1 0.90 0.90 0.90 2,5 1.1 0.90 0.90 0.90 2,4 1.1 0.90 0.90 0.90 6,5 Group 4 0.2 Removed Removed Removed 3,4 0.2 Removed Removed Removed 5,4 Group 5 0.3 Removed Removed Removed 6,3 0.3 Removed Removed Removed 4,9 Group 6 0.10 0.10 0.10 0.10 5,8 0.10 0.10 0.10 0.10 6,7 0.10 0.10 0.10 0.10 3,10 0.10 0.10 0.10 0.10 6,9 Group 7 0.2 0.10 0.10 0.10 5,10 0.2 0.10 0.10 0.10 4,7 0.2 0.10 0.10 0.10 3,8 0.2 0.10 0.10 0.10 5,9 Group 8 0.90 1.00 1.00 1.00 6,10 0.90 1.00 1.00 1.00 4,8 0.90 1.00 1.00 1.00 3,7 0.90 1.00 1.00 1.00 X4 41.07 39.91 38.7913 40.60 Y4 53.47 61.99 66.111 58.40 Z4 124.6 118.23 112.9787 123.80 X8 50.8 53.13 48.7924 56.20 Y8 131.48 138.49 138.891 139.20 Weight (lb.) 136.2 114.74 114.3701 114.171 C- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 25-BAR SPACE TRUSS. Max. actual deflection absolute value is 8.8889 mm at node 1 in Y direction which represents 99.87% of allowable deflection. Max. actual stress absolute value is 119.62 MPA (17.35 KSI) in member 2,5 which represents 43.73% of allowable stress . Node 3,4,5& 6 are free in X,Y & Z Dir. Node 7,8,9&10 are free in X& Y Dir.
  • 21. C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK . E = 68.95 Gpa (104 ksi) & ρ = 2 ,768 kg/m3 (0.1 lb/in3) & allowable stress=172.37 MPa (25 KSI) & allowable deflection = 6.35 mm (0.25 in). in x and y directions for nodes = 17,18,19 and 20. Structure of the 72-bar truss
  • 22. C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK . Member No. X-section group X-section Area (in2) Length (in) Weight (Lb) Member No. X-section group X-section Area (in2) Length (in) Weight (Lb) 1 A1 1.9941 60 11.96 37 A9 0.70363 60 4.22 2 A1 1.9941 60 11.96 38 A9 0.70363 60 4.22 3 A1 1.9941 60 11.96 39 A9 0.70363 60 4.22 4 A1 1.9941 60 11.96 40 A9 0.70363 60 4.22 5 A2 0.57611 134.16 7.73 41 A10 0.45689 134.16 6.13 6 A2 0.57611 134.16 7.73 42 A10 0.45689 134.16 6.13 7 A2 0.57611 134.16 7.73 43 A10 0.45689 134.16 6.13 8 A2 0.57611 134.16 7.73 44 A10 0.45689 134.16 6.13 9 A2 0.57611 134.16 7.73 45 A10 0.45689 134.16 6.13 10 A2 0.57611 134.16 7.73 46 A10 0.45689 134.16 6.13 11 A2 0.57611 134.16 7.73 47 A10 0.45689 134.16 6.13 12 A2 0.57611 134.16 7.73 48 A10 0.45689 134.16 6.13 13 A3 0.06734 120 0.81 49 A11 0.034095 120 0.41 14 A3 0.06734 120 0.81 50 A11 0.034095 120 0.41 15 A3 0.06734 120 0.81 51 A11 0.034095 120 0.41 16 A3 0.06734 120 0.81 52 A11 0.034095 120 0.41 17 A4 0.022226 169.71 0.38 53 A12 0.064083 169.71 1.09 18 A4 0.022226 169.71 0.38 54 A12 0.064083 169.71 1.09 19 A5 1.5916 60 9.55 55 A13 0.1733 60 1.04 20 A5 1.5916 60 9.55 56 A13 0.1733 60 1.04 21 A5 1.5916 60 9.55 57 A13 0.1733 60 1.04 22 A5 1.5916 60 9.55 58 A13 0.1733 60 1.04 23 A6 0.5536 134.16 7.43 59 A14 0.48978 134.16 6.57 24 A6 0.5536 134.16 7.43 60 A14 0.48978 134.16 6.57 25 A6 0.5536 134.16 7.43 61 A14 0.48978 134.16 6.57 26 A6 0.5536 134.16 7.43 62 A14 0.48978 134.16 6.57 27 A6 0.5536 134.16 7.43 63 A14 0.48978 134.16 6.57 28 A6 0.5536 134.16 7.43 64 A14 0.48978 134.16 6.57 29 A6 0.5536 134.16 7.43 65 A14 0.48978 134.16 6.57 30 A6 0.5536 134.16 7.43 66 A14 0.48978 134.16 6.57 31 A7 0.029919 120 0.36 67 A15 0.38727 120 4.65 32 A7 0.029919 120 0.36 68 A15 0.38727 120 4.65 33 A7 0.029919 120 0.36 69 A15 0.38727 120 4.65 34 A7 0.029919 120 0.36 70 A15 0.38727 120 4.65 35 A8 0.03593 169.71 0.61 71 A16 0.49385 169.71 8.38 36 A8 0.03593 169.71 0.61 72 A16 0.49385 169.71 8.38 Total Weight (Lb) 375.77 Resulted Cross section for 72-bar space truss
