SlideShare a Scribd company logo
Design of steel frames using SAP2000 –
Illustrative examples
CSI Portugal & Spain
Contents
• Introduction
• Example 1 – Column
• Example 2 – Beam
• Example 3 – Beam-column
2
• Example 4 – Planar frame
• Conclusion
• Example 5 – Spatial frame
• Example 6 – Short class 4 column
• Example 7 – Long class 4 column
Introduction
Objective:
• Present illustrative examples concerning the safety check and design
of steel members and structures using (i) EC 3 design formula
and (ii) different SAP2000 design tools (based on frame or shell FE)
• SAP2000 provides tools to both (i) check the safety of steel frame
structures according to Eurocode 3 and (ii) optimise their design
Scope:
3
• In order to fully exploit the potential of SAP2000 tools, it is necessary
to know how to apply different EC 3 design methods in SAP2000
4
Example 1 – Column (1/3)
• Spatial column (flexural buckling):
SAP2000 frame FE model SAP2000 shell FE model
• Simply supported for major and minor bending • Laterally unbraced
• Torsion prevented at both extremities • S 235 steel, IPE 200 profile (class 1)
IPE 200
5
Example 1 – Column (2/3)
kN
NN RdzRdb
02.192
75.6692867.0
.


 
MPaNNf RdbEdyx 53.232.max. 
kN
LEIN zzcr
25.240
5.3420.1210 2222
.

 
670.1
25.24075.669.

 zcrRkz NN
  2867.0,  zz 
Buckling curve bImperf.:
Model 3
(SAP2000 shell)
Model 2
(SAP2000 shell)
Model 1
(SAP2000 shell)
EC 3 formulae/
SAP2000 frame design
34.0
mm
Le
14
2500


mm
AWe zel
98.4
)2.0( .0

 
mkN
LeNp Ed
/74.1
8 2
00


mkN
LeNp Ed
/618.0
8 2
00


mm
AWe zel
98.4
)2.0( .0

 
Method: • Ayrton-Perry formula
• equiv. lateral forces
with imperf. according
to Table 5.1 (EC 3)
• equiv. lateral forces
with imperf. equiv. to
buckling curves
• 2nd order shell FEM • 2nd order shell FEM • 2nd order shell FEM
• imperf. factor from
buckling curves
• geometric imperf.
equiv. to buckling
curves
• Column design according to EC 3 formulae and thin-walled rectangular shell FE models:
kNAfN yRk 75.669235850.2 
kNLpP 08.600  kNLpP 163.200 
6
Example 1 – Column (3/3)
EC 3 formulae/
SAP2000 frame design
Model 1
(SAP2000 shell)
Diff.
Model 2
(SAP2000 shell)
Diff.
Model 3
(SAP 2000 shell)
Diff.
Ncr.z [kN] 240.25 239.68 -0.2% 239.68 -0.2% 239.68 -0.2%
x.max [MPa] 232.53 538.64 +132% 236.12 +1.5% 232.29 -0.1%
Nb.Rd [kN] 192.02 144.03 -25.0% 189.69 -1.2% 190.59 -0.8%
• Shell models considers shear flexibility (more accurate)
• Model 1 is too conserv. due to high imperf. values of Table 5.1 (EC3)
• Shell models 2 and 3 are accurate when compared to EC 3 formulae
• Differences in buckling resistance are usually lower than
differences in stresses
• Column flexural buckling load may be determined using
frame model (e.g., for arbitrary support conditions)
Nr FE Ncr.z [kN] Diff. (vs Ncr.shell)
1 292.11 +21.9%
3 240.17 +0.2%
6 239.79 +0.05%
• Shell models don’t consider the exact cross-section but a reduced one (conservative)
Longitudinal normal
stress (Model 3)
• Flexural buckling analysis (using frame FE):
• Discretisation in at least 3 FE is recommended
(e.g., using SAP2000 automatic mesh)
• Column resistance results:
7
Example 2 – Beam (1/3)
kNm
Lp
M Ed
Edy 62.30
8
2
max.. 
IPE 200
SAP2000 frame FE model SAP2000 shell FE model
• Spatial beam (lateral torsional buckling):
• Simply supported for major and minor bending • Laterally unbraced
• Torsion prevented and warping free at supports • S 235 steel, IPE 200 profile (class 1)
• Loaded in major bending plane
kNLpP EdEd 70
8
Example 2 – Beam (2/3)
EC 3
formulae
Buckling curve a: 21.0LT
971.0 crRdLT MM
Elastic design Plastic design
kNmfWM yelyRdely 66.45...  kNmM Rdply 94.51.. 
kNm
EI
GIL
I
I
L
EI
M
z
t
z
wz
cr
25.43
42.16.2
0692.05.3
42.1
01299.0
5.3
42.1210
2
2
2
2
2
2
2
2
0.











035.1LT
640.0LT  686.0,  LTLTLT 
kNmMM RdLTRdb 32.31.   kNmM Rdb 26.33. 
Model A
(SAP2000 shell)
mmLe 75000 
Imperfection in minor axis bending:
Model B
(SAP2000 shell)
mmee column 98.4.00 
kNmMCM crcr 44.4825.4312.10.1 
kNmMcr 26.430. 
SAP2000
frame design
kNmM Rdply 94.51.. 
Always
considers C1=1
by default
096.1LT
599.0LT
kNmM Rdb 11.31.  kNmM Rdb 01.28. 
MPa
MMf RdbEdyx
7.229
.max.

 MPax 5.279max. 
21.0LT
kNmM Rdb 86.29. 
MPax 3.246max. 
kNmMcr 03.43
kNmM Rdely 17.44.. 
Shell models consider a
reduced cross-section
(+14%) (-3.3%)
kNmMM crcr 26.430. 
9
Example 2 – Beam (3/3)
EC 3 – elastic
design
EC 3 – plastic
design
Diff.
SAP2000
frame design
Diff.
(plast.)
Model A
(SAP2000 shell)
Diff.
(elast.)
Model B
(SAP 2000 shell)
Diff.
(elast.)
Mcr
[kN]
48.44 48.44 0% 43.26 -10.7% 43.03 -11.2% 43.03 -11.2%
x.max
[MPa]
229.7 - - - - 279.5 +21.7% 246.3 +7.2%
Mb.Rd
[kN]
31.32 33.26 +6.2% 31.11 -6.5% 28.01 -10.6% 29.86 -4.7%
• Shell models consider shear and local/distortional deformation when
determining buckling loads (more accurate)
• Models A (and B) give accurate (reasonable) resistances when
compared to EC 3 elastic results
• A 14% increase from the elastic to the plastic moment
resistance only results in a 6% increase in the member
resistance. When instability plays an important role,
plastic strength reserve cannot be fully exploited
In-plane
deformation
(Model A)
3D
deformation
(Model A)
• Beam resistance results:
• SAP2000 frame design yields conservative results (-6.5% in bending resistance) by
considering the most unfavourable bending moment distribution (uniform)
• Shell models consider a reduced cross-section (lower buckling loads and resistances)
10
Example 3 – Beam-column (1/5)
• Spatial beam-column (flexural and lateral torsional buckling):
• Simply supported for major and minor bending • Laterally unbraced
• Torsion prevented and warping free at supports • S 235 steel, IPE 500 profile (class 1)
• Loaded axially and in major and minor bending planes
SAP 2000 shell FE model
kNm
Lp
M Edz
Edy 8.198100
8
2
.
max.. 
Maximum major axis
bending moment:
11
Example 3 – Beam-column (2/5)
EC3 design
formulae
SAP2000 frame
design
Diff.
Shell model
(SAP2000 shell)
Diff.
Ncr.z [kN] 3157 3157 0% 3085 -2.1%
Ncr.y [kN] 71040 71040 0% 57711 -16.9%
Mcr.0 [kN] 900.4 900.5 0% 861.2 -4.4%
Mcr [kN] 1080.5 900.5 -16.7% 913.3 -15.5%
Buckling loads
kNLEIN zzcr 315722
.  
kNLEIN yycr 7104022
. 
kNm
EI
GIL
I
I
L
EI
M
z
t
z
wz
cr 4.9002
2
2
2
0. 


