SlideShare a Scribd company logo
Tesis Doctoral

Design of Radio Frequency Integrated Circuits
    for Ultra Wide Band Communications
                      Las Palmas de Gran Canaria - 20 de Julio de 2012




                                                                         Directores:
Autor:                                         Dr. Francisco Javier del Pino Suárez
Roberto Díaz Ortega                              Dr. Sunil Lalchand Khemchandani
                                                   Dr. Antonio Hernández Ballester
Wireless Personal Area
             Networks
UWB companies
Generic receiver architecture
• Find different alternative to implement power and area
  efficient low noise amplifiers for ultra wide band applications


1. Obtain a reference system
   specifications.

1. Explore different low noise
   amplifiers architectures.

2. Explore different inductor
   structures.

3. Explore inductorless techniques.


                        Research objectives
1. Distributed amplifiers

2. Wide band low noise amplifiers

3. Feedback wide band amplifier

4. Inductorless techniques



            Proposed milestones
System      Distributed   Wideband     Feedback     Inductorless
Intro   Analysis    Amplifiers    Amplifiers   Amplifiers    Techniques    Conclusions




• Evolution        of ultra wide band communications.

• ECMA-368 / ISO/IEC26907 specifications.

• Receiver architecture.

• Receiver design.



                                                                           Outline
• Fist use of “ultra wide band” term in 1989.

• In 2002 the FCC allocate unlicensed spectrum between 3.1 y
  10.6 GHz.

• In 2003 the MBOA promote a global UWB standard.

• In 2003 appear the IEEE 802.15.3a task group.

• In 2004 is created the WiMedia alliance.

• In 2006 the IEEE 802.15.3a task group is abandoned.

• In 2007 was approved the first version of ECMA-368 /
  ISO/IEC 26907.

                             Evolution of UWB
                              communications
Operating frequency band
For a Packet Error Rate of less than 8% with a Phisical layer Service Data Unit (PSDU)
of 1024 octects.


                     Data Rate (Mb/s)      Sensitivity (dBm)
                            53.3                 -80.8
                             80                  -78.9
                           106.6                 -77.8
                            160                  -75.9
                            200                  -74.5
                            320                  -72.8
                            400                  -71.5
                            480                  -70.4




                                   Receiver Sensitivity
Advantages           Disadvantages
No Image Frequency    DC Offset
Easly integrable      I/Q Mistmatches
Low power operation   Flicker Noise



     Direct conversion receiver
The noise figure is defined as the degradation of the signal to noise ratio:



where:




                                    Data Rate (Mb/s)    Sensitivity (dBm)      Noise Figure (dB)
                                           480                -70.4                   7.32
                                           53.3               -80.8                   18.9




                              Receiver Noise Figure
Filter roll-off (dB/oct)   Filter Order ADC dynamic Range (dB)    ADC bit number
12                         2           53.8                      ≥9
24                         4           41.8                      ≥7
36                         6           29.8                      ≥5


        Channel filter and ADC dynamic
                                 range
The quantization noise for a ADC input impedance of 50Ω is:


The output thermal noise is given by:



Considering that:


The minimum gain that satisfies the condition is:



             ADC Bits         Oversampling factor (p)         Gain (dB)
                 7                       1                     60.86
                                         2                     57.86
                 9                       1                     48.81
                                         2                     45.81

   ADC number of bits and system
                             gain
The maximum power level at ADC input is:




To avoid to saturate de ADC:




         ADC Bits          Oversampling factor (p)   Gain (dB)
             7                       1                60.86
                                     2                57.86
             9                       1                48.81
                                     2                45.81



                        Automatic gain control
The interference scenario is dominated by IEEE 802.11a. The typical test case establish that
At a distance of 0.2m the interference power has a level of -31.9 dBm




                             Linearity requirements
Component        Gain (dB)   Noise Figure (dB)   IIP3 (dBm)
     LNA             15              3               -20
    Mixer            20              12               -9
Baseband filter      -3              3                -
  Baseband           19              25               -8
  amplifiers



                          Budget simulations
Parameter        Specification   Budget simulation
Sensitivity (dBm)     -80.8            -85
Noise Figure (dB)     7.32             7.27
Gain (dB)             48.81            50.9
Maximum input (dBm)   -41              -35
IIP3 (dBm)            -8.65            -8.15




                      Budget simulations
Parameter            Value
       Gain (dB)            15
   Noise Figure (dB)         3
      IIP3 (dBm)            -20
Power Consumption (mW)    minimum
      Area (mm2)          minimum


                   Low noise amplifier
                        specifications
System     Distributed   Wideband     Feedback     Inductorless
Intro   Analysis   Amplifiers    Amplifiers   Amplifiers    Techniques    Conclusions




• Theoretical approach.

• Area optimization techniques.

• Experimental results.




                                                                          Outline
Low noise amplifier design
Low noise amplifier design
Distributed amplifiers
The characteristic impedance and cut-off
       frequency are given by:




        Both transmision lines must be equals




Distributed amplifiers
Integrated inductors
Series integrated inductors
Series integrated inductors
Stacked inductors
Design     Area mm2 Power cons. (mW)
Da1 (a)    0.7      90
DA2 (b)    0.6      90
DA3 (c)    0.4      90



          Experimental results
Experimental results
Experimental results
In order to provide an objective method to compare the developed circuits and other similar
works, a figure of merit has been used:




             Where:
                   • PDC: power consumption
                   • P1dB: 1 dB compression point
                   • Fh: upper frequency corner of the LNA
                   • Ft* technology unitary current gain bandwidth
                   • Area: circuit area



                                  Experimental results
Ref.     Gain      BW          NF        P1dB       Area   Ft* (tech)     PDC   FOM1   FOM2
          (dB)     (GHz)       (dB)      (dBm)      (mm2)                 (mW)
 [7]       6.1       5.5        6.8           8.8   1.12    10.5(0.6μ)    83.4   151    132
[17]       5.5       8.5      10.85       N/A       2.86    10.5(0.6μ)    286     57     -
[18]       7.3       22         5.2           10     1.6    33.7(0.18μ)    52    108     95
[18]      10.6       14        4.35           5.3   1.35    33.7(0.18μ)    52    124    106
[19]        6        27          6            10    1.62    33.7(0.18μ)    68    107     94
[20]        4         8         5.4           8     0.84    33.7(0.18μ)    23    208    182
[21]       10        11         4.6       N/A       1.44    33.7(0.18μ)   19.6   119     -
[21]       16        11         4.5       N/A       1.44    33.7(0.18μ)   100    110     -
DA1         7        6.5         5        12.3      0.74    8.13(0.35μ)    90    231    207
DA2         7        6.5        4.5       12.4      0.61    8.13(0.35μ)    90    282    253
DA3        5.5       6.5         6        11.2      0.47    8.13(0.35μ)    90    364    325

FOM1 not include P1dB - FOM2 including P1dB




                                          Experimental results
System     Distributed   Wideband     Feedback     Inductorless
Intro   Analysis   Amplifiers    Amplifiers   Amplifiers    Techniques    Conclusions




• Wide band low noise amplifier.

• Flatness improvement.

• Wideband folded cascode amplifier.