  • 23. Load Case 1 Max. actual deflection absolute value is 6.3 mm for node 17 in X and Y direction which represents 99.21 % of allowable deflection. Max. Stress absolute value is 111.6 MPA (16.186 KSI) for member 55 which represent 64.74% of allowable stress. C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
  • 24. Load case 2 Max. Stress absolute value is 4.206/0.1733 = 24.27 KSI for members 55, 56, 57 and 58 which represent 97.08% of allowable stress. Max. Stress absolute value is 0.99949 mm for nodes 17, 18, 19 and 20 in X and Y directions which represents 15.74 % of allowable deflection. C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
  • 25. 25 Size optimization results for 72-bar space truss. Search Year W (lb) Venkayya 1971 381.2 Gellatly and Berke 1971 395.97 Schmit and Farshi 1974 388.63 Khan et al. 1979 387.67 Adeli and Kamal 1986 379.31 Cao 1996 380.32 Erbatur et al. 2000 383.12 Barbaso and Lemonge 2003 384.1341 Camp 2007 379.85 Perez and Behdinan 2007 381.91 Talaslioglu 2009 380.783 Tayfun Dede 2011 382.35 This study 375.77 C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
  • 26. 26 Conclusion Genetic algorithm is considered as suitable tool for truss optimization. The proposed approach succeeded to reduce the chromosome length lead to reduction in calculation time and effort. Proposed approach succeeded to overcome traditional drawbacks of x- section variables and topology optimization The results obtained by using the proposed approach are more optimized when compared with previous research.
  • 27.
  • 28. Max. actual deflection absolute value is 50.79 in Z- direction at node P2 which represent 99.98% of allowable deflection Element No. Dimensions (mm) Area Stress % Stress of allowable in2 m2 KSI Mpa M1 200x200x5 6.045 0.004 23.424 161.5 93.70% M2 400x400x10 24.18 0.016 -8.398 -57.9 33.60% M3 260x260x12.5 19.18 0.012 -5.782 -39.9 23.10% M4 180x180x12 12.5 0.008 -8.236 -56.8 32.90% M5 350x350x10 21.08 0.014 6.8122 46.97 27.20% M6 400x400x12 28.87 0.019 7.1245 49.12 28.50% Max. actual stress absolute value is 23.424 KSI at member M1 which represents 93.70% of allowable stress A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS .
  • 29. A- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 10-BAR PLANE TRUSS .
  • 30. Member Area (in2) Length (in) Weight (lb.) Axial Force (lb.) Stress Abs. value (KSI) 1,2 0.1 75.00 0.75 -7.00 0.07 2,6 0.3 130.50 3.92 3,815.00 12.72 1,5 0.3 130.50 3.92 3,120.00 10.40 2,3 0.3 130.50 3.92 709.00 2.36 1,4 0.3 130.50 3.92 1,014.00 3.38 1,6 3.6 106.80 38.45 55,766.00 15.49 1,3 3.6 106.80 38.45 10,236.00 2.84 2,5 3.6 106.80 38.45 45,923.00 12.76 2,4 3.6 106.80 38.45 15,032.00 4.18 6,5 1.7 75.00 12.75 -6,731.00 3.96 3,4 1.7 75.00 12.75 3,113.00 1.83 5,4 0.1 75.00 0.75 -1,222.00 12.22 6,3 0.1 75.00 0.75 -1,801.00 18.01 4,9 0.8 181.14 14.49 743.00 0.93 5,8 0.8 181.14 14.49 -3,304.00 4.13 6,7 0.8 181.14 14.49 -4,616.00 5.77 3,10 0.8 181.14 14.49 1,350.00 1.69 6,9 0.4 181.14 7.25 -2,308.00 5.77 5,10 0.4 181.14 7.25 -1,652.00 4.13 4,7 0.4 181.14 7.25 372.00 0.93 3,8 0.4 181.14 7.25 675.00 1.69 5,9 3.6 133.46 48.05 -20,181.00 5.61 6,10 3.6 133.46 48.05 -28,191.00 7.83 4,8 3.6 133.46 48.05 4,539.00 1.26 3,7 3.6 133.46 48.05 8,243.00 2.29 Weight (lb.) 476.337 Max Stress 18.01 Max. actual deflection absolute value is 8.8002 mm at node 1 in Y direction which represents 98.87% of allowable deflection. Max. actual stress absolute value is 124.17 MPA (18.01 KSI) in member 6,3 which represents 45.02% of allowable stress. B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS.