kNmMCM crcr 5.10804.9002.10.1 
• C1 factor from tables is unconservative when compared with numerical results (1.2 vs 1.06)
• EC3 design formulae and SAP2000 frame design considers exact web-flange joint geometry
and neglects shear deformability, resulting in higher buckling loads when compared to the
shell model
12
Example 3 – Beam-column (3/5)
EC 3 - elastic
Flexural buckling resistance
Lateral torsional buckling resistance
EC 3 design formulae
EC 3 - plastic
929.031572726.  zcrRkz NN
  642.0,  zz 
kNNN RdzRdzb 1751..  
2.0196.0710402726 y
1y
kNNN RdyRdyb 2726..  
(buckling curve b)
648.05.10801.453..  crRdyelLT MM
kNmfWM yyelRdyel 1.453... 
kNmMM RdLTRdb 1.368.  
  812.0,  LTLT 
SAP2000 frame design
34.0LT
691.05.10806.515..  crRdyplLT MM
kNmM Rdypl 6.515.. 
kNmMM RdLTRdb 8.406.  
  789.0,  LTLT 
+ 14%
+ 11%
929.0z 196.0y
642.0z 1y
kNN Rdzb 1751..  kNN Rdyb 2726.. 
kNmM Rdb 1.387. 
SAP2000 frame design
kNmM Rdypl 6.515.. 
757.0LT
751.0LT
34.0 21.0 34.0 21.0
34.0LT
minor axis: major axis: major axis:minor axis:
13
Example 3 – Beam-column (4/5)
Beam-column resistance (Method 2)
925.0myC 924.0myC
6.0mzC 6.0mzC
925.0 mymLT CC 924.0 mymLT CC
EC 3 design formulae SAP2000 frame design
945.0
2726
500
2.06.01925.06.01
..
















Rdyb
Ed
ymyyy
N
N
Ck  924.0yyk
    816.0
1751
500
6.0929.0216.06.021
..













Rdzb
Ed
zmzzz
N
N
Ck  816.0zzk
489.0816.06.06.0  zzyz kk 489.0yzk
   
961.0
1751
500
25.0925.0
929.01.0
1
25.0
1.0
1
..






Rdzb
Ed
mLT
z
zy
N
N
C
k

961.0zyk
1800.0
96.78
25
489.0
8.406
8.198
945.0
2726
500
.
.
.
.
..

Rdz
Edz
yz
Rdb
Edy
yy
Rdyb
Ed
M
M
k
M
M
k
N
N
eq. (6.61):
eq. (6.62): 1013.1
96.78
25
816.0
8.406
8.198
961.0
1751
500
.
.
.
.
..

Rdz
Edz
zz
Rdb
Edy
zy
Rdzb
Ed
M
M
k
M
M
k
N
N
1028.1 
14
Example 3 – Beam-column (5/5)
EC 3 – plastic
(method 2)
SAP2000 frame
design (method 2)
Diff.
Model 1 - elastic
(SAP2000 shell)
Diff.
Failure
parameter
1.013 1.028 +1.5% 1.169 +15.4%
3D
deformation
(shell model)
  mmAWe zel 58.42.0 .0  • Imperfection (minor axis):
SAP2000 shell FE model
• EC3 design formulae and SAP2000 frame design yield very similar results
• SAP2000 shell model yields moderately conservative results
because it (i) is based on elastic design and (ii) considers a
reduced cross-section
Beam-column resistance results:
• Failure parameter: yx fFP max.
15
Example 4 – Frame (1/7)
• Planar frame:
• Load combinations:
Dead load Wind load Live load
HEA180
• Laterally braced at joints
• ‘Dead + Wind’ and ‘Dead + Life’ (1.35Gk + 1.5Qk)
• Major axis bending in the frame plane
HEA180
6
1
12 [m]
• Pinned to the ground
• Lateral and lateral torsional
buckling not prevented!
• S 355 steel
16
Example 4 – Frame (2/7)
radmh 003536.08660.08165.0
200
1
0  
• Global imperfection (life load combination):
mh 6 8165.0
6
22

h
h
Height:
2m
Nr columns:
8660.0
2
1
15.0
1
15.0 












m
m
Imperfection angle:
Equiv. lateral force:
kNNH Ed 1718.059.48003536.0 
Global imperf. as equiv.
lateral forces
(live load comb.)
• Buckling analysis:
• Wind combination • Live load combination
1028.55 cr No P-D effects
to consider
1056.5 cr P-D effects must
be considered
17
Example 4 – Frame (3/7)
• P-D analysis (live load combination):
Deformed config.
[m]
N
[kN]
My
[kN.m]
Vz
[kN.m]
18
Example 4 – Frame (4/7)
• EC3 design check (life load combination):
• All members satisfy EC3 design formulae (FP<1)
19
Example 4 – Frame (5/7)
• 1st order analysis (wind load combination):
Deformed config.
[m]
N
[kN]
My
[kN.m]
Vz
[kN.m]
20
Example 4 – Frame (6/7)
• EC3 design check (wind load combination):
• All members satisfy EC3 design formulae (FP<1)
21
Example 4 – Frame (7/7)
• EC3 automatic design (wind and live load combinations):
Initial sections
estimate
Run analyses
(all load comb.)
Modified
sections
(automatic)
Sections to be
modified by user
due to symmetry
Columns: HEA160
Beams: IPE 200
Columns: HEA180
Beams: IPE 220
Final sections
Not safe ! Safe
Safe
22
Example 5 – Frame (1/4)
• Spatial frame:
• Longitudinally braced
6
1
[m]
• Pinned to the ground
• S 355 steel
• HEA 180 (columns), IPE 220 (transv. beams),
IPE 100 (long. beams), 4 mm cable (bracing)
SAP2000 frame FE model
• Load combination:
• ‘Dead + Live’ (1.35Gk + 1.5Qk)
• Load values and configuration
equal to example 4
• Two cross
cables may be
substituted by one
rod with the same
diameter that resists
tension and compression
• Note:
23
Example 5 – Frame (2/4)
• Buckling analysis:
Torsion
Mode 1 Mode 3Mode 2
Longitudinal sway Transversal sway
37.21. b 82.22. b 37.53. b
1037.21.  bcr 
Option 1: increase bracing stiffness until 2nd order analysis is no
longer necessary for torsion and longitudinal sway (cr>10)
Option 2: perform the spatial frame 2nd order analysis with imperf.
24
Example 5 – Frame (3/4)
Option 1
• 10 mm cable
Torsion
1058.136. b
Buckling
analysis
1037.51. b
Longitudinal sway
1016.1731. b
• Transversal sway 2nd order
effects and imperfections already
checked in Example 4
• No torsion or longitudinal
2nd order effects and
imperfections to consider
Option 2
radmh 003118.07638.08165.0
200
1
0  
• Global imperfection:
mh 6 8165.0
6
22

h
h
Height:
6m
Nr columns:
7638.0
6
1
15.0
1
15.0 












m
m
Imperfection angle:
Equiv. lateral force:
kNNH Ed 1525.091.48003536.0 
Transversal sway
• 4 mm cable
25
Example 5 – Frame (4/4)
Option 2 (cont.)
Torsion Longitudinal sway
Members
resistance:
Cable
resistance:
OK
Imperfection:
OK
RdEd NkNN  67.2max.
kNAfN yRd 88.2735507854.0 
OK RdEd NkNN  56.2max. OK
26
Example 6 – Short class 4 column (1/4)
• Square hollow section short column:
SAP2000 frame FE model
• Simply supported • S 355 steel, welded SHS profile, class 4 (compression)
SHS 300
300
300
[mm]
6
SAP2000 shell FE model
• Objective: determine the column buckling resistance
27
Example 6 – Short class 4 column (2/4)
• Effective cross-section:
Gross section:
300
300
[mm]
6
486/288 tc 3481.04242 
344248  tc Class 4 walls
043.1
481.04.28
6288
4.28





k
tbf
cr
y
p
    7565.0
043.1
13055.0043.13055.0
22





p
p



Plate slenderness:
Reduction factor:
115
115
[mm]
Effective section (pure compression):
23
10056.7 mA 

44
10017.1 mIII dzy


44
.. 10764.6 mWW zelyel


23
10616.5 mAeff


44
. 108586.0 mI yeff


34
. 10689.5 mW yeff


44
. 10783.4 mW del


34
. 10085.4 mW deff


Classification (pure compression):
109
mm
bbeff
109
2
2887565.0
22




Effective width:
28
Example 6 – Short class 4 column (3/4)
kN
NN RdeffzRdb
1892
19949491.0
..


 
kN
LEIN zzcr
17207
5.37.101210 2222
.

 
3404.0
172071994..

 zcrRkeffz NN
  19491.0,  zz 
Buckling curve bImperf.:
Model 2
(SAP2000 shell)
Model 1
(SAP2000 shell)
EC 3 formulae
34.0
mm
ae
47.1
2000


mm
te pp
032.0
66)8.0043.1(13.0
6)8.0(0


 
Method: • Ayrton-Perry formula
• local geometric
imperf. according to
Table 3.1 (EC 3-1-5)
• 2nd order shell FEM • 2nd order shell FEM
• imperf. factor from buckling curves
• Column design according to EC 3 formulae and thin-walled rectangular shell FE models:
kNfAN yeffRkeff 1994355616.5. 
SAP2000 design
(SAP2000 frame)
kNN Rkpl 2505. kNAfN yRkpl 2505355056.7. 
kNNcr 17205
337.0z
95.0z
kNN Rdb 1857. 
34.0
• local geometric
imperf. equiv. to
local buckling
curves
Flexural buckling of
minute importance
• no global imperf. • no global imperf.
12 longitudinal
half-waves
29
Example 6 – Short class 4 column (4/4)
EC 3 formulae
SAP2000 design
(SAP2000 frame)
Diff.
Model 1
(SAP2000 shell)
Diff.
Model 2
(SAP 2000 shell)
Diff.
Ncr.local [kN] - - - 2258 - 2258 -
Nb.Rd [kN]
Lower /upper
bound
1892 1857 -1.8%
2135/
2303
+12.8%
+17.8%
1316/
1918
-30.4%
+1.4%
• Model 2 is conserv. when compared to Model 1 because it considers a higher imperfection
• Shell models 1 and 2 are reasonably accurate when compared to EC 3 formulae
• SAP2000 design is very accurate when compared to EC 3 formulae
Deformation
(Model 1)
• Column resistance results:
• Shell models lower and upper bounds correspond to first yielding due to plate bending and
corner yielding due to membrane normal stress resultant (the real resistance is between the two)
Upper bound
analysis (Model 1)
Lower bound
analysis (Model 1)
30
Example 7 – Long class 4 column (1/5)
• Square hollow section long column:
SAP2000 frame FE model
• Simply supported • S 355 steel, welded SHS profile, class 4 (compression)
SHS 300
300
300
[mm]
6
SAP2000 shell FE model
• Objective: determine the column buckling resistance
31
Example 7 – Long class 4 column (2/5)
kN
NN RdeffzRdb
1584
19947944.0
..


 
kN
LEIN zzcr
4302
77.101210 2222
.

 
6808.0
43021994..

 zcrRkeffz NN
  17944.0,  zz 
Buckling curve bImperf.:
Model 2
(SAP2000 shell)
Model 1
(SAP2000 shell)
EC 3 formulae
34.0
mm
Le
28
2500


mm
AWe effdeff
89.11
616.55.408)2.06808.0(34.0
)2.0( .0


 
Method: • Ayrton-Perry formula • 2nd order shell FEM • 2nd order shell FEM
• imperf. factor from buckling curves
• Column design according to EC 3 formulae and thin-walled rectangular shell FE models:
kNfAN yeffRkeff 1994355616.5. 
SAP2000 design
(SAP2000 frame)
kNN Rkpl 2505. kNAfN yRkpl 2505355056.7. 
kNNcr 4301
674.0z
798.0z
kNN Rdb 1559. 
34.0
Flexural buckling of
significant importance
(local-global buckling
interaction occurs)
mm
ae
47.1
2000


mm
te pp
032.0
66)8.0043.1(13.0
6)8.0(0


 
• local geometric
imperf. according to
Table 3.1 (EC 3-1-5)
• local imperf. equiv.
to local buckling
curves
• global imperf. from
buckling curves
12
longitudinal
half-waves
• global imperf. from
Table 5.1 (EC 3-1-1)
32
Example 7 – Long class 4 column (3/5)
• Re-determine effective cross-section for load NEd=1584 kN:
a) Determine bending moment in the critical cross-section:
b) Determine stress distribution in the gross cross-section:
MPa
A
NEd
mean 5.224
056.7
1584
 MPa
W
M
Rdd
Ed
5.130
4783.0
43.62
.
D
MPamean 0.355max D 
c) Walls reduction factors:
632.0
355
5.224

 
835.0
3055.0
2



p
p



88.4
05.1
2.8




K
945.0
88.481.04.28
6288
4.28





k
tb
p
Walls AB & BD:
MPamean 0.94min D 
419.0
5.224
0.94

 
1043.1
3055.0
2


 



p
p
58.5
05.1
2.8




K 883.0
58.581.04.28
6288
4.28





k
tb
pWalls AC & CD:
702.0
355
5.224
883.0.
. 
yd
Edcom
predp
f


kNmM
M
Wf
M
N
N
Ed
Ed
dely
Ed
Rdpl
Ed
43.621
4783.03552505
1584
1
..



33
Example 7 – Long class 4 column (4/5)
• Re-determine effective cross-section for load NEd=1584 kN:
[mm]
Effective section (NEd + MEd):
23
10480.6 mAeff


44
. 109388.0 mI deff


34
. 10689.5 mW yeff


34
. 10265.4 mW deff


mmbbb
mmbb
mmbb
eeffe
effe
eff
130110240
110240
632.05
2
5
2
240288835.0
12
1









110130
• Column design according to EC 3-1-1 formulae:
kN
NN RdeffzRdb
1761
23007658.0
..


 
7312.0
43022300..

 zcrRkeffz NN
  17658.0,  zz 
Buckling curve b
Imperf.:
34.0
kNfAN yeffRkeff 2300355480.6. 
34
Example 7 – Long class 4 column (5/5)
• Shell model 1 is reasonably accurate when compared to analytical calculations
• SAP2000 design is slightly conservative when compared to EC 3 procedure because it does not
iterate to find effective cross-section (considers the unfavourable case of pure compression)
• Column resistance results:
• Shell models lower and upper bounds correspond to first yielding due to plate bending and
corner yielding due to membrane normal stress resultant (the real resistance is between the two)
EC 3 formulae
SAP2000 design
(SAP2000 frame)
Diff.
Model 1
(SAP2000 shell)
Diff.
Model 2
(SAP 2000 shell)
Diff.
Ncr.local [kN] - - - 2253 - 2253 -
Nb.Rd [kN]
Lower /upper
bound
1761 1559 -11.5%
1928/
2001
+9.5%
+13.6%
1016/
1349
-42.3%
-23.4%
• Shell model 2 is too conservative due to considering too large imperfections
35
Conclusion
• It is not possible to fully exploit the plastic strength reserve of members
prone to instability. An elastic design (e.g., using shell FE) is usually not
too conservative, even for members with class 1 cross-sections
• SAP2000 design tools for steel frame structures are practical, fast and
on the safe side. It is possible not only to (i) check if the members satisfy
the EC3 resistance requirements, but also (ii) optimise their sections
• SAP2000 shell design is valid for arbitrary thin-walled members
(e.g., tapered, with non-symmetrical cross-sections, etc) and support
conditions, while EC3 design formulae are limited to bisymmetrical
simply supported uniform members
36
References
• ECCS Technical Committee 8, Rules for Members Stability in EN 1993 – 1 – 1,
Background documentation and design guidelines

More Related Content

What's hot

Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI code
Mahmoud Al-Sharawi
 
Lec.6 strength design method rectangular sections 2
Lec.6   strength design method rectangular sections  2Lec.6   strength design method rectangular sections  2
Lec.6 strength design method rectangular sections 2
Muthanna Abbu
 
EC3 MANUAL FOR SAP2000
EC3 MANUAL FOR SAP2000EC3 MANUAL FOR SAP2000
EC3 MANUAL FOR SAP2000
Muhammad Wazim Akram
 
Economic Concrete Frame Elements to Eurocode 2
Economic Concrete Frame Elements to Eurocode 2Economic Concrete Frame Elements to Eurocode 2
Economic Concrete Frame Elements to Eurocode 2
Yusuf Yıldız
 
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Rahul Leslie
 
Staad. pro tuto
Staad. pro tutoStaad. pro tuto
Staad. pro tuto
Ramil Artates
 
Etabs modeling - Design of slab according to EC2
Etabs modeling  - Design of slab according to EC2Etabs modeling  - Design of slab according to EC2
Etabs modeling - Design of slab according to EC2
Eur Ing Valentinos Neophytou BEng (Hons), MSc, CEng MICE
 
Tower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps designTower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps design
Nada Zarrak
 
Two Way Slabs
Two Way SlabsTwo Way Slabs
Two Way Slabs
Gaurang Prajapati
 
Cross section analysis and design: Worked examples
Cross section analysis and design: Worked examplesCross section analysis and design: Worked examples
Cross section analysis and design: Worked examples
Engin Soft-Solutions
 
Lec.9 strength design method doubly reinforced beams
Lec.9   strength design method doubly reinforced beamsLec.9   strength design method doubly reinforced beams
Lec.9 strength design method doubly reinforced beams
Muthanna Abbu
 
Safe pt design
Safe pt designSafe pt design
Safe pt design
Eldho Peter
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
ijtsrd
 
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Rahul Leslie
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABS
Yousuf Dinar
 
Design of mat and combined footing
Design of mat and combined footingDesign of mat and combined footing
Design of mat and combined footing
Md Faiz Ali
 
Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)
Nitesh Singh
 
Beton prategang
Beton prategangBeton prategang
Beton prategang
Budi Suryanto
 

What's hot (20)

Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI code
 
Lec.6 strength design method rectangular sections 2
Lec.6   strength design method rectangular sections  2Lec.6   strength design method rectangular sections  2
Lec.6 strength design method rectangular sections 2
 
EC3 MANUAL FOR SAP2000
EC3 MANUAL FOR SAP2000EC3 MANUAL FOR SAP2000
EC3 MANUAL FOR SAP2000
 
Economic Concrete Frame Elements to Eurocode 2
Economic Concrete Frame Elements to Eurocode 2Economic Concrete Frame Elements to Eurocode 2
Economic Concrete Frame Elements to Eurocode 2
 
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
 
Etabs steel-design
Etabs steel-designEtabs steel-design
Etabs steel-design
 
Staad. pro tuto
Staad. pro tutoStaad. pro tuto
Staad. pro tuto
 
Etabs modeling - Design of slab according to EC2
Etabs modeling  - Design of slab according to EC2Etabs modeling  - Design of slab according to EC2
Etabs modeling - Design of slab according to EC2
 
Tower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps designTower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps design
 
Two Way Slabs
Two Way SlabsTwo Way Slabs
Two Way Slabs
 
Cross section analysis and design: Worked examples
Cross section analysis and design: Worked examplesCross section analysis and design: Worked examples
Cross section analysis and design: Worked examples
 
Lec.9 strength design method doubly reinforced beams
Lec.9   strength design method doubly reinforced beamsLec.9   strength design method doubly reinforced beams
Lec.9 strength design method doubly reinforced beams
 
Safe pt design
Safe pt designSafe pt design
Safe pt design
 
multi storey buidling
multi storey buidlingmulti storey buidling
multi storey buidling
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
 
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABS
 
Design of mat and combined footing
Design of mat and combined footingDesign of mat and combined footing
Design of mat and combined footing
 
Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)
 
Beton prategang
Beton prategangBeton prategang
Beton prategang
 

Similar to Design of Steel Frames

MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)sufiyan shaikh
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
ssuser2c4126
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
ssuserd8a85b
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
ssuserd8a85b
 
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxLecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
AbelMulugeta8
 
FYP Structure.pdf
FYP Structure.pdfFYP Structure.pdf
FYP Structure.pdf
Sushrut Gautam
 
PSC Presentation Slides (2).pptx
PSC Presentation Slides (2).pptxPSC Presentation Slides (2).pptx
PSC Presentation Slides (2).pptx
LAYTH3
 
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Rajesh Prasad
 
Lec.8 strength design method t beams
Lec.8   strength design method t beamsLec.8   strength design method t beams
Lec.8 strength design method t beams
Muthanna Abbu
 
Fatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdfFatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdf
VictoriawanMuhammad
 
DESIGN OF NACA SERIES 2412
DESIGN OF NACA SERIES 2412DESIGN OF NACA SERIES 2412
DESIGN OF NACA SERIES 2412
RUCHITMALIK1
 
Presentation economic assessment copper rotors
Presentation economic assessment copper rotorsPresentation economic assessment copper rotors
Presentation economic assessment copper rotors
Leonardo ENERGY
 
Rcs1-chapter3-constitutive-law
Rcs1-chapter3-constitutive-lawRcs1-chapter3-constitutive-law
Rcs1-chapter3-constitutive-law
Marwan Sadek
 
Column math
Column mathColumn math
Column math
Dr. H.M.A. Mahzuz
 
Iai rcp3 sa6_r_specsheet
Iai rcp3 sa6_r_specsheetIai rcp3 sa6_r_specsheet
Iai rcp3 sa6_r_specsheet
Electromate
 
6th Semester Mechanical Engineering (June/July-2015) Question Papers
6th Semester Mechanical Engineering  (June/July-2015) Question Papers6th Semester Mechanical Engineering  (June/July-2015) Question Papers
6th Semester Mechanical Engineering (June/July-2015) Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Qp
QpQp
Three phase BLDC motor
Three phase BLDC motorThree phase BLDC motor
Three phase BLDC motor
Anoop S
 
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Franco Bontempi Org Didattica
 

Similar to Design of Steel Frames (20)

MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
 
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxLecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
 
FYP Structure.pdf
FYP Structure.pdfFYP Structure.pdf
FYP Structure.pdf
 
PSC Presentation Slides (2).pptx
PSC Presentation Slides (2).pptxPSC Presentation Slides (2).pptx
PSC Presentation Slides (2).pptx
 
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
 
Lec.8 strength design method t beams
Lec.8   strength design method t beamsLec.8   strength design method t beams
Lec.8 strength design method t beams
 
Project 2b (1) (2)
Project 2b  (1) (2)Project 2b  (1) (2)
Project 2b (1) (2)
 
Fatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdfFatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdf
 
DESIGN OF NACA SERIES 2412
DESIGN OF NACA SERIES 2412DESIGN OF NACA SERIES 2412
DESIGN OF NACA SERIES 2412
 
Presentation economic assessment copper rotors
Presentation economic assessment copper rotorsPresentation economic assessment copper rotors
Presentation economic assessment copper rotors
 
Rcs1-chapter3-constitutive-law
Rcs1-chapter3-constitutive-lawRcs1-chapter3-constitutive-law
Rcs1-chapter3-constitutive-law
 
Column math
Column mathColumn math
Column math
 
Iai rcp3 sa6_r_specsheet
Iai rcp3 sa6_r_specsheetIai rcp3 sa6_r_specsheet
Iai rcp3 sa6_r_specsheet
 
6th Semester Mechanical Engineering (June/July-2015) Question Papers
6th Semester Mechanical Engineering  (June/July-2015) Question Papers6th Semester Mechanical Engineering  (June/July-2015) Question Papers
6th Semester Mechanical Engineering (June/July-2015) Question Papers
 
Qp
QpQp
Qp
 
Three phase BLDC motor
Three phase BLDC motorThree phase BLDC motor
Three phase BLDC motor
 
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
 

Recently uploaded

J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 

Recently uploaded (20)

J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 

Design of Steel Frames

  • 1. Design of steel frames using SAP2000 – Illustrative examples CSI Portugal & Spain
  • 2. Contents • Introduction • Example 1 – Column • Example 2 – Beam • Example 3 – Beam-column 2 • Example 4 – Planar frame • Conclusion • Example 5 – Spatial frame • Example 6 – Short class 4 column • Example 7 – Long class 4 column
  • 3. Introduction Objective: • Present illustrative examples concerning the safety check and design of steel members and structures using (i) EC 3 design formula and (ii) different SAP2000 design tools (based on frame or shell FE) • SAP2000 provides tools to both (i) check the safety of steel frame structures according to Eurocode 3 and (ii) optimise their design Scope: 3 • In order to fully exploit the potential of SAP2000 tools, it is necessary to know how to apply different EC 3 design methods in SAP2000
  • 4. 4 Example 1 – Column (1/3) • Spatial column (flexural buckling): SAP2000 frame FE model SAP2000 shell FE model • Simply supported for major and minor bending • Laterally unbraced • Torsion prevented at both extremities • S 235 steel, IPE 200 profile (class 1) IPE 200
  • 5. 5 Example 1 – Column (2/3) kN NN RdzRdb 02.192 75.6692867.0 .     MPaNNf RdbEdyx 53.232.max.  kN LEIN zzcr 25.240 5.3420.1210 2222 .    670.1 25.24075.669.   zcrRkz NN   2867.0,  zz  Buckling curve bImperf.: Model 3 (SAP2000 shell) Model 2 (SAP2000 shell) Model 1 (SAP2000 shell) EC 3 formulae/ SAP2000 frame design 34.0 mm Le 14 2500   mm AWe zel 98.4 )2.0( .0    mkN LeNp Ed /74.1 8 2 00   mkN LeNp Ed /618.0 8 2 00   mm AWe zel 98.4 )2.0( .0    Method: • Ayrton-Perry formula • equiv. lateral forces with imperf. according to Table 5.1 (EC 3) • equiv. lateral forces with imperf. equiv. to buckling curves • 2nd order shell FEM • 2nd order shell FEM • 2nd order shell FEM • imperf. factor from buckling curves • geometric imperf. equiv. to buckling curves • Column design according to EC 3 formulae and thin-walled rectangular shell FE models: kNAfN yRk 75.669235850.2  kNLpP 08.600  kNLpP 163.200 
  • 6. 6 Example 1 – Column (3/3) EC 3 formulae/ SAP2000 frame design Model 1 (SAP2000 shell) Diff. Model 2 (SAP2000 shell) Diff. Model 3 (SAP 2000 shell) Diff. Ncr.z [kN] 240.25 239.68 -0.2% 239.68 -0.2% 239.68 -0.2% x.max [MPa] 232.53 538.64 +132% 236.12 +1.5% 232.29 -0.1% Nb.Rd [kN] 192.02 144.03 -25.0% 189.69 -1.2% 190.59 -0.8% • Shell models considers shear flexibility (more accurate) • Model 1 is too conserv. due to high imperf. values of Table 5.1 (EC3) • Shell models 2 and 3 are accurate when compared to EC 3 formulae • Differences in buckling resistance are usually lower than differences in stresses • Column flexural buckling load may be determined using frame model (e.g., for arbitrary support conditions) Nr FE Ncr.z [kN] Diff. (vs Ncr.shell) 1 292.11 +21.9% 3 240.17 +0.2% 6 239.79 +0.05% • Shell models don’t consider the exact cross-section but a reduced one (conservative) Longitudinal normal stress (Model 3) • Flexural buckling analysis (using frame FE): • Discretisation in at least 3 FE is recommended (e.g., using SAP2000 automatic mesh) • Column resistance results:
  • 7. 7 Example 2 – Beam (1/3) kNm Lp M Ed Edy 62.30 8 2 max..  IPE 200 SAP2000 frame FE model SAP2000 shell FE model • Spatial beam (lateral torsional buckling): • Simply supported for major and minor bending • Laterally unbraced • Torsion prevented and warping free at supports • S 235 steel, IPE 200 profile (class 1) • Loaded in major bending plane kNLpP EdEd 70
  • 8. 8 Example 2 – Beam (2/3) EC 3 formulae Buckling curve a: 21.0LT 971.0 crRdLT MM Elastic design Plastic design kNmfWM yelyRdely 66.45...  kNmM Rdply 94.51..  kNm EI GIL I I L EI M z t z wz cr 25.43 42.16.2 0692.05.3 42.1 01299.0 5.3 42.1210 2 2 2 2 2 2 2 2 0.            035.1LT 640.0LT  686.0,  LTLTLT  kNmMM RdLTRdb 32.31.   kNmM Rdb 26.33.  Model A (SAP2000 shell) mmLe 75000  Imperfection in minor axis bending: Model B (SAP2000 shell) mmee column 98.4.00  kNmMCM crcr 44.4825.4312.10.1  kNmMcr 26.430.  SAP2000 frame design kNmM Rdply 94.51..  Always considers C1=1 by default 096.1LT 599.0LT kNmM Rdb 11.31.  kNmM Rdb 01.28.  MPa MMf RdbEdyx 7.229 .max.   MPax 5.279max.  21.0LT kNmM Rdb 86.29.  MPax 3.246max.  kNmMcr 03.43 kNmM Rdely 17.44..  Shell models consider a reduced cross-section (+14%) (-3.3%) kNmMM crcr 26.430. 
  • 9. 9 Example 2 – Beam (3/3) EC 3 – elastic design EC 3 – plastic design Diff. SAP2000 frame design Diff. (plast.) Model A (SAP2000 shell) Diff. (elast.) Model B (SAP 2000 shell) Diff. (elast.) Mcr [kN] 48.44 48.44 0% 43.26 -10.7% 43.03 -11.2% 43.03 -11.2% x.max [MPa] 229.7 - - - - 279.5 +21.7% 246.3 +7.2% Mb.Rd [kN] 31.32 33.26 +6.2% 31.11 -6.5% 28.01 -10.6% 29.86 -4.7% • Shell models consider shear and local/distortional deformation when determining buckling loads (more accurate) • Models A (and B) give accurate (reasonable) resistances when compared to EC 3 elastic results • A 14% increase from the elastic to the plastic moment resistance only results in a 6% increase in the member resistance. When instability plays an important role, plastic strength reserve cannot be fully exploited In-plane deformation (Model A) 3D deformation (Model A) • Beam resistance results: • SAP2000 frame design yields conservative results (-6.5% in bending resistance) by considering the most unfavourable bending moment distribution (uniform) • Shell models consider a reduced cross-section (lower buckling loads and resistances)
  • 10. 10 Example 3 – Beam-column (1/5) • Spatial beam-column (flexural and lateral torsional buckling): • Simply supported for major and minor bending • Laterally unbraced • Torsion prevented and warping free at supports • S 235 steel, IPE 500 profile (class 1) • Loaded axially and in major and minor bending planes SAP 2000 shell FE model kNm Lp M Edz Edy 8.198100 8 2 . max..  Maximum major axis bending moment:
  • 11. 11 Example 3 – Beam-column (2/5) EC3 design formulae SAP2000 frame design Diff. Shell model (SAP2000 shell) Diff. Ncr.z [kN] 3157 3157 0% 3085 -2.1% Ncr.y [kN] 71040 71040 0% 57711 -16.9% Mcr.0 [kN] 900.4 900.5 0% 861.2 -4.4% Mcr [kN] 1080.5 900.5 -16.7% 913.3 -15.5% Buckling loads kNLEIN zzcr 315722 .   kNLEIN yycr 7104022 .  kNm EI GIL I I L EI M z t z wz cr 4.9002 2 2 2 0.    kNmMCM crcr 5.10804.9002.10.1  • C1 factor from tables is unconservative when compared with numerical results (1.2 vs 1.06) • EC3 design formulae and SAP2000 frame design considers exact web-flange joint geometry and neglects shear deformability, resulting in higher buckling loads when compared to the shell model
  • 12. 12 Example 3 – Beam-column (3/5) EC 3 - elastic Flexural buckling resistance Lateral torsional buckling resistance EC 3 design formulae EC 3 - plastic 929.031572726.  zcrRkz NN   642.0,  zz  kNNN RdzRdzb 1751..   2.0196.0710402726 y 1y kNNN RdyRdyb 2726..   (buckling curve b) 648.05.10801.453..  crRdyelLT MM kNmfWM yyelRdyel 1.453...  kNmMM RdLTRdb 1.368.     812.0,  LTLT  SAP2000 frame design 34.0LT 691.05.10806.515..  crRdyplLT MM kNmM Rdypl 6.515..  kNmMM RdLTRdb 8.406.     789.0,  LTLT  + 14% + 11% 929.0z 196.0y 642.0z 1y kNN Rdzb 1751..  kNN Rdyb 2726..  kNmM Rdb 1.387.  SAP2000 frame design kNmM Rdypl 6.515..  757.0LT 751.0LT 34.0 21.0 34.0 21.0 34.0LT minor axis: major axis: major axis:minor axis:
  • 13. 13 Example 3 – Beam-column (4/5) Beam-column resistance (Method 2) 925.0myC 924.0myC 6.0mzC 6.0mzC 925.0 mymLT CC 924.0 mymLT CC EC 3 design formulae SAP2000 frame design 945.0 2726 500 2.06.01925.06.01 ..                 Rdyb Ed ymyyy N N Ck  924.0yyk     816.0 1751 500 6.0929.0216.06.021 ..              Rdzb Ed zmzzz N N Ck  816.0zzk 489.0816.06.06.0  zzyz kk 489.0yzk     961.0 1751 500 25.0925.0 929.01.0 1 25.0 1.0 1 ..       Rdzb Ed mLT z zy N N C k  961.0zyk 1800.0 96.78 25 489.0 8.406 8.198 945.0 2726 500 . . . . ..  Rdz Edz yz Rdb Edy yy Rdyb Ed M M k M M k N N eq. (6.61): eq. (6.62): 1013.1 96.78 25 816.0 8.406 8.198 961.0 1751 500 . . . . ..  Rdz Edz zz Rdb Edy zy Rdzb Ed M M k M M k N N 1028.1 
  • 14. 14 Example 3 – Beam-column (5/5) EC 3 – plastic (method 2) SAP2000 frame design (method 2) Diff. Model 1 - elastic (SAP2000 shell) Diff. Failure parameter 1.013 1.028 +1.5% 1.169 +15.4% 3D deformation (shell model)   mmAWe zel 58.42.0 .0  • Imperfection (minor axis): SAP2000 shell FE model • EC3 design formulae and SAP2000 frame design yield very similar results • SAP2000 shell model yields moderately conservative results because it (i) is based on elastic design and (ii) considers a reduced cross-section Beam-column resistance results: • Failure parameter: yx fFP max.
  • 15. 15 Example 4 – Frame (1/7) • Planar frame: • Load combinations: Dead load Wind load Live load HEA180 • Laterally braced at joints • ‘Dead + Wind’ and ‘Dead + Life’ (1.35Gk + 1.5Qk) • Major axis bending in the frame plane HEA180 6 1 12 [m] • Pinned to the ground • Lateral and lateral torsional buckling not prevented! • S 355 steel
  • 16. 16 Example 4 – Frame (2/7) radmh 003536.08660.08165.0 200 1 0   • Global imperfection (life load combination): mh 6 8165.0 6 22  h h Height: 2m Nr columns: 8660.0 2 1 15.0 1 15.0              m m Imperfection angle: Equiv. lateral force: kNNH Ed 1718.059.48003536.0  Global imperf. as equiv. lateral forces (live load comb.) • Buckling analysis: • Wind combination • Live load combination 1028.55 cr No P-D effects to consider 1056.5 cr P-D effects must be considered
  • 17. 17 Example 4 – Frame (3/7) • P-D analysis (live load combination): Deformed config. [m] N [kN] My [kN.m] Vz [kN.m]
  • 18. 18 Example 4 – Frame (4/7) • EC3 design check (life load combination): • All members satisfy EC3 design formulae (FP<1)
  • 19. 19 Example 4 – Frame (5/7) • 1st order analysis (wind load combination): Deformed config. [m] N [kN] My [kN.m] Vz [kN.m]
  • 20. 20 Example 4 – Frame (6/7) • EC3 design check (wind load combination): • All members satisfy EC3 design formulae (FP<1)
  • 21. 21 Example 4 – Frame (7/7) • EC3 automatic design (wind and live load combinations): Initial sections estimate Run analyses (all load comb.) Modified sections (automatic) Sections to be modified by user due to symmetry Columns: HEA160 Beams: IPE 200 Columns: HEA180 Beams: IPE 220 Final sections Not safe ! Safe Safe
  • 22. 22 Example 5 – Frame (1/4) • Spatial frame: • Longitudinally braced 6 1 [m] • Pinned to the ground • S 355 steel • HEA 180 (columns), IPE 220 (transv. beams), IPE 100 (long. beams), 4 mm cable (bracing) SAP2000 frame FE model • Load combination: • ‘Dead + Live’ (1.35Gk + 1.5Qk) • Load values and configuration equal to example 4 • Two cross cables may be substituted by one rod with the same diameter that resists tension and compression • Note:
  • 23. 23 Example 5 – Frame (2/4) • Buckling analysis: Torsion Mode 1 Mode 3Mode 2 Longitudinal sway Transversal sway 37.21. b 82.22. b 37.53. b 1037.21.  bcr  Option 1: increase bracing stiffness until 2nd order analysis is no longer necessary for torsion and longitudinal sway (cr>10) Option 2: perform the spatial frame 2nd order analysis with imperf.
  • 24. 24 Example 5 – Frame (3/4) Option 1 • 10 mm cable Torsion 1058.136. b Buckling analysis 1037.51. b Longitudinal sway 1016.1731. b • Transversal sway 2nd order effects and imperfections already checked in Example 4 • No torsion or longitudinal 2nd order effects and imperfections to consider Option 2 radmh 003118.07638.08165.0 200 1 0   • Global imperfection: mh 6 8165.0 6 22  h h Height: 6m Nr columns: 7638.0 6 1 15.0 1 15.0              m m Imperfection angle: Equiv. lateral force: kNNH Ed 1525.091.48003536.0  Transversal sway • 4 mm cable
  • 25. 25 Example 5 – Frame (4/4) Option 2 (cont.) Torsion Longitudinal sway Members resistance: Cable resistance: OK Imperfection: OK RdEd NkNN  67.2max. kNAfN yRd 88.2735507854.0  OK RdEd NkNN  56.2max. OK
  • 26. 26 Example 6 – Short class 4 column (1/4) • Square hollow section short column: SAP2000 frame FE model • Simply supported • S 355 steel, welded SHS profile, class 4 (compression) SHS 300 300 300 [mm] 6 SAP2000 shell FE model • Objective: determine the column buckling resistance
  • 27. 27 Example 6 – Short class 4 column (2/4) • Effective cross-section: Gross section: 300 300 [mm] 6 486/288 tc 3481.04242  344248  tc Class 4 walls 043.1 481.04.28 6288 4.28      k tbf cr y p     7565.0 043.1 13055.0043.13055.0 22      p p    Plate slenderness: Reduction factor: 115 115 [mm] Effective section (pure compression): 23 10056.7 mA   44 10017.1 mIII dzy   44 .. 10764.6 mWW zelyel   23 10616.5 mAeff   44 . 108586.0 mI yeff   34 . 10689.5 mW yeff   44 . 10783.4 mW del   34 . 10085.4 mW deff   Classification (pure compression): 109 mm bbeff 109 2 2887565.0 22     Effective width:
  • 28. 28 Example 6 – Short class 4 column (3/4) kN NN RdeffzRdb 1892 19949491.0 ..     kN LEIN zzcr 17207 5.37.101210 2222 .    3404.0 172071994..   zcrRkeffz NN   19491.0,  zz  Buckling curve bImperf.: Model 2 (SAP2000 shell) Model 1 (SAP2000 shell) EC 3 formulae 34.0 mm ae 47.1 2000   mm te pp 032.0 66)8.0043.1(13.0 6)8.0(0     Method: • Ayrton-Perry formula • local geometric imperf. according to Table 3.1 (EC 3-1-5) • 2nd order shell FEM • 2nd order shell FEM • imperf. factor from buckling curves • Column design according to EC 3 formulae and thin-walled rectangular shell FE models: kNfAN yeffRkeff 1994355616.5.  SAP2000 design (SAP2000 frame) kNN Rkpl 2505. kNAfN yRkpl 2505355056.7.  kNNcr 17205 337.0z 95.0z kNN Rdb 1857.  34.0 • local geometric imperf. equiv. to local buckling curves Flexural buckling of minute importance • no global imperf. • no global imperf. 12 longitudinal half-waves
  • 29. 29 Example 6 – Short class 4 column (4/4) EC 3 formulae SAP2000 design (SAP2000 frame) Diff. Model 1 (SAP2000 shell) Diff. Model 2 (SAP 2000 shell) Diff. Ncr.local [kN] - - - 2258 - 2258 - Nb.Rd [kN] Lower /upper bound 1892 1857 -1.8% 2135/ 2303 +12.8% +17.8% 1316/ 1918 -30.4% +1.4% • Model 2 is conserv. when compared to Model 1 because it considers a higher imperfection • Shell models 1 and 2 are reasonably accurate when compared to EC 3 formulae • SAP2000 design is very accurate when compared to EC 3 formulae Deformation (Model 1) • Column resistance results: • Shell models lower and upper bounds correspond to first yielding due to plate bending and corner yielding due to membrane normal stress resultant (the real resistance is between the two) Upper bound analysis (Model 1) Lower bound analysis (Model 1)
  • 30. 30 Example 7 – Long class 4 column (1/5) • Square hollow section long column: SAP2000 frame FE model • Simply supported • S 355 steel, welded SHS profile, class 4 (compression) SHS 300 300 300 [mm] 6 SAP2000 shell FE model • Objective: determine the column buckling resistance
  • 31. 31 Example 7 – Long class 4 column (2/5) kN NN RdeffzRdb 1584 19947944.0 ..     kN LEIN zzcr 4302 77.101210 2222 .    6808.0 43021994..   zcrRkeffz NN   17944.0,  zz  Buckling curve bImperf.: Model 2 (SAP2000 shell) Model 1 (SAP2000 shell) EC 3 formulae 34.0 mm Le 28 2500   mm AWe effdeff 89.11 616.55.408)2.06808.0(34.0 )2.0( .0     Method: • Ayrton-Perry formula • 2nd order shell FEM • 2nd order shell FEM • imperf. factor from buckling curves • Column design according to EC 3 formulae and thin-walled rectangular shell FE models: kNfAN yeffRkeff 1994355616.5.  SAP2000 design (SAP2000 frame) kNN Rkpl 2505. kNAfN yRkpl 2505355056.7.  kNNcr 4301 674.0z 798.0z kNN Rdb 1559.  34.0 Flexural buckling of significant importance (local-global buckling interaction occurs) mm ae 47.1 2000   mm te pp 032.0 66)8.0043.1(13.0 6)8.0(0     • local geometric imperf. according to Table 3.1 (EC 3-1-5) • local imperf. equiv. to local buckling curves • global imperf. from buckling curves 12 longitudinal half-waves • global imperf. from Table 5.1 (EC 3-1-1)
  • 32. 32 Example 7 – Long class 4 column (3/5) • Re-determine effective cross-section for load NEd=1584 kN: a) Determine bending moment in the critical cross-section: b) Determine stress distribution in the gross cross-section: MPa A NEd mean 5.224 056.7 1584  MPa W M Rdd Ed 5.130 4783.0 43.62 . D MPamean 0.355max D  c) Walls reduction factors: 632.0 355 5.224    835.0 3055.0 2    p p    88.4 05.1 2.8     K 945.0 88.481.04.28 6288 4.28      k tb p Walls AB & BD: MPamean 0.94min D  419.0 5.224 0.94    1043.1 3055.0 2        p p 58.5 05.1 2.8     K 883.0 58.581.04.28 6288 4.28      k tb pWalls AC & CD: 702.0 355 5.224 883.0. .  yd Edcom predp f   kNmM M Wf M N N Ed Ed dely Ed Rdpl Ed 43.621 4783.03552505 1584 1 ..   
  • 33. 33 Example 7 – Long class 4 column (4/5) • Re-determine effective cross-section for load NEd=1584 kN: [mm] Effective section (NEd + MEd): 23 10480.6 mAeff   44 . 109388.0 mI deff   34 . 10689.5 mW yeff   34 . 10265.4 mW deff   mmbbb mmbb mmbb eeffe effe eff 130110240 110240 632.05 2 5 2 240288835.0 12 1          110130 • Column design according to EC 3-1-1 formulae: kN NN RdeffzRdb 1761 23007658.0 ..     7312.0 43022300..   zcrRkeffz NN   17658.0,  zz  Buckling curve b Imperf.: 34.0 kNfAN yeffRkeff 2300355480.6. 
  • 34. 34 Example 7 – Long class 4 column (5/5) • Shell model 1 is reasonably accurate when compared to analytical calculations • SAP2000 design is slightly conservative when compared to EC 3 procedure because it does not iterate to find effective cross-section (considers the unfavourable case of pure compression) • Column resistance results: • Shell models lower and upper bounds correspond to first yielding due to plate bending and corner yielding due to membrane normal stress resultant (the real resistance is between the two) EC 3 formulae SAP2000 design (SAP2000 frame) Diff. Model 1 (SAP2000 shell) Diff. Model 2 (SAP 2000 shell) Diff. Ncr.local [kN] - - - 2253 - 2253 - Nb.Rd [kN] Lower /upper bound 1761 1559 -11.5% 1928/ 2001 +9.5% +13.6% 1016/ 1349 -42.3% -23.4% • Shell model 2 is too conservative due to considering too large imperfections
  • 35. 35 Conclusion • It is not possible to fully exploit the plastic strength reserve of members prone to instability. An elastic design (e.g., using shell FE) is usually not too conservative, even for members with class 1 cross-sections • SAP2000 design tools for steel frame structures are practical, fast and on the safe side. It is possible not only to (i) check if the members satisfy the EC3 resistance requirements, but also (ii) optimise their sections • SAP2000 shell design is valid for arbitrary thin-walled members (e.g., tapered, with non-symmetrical cross-sections, etc) and support conditions, while EC3 design formulae are limited to bisymmetrical simply supported uniform members
  • 36. 36 References • ECCS Technical Committee 8, Rules for Members Stability in EN 1993 – 1 – 1, Background documentation and design guidelines