                                                                          Outline
Low noise amplifier design
The noise depends directly related to:
                   rb, re and the small signal
                   transconductance



               To get a 50Ω input impedance with a low impact
               over the noise figure a degenerative inductive
               is used:




              Alternatively this expression can be expressed as:




Narrow band low noise amplifier
Wideband low noise amplifier
Wideband low noise amplifier
                    design
Wideband low noise amplifier
                    design
Wideband low noise amplifier
                    design
Parameter               Value
Area (mm2)               0.13
Power consumption (mW)   32



         Experimental results
Experimental results
Experimental results
BW 3dB     Max. Gain   Max. NF    IIP3    PDC
  Ref.                                                      Technology   Year
             (GHz)       (dB)       (dB)     (dBm)   (mW)
  [24]      3.1-10.6     9.18        7.2     7.25    23.5    0.18 μm     2007
  [25]      2.0-4.6       9.8        5.2     -2.2    12.6    0.18 μm     2005
  [26]      3.1-4.8       15         4.9     -9.7     20     0.25 μm     2006
  [27]      3.0-5.0      12.7       5.02             16.4    0.18 μm     2005
  [28]      3.1-7.5      19.1        3.8     -2.2     32     0.18 μm     2006
  [29]      3.0-5.0       12         4.5       -      20     0.18 μm     2009
This work   1.7-5.3      12.5        5.0      -4      32     0.35 μm     2011




                            Experimental results
VD D
              VD D




                                       M3                                                   M3
                                                                                                 RF O U T
                                            RFO U T
                                                                                      M2
                                M2
                                                               L1   C1      Lg
         L1      C1   Lg
                                                                                      M1
                                M1
                                                         Rs
   Rs
                                                                    L2      C2   Cp
                 L2   C2   Cp
                                                      RF I N                           Ls
RF I N                           Ls




                                      Flatness improvement
Parameter               Value
Area (mm2)               0.29
Power consumption (mW)   56.1



         Experimental results
Experimental results
Experimental results
Experimental results
Wide band folded cascode
                 amplifier
Design            Area (μm2)   Power cons. (mW)
Wide band cascode (a)     0.13         32
Wide folded cascode (b)   0.13         18.93



                  Experimental results
Experimental results
Experimental results
Wide band cascode          Wide band folded cascode




                    Experimental results
System     Distributed   Wideband     Feedback     Inductorless
Intro   Analysis   Amplifiers    Amplifiers   Amplifiers    Techniques    Conclusions




• Theoretical approach.

• Modified miniatured 3D inductor.

• Experimental results.




                                                                          Outline
Feedback techniques
Feedback low noise amplifier
Feedback low noise amplifier
Feedback low noise amplifier
Inductor design
Miniatured 3D inductor
Miniatured 3d Inductor
Design             Area (mm2)   Power cons. (mW)
Conventional inductor (a)    0.17         13.2
Miniatured 3d inductor (b)   0.1          13.2


                   Experimental results
Experimental results
Experimental results
Conventional inductor       Miniatured 3d Inductor




                   Experimental results
Ref.      S21 (dB)   NF (dB)   3dB BW       IIP3    Pdc (mw)    Area      Tech
                                  (GHz)      (dBm)               (mm2)
  [34]        9.3        <9       2-23       -6.7        9        1.1    0.18μm CMOS
  [35]        21        <4.5      2-10       >-5.5      30       0.55    0.18μm SiGe
  [36]        9.3       <9.2     2.3-9.2     >-6.7       9       0.66    0.18μm CMOS
  [37]        8.5       <5.3     1.3-10.7     >8        4.5       1      0.18μm CMOS
  [37]        8.2       <5.5     1.3-12.3     >8        4.5       1      0.18μm CMOS
  [18]       10.6       <5.4     0.01-14     >10        52       1.35    0.18μm CMOS
  [38]        20        <4.5      3-10      >-11.75    42.5      0.18    0.18μm CMOS
  [39]        22        <3.9     3-1-14.5   >-32.5     13.2      0.49    0.18μm SiGe
  [40]       15.3      <2.98     3.1-10.6    >-8.5       9       0.87    0.25μm SiGe
  [41]        12         <4       2-10       >1.9       24       0.25    0.13μm CMOS
  [42]        13        <3.3      2-10       >-7.5      9.6      0.88    0.18μm SiGe
  [42]       11.5       <3.5      2-10       >-7.5      7.2      0.88    0.18μm SiGe
  [43]       11.5       4.7      3.1-10.6     -10      10.57     0.665   0.18μm CMOS
Std. ind.     14        <5.6     0.1-5.5     >-3.4     13.2       0.1    0.35μm SiGe
3D ind.       14         <4      0.1-6.7     >-4.4     13.2       0.1    0.35μm SiGe


                                 Experimental results
System     Distributed   Wideband     Feedback     Inductorless
Intro   Analysis   Amplifiers    Amplifiers   Amplifiers    Techniques    Conclusions




• Common gate low noise amplifier.

• Quadrature Mixers.

• Inductorless operation.

• Experimental results.



                                                                          Outline
Common gate low noise
             amplifier
Inductorless operation
Front-end I




Experimental results
Parameter               Value
Area (mm2)               0.97
Power consumption (mW)   16



         Experimental results
Experimental results
Front-end II


Experimental results
Parameter               Value
Area (mm2)               0.52
Power consumption (mW)   14



         Experimental results
Experimental results
Comparative results between the front-ends:


                          Design              Frontend I    Frontend II
              NF(dB)                      11.2             13.7
              Gain (dB)                   12.1             7.2
              IIP3 (dBm)                  -5.6             -2.1
              Consumption (mW)            16               14
              Area (mm2)                  0.97             0.52

With inductorless techniques an area saving of 54% have been achieved.




                               Experimental results
System     Distributed   Wideband     Feedback     Inductorless
Intro   Analysis   Amplifiers    Amplifiers   Amplifiers    Techniques    Conclusions




• Summary of the developed circuits.

• Specifications comparative.

• Areas for further research.




                                                                          Outline
Design                Gain       BW       NF     IIP3    Area    PDC
                                     (dB)       (dB)    (dB)   (dBm)   (mm2)   (mW)
Distributed amplifier 1              7      6.5        5       21.3    0.74    90
Distributed amplifier 2              7      6.5        4.5     21.4    0.61    90
Distributed amplifier 3              5.5    6.5        6       30.2    0.47    90
Wide band amplifier                  12.5   3.6        4.3     -4      0.13    31
Modified shunt-peaking               11.2   4          5       -4      0.29    56.1
Folded cascode                       7.8    2.96       3       -4      0.13    18.93
Feedback amplifier (standard ind.)   14     5.6        <4      -3.4    0.17    13.2
Feedback amplifier (3D ind.)         14     6.8        <4      -4.4    0.10    13.2
Frontend I (inductor based)          12.1   5          11.2    -5.6    0.97    16
Frontend II (inductorless)           7.2    5          13.7    -2.1    0.52    14




                                      Developed circuits
Design      Frontend I   Frontend II   Specification
NF(dB)              11.2          13.7          7
Gain (dB)           12.1          7.2           35
IIP3 (dBm)          -5.6          -2.1          -9
Consumption (mW)    16            14            minimum
Area (mm2)          0.97          0.52          minimum




                  Inductorless front-ends
Journal Papers

•   J. del Pino, Sunil L. Khemchandani, Roberto Díaz-Ortega, Rubén Pulido Medina and Hugo García-
    Vázquez, ”On-Chip Inductors Optimization For Ultra Wide Band Low Noise Amplifiers”, Journal of
    Circuits, Systems, and Computers, Nov. 2011

•   J. del Pino, R. Díaz and S.L. Khemchandani, ”Area Reduction Techniques for Full Integrated Distributed
    Amplifiers”, International Journal in Electronics and Communications, Nov. 2010

Conference Papers

•   H. García-Vázquez, R. Díaz, D. Ramos-Valido, A. Santana, J. del Pino and S.L. Khemchandani, ”Area
    Reduction in RF Fully Integrated Front-Ends for UltraWideband”, XXV Conference on Design of Circuits
    and Integrated Systems, Nov 2010.

•   H. García, R. Pulido, R. Díaz, S.L. Khemchandani, A. Goñi and J. del Pino, ”A Feedback Wideband LNA
    with a Modified 3D Inductor for UWB Applications”, XXIII Conference on Design of Circuits and
    Integrated Systems, Nov 2008.

•   G. Martín, R. Díaz, J. del Pino, S.L. Khemchandani, A. Hernández, ”Design of a Fully Integrated DC to
    8.5 GHz Distributed Amplifier in CMOS 0.35”, XXI Conference on Design of Circuits and Integrated
    Systems, Nov 2006.


                                                                Publications
• SR2 - Short Range Radio, Spanish Ministry of Industry, Tourism and Trade 2010-
  2011.

• SR2 - Short Range Radio, Spanish Ministry of Industry, Tourism and Trade 2009-
  2010.

• WITNESS - WIreless Technologies for small area Networks with Embedded and
  Security & Safety. MEDEA+ from UE - Spanish Ministry of Industry, Tourism and
  Trade. 2005 - 2007.




                                   Research Projects
• Design and integration of the rest of the receiver
    • Design of mixers.
    • Design of filters.
    • Design of baseband amplifiers.

• Inductor estructures
    • Explore new alternative to reduce inductor area.
    • Explore new circuits topologies that require low
    performance inductors.

• Inductorless architectures
    • Improve the performance of inductoless designs.




             Areas for further research
Tesis Doctoral

Design of Radio Frequency Integrated Circuits
    for Ultra Wide Band Communications
                      Las Palmas de Gran Canaria - 20 de Julio de 2012




                                                                         Directores:
Autor:                                       Dr. D.Francisco Javier del Pino Suárez
Roberto Díaz Ortega                           Dr. D. Sunil Lalchand Khemchandani
                                                 Dr. D. Antonio Hernández Ballester

More Related Content

What's hot

Ultra wideband technology(mujeeb ur rehman)
Ultra wideband technology(mujeeb ur rehman)Ultra wideband technology(mujeeb ur rehman)
Ultra wideband technology(mujeeb ur rehman)
Mujeeb Rehman
 
Ultra Wide Band (UWB)
Ultra Wide Band (UWB)Ultra Wide Band (UWB)
Ultra Wide Band (UWB)
Mohammad Dayeh
 
UWB and applications
UWB and applicationsUWB and applications
UWB and applications
Thomas George C
 
Distance Measurements using Ultra Wide-Band (UWB)
Distance Measurements using Ultra Wide-Band (UWB)Distance Measurements using Ultra Wide-Band (UWB)
Distance Measurements using Ultra Wide-Band (UWB)Iqbal Hossain
 
Krittika.pdf
Krittika.pdfKrittika.pdf
Krittika.pdf
krittikatokas
 
Ultra-wide band communication system: Term paper _class presentation on wirel...
Ultra-wide band communication system: Term paper _class presentation on wirel...Ultra-wide band communication system: Term paper _class presentation on wirel...
Ultra-wide band communication system: Term paper _class presentation on wirel...
prajon
 
Ultra-wide band Technology
Ultra-wide band TechnologyUltra-wide band Technology
Ultra-wide band Technology
ShahbazKhan490
 
UWB IRF correlator
UWB IRF correlator UWB IRF correlator
UWB IRF correlator
Jayendra mishra
 
Interference cancellation in uwb systems
Interference cancellation in uwb systemsInterference cancellation in uwb systems
Interference cancellation in uwb systems
jayasheelamoses
 
Meixia Tao Introduction To Wireless Communications And Recent Advances
Meixia Tao Introduction To Wireless Communications And Recent AdvancesMeixia Tao Introduction To Wireless Communications And Recent Advances
Meixia Tao Introduction To Wireless Communications And Recent Advancesmelvincabatuan
 
Ultra Wide Band Antenna for High Speed Microwave Applications
Ultra Wide Band Antenna for High Speed Microwave ApplicationsUltra Wide Band Antenna for High Speed Microwave Applications
Ultra Wide Band Antenna for High Speed Microwave Applications
Omar Hussein
 
Radio Over Fiber
Radio Over Fiber Radio Over Fiber
Radio Over Fiber
Tareq Qazi
 
Medical sensing, localization, and communications usingultra wideband technol...
Medical sensing, localization, and communications usingultra wideband technol...Medical sensing, localization, and communications usingultra wideband technol...
Medical sensing, localization, and communications usingultra wideband technol...
The Research Council of Norway, IKTPLUSS
 
Microwave Transmission
Microwave TransmissionMicrowave Transmission
Microwave TransmissionDevang Bhatti
 
Radio overfiber tutorial_iwt_2013_nggo
Radio overfiber tutorial_iwt_2013_nggoRadio overfiber tutorial_iwt_2013_nggo
Radio overfiber tutorial_iwt_2013_nggoNeil Guerrero Gonzalez
 
Chapter 4 - Transmission Media 9e
Chapter 4 - Transmission Media 9eChapter 4 - Transmission Media 9e
Chapter 4 - Transmission Media 9eadpeer
 
Uwb antenna by debashish(IIT DELHI)
Uwb antenna by debashish(IIT DELHI)Uwb antenna by debashish(IIT DELHI)
Uwb antenna by debashish(IIT DELHI)
Debashish Pradhan
 
Massive MIMO Channel Calibration in TDD Wireless Networks
Massive MIMO Channel Calibration in TDD Wireless NetworksMassive MIMO Channel Calibration in TDD Wireless Networks
Massive MIMO Channel Calibration in TDD Wireless Networks
Xiao-an Wang
 

What's hot (20)

Ultra wideband technology(mujeeb ur rehman)
Ultra wideband technology(mujeeb ur rehman)Ultra wideband technology(mujeeb ur rehman)
Ultra wideband technology(mujeeb ur rehman)
 
Ultra Wide Band (UWB)
Ultra Wide Band (UWB)Ultra Wide Band (UWB)
Ultra Wide Band (UWB)
 
UWB and applications
UWB and applicationsUWB and applications
UWB and applications
 
Distance Measurements using Ultra Wide-Band (UWB)
Distance Measurements using Ultra Wide-Band (UWB)Distance Measurements using Ultra Wide-Band (UWB)
Distance Measurements using Ultra Wide-Band (UWB)
 
Ultra_Wide_Band_ppt
Ultra_Wide_Band_pptUltra_Wide_Band_ppt
Ultra_Wide_Band_ppt
 
Krittika.pdf
Krittika.pdfKrittika.pdf
Krittika.pdf
 
Ultra-wide band communication system: Term paper _class presentation on wirel...
Ultra-wide band communication system: Term paper _class presentation on wirel...Ultra-wide band communication system: Term paper _class presentation on wirel...
Ultra-wide band communication system: Term paper _class presentation on wirel...
 
Ultra-wide band Technology
Ultra-wide band TechnologyUltra-wide band Technology
Ultra-wide band Technology
 
Ultra wide band technology
Ultra wide band technology Ultra wide band technology
Ultra wide band technology
 
UWB IRF correlator
UWB IRF correlator UWB IRF correlator
UWB IRF correlator
 
Interference cancellation in uwb systems
Interference cancellation in uwb systemsInterference cancellation in uwb systems
Interference cancellation in uwb systems
 
Meixia Tao Introduction To Wireless Communications And Recent Advances
Meixia Tao Introduction To Wireless Communications And Recent AdvancesMeixia Tao Introduction To Wireless Communications And Recent Advances
Meixia Tao Introduction To Wireless Communications And Recent Advances
 
Ultra Wide Band Antenna for High Speed Microwave Applications
Ultra Wide Band Antenna for High Speed Microwave ApplicationsUltra Wide Band Antenna for High Speed Microwave Applications
Ultra Wide Band Antenna for High Speed Microwave Applications
 
Radio Over Fiber
Radio Over Fiber Radio Over Fiber
Radio Over Fiber
 
Medical sensing, localization, and communications usingultra wideband technol...
Medical sensing, localization, and communications usingultra wideband technol...Medical sensing, localization, and communications usingultra wideband technol...
Medical sensing, localization, and communications usingultra wideband technol...
 
Microwave Transmission
Microwave TransmissionMicrowave Transmission
Microwave Transmission
 
Radio overfiber tutorial_iwt_2013_nggo
Radio overfiber tutorial_iwt_2013_nggoRadio overfiber tutorial_iwt_2013_nggo
Radio overfiber tutorial_iwt_2013_nggo
 
Chapter 4 - Transmission Media 9e
Chapter 4 - Transmission Media 9eChapter 4 - Transmission Media 9e
Chapter 4 - Transmission Media 9e
 
Uwb antenna by debashish(IIT DELHI)
Uwb antenna by debashish(IIT DELHI)Uwb antenna by debashish(IIT DELHI)
Uwb antenna by debashish(IIT DELHI)
 
Massive MIMO Channel Calibration in TDD Wireless Networks
Massive MIMO Channel Calibration in TDD Wireless NetworksMassive MIMO Channel Calibration in TDD Wireless Networks
Massive MIMO Channel Calibration in TDD Wireless Networks
 

Viewers also liked

Diseño de un Amplificador de Ganancia Programable para un Receptor IEEE 802.1...
Diseño de un Amplificador de Ganancia Programable para un Receptor IEEE 802.1...Diseño de un Amplificador de Ganancia Programable para un Receptor IEEE 802.1...
Diseño de un Amplificador de Ganancia Programable para un Receptor IEEE 802.1...
RFIC-IUMA
 
Proposal Tesis
Proposal TesisProposal Tesis
Proposal Tesis
Eka Agustianingsih
 
Teknologi broadband wireless access
Teknologi broadband wireless accessTeknologi broadband wireless access
Teknologi broadband wireless access
triyonomogol
 
implementation of 4G
implementation of 4Gimplementation of 4G
implementation of 4Gneeraja507
 
UWB Radar Technologies for Tunnel Detection
UWB Radar Technologies for Tunnel DetectionUWB Radar Technologies for Tunnel Detection
UWB Radar Technologies for Tunnel DetectionSergey Bondarenko
 
Wireless Personal Area Networks – Bluetooth, UWB and Sensor Networks
Wireless Personal Area  Networks – Bluetooth, UWB  and Sensor Networks Wireless Personal Area  Networks – Bluetooth, UWB  and Sensor Networks
Wireless Personal Area Networks – Bluetooth, UWB and Sensor Networks Manas Rai
 
Presentai seminar proposal
Presentai seminar proposalPresentai seminar proposal
Presentai seminar proposal
hanifulmuttaqin87
 
Integrated circuit
Integrated circuitIntegrated circuit
Integrated circuit
Jessa Arnado
 

Viewers also liked (8)

Diseño de un Amplificador de Ganancia Programable para un Receptor IEEE 802.1...
Diseño de un Amplificador de Ganancia Programable para un Receptor IEEE 802.1...Diseño de un Amplificador de Ganancia Programable para un Receptor IEEE 802.1...
Diseño de un Amplificador de Ganancia Programable para un Receptor IEEE 802.1...
 
Proposal Tesis
Proposal TesisProposal Tesis
Proposal Tesis
 
Teknologi broadband wireless access
Teknologi broadband wireless accessTeknologi broadband wireless access
Teknologi broadband wireless access
 
implementation of 4G
implementation of 4Gimplementation of 4G
implementation of 4G
 
UWB Radar Technologies for Tunnel Detection
UWB Radar Technologies for Tunnel DetectionUWB Radar Technologies for Tunnel Detection
UWB Radar Technologies for Tunnel Detection
 
Wireless Personal Area Networks – Bluetooth, UWB and Sensor Networks
Wireless Personal Area  Networks – Bluetooth, UWB  and Sensor Networks Wireless Personal Area  Networks – Bluetooth, UWB  and Sensor Networks
Wireless Personal Area Networks – Bluetooth, UWB and Sensor Networks
 
Presentai seminar proposal
Presentai seminar proposalPresentai seminar proposal
Presentai seminar proposal
 
Integrated circuit
Integrated circuitIntegrated circuit
Integrated circuit
 

Similar to Design of Radio Frequency Integrated Circuits for UWB Communications

LnA Design_group5
LnA Design_group5LnA Design_group5
LnA Design_group5
Mayur Sarode
 
Wcdma planning
Wcdma planningWcdma planning
Wcdma planning
Sudhir Kumar
 
Slide fyp ver3
Slide fyp ver3Slide fyp ver3
Slide fyp ver3yusriyacob
 
An Gt123 A Electronic Step Attenuator For Microwave Signal Generators
An Gt123 A Electronic Step Attenuator For Microwave Signal GeneratorsAn Gt123 A Electronic Step Attenuator For Microwave Signal Generators
An Gt123 A Electronic Step Attenuator For Microwave Signal Generators
cf_home
 
Komunikacja bezprzewodowa w obszarach przemysłowych
Komunikacja bezprzewodowa w obszarach przemysłowychKomunikacja bezprzewodowa w obszarach przemysłowych
Komunikacja bezprzewodowa w obszarach przemysłowych
Agnieszka Kuba
 
Data sheets cable cat5e
Data sheets cable cat5eData sheets cable cat5e
Data sheets cable cat5emakerios7
 
Plc Splitters Data Sheet
Plc Splitters Data SheetPlc Splitters Data Sheet
Plc Splitters Data Sheet
Villat2012
 
Mag Layers Products
Mag Layers ProductsMag Layers Products
Mag Layers Products
MagLayersUSA
 
IEEE_RFIC 2007 (2)
IEEE_RFIC 2007 (2) IEEE_RFIC 2007 (2)
IEEE_RFIC 2007 (2)
wence00
 
Keyboard, Video And Mouse (KVM) Switch Solution
Keyboard, Video And Mouse (KVM) Switch SolutionKeyboard, Video And Mouse (KVM) Switch Solution
Keyboard, Video And Mouse (KVM) Switch Solution
Premier Farnell
 
Academic paper
Academic paperAcademic paper
Shenzhen Hifibercom Technology Co.,Ltd Mems optical switch module
Shenzhen Hifibercom Technology Co.,Ltd Mems optical switch moduleShenzhen Hifibercom Technology Co.,Ltd Mems optical switch module
Shenzhen Hifibercom Technology Co.,Ltd Mems optical switch module
WendyXia8
 
Tft Product Presentation June 2009
Tft Product Presentation June 2009Tft Product Presentation June 2009
Tft Product Presentation June 2009
MikeWalsh1954
 
WOR03-211 Datasheet
WOR03-211 DatasheetWOR03-211 Datasheet
WOR03-211 Datasheet
Shanxi Cai
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studiesPhani Kumar
 
IMS2016_Workshop_SK 03232016
IMS2016_Workshop_SK 03232016IMS2016_Workshop_SK 03232016
IMS2016_Workshop_SK 03232016Sushil Kumar
 
IMS-2010 Presentation
IMS-2010 PresentationIMS-2010 Presentation
IMS-2010 PresentationSushil Kumar
 
Techni Sat Sky Star 2 Specs
Techni Sat Sky Star 2 SpecsTechni Sat Sky Star 2 Specs
Techni Sat Sky Star 2 Specs
Sais Abdelkrim
 
Automated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringAutomated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed Monitoring
Bharat Biyani
 

Similar to Design of Radio Frequency Integrated Circuits for UWB Communications (20)

LnA Design_group5
LnA Design_group5LnA Design_group5
LnA Design_group5
 
Wcdma planning
Wcdma planningWcdma planning
Wcdma planning
 
Slide fyp ver3
Slide fyp ver3Slide fyp ver3
Slide fyp ver3
 
An Gt123 A Electronic Step Attenuator For Microwave Signal Generators
An Gt123 A Electronic Step Attenuator For Microwave Signal GeneratorsAn Gt123 A Electronic Step Attenuator For Microwave Signal Generators
An Gt123 A Electronic Step Attenuator For Microwave Signal Generators
 
Komunikacja bezprzewodowa w obszarach przemysłowych
Komunikacja bezprzewodowa w obszarach przemysłowychKomunikacja bezprzewodowa w obszarach przemysłowych
Komunikacja bezprzewodowa w obszarach przemysłowych
 
Data sheets cable cat5e
Data sheets cable cat5eData sheets cable cat5e
Data sheets cable cat5e
 
Plc Splitters Data Sheet
Plc Splitters Data SheetPlc Splitters Data Sheet
Plc Splitters Data Sheet
 
Mag Layers Products
Mag Layers ProductsMag Layers Products
Mag Layers Products
 
IEEE_RFIC 2007 (2)
IEEE_RFIC 2007 (2) IEEE_RFIC 2007 (2)
IEEE_RFIC 2007 (2)
 
Keyboard, Video And Mouse (KVM) Switch Solution
Keyboard, Video And Mouse (KVM) Switch SolutionKeyboard, Video And Mouse (KVM) Switch Solution
Keyboard, Video And Mouse (KVM) Switch Solution
 
Academic paper
Academic paperAcademic paper
Academic paper
 
Shenzhen Hifibercom Technology Co.,Ltd Mems optical switch module
Shenzhen Hifibercom Technology Co.,Ltd Mems optical switch moduleShenzhen Hifibercom Technology Co.,Ltd Mems optical switch module
Shenzhen Hifibercom Technology Co.,Ltd Mems optical switch module
 
Tft Product Presentation June 2009
Tft Product Presentation June 2009Tft Product Presentation June 2009
Tft Product Presentation June 2009
 
Printed Yagi uda Antenna
Printed Yagi uda AntennaPrinted Yagi uda Antenna
Printed Yagi uda Antenna
 
WOR03-211 Datasheet
WOR03-211 DatasheetWOR03-211 Datasheet
WOR03-211 Datasheet
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studies
 
IMS2016_Workshop_SK 03232016
IMS2016_Workshop_SK 03232016IMS2016_Workshop_SK 03232016
IMS2016_Workshop_SK 03232016
 
IMS-2010 Presentation
IMS-2010 PresentationIMS-2010 Presentation
IMS-2010 Presentation
 
Techni Sat Sky Star 2 Specs
Techni Sat Sky Star 2 SpecsTechni Sat Sky Star 2 Specs
Techni Sat Sky Star 2 Specs
 
Automated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringAutomated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed Monitoring
 

More from RFIC-IUMA

Presentación TFG - Roberto Rodríguez
Presentación TFG - Roberto RodríguezPresentación TFG - Roberto Rodríguez
Presentación TFG - Roberto Rodríguez
RFIC-IUMA
 
Presentación TFG - Guillermo Ojeda
Presentación TFG - Guillermo OjedaPresentación TFG - Guillermo Ojeda
Presentación TFG - Guillermo Ojeda
RFIC-IUMA
 
Diseño de un receptor de wake-up para WSN basado en la arquitectura Uncertain-IF
Diseño de un receptor de wake-up para WSN basado en la arquitectura Uncertain-IFDiseño de un receptor de wake-up para WSN basado en la arquitectura Uncertain-IF
Diseño de un receptor de wake-up para WSN basado en la arquitectura Uncertain-IF
RFIC-IUMA
 
Implementación física y verificación de un cabezal de recepción para el están...
Implementación física y verificación de un cabezal de recepción para el están...Implementación física y verificación de un cabezal de recepción para el están...
Implementación física y verificación de un cabezal de recepción para el están...
RFIC-IUMA
 
Diseño de un transmisor para el estándar IEEE 802.15.4 en tecnología CMOS 0.1...
Diseño de un transmisor para el estándar IEEE 802.15.4 en tecnología CMOS 0.1...Diseño de un transmisor para el estándar IEEE 802.15.4 en tecnología CMOS 0.1...
Diseño de un transmisor para el estándar IEEE 802.15.4 en tecnología CMOS 0.1...
RFIC-IUMA
 
Diseño de un filtro polifásico para un receptor IEEE 802.15.4 en tecnología...
Diseño de un filtro polifásico para un receptor IEEE 802.15.4 en tecnología...Diseño de un filtro polifásico para un receptor IEEE 802.15.4 en tecnología...
Diseño de un filtro polifásico para un receptor IEEE 802.15.4 en tecnología...
RFIC-IUMA
 
Sistema de localización de objetos basado en tecnología de Código Abierto de ...
Sistema de localización de objetos basado en tecnología de Código Abierto de ...Sistema de localización de objetos basado en tecnología de Código Abierto de ...
Sistema de localización de objetos basado en tecnología de Código Abierto de ...
RFIC-IUMA
 
Diseño de un circuito Wake-up para redes de sensores inalámbricas
Diseño de un circuito Wake-up para redes de sensores inalámbricasDiseño de un circuito Wake-up para redes de sensores inalámbricas
Diseño de un circuito Wake-up para redes de sensores inalámbricas
RFIC-IUMA
 
Caracterización del equipo de prácticas ME1000 para el diseño de circuitos de RF
Caracterización del equipo de prácticas ME1000 para el diseño de circuitos de RFCaracterización del equipo de prácticas ME1000 para el diseño de circuitos de RF
Caracterización del equipo de prácticas ME1000 para el diseño de circuitos de RF
RFIC-IUMA
 
Diseño de un cabezal de recepción para el estándar IEEE 802.15.4 en tecnologí...
Diseño de un cabezal de recepción para el estándar IEEE 802.15.4 en tecnologí...Diseño de un cabezal de recepción para el estándar IEEE 802.15.4 en tecnologí...
Diseño de un cabezal de recepción para el estándar IEEE 802.15.4 en tecnologí...
RFIC-IUMA
 
Sistema de estabilización de cámara para cartografía aérea
Sistema de estabilización de cámara para cartografía aéreaSistema de estabilización de cámara para cartografía aérea
Sistema de estabilización de cámara para cartografía aérea
RFIC-IUMA
 
Control automático de un sistema de riego
Control automático de un sistema de riegoControl automático de un sistema de riego
Control automático de un sistema de riego
RFIC-IUMA
 
Diseño de un LNA basado en convertidores de corriente utilizando técnicas de ...
Diseño de un LNA basado en convertidores de corriente utilizando técnicas de ...Diseño de un LNA basado en convertidores de corriente utilizando técnicas de ...
Diseño de un LNA basado en convertidores de corriente utilizando técnicas de ...
RFIC-IUMA
 
Implementación de una red de sensores inalámbrica para la monitorización de e...
Implementación de una red de sensores inalámbrica para la monitorización de e...Implementación de una red de sensores inalámbrica para la monitorización de e...
Implementación de una red de sensores inalámbrica para la monitorización de e...
RFIC-IUMA
 
Comunicaciones a través de voz sobre IP. Casos prácticos, adaptación empresar...
Comunicaciones a través de voz sobre IP. Casos prácticos, adaptación empresar...Comunicaciones a través de voz sobre IP. Casos prácticos, adaptación empresar...
Comunicaciones a través de voz sobre IP. Casos prácticos, adaptación empresar...
RFIC-IUMA
 
Diseño de un receptor de “Wake up” para redes de sensores inalámbricas median...
Diseño de un receptor de “Wake up” para redes de sensores inalámbricas median...Diseño de un receptor de “Wake up” para redes de sensores inalámbricas median...
Diseño de un receptor de “Wake up” para redes de sensores inalámbricas median...
RFIC-IUMA
 
Estudio y Análisis de un transceptor de largo alcance LORATM SX1272
Estudio y Análisis de un transceptor de largo alcance LORATM SX1272Estudio y Análisis de un transceptor de largo alcance LORATM SX1272
Estudio y Análisis de un transceptor de largo alcance LORATM SX1272
RFIC-IUMA
 
Sistema para monitorizar y controlar instalaciones de forma remota utilizando...
Sistema para monitorizar y controlar instalaciones de forma remota utilizando...Sistema para monitorizar y controlar instalaciones de forma remota utilizando...
Sistema para monitorizar y controlar instalaciones de forma remota utilizando...
RFIC-IUMA
 
Implementación de una red de sensores inalámbrica para la monitorización de e...
Implementación de una red de sensores inalámbrica para la monitorización de e...Implementación de una red de sensores inalámbrica para la monitorización de e...
Implementación de una red de sensores inalámbrica para la monitorización de e...RFIC-IUMA
 
Caracterización y simulación de un receptor inalámbrico a 915 MHz
Caracterización y simulación de un receptor  inalámbrico a 915 MHzCaracterización y simulación de un receptor  inalámbrico a 915 MHz
Caracterización y simulación de un receptor inalámbrico a 915 MHzRFIC-IUMA
 

More from RFIC-IUMA (20)

Presentación TFG - Roberto Rodríguez
Presentación TFG - Roberto RodríguezPresentación TFG - Roberto Rodríguez
Presentación TFG - Roberto Rodríguez
 
Presentación TFG - Guillermo Ojeda
Presentación TFG - Guillermo OjedaPresentación TFG - Guillermo Ojeda
Presentación TFG - Guillermo Ojeda
 
Diseño de un receptor de wake-up para WSN basado en la arquitectura Uncertain-IF
Diseño de un receptor de wake-up para WSN basado en la arquitectura Uncertain-IFDiseño de un receptor de wake-up para WSN basado en la arquitectura Uncertain-IF
Diseño de un receptor de wake-up para WSN basado en la arquitectura Uncertain-IF
 
Implementación física y verificación de un cabezal de recepción para el están...
Implementación física y verificación de un cabezal de recepción para el están...Implementación física y verificación de un cabezal de recepción para el están...
Implementación física y verificación de un cabezal de recepción para el están...
 
Diseño de un transmisor para el estándar IEEE 802.15.4 en tecnología CMOS 0.1...
Diseño de un transmisor para el estándar IEEE 802.15.4 en tecnología CMOS 0.1...Diseño de un transmisor para el estándar IEEE 802.15.4 en tecnología CMOS 0.1...
Diseño de un transmisor para el estándar IEEE 802.15.4 en tecnología CMOS 0.1...
 
Diseño de un filtro polifásico para un receptor IEEE 802.15.4 en tecnología...
Diseño de un filtro polifásico para un receptor IEEE 802.15.4 en tecnología...Diseño de un filtro polifásico para un receptor IEEE 802.15.4 en tecnología...
Diseño de un filtro polifásico para un receptor IEEE 802.15.4 en tecnología...
 
Sistema de localización de objetos basado en tecnología de Código Abierto de ...
Sistema de localización de objetos basado en tecnología de Código Abierto de ...Sistema de localización de objetos basado en tecnología de Código Abierto de ...
Sistema de localización de objetos basado en tecnología de Código Abierto de ...
 
Diseño de un circuito Wake-up para redes de sensores inalámbricas
Diseño de un circuito Wake-up para redes de sensores inalámbricasDiseño de un circuito Wake-up para redes de sensores inalámbricas
Diseño de un circuito Wake-up para redes de sensores inalámbricas
 
Caracterización del equipo de prácticas ME1000 para el diseño de circuitos de RF
Caracterización del equipo de prácticas ME1000 para el diseño de circuitos de RFCaracterización del equipo de prácticas ME1000 para el diseño de circuitos de RF
Caracterización del equipo de prácticas ME1000 para el diseño de circuitos de RF
 
Diseño de un cabezal de recepción para el estándar IEEE 802.15.4 en tecnologí...
Diseño de un cabezal de recepción para el estándar IEEE 802.15.4 en tecnologí...Diseño de un cabezal de recepción para el estándar IEEE 802.15.4 en tecnologí...
Diseño de un cabezal de recepción para el estándar IEEE 802.15.4 en tecnologí...
 
Sistema de estabilización de cámara para cartografía aérea
Sistema de estabilización de cámara para cartografía aéreaSistema de estabilización de cámara para cartografía aérea
Sistema de estabilización de cámara para cartografía aérea
 
Control automático de un sistema de riego
Control automático de un sistema de riegoControl automático de un sistema de riego
Control automático de un sistema de riego
 
Diseño de un LNA basado en convertidores de corriente utilizando técnicas de ...
Diseño de un LNA basado en convertidores de corriente utilizando técnicas de ...Diseño de un LNA basado en convertidores de corriente utilizando técnicas de ...
Diseño de un LNA basado en convertidores de corriente utilizando técnicas de ...
 
Implementación de una red de sensores inalámbrica para la monitorización de e...
Implementación de una red de sensores inalámbrica para la monitorización de e...Implementación de una red de sensores inalámbrica para la monitorización de e...
Implementación de una red de sensores inalámbrica para la monitorización de e...
 
Comunicaciones a través de voz sobre IP. Casos prácticos, adaptación empresar...
Comunicaciones a través de voz sobre IP. Casos prácticos, adaptación empresar...Comunicaciones a través de voz sobre IP. Casos prácticos, adaptación empresar...
Comunicaciones a través de voz sobre IP. Casos prácticos, adaptación empresar...
 
Diseño de un receptor de “Wake up” para redes de sensores inalámbricas median...
Diseño de un receptor de “Wake up” para redes de sensores inalámbricas median...Diseño de un receptor de “Wake up” para redes de sensores inalámbricas median...
Diseño de un receptor de “Wake up” para redes de sensores inalámbricas median...
 
Estudio y Análisis de un transceptor de largo alcance LORATM SX1272
Estudio y Análisis de un transceptor de largo alcance LORATM SX1272Estudio y Análisis de un transceptor de largo alcance LORATM SX1272
Estudio y Análisis de un transceptor de largo alcance LORATM SX1272
 
Sistema para monitorizar y controlar instalaciones de forma remota utilizando...
Sistema para monitorizar y controlar instalaciones de forma remota utilizando...Sistema para monitorizar y controlar instalaciones de forma remota utilizando...
Sistema para monitorizar y controlar instalaciones de forma remota utilizando...
 
Implementación de una red de sensores inalámbrica para la monitorización de e...
Implementación de una red de sensores inalámbrica para la monitorización de e...Implementación de una red de sensores inalámbrica para la monitorización de e...
Implementación de una red de sensores inalámbrica para la monitorización de e...
 
Caracterización y simulación de un receptor inalámbrico a 915 MHz
Caracterización y simulación de un receptor  inalámbrico a 915 MHzCaracterización y simulación de un receptor  inalámbrico a 915 MHz
Caracterización y simulación de un receptor inalámbrico a 915 MHz
 

Recently uploaded

Snam 2023-27 Industrial Plan - Financial Presentation
Snam 2023-27 Industrial Plan - Financial PresentationSnam 2023-27 Industrial Plan - Financial Presentation
Snam 2023-27 Industrial Plan - Financial Presentation
Valentina Ottini
 
Osisko Gold Royalties Ltd - Corporate Presentation, June 2024
Osisko Gold Royalties Ltd - Corporate Presentation, June 2024Osisko Gold Royalties Ltd - Corporate Presentation, June 2024
Osisko Gold Royalties Ltd - Corporate Presentation, June 2024
Osisko Gold Royalties Ltd
 
2024-deutsche-bank-global-consumer-conference.pdf
2024-deutsche-bank-global-consumer-conference.pdf2024-deutsche-bank-global-consumer-conference.pdf
2024-deutsche-bank-global-consumer-conference.pdf
Sysco_Investors
 
cyberagent_For New Investors_EN_240424.pdf
cyberagent_For New Investors_EN_240424.pdfcyberagent_For New Investors_EN_240424.pdf
cyberagent_For New Investors_EN_240424.pdf
CyberAgent, Inc.
 
Corporate Presentation Probe June 2024.pdf
Corporate Presentation Probe June 2024.pdfCorporate Presentation Probe June 2024.pdf
Corporate Presentation Probe June 2024.pdf
Probe Gold
 
Osisko Development - Investor Presentation - June 24
Osisko Development - Investor Presentation - June 24Osisko Development - Investor Presentation - June 24
Osisko Development - Investor Presentation - June 24
Philip Rabenok
 
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
ybout
 

Recently uploaded (7)

Snam 2023-27 Industrial Plan - Financial Presentation
Snam 2023-27 Industrial Plan - Financial PresentationSnam 2023-27 Industrial Plan - Financial Presentation
Snam 2023-27 Industrial Plan - Financial Presentation
 
Osisko Gold Royalties Ltd - Corporate Presentation, June 2024
Osisko Gold Royalties Ltd - Corporate Presentation, June 2024Osisko Gold Royalties Ltd - Corporate Presentation, June 2024
Osisko Gold Royalties Ltd - Corporate Presentation, June 2024
 
2024-deutsche-bank-global-consumer-conference.pdf
2024-deutsche-bank-global-consumer-conference.pdf2024-deutsche-bank-global-consumer-conference.pdf
2024-deutsche-bank-global-consumer-conference.pdf
 
cyberagent_For New Investors_EN_240424.pdf
cyberagent_For New Investors_EN_240424.pdfcyberagent_For New Investors_EN_240424.pdf
cyberagent_For New Investors_EN_240424.pdf
 
Corporate Presentation Probe June 2024.pdf
Corporate Presentation Probe June 2024.pdfCorporate Presentation Probe June 2024.pdf
Corporate Presentation Probe June 2024.pdf
 
Osisko Development - Investor Presentation - June 24
Osisko Development - Investor Presentation - June 24Osisko Development - Investor Presentation - June 24
Osisko Development - Investor Presentation - June 24
 
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
 

Design of Radio Frequency Integrated Circuits for UWB Communications

  • 1. Tesis Doctoral Design of Radio Frequency Integrated Circuits for Ultra Wide Band Communications Las Palmas de Gran Canaria - 20 de Julio de 2012 Directores: Autor: Dr. Francisco Javier del Pino Suárez Roberto Díaz Ortega Dr. Sunil Lalchand Khemchandani Dr. Antonio Hernández Ballester
  • 5. • Find different alternative to implement power and area efficient low noise amplifiers for ultra wide band applications 1. Obtain a reference system specifications. 1. Explore different low noise amplifiers architectures. 2. Explore different inductor structures. 3. Explore inductorless techniques. Research objectives
  • 6. 1. Distributed amplifiers 2. Wide band low noise amplifiers 3. Feedback wide band amplifier 4. Inductorless techniques Proposed milestones
  • 7. System Distributed Wideband Feedback Inductorless Intro Analysis Amplifiers Amplifiers Amplifiers Techniques Conclusions • Evolution of ultra wide band communications. • ECMA-368 / ISO/IEC26907 specifications. • Receiver architecture. • Receiver design. Outline
  • 8. • Fist use of “ultra wide band” term in 1989. • In 2002 the FCC allocate unlicensed spectrum between 3.1 y 10.6 GHz. • In 2003 the MBOA promote a global UWB standard. • In 2003 appear the IEEE 802.15.3a task group. • In 2004 is created the WiMedia alliance. • In 2006 the IEEE 802.15.3a task group is abandoned. • In 2007 was approved the first version of ECMA-368 / ISO/IEC 26907. Evolution of UWB communications
  • 10. For a Packet Error Rate of less than 8% with a Phisical layer Service Data Unit (PSDU) of 1024 octects. Data Rate (Mb/s) Sensitivity (dBm) 53.3 -80.8 80 -78.9 106.6 -77.8 160 -75.9 200 -74.5 320 -72.8 400 -71.5 480 -70.4 Receiver Sensitivity
  • 11. Advantages Disadvantages No Image Frequency DC Offset Easly integrable I/Q Mistmatches Low power operation Flicker Noise Direct conversion receiver
  • 12. The noise figure is defined as the degradation of the signal to noise ratio: where: Data Rate (Mb/s) Sensitivity (dBm) Noise Figure (dB) 480 -70.4 7.32 53.3 -80.8 18.9 Receiver Noise Figure
  • 13. Filter roll-off (dB/oct) Filter Order ADC dynamic Range (dB) ADC bit number 12 2 53.8 ≥9 24 4 41.8 ≥7 36 6 29.8 ≥5 Channel filter and ADC dynamic range
  • 14. The quantization noise for a ADC input impedance of 50Ω is: The output thermal noise is given by: Considering that: The minimum gain that satisfies the condition is: ADC Bits Oversampling factor (p) Gain (dB) 7 1 60.86 2 57.86 9 1 48.81 2 45.81 ADC number of bits and system gain
  • 15. The maximum power level at ADC input is: To avoid to saturate de ADC: ADC Bits Oversampling factor (p) Gain (dB) 7 1 60.86 2 57.86 9 1 48.81 2 45.81 Automatic gain control
  • 16. The interference scenario is dominated by IEEE 802.11a. The typical test case establish that At a distance of 0.2m the interference power has a level of -31.9 dBm Linearity requirements
  • 17. Component Gain (dB) Noise Figure (dB) IIP3 (dBm) LNA 15 3 -20 Mixer 20 12 -9 Baseband filter -3 3 - Baseband 19 25 -8 amplifiers Budget simulations
  • 18. Parameter Specification Budget simulation Sensitivity (dBm) -80.8 -85 Noise Figure (dB) 7.32 7.27 Gain (dB) 48.81 50.9 Maximum input (dBm) -41 -35 IIP3 (dBm) -8.65 -8.15 Budget simulations
  • 19. Parameter Value Gain (dB) 15 Noise Figure (dB) 3 IIP3 (dBm) -20 Power Consumption (mW) minimum Area (mm2) minimum Low noise amplifier specifications
  • 20. System Distributed Wideband Feedback Inductorless Intro Analysis Amplifiers Amplifiers Amplifiers Techniques Conclusions • Theoretical approach. • Area optimization techniques. • Experimental results. Outline
  • 24. The characteristic impedance and cut-off frequency are given by: Both transmision lines must be equals Distributed amplifiers
  • 29. Design Area mm2 Power cons. (mW) Da1 (a) 0.7 90 DA2 (b) 0.6 90 DA3 (c) 0.4 90 Experimental results
  • 32. In order to provide an objective method to compare the developed circuits and other similar works, a figure of merit has been used: Where: • PDC: power consumption • P1dB: 1 dB compression point • Fh: upper frequency corner of the LNA • Ft* technology unitary current gain bandwidth • Area: circuit area Experimental results
  • 33. Ref. Gain BW NF P1dB Area Ft* (tech) PDC FOM1 FOM2 (dB) (GHz) (dB) (dBm) (mm2) (mW) [7] 6.1 5.5 6.8 8.8 1.12 10.5(0.6μ) 83.4 151 132 [17] 5.5 8.5 10.85 N/A 2.86 10.5(0.6μ) 286 57 - [18] 7.3 22 5.2 10 1.6 33.7(0.18μ) 52 108 95 [18] 10.6 14 4.35 5.3 1.35 33.7(0.18μ) 52 124 106 [19] 6 27 6 10 1.62 33.7(0.18μ) 68 107 94 [20] 4 8 5.4 8 0.84 33.7(0.18μ) 23 208 182 [21] 10 11 4.6 N/A 1.44 33.7(0.18μ) 19.6 119 - [21] 16 11 4.5 N/A 1.44 33.7(0.18μ) 100 110 - DA1 7 6.5 5 12.3 0.74 8.13(0.35μ) 90 231 207 DA2 7 6.5 4.5 12.4 0.61 8.13(0.35μ) 90 282 253 DA3 5.5 6.5 6 11.2 0.47 8.13(0.35μ) 90 364 325 FOM1 not include P1dB - FOM2 including P1dB Experimental results
  • 34. System Distributed Wideband Feedback Inductorless Intro Analysis Amplifiers Amplifiers Amplifiers Techniques Conclusions • Wide band low noise amplifier. • Flatness improvement. • Wideband folded cascode amplifier. Outline
  • 36. The noise depends directly related to: rb, re and the small signal transconductance To get a 50Ω input impedance with a low impact over the noise figure a degenerative inductive is used: Alternatively this expression can be expressed as: Narrow band low noise amplifier
  • 37. Wideband low noise amplifier
  • 38. Wideband low noise amplifier design
  • 39. Wideband low noise amplifier design
  • 40. Wideband low noise amplifier design
  • 41. Parameter Value Area (mm2) 0.13 Power consumption (mW) 32 Experimental results
  • 44. BW 3dB Max. Gain Max. NF IIP3 PDC Ref. Technology Year (GHz) (dB) (dB) (dBm) (mW) [24] 3.1-10.6 9.18 7.2 7.25 23.5 0.18 μm 2007 [25] 2.0-4.6 9.8 5.2 -2.2 12.6 0.18 μm 2005 [26] 3.1-4.8 15 4.9 -9.7 20 0.25 μm 2006 [27] 3.0-5.0 12.7 5.02 16.4 0.18 μm 2005 [28] 3.1-7.5 19.1 3.8 -2.2 32 0.18 μm 2006 [29] 3.0-5.0 12 4.5 - 20 0.18 μm 2009 This work 1.7-5.3 12.5 5.0 -4 32 0.35 μm 2011 Experimental results
  • 45. VD D VD D M3 M3 RF O U T RFO U T M2 M2 L1 C1 Lg L1 C1 Lg M1 M1 Rs Rs L2 C2 Cp L2 C2 Cp RF I N Ls RF I N Ls Flatness improvement
  • 46. Parameter Value Area (mm2) 0.29 Power consumption (mW) 56.1 Experimental results
  • 50. Wide band folded cascode amplifier
  • 51. Design Area (μm2) Power cons. (mW) Wide band cascode (a) 0.13 32 Wide folded cascode (b) 0.13 18.93 Experimental results
  • 54. Wide band cascode Wide band folded cascode Experimental results
  • 55. System Distributed Wideband Feedback Inductorless Intro Analysis Amplifiers Amplifiers Amplifiers Techniques Conclusions • Theoretical approach. • Modified miniatured 3D inductor. • Experimental results. Outline
  • 57. Feedback low noise amplifier
  • 58. Feedback low noise amplifier
  • 59. Feedback low noise amplifier
  • 63. Design Area (mm2) Power cons. (mW) Conventional inductor (a) 0.17 13.2 Miniatured 3d inductor (b) 0.1 13.2 Experimental results
  • 66. Conventional inductor Miniatured 3d Inductor Experimental results
  • 67. Ref. S21 (dB) NF (dB) 3dB BW IIP3 Pdc (mw) Area Tech (GHz) (dBm) (mm2) [34] 9.3 <9 2-23 -6.7 9 1.1 0.18μm CMOS [35] 21 <4.5 2-10 >-5.5 30 0.55 0.18μm SiGe [36] 9.3 <9.2 2.3-9.2 >-6.7 9 0.66 0.18μm CMOS [37] 8.5 <5.3 1.3-10.7 >8 4.5 1 0.18μm CMOS [37] 8.2 <5.5 1.3-12.3 >8 4.5 1 0.18μm CMOS [18] 10.6 <5.4 0.01-14 >10 52 1.35 0.18μm CMOS [38] 20 <4.5 3-10 >-11.75 42.5 0.18 0.18μm CMOS [39] 22 <3.9 3-1-14.5 >-32.5 13.2 0.49 0.18μm SiGe [40] 15.3 <2.98 3.1-10.6 >-8.5 9 0.87 0.25μm SiGe [41] 12 <4 2-10 >1.9 24 0.25 0.13μm CMOS [42] 13 <3.3 2-10 >-7.5 9.6 0.88 0.18μm SiGe [42] 11.5 <3.5 2-10 >-7.5 7.2 0.88 0.18μm SiGe [43] 11.5 4.7 3.1-10.6 -10 10.57 0.665 0.18μm CMOS Std. ind. 14 <5.6 0.1-5.5 >-3.4 13.2 0.1 0.35μm SiGe 3D ind. 14 <4 0.1-6.7 >-4.4 13.2 0.1 0.35μm SiGe Experimental results
  • 68. System Distributed Wideband Feedback Inductorless Intro Analysis Amplifiers Amplifiers Amplifiers Techniques Conclusions • Common gate low noise amplifier. • Quadrature Mixers. • Inductorless operation. • Experimental results. Outline
  • 69. Common gate low noise amplifier
  • 72. Parameter Value Area (mm2) 0.97 Power consumption (mW) 16 Experimental results
  • 75. Parameter Value Area (mm2) 0.52 Power consumption (mW) 14 Experimental results
  • 77. Comparative results between the front-ends: Design Frontend I Frontend II NF(dB) 11.2 13.7 Gain (dB) 12.1 7.2 IIP3 (dBm) -5.6 -2.1 Consumption (mW) 16 14 Area (mm2) 0.97 0.52 With inductorless techniques an area saving of 54% have been achieved. Experimental results
  • 78. System Distributed Wideband Feedback Inductorless Intro Analysis Amplifiers Amplifiers Amplifiers Techniques Conclusions • Summary of the developed circuits. • Specifications comparative. • Areas for further research. Outline
  • 79. Design Gain BW NF IIP3 Area PDC (dB) (dB) (dB) (dBm) (mm2) (mW) Distributed amplifier 1 7 6.5 5 21.3 0.74 90 Distributed amplifier 2 7 6.5 4.5 21.4 0.61 90 Distributed amplifier 3 5.5 6.5 6 30.2 0.47 90 Wide band amplifier 12.5 3.6 4.3 -4 0.13 31 Modified shunt-peaking 11.2 4 5 -4 0.29 56.1 Folded cascode 7.8 2.96 3 -4 0.13 18.93 Feedback amplifier (standard ind.) 14 5.6 <4 -3.4 0.17 13.2 Feedback amplifier (3D ind.) 14 6.8 <4 -4.4 0.10 13.2 Frontend I (inductor based) 12.1 5 11.2 -5.6 0.97 16 Frontend II (inductorless) 7.2 5 13.7 -2.1 0.52 14 Developed circuits
  • 80. Design Frontend I Frontend II Specification NF(dB) 11.2 13.7 7 Gain (dB) 12.1 7.2 35 IIP3 (dBm) -5.6 -2.1 -9 Consumption (mW) 16 14 minimum Area (mm2) 0.97 0.52 minimum Inductorless front-ends
  • 81. Journal Papers • J. del Pino, Sunil L. Khemchandani, Roberto Díaz-Ortega, Rubén Pulido Medina and Hugo García- Vázquez, ”On-Chip Inductors Optimization For Ultra Wide Band Low Noise Amplifiers”, Journal of Circuits, Systems, and Computers, Nov. 2011 • J. del Pino, R. Díaz and S.L. Khemchandani, ”Area Reduction Techniques for Full Integrated Distributed Amplifiers”, International Journal in Electronics and Communications, Nov. 2010 Conference Papers • H. García-Vázquez, R. Díaz, D. Ramos-Valido, A. Santana, J. del Pino and S.L. Khemchandani, ”Area Reduction in RF Fully Integrated Front-Ends for UltraWideband”, XXV Conference on Design of Circuits and Integrated Systems, Nov 2010. • H. García, R. Pulido, R. Díaz, S.L. Khemchandani, A. Goñi and J. del Pino, ”A Feedback Wideband LNA with a Modified 3D Inductor for UWB Applications”, XXIII Conference on Design of Circuits and Integrated Systems, Nov 2008. • G. Martín, R. Díaz, J. del Pino, S.L. Khemchandani, A. Hernández, ”Design of a Fully Integrated DC to 8.5 GHz Distributed Amplifier in CMOS 0.35”, XXI Conference on Design of Circuits and Integrated Systems, Nov 2006. Publications
  • 82. • SR2 - Short Range Radio, Spanish Ministry of Industry, Tourism and Trade 2010- 2011. • SR2 - Short Range Radio, Spanish Ministry of Industry, Tourism and Trade 2009- 2010. • WITNESS - WIreless Technologies for small area Networks with Embedded and Security & Safety. MEDEA+ from UE - Spanish Ministry of Industry, Tourism and Trade. 2005 - 2007. Research Projects
  • 83. • Design and integration of the rest of the receiver • Design of mixers. • Design of filters. • Design of baseband amplifiers. • Inductor estructures • Explore new alternative to reduce inductor area. • Explore new circuits topologies that require low performance inductors. • Inductorless architectures • Improve the performance of inductoless designs. Areas for further research
  • 84. Tesis Doctoral Design of Radio Frequency Integrated Circuits for Ultra Wide Band Communications Las Palmas de Gran Canaria - 20 de Julio de 2012 Directores: Autor: Dr. D.Francisco Javier del Pino Suárez Roberto Díaz Ortega Dr. D. Sunil Lalchand Khemchandani Dr. D. Antonio Hernández Ballester