  • 31. B- SIZE OPTIMIZATION FOR 25-BAR SPACE TRUSS.
  • 32. C- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 25-BAR SPACE TRUSS. The size, shape and topology optimization simultaneously will be considered with same data input and constrains. For shape optimization case the coordinates limits for free node number 4 in X-direction From 20 to 60 inch and in Y-direction from 40 to 80 inch and in Z-direction from 90 to 130 inch where another free nodes 3,5 and 6 are symmetric to node number 4. And for support node number 8 in X-direction From 40 to 80 inch and in Y-direction from 100 to 140 where another support nodes 7,9 and 10 are symmetric to node number 8. Max. actual deflection absolute value is 8.8889 mm at node 1 in Y direction which represents 99.87% of allowable deflection. Max. actual stress absolute value is 119.62 MPA (17.35 KSI) in member 2,5 which represents 43.73% of allowable stress . Member Area (in2) Length (in) Weight (lb.) Axial Force (lb.) Stress Abs. value (KSI) 1,2 Removed 2,6 0.10 123.76 1.24 844.30 8.44 1,5 0.10 123.76 1.24 1,549.30 15.49 2,3 0.10 123.76 1.24 748.60 7.49 1,4 Removed 1,6 0.90 96.06 8.65 12,136.50 13.49 1,3 0.90 96.06 8.65 7,639.20 8.49 2,5 0.90 96.06 8.65 15,618.60 17.35 2,4 0.90 96.06 8.65 6,334.20 7.04 6,5 Removed 3,4 Removed 5,4 Removed 6,3 Removed 4,9 0.10 233.70 2.34 351.30 3.51 5,8 0.10 233.70 2.34 72.70 0.73 6,7 0.10 233.70 2.34 193.50 1.94 3,10 0.10 233.70 2.34 398.90 3.99 6,9 0.10 176.71 1.77 255.90 2.56 5,10 0.10 176.71 1.77 96.10 0.96 4,7 0.10 176.71 1.77 464.70 4.65 3,8 0.10 176.71 1.77 527.60 5.28 5,9 1.00 148.65 14.87 1,142.00 1.14 6,10 1.00 148.65 14.87 3,042.00 3.04 4,8 1.00 148.65 14.87 5,524.00 5.52 3,7 1.00 148.65 14.87 6,272.00 6.27 Weight (lb.) 114.171 Max Stress 17.35
  • 33. C- SIZE, SHAPE AND TOPOLOGY OPTIMIZATION FOR 25-BAR SPACE TRUSS.
  • 34. Load Case 1 Max. actual deflection absolute value is 6.3 mm for node 17 in X and Y direction which represents 99.21 % of allowable deflection. Max. Stress absolute value is 111.6 MPA (16.186 KSI) for member 55 which represent 64.74% of allowable stress. C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
  • 35. Load case 2 Max. Stress absolute value is 4.206/0.1733 = 24.27 KSI for members 55, 56, 57 and 58 which represent 97.08% of allowable stress. Max. Stress absolute value is 0.99949 mm for nodes 17, 18, 19 and 20 in X and Y directions which represents 15.74 % of allowable deflection. C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .
  • 36. C- SIZE OPTIMIZATION FOR 72-BAR SPACE TRUSS BENCHMARK .

Editor's Notes

  1. After a page about optimization methods
  2. Two pages : Motivation : optimization worth more studies Objectives : the most important is reaching more optimized solution with less computations through …………….
  3. More illustration about GA is required
  4. More illustration about GA is required
  5. After a page about optimization methods
  6. No need much text and add gene sample
  7. After a page about optimization methods
  8. No need much text and add gene